American Journal of Infection Control xxx (2012) 1-4 Contents lists available at ScienceDirect # American Journal of Infection Control journal homepage: www.ajicjournal.org Major article **Q4** **Q2** Molecular analysis and susceptibility patterns of methicillin-resistant Staphylococcus aureus strains causing community- and health care-associated infections in the northern region of Palestine Kamel Adwan PhD a,*, Naser Jarran MS a, Awni Abu-Hijleh PhD a, Ghaleb Adwan PhD a, Elena Awwad MS b, Yousef Salameh BS a ^a Department of Biology and Biotechnology, An-Najah National University, Nablus, Palestine Key Words: Nasal carriage MRSA CA-MRSA SCCmec typing Palestine PCR assay Phylogenic analysis The aim of our study was to investigate the prevalence of nasal carriage of *Staphylococcus aureus* and methicillin-resistant *Staphylococcus aureus* (MRSA) strains among 360 healthy university students at An-Najah National University, Palestine. For the purpose of comparing the staphylococcal cassette chromosome methicillin resistant determinant (SCCmec) type of MRSA, 46 clinical MRSA isolates were also included in this study. Nasal carriage of *S aureus* was found in 86 of 360 students (24%.) MRSA accounted for 9% of *S aureus* siolates. All 86 strains of *S aureus* were sensitive to vancomycin. Resistance to penicillin G, amoxicillin/clavulanic acid, ciprofloxacin, erythromycin, and clindamycin was found in 98%, 93%, 33%, 23%, and 12% of the isolates, respectively. Resistance rates of the MRSA isolates were as follows: 100% resistant to penicillin G and amoxicillin/clavulanic acid, 96% to ethromycin, 52% to clindamycin, and 48% to ciprofloxacin. No vancomycin-resistant isolates were identified. In our study, nearly half (52%) of the MRSA isolates belonged to SCC*mec* types IVa and V. However, SC*Cmec* types II and III are represented by 48%, whereas SCC*mec* type I was completely absent. These findings indicate the existence of SCC*mec* type IVa in both student nasal carriers and health care settings. This emphasizes the need for implementation of a revised set of control measures in both settings. Moreover, the rational prescription of appropriate antibiotics should also be considered. Copyright © 2012 by the Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved. The expanding community reservoir of community-acquired methicillin-resistant *Staphylococcus aureus* (CA-MRSA) has led to the inevitable infiltration of CA-MRSA in hospitals.¹⁻⁴ Several reports further suggest that CA-MRSA may be replacing the traditional hospital-acquired MRSA (HA-MRSA). This event is a considerable concern because strains of CA-MRSA had staphylococcal cassette chromosome methicillin resistant determinant (SCC*mec*) type IV or V. SCC*mec* types IV and V have increased mobility; therefore, there is a greater potential for horizontal spread to diverse *S aureus* genetic backgrounds compared with other SCC*mec* types.⁵⁻⁸ Nasal carriage of MRSA represents a major risk factor for subsequent infection and transmission of this pathogen.^{8,9} To our knowledge, no epidemiologic surveillance studies in Palestine have investigated the molecular nature of MRSA strains circulating in the community and health care settings. The objectives of our study were to obtain a snapshot on the prevalence of nasal carriage of *S aureus* and MRSA in a Palestinian university, to explore transmission of these strains in health care settings, and to molecularly characterize MRSA strains circulating in Palestine. This study was performed between March and June 2011 to determine the prevalence of nasal carriage of *S aureus* and MRSA in E-mail address: adwank@najah.edu (K. Adv Conflict of interest: None to report. 0196-6553/\$36.00 - Copyright © 2012 by the Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved. doi:10.1016/j.ajic.2012.03.040 ^b Central Veterinary Laboratory, Directorate of Veterinary Services and Animal Health, Ministry of Agriculture, Palestine Although several studies have reported the prevalence of MRSA nasal carriage in patients in health care settings, ⁸⁻¹⁰ this subject has not been investigated in healthy individuals very much, and practically no articles have documented MRSA nasal carriage emergence in Palestine. MATERIALS AND METHODS ^{*} Address correspondence to Kamel Adwan, PhD, Department of Biology and Biotechnology, An-Najah National University, PO Box 7, Nablus, Palestine. E-mail address: adwank@najah.edu (K. Adwan). 131 138 154 155 156 157 158 159 160 161 162 163 164 165 166 169 170 172 173 174 175 176 177 178 179 180 181 182 183 184 186 185 _{Q12} 167 **Q9** 146 147 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 234 235 236 237 238 229 255 256 257 258 259 260 195 Study participants were 360 healthy students. For the purpose of comparing the SCCmec type of MRSA in the study group, 46 clinical MRSA isolates obtained from 3 different health centers in northern Palestine in the same time period of the study were also included in Nasal samples were collected from both nostrils by the use of a collection swab. The tip of the swab was inserted approximately 1 in into the anterior vestibule of the nose and rolled 5 times in each nostril. Each swab was inoculated into enrichment broths to increase the isolation rate of S aureus. After incubation, the broths were streaked onto a mannitol salt agar (Oxoid Ltd, City, State) plate, were further incubated aerobically for 48 hours at 35°C, and subsequently examined for growth. aureus was identified based on its Gram stain morphology, colonial morphology, and production of catalase. The Staphytect plus tests (Oxoid Ltd) was used to determine the presence of Protein A and bound coagulase that are specific for S aureus.⁴ university students at An-Najah National University, Palestine. All S aureus isolates were tested for methicillin resistance. The disc-diffusion method outlined by the National Committee for Clinical Laboratory Standards, 11 was used with a 1 µg oxacillin disc (Oxoid Ltd). Zone sizes were read after incubation at 35°C for 24 hours. Isolates with zone sizes \leq 10 mm were considered to be methicillin resistant. Genetic resistance to methicillin was verified by detection of the mecA gene. Susceptibility testing was performed by disk diffusion susceptibility tests following the method recommended by the Clinical and Laboratory Standards Institute. 11 DNA was extracted following the boiling method described by Zhang et al. 12 One to 5 colonies from an 18-24 hour MRSA culture grown in nutrient agar plate were suspended in 50 µL distilled water, and boiled for 10 minutes. The supernatant with DNA was harvested after centrifugation at $20,000 \times g$ for 5 minutes. SCC*mec* types were determined by the use of specific primers for amplification of the key genetic elements as described by Ghaznavi-Rad et al. 13 Polymerase chain reaction (PCR) was per-168_{Q10} formed with a Ready Mix PCR kit (Sigma-Aldrich Co, City, State). Reaction mixtures contained 2.5 µL template DNA, 12.5 µL master mix with, 2.5 μL primer mix (1 μM for each primer) (Syntezza 171 o11 Bioscience Ltd, Jerusalem, Israel) and ribonuclease-free water to a final volume of 25 µL. The reaction was carried out in an Eppendorf Mastercycler gradient according to the following program: 94°C for 4 minutes; 35 cycles of 94°C for 30 seconds, 48°C for 30 seconds, 72°C for 2 minutes, and a final extension at 72°C for 4 minutes. PCR products were separated by electrophoresis in agarose 2% gels and stained with ethidium bromide. Three nasal MRSA and 3 clinical MRSA samples obtained from health care settings were comprehensively used to amplify and sequence mecA. Primers used were 5'-TGGCTATCGTGTCACAATCG-3' and 5'-CTGGAACTTGTTGAGCAGAG-3', yielding 310-bp fragment.¹⁴ The PCR products were purified using the MinElute PCR purification kit (Qiagen, Hilden, Germany) and the inserts were sequenced by a dideoxy chain termination method on an ABI PRISM Model 3130 Sequence Instrument (Manufacturer, City, State) at Bethlehem University, Bethlehem, Palestine. The phylogenic relationships between the MRSA isolates were conducted using the CLC Main Workbench software (version 5.6.1, 2009, Manufacturer, City, State). The phylogenic tree was rooted with the S sciuri (GenBank accession No. Y13096). The nucleotide sequences of the three nasal MRSA isolates (19, 32, and 89) and three clinical MRSA isolates (3, 7, and 8) reported here were assessed with the following GenBank accession Nos.: JN108029, JN108030, and JN108031, and JN108026, JN108027, and JN108028, respectively. Table 1 Antibiotic resistance of 86 Staphylococcus aureus isolates from nasal swabs collected from healthy students | Antibiotic | Number of resistant isolates | Percentage of resistant isolates | |------------------------|------------------------------|----------------------------------| | Vancomycin | 0 | _ | | Ciprofloxacin | 28 | 33 | | Penicillin G | 84 | 98 | | Amoxicillin/clavulanic | 80 | 93 | | acid | | | | Erythromycin | 20 | 23 | | Clindamycin | 10 | 12 | | Methicillin | 8 | 0 | ### **RESULTS** Out of the total 360 nasal swabs obtained from healthy students at An-Najah National University during the study period, S aureus was isolated in 24% (n = 86). All 86 strains of *S aureus* were sensitive to vancomycin. Resistance to penicillin G, amoxicillin/clavulanic acid, ciprofloxacin, erythromycin, and clindamycin was found in 98%, 93%, 33%, 23%, and 12% of the isolates, respectively (Table 1). Methicillin resistance was detected in 8 of 86 (9%) isolates. Nearly 35% of isolates were noted to be multiply resistant; that is, resistant to β-lactam plus 2 or more antibiotics of ciprofloxacin, erythromycin, and clindamycin. The 54 MRSA isolates in our sample population (ie, the 8 nasal MRSA and the 46 clinical MRSA isolates had a broad range of antibiotic-resistance patterns [Table 2]). All isolates were fully resistant to penicillin G and amoxicillin/clavulanic acid. Rates of resistance to non- β -lactam antibiotics were 96% to erythromycin (n = 52), 52% to clindamycin (n = 28), and 48% to ciprofloxacin (n = 26). In addition, 40 (74%) isolates were noted to be multiply resistant; that is, typically resistant to β -lactam plus 2 or more antibiotics of ciprofloxacin, erythromycin, and clindamycin. No vancomycin-resistant isolates were identified. All 54 MRSA isolates were positive for mecA and a certain type of SCCmec. Four different SCCmec types were detected. In our study, 28 (52%) of MRSA isolates belonged to SCC*mec* type V (n = 12) or type IVa (n = 16), which are traditionally associated with CA-MRSA. However, 26 (48%) of the isolates showed the traditional nosocomial SCCmec types II (n = 10) and III (n = 16), whereas SCCmec type I was completely absent. In addition, SCCmec type IVa was found to be circulating in both students' nasal carriers and health care settings (Table 2). The rates of resistance to ciprofloxacin, clindamycin, and erythromycin among the MRSA SCC*mec* types were as follows: 60%, 80%, and 100%, respectively, among SCCmec type II isolates; 88%, 63%, and 100%, respectively, among SCCmec type III; 25%, 25%, and 88%, respectively, among SCCmec type IVa; and 17%, 50%, and 100%, respectively, among SCCmec type V. Without exception, all MRSA isolates were fully resistant to penicillin G and amoxicillin/clavulanic acid (Table 2). On the other hand, CA-MRSA isolates were less resistant than HA-MRSA isolates to ciprofloxacin (21% and 77%, respectively) and clindamycin (36% and 69%, respectively). However, by taking into account the SCCmec types as well, the dissimilarities in the antimicrobial resistance patterns were small. In fact, CA-MRSA isolates (n = 8) and HA-MRSA strains (n = 8)bearing SCCmec type IVa did not show considerable differences in their resistance profiles. This could be explained by the presence of some CA-MRSA resistance profiles in the HA-MRSA such as resistance to clindamycin, erythromycin, amoxicillin/clavulanic acid, and penicillin G (2 isolates), and resistance to erythromycin, amoxicillin/clavulanic acid, and penicillin G (4 isolates), which together accounted for 75% of the CA-MRSA isolates. 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 261 262 263 264 265 266 267 268 269 270 271 272 284 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 285 Q14 388 389 390 K. Adwan et al. / American Journal of Infection Control xxx (2012) 1-4 Table 2 Distribution of 54 clinical and community methicillin-resistant Staphylococcus aureus (MERSA) isolates by staphylococcal cassette chromosome methicillin resistant determinant (SCCmec) type and resistance profile | | | | | | No. (%) of strains resistant to | | | | | |-------------|---------------------|------------------------------|---------------------------|-----|---------------------------------|---------|----------|----------|----------| | SCCmec type | No. of MRSA strains | No. of clinical MRSA strains | No. of nasal MRSA strains | VAN | CIP | CLI | ERY | AMC | PEN | | II | 10 | 10 | 0 | 0 | 6 (60) | 8 (80) | 10 (100) | 10 (100) | 10 (100) | | III | 16 | 16 | 0 | 0 | 14 (88) | 10 (63) | 16 (100) | 16 (100) | 16 (100) | | IVa | 16 | 8 | 8 | 0 | 4 (25) | 4 (25) | 14 (88) | 16 (100) | 16 (100) | | V | 12 | 12 | 0 | 0 | 2 (17) | 6 (50) | 12 (100) | 12 (100) | 12 (100) | | Total | 54 | 46 | 8 | 0 | 26 (48) | 28 (52) | 52 (96) | 54 (100) | 54 (100) | VAN, vancomycin; CIP, ciprofloxacin; CII, clindamycin; ERY, erythromycin; AMC, amoxicillin/clavulanic acid; PEN, penicillin G. Fig 1. Phylogenetic tree based on the partial nucleotid sequences of the mecA gene of 3 selected community-acquired methicillin-resistant Staphylococcus aureus isolates (19, 32, and 89), 3 health care settings methicillin-resistant Staphylococcus aureus isolates (3, 7, and 8). The phylogenic tree was rooted with the S sciuri (GenBank accession No. Y13096). Numbers above branches are bootstrap values. The tree is rooted by the version 5.6.1 of CLC Main Workbench (Manufacturer, City, State). Partial DNA sequencing of the mecA gene was determined in 6 MRSA isolates representing both nasal and clinical isolates. Nucleotide sequence analyses have revealed that the *mecA* gene is much more conserved among all investigated isolates (Fig 1). ## DISCUSSION Nasal carriage of S aureus has been demonstrated to be a significant risk factor for nosocomial and community acquired infection in a variety of populations. 8,10,15 The prevalence of nasal carriage of aureus in our university student community was 24% and of MRSA was 2%. Although the reduced number of tested samples limits generalizations, the estimated prevalence in our study of S aureus nasal carriage and MRSA were within the range reported previously. 15,16 In our study, maximum resistance of aureus was observed toward penicillin G and amoxicillin/clavulanic acid followed by ciprofloxacin, erythromycin, and clindamycin. To our knowledge, there has not been any previous similar study from this region to evaluate the susceptibility of nasal carrier isolates of S aureus. However, an increasing trend of resistance is probably due, in part, to the selective pressure resulting from uncontrolled and inappropriate use of erythromycin, ciprofloxacin, and amoxicillin/clavulanic acid antibiotics. This is promoted by the lack of an antibiotic policy and the availability of antibiotics sold over the counter in Palestine. The high rate of resistance has major therapeutic implications, insofar as our population of S aureus is associated with multiresistance. Nearly 35% of isolates were noted to be multiply resistant. Our MRSA strains were often resistant to 5 of the 6 antibiotics. namely erythromycin, clindamycin, ciprofloxacin, and 2 of which were β-lactams, a finding mirrored elsewhere. ⁴ The total resistance to the β -lactam antibiotics is unsurprising because all isolates described in Table 2 are MRSA, and therefore, inherently resistant to this class of antibiotic. The high levels of resistance seen to erythromycin and clindamycin may in part be due to a single resistance mechanism that affects these antibiotics. In our health care settings erythromycin, ciprofloxacin, and amoxicillin/clavulanic acid are extensively used for prophylaxis and treatment of MRSA infection; however, the data of this study suggests that these antibiotics are not suitable for use in clinical practice because sustained antibiotic pressure on these lesssensitive isolates could result in the emergence of resistant isolates. Once again using the data recorded in this study, the use of amoxicillin/clavulanic acid, ciprofloxacin, and erythromycin would be limited because resistance to these antibiotics was demonstrated to be 93%, 33%, and 23% among the nasal carrier isolates of S aureus, respectively. The data presented in this article highlight the need for a clear understanding of the dynamics of local antibiogram profiles that can then inform the local prescribing policy. The results of this work showed that vancomycin as a form of treatment would work in all cases of S aureus and MRSA investigated in this study. In our study, nearly half (52%) of MRSA isolates belonged to SCCmec types IVa and V, which are traditionally associated with CA-MRSA. However, classical nosocomial SCCmec types II and III are represented by 48%, whereas SCCmec type I was completely absent. The data confirms the tendency of CA-MRSA SCCmec type IVa strains to spread in hospital settings as mentioned previously. 17,18 Our data shows that CA-MRSA strains were less resistant than HA-MRSA strains to non-β-lactam antimicrobial agents such as ciprofloxacin, clindamycin, and erythromycin, (Tables 1 and 2), a finding that has been mirrored elsewhere.⁵ However, by taking into account the SCCmec types as well, the presence of some CA-MRSA carrying SCCmec type IVa resistance profiles within health care settings was observed. This is based on the observation that 75% of CA-MRSA strains carrying small SCCmec type IVa showed identical resistance profiles to HA-MRSA. Sequence analysis shows that the mecA genes of the 3 CA-MRSA isolates were identical to that found in health care settings, and therefore the possibility of horizontal transfer must be considered. Moreover, the sequence analysis of mecA genes in this study can establish a base for epidemiologic studies, management of outbreaks, and eradication programs of MRSA infections in this region. This is the first report of the *mecA* gene sequence of MRSA in Palestine. A high level of resistance of MRSA to the commonly used antibiotics has been observed; with SCCmec type IVa circulating in both 4 401 407 clinical and community settings in Palestine. These results suggest that efficient control protocols should be adopted in both clinical and community settings. Moreover, rational use of antibiotics and preventing sale of antibiotics without prescriptions should also be considered. Application of this protocol, along with surveillance for antimicrobial resistance of MRSA strains, could prevent the emergence of multidrug-resistant strains. ### References - 1. D'Agata EMC, Webb GF, Horn MA, Moellering RC, Ruan S. Modeling the invasion of community-acquired methicillin-resistant *Staphylococcus aureus* into hospitals. Clin Infect Dis 2009;48:274-84. - Popovich KJ, Weinstein RA, Hota B. Are community-associated methicillinresistant Staphylococcus aureus (MRSA) strains replacing traditional nosocomial MRSA strains? Clin Infect Dis 2008;46:795-8. - Tsering DC, Pal R, Kar S. Methicillin-resistant Staphylococcus aureus: prevalence and current susceptibility pattern in Sikkim. J Glob Infect Dis 2011;3:9-13. - Gould SWJ, Cuschieri P, Rollason J, Hilton CH, Easmon S, Fielder MD. The need for continued monitoring of antibiotic resistance patterns in clinical isolates of *Staphylococcus aureus* from London and Malta. Ann Clin Microbiol Antimicrob 2010;9:1-7. - Albrich WC, Harbarth S. Health-care workers: source, vector, or victim of MRSA? Lancet Infect Dis 2008;8:289-301. - File TM. Impact of community-acquired methicillin resistant Staphylococcus aureus in the hospital setting. Cleve Clin J Med 2007;74(Suppl 4):S6-11. - 7. Weber JT. Community-associated methicillin-resistant *Staphylococcus aureus*. Clin Infect Dis 2005;41(Suppl 4):S269-72. - Piechowic L, Garbacz K, Wiśniewska K, Dabrowska-Szponar M. Screening of Staphylococcus aureus nasal strains isolated from medical students for toxin genes. Folia Microbiol (Praha) 2011;56:225-9. Kuehnert MJ, Kruszon-Moran D, Hill HA, McQuillan G, McAllister SK, Fosheim G, et al. Prevalence of Staphylococcus aureus nasal colonization in the United States, 2001-2002. J Infect Dis 2006;193:172-9. 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 - French GL. Molecular epidemiology of community-associated meticillinresistant Staphylococcus aureus in Europe. Lancet Infect Dis 2010;10: 227-39 - 11. Performance standards for antimicrobial testing: 18th Informational supplement M100-S18. Wayne (PA): Clinical and Laboratory Standards Institute; 2008 - Zhang K, Sparling J, Chow B, Elsayed S, Hussain Z, Church D, et al. New quadriplex PCR assay for detection of methicillin and muropicin resistance and simultaneous discrimination of Staphylococcus aureus from coagulase-negative staphylococci. J Clin Microbiol 2004;42:4947-55. - Ghaznavi-Rad E, Shamsudin MN, Sekawi Z, van Belkum A, Neela V. A simplified multiplex PCR assay for fast and easy discrimination of globally distributed staphylococcal cassette chromosome mec types in meticillin-resistant Staphylococcus aureus. J Med Microbiol 2010;59(Pt 10):1135-9. - Predari SC, Ligozzi M, Fontana R. Genotypic identification of methicillinresistant coagulase-negative staphylococci by polymerase chain reaction. Antimicrob Agents Chemother 1991;35:2568-73. - Rohde RE, Denham R, Brannon A. Methicillin resistant Staphylococcus aureus: carriage rates and characterization of students in a Texas university. Clin Lab Sci 2009:22:176-84. - Prates KA, Torres AM, Garcia LB, Ogatta SF, Cardoso CL, Tognim MC. Nasal carriage of methicillin-resistant *Staphylococcus aureus* in university students. Braz J Infect Dis 2010;14:316-8. - Valsesia G, Rossi M, Bertschy S, Pfyffer GE. Emergence of SCCmec Type IV and SCCmec Type V methicillin-resistant Staphylococcus aureus containing the Panton-Valentine leukocidin genes in a large academic teaching hospital in central Switzerland: external invaders or persisting circulators? J Clin Microbiol 2010:48:720-7. - Strande'n A, Frei R, Adler H, Flückiger U, Widmer A. Emergence of SCCmec type IV as the most common type of methicillin-resistant Staphylococcus aureus in a university hospital. Infection 2009;37:44-8. Our reference: YMIC 2467 P-authorquery-v9 # **AUTHOR QUERY FORM** ELSEVIER Journal: YMIC Please e-mail or fax your responses and any corrections to: E-mail: K.Wong@elsevier.com Article Number: 2467 | Fax: 215-239-3388 Dear Author, Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your corrections within 48 hours. For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions. Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof. | Location in article | Query / Remark: Click on the Q link to find the query's location in text Please insert your reply or correction at the corresponding line in the proof | | | |---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--| | Q1 | Please provide location of the Ministry of Agriculture. | | | | Q2 | Correct? | | | | Q3 | Please provide a structured abstract per journal style, using the headings Background, Methods, Results, and Conclusions. | | | | Q4 | Please confirm expansion of SCCmec. | | | | Q5 | Please confirm expansion of MRSA. | | | | Q6 | Please confirm expansion of SCCmec. | | | | Q7 | Ok as edited? Per journal style, the virgule is only used to separate a numerator from a denominator in mathematical constructions. | | | | Q8 | Please provide location of manufacturer at each mention of Oxiod Ltd. | | | | Q9 | Please confirm expansion of PCR. | | | | Q10 | Please provide location of Sigma-Aldrich Co. | | | | Q11 | Please confirm expansion of RNAse. | | | | Q12 | Please provide manufacturer information for the Sequence Instrument. | | | | Q13 | Please provide manufacturer info for CLC Main Workbench software. | | | | Q14 | Please provide manufacturer info for CLC Main Workbench software. | | | | Q15 | Please confirm that given names and surnames have been identified correctly. | | | | | Please check this box if you have no corrections to make to the PDF file | | |--|--------------------------------------------------------------------------|--| |--|--------------------------------------------------------------------------|--| Thank you for your assistance.