Distributed Algorithms for Computer Networks

Chapter 2 Graphs Dr. Amjad Hawash Dr.Ahmed Awad

What is a Graph?

- A data structure that consists of vertices and edges connecting some of these vertices.
- Has wide range of applications in computer science, engineering, bioinformatics, and others.
- Graphs are frequently used to model a communication network where computational nodes are represented by the vertices and communication links between nodes are represented by the edges of the graph.

Formal definition of graphs

A graph G is defined as follows:

G=(V,E)

V(G): a finite, nonempty set of vertices

E(G): a set of edges (pairs of vertices)

A edge is represented by its end points (the vertices it connects).

е

Example: $e=\{v1,v2\}$

If an edge has the same end points, it is said to be self-loop

Formal definition of graphs

A graph G=(V,E) |V(G) |: The **order** of G | E(G) | : The **size** of G.

Multigraph: A graph that contains multiple edges connecting the same vertices.

Simple graph: A graph that does not contain edges that are self-loops and is not a multigraph.

Graph terminology

<u>Adjacent nodes</u>: Two nodes are adjacent if they are connected by an edge (7 is adjacent to 5, but not vice versa)

<u>Adjacent edges</u>: Two edges are said to be adjacent if there exists a ve that connects both edges.

Graph terminology

<u>Neighbourhood</u> of a vertex: The set of vertices that are adjacent to that vertex.

$$N(v) = \left\{ u \in V : e(u, v) \in E \right\}$$

N(v) is said to be open neighborhood of v.

 $N[v] = N(v) \cup \{v\}$ is said to be closed neighborhood of v.

Graph terminology (2)

<u>Degree of a vertex v (deg(v))</u>: The number of edges plus twice the number of self-loop edges incident to the vertex v.

 $\Delta(G)$: The maximum degree of a graph G.

 $\delta(G)$: The minimum degree of a graph G.

Directed Graph

When the edges in the graph has directions, the graph is said to be **directed graph** (digraph).

An edge is represented with an ordered pair (u,v) where u represents the starting point of the edge and v represents the end point of the edge.

Directed Graph (2)

In-Degree of a vertex: The total number of edges in the a digraph that end at that vertex.

Out-Degree of a vertex: The total number of edges in the a digraph that start at that vertex.

Complete Graph

Complete Graph: A graph in which every vertex is connected to all other vertices of the graph.

(b) Complete undirected graph.

Complete Directed Graph

(a) Complete directed graph.

$$|E| = ??$$

Weighted Graph

Weighted Graph: A graph in which every edge carries a value.

Bipartite Graph

Bipartite Graph: A graph G(V,E) whose set of vertices V can be partitioned into two disjoint sets V1 and V2 such that every edge of G joins a vertex in V1 to a vertex in V2.

Complement of a Graph

Complement of a Graph G(V,E): A graph H(V,E`) such that $e = \{v1, v2\} \in E$ ` if and only if $e = \{v1, v2\} \notin E$

The complement of a graph G is typically denoted by G.

Graph Representations

Adjacency Matrix: An nxn matrix where n is the number of vertices of a graph G(V,E). An entry (i,j) in the matrix is set to 1 if there is an edge connecting vertex i to vertex j, otherwise the entry is set to 0.

Graph Representations

Adjacency List: A list of *n* elements (n represents the number of vertices in the graph), where each element consists of a vertex and its neighbors connected using linked list data structure.

Walks, Trails مسارات , and Tours جولات Walk: An alternating sequence of vertices and edges in the graph.

 $w=(v_0e_1v_1e_2...e_nv_n)$

A walk is said to be closed if $v_0 = v_n$. Otherwise, it is said to be an open walk.

Trail: A walk in the graph where no edge is repeated.

Tour: A closed trail.

Eulerian Trail: A trail that contains exactly one cope of each edge in the graph.

Eulerian Tour: A closed trail that contains exactly one copy of each edge. \rightarrow A graph is said to be Eulerian if it contains an Eulerian tour.

(2) جولات and Tours , مسارات Walks, Trails

Walk: $v_1e_1v_2e_3v_3e_4v_3e_5v_4$

Trail: $v_1e_1v_2e_3v_3e_4v_3e_5v_4$

Tour: $v_1 e_1 v_2 e_2 v_1$

Paths and Circuits

Path (from vertex u to vertex v in graph G): A trail from u to v that does not contain a repeated vertex.

Length of a path is the number of edges it contains.

For a simple graph, the path can be **represented by** the set of vertices traversed along that path.

Circuit: A closed walk that contains at least one edge and does not contain a repeated edge.

Hamiltonian Path: A path that contains each vertex in the graph.

Paths and Circuits (2)

Circuit: $v_2v_3v_4v_5v_3v_6v_2$

Simple circuit: $v_2v_3v_4v_5v_6v_2$

→ A simple circuit is a circuit that does not have any other repeated vertex except the first and the last.

Cycles

Cycle: A circuit of length at least 3 and with no repeated edges except the first and last vertices.

Hamiltonian Cycle: A cycle that contains every vertex in the graph.

If a graph contains a Hamiltonian cycle, it is said to be a **Hamiltonian graph**.

Distance & Diameter

Distance between two vertices v1 and v2 in a grah G: The length of the shortest walk beginning at v1 and ending at v2, provided that such a walk exists.

 $D_G(v_1, v_2)$: Distance between two vertices v1 and v2 in a graph G.

Eccentricity اللامركزية & Radius

Eccentricity of a vertex: The maximum distance from that vertex to any other vertex in the graph.

Radius of a graph: The minimum eccentricity of the vertices of that graph.

Diameter of a graph: The maximum eccentricity of the vertices of that graph.

& Radius اللامركزية & Radius

Consider the graph

Vertices 1 2 have eccentricity 3 and all other vertices have eccentricity 4.

Consider the graph

& Radius اللامركزية & Radius

Girth مقاس & Circumference

Girth: The length of the shortest cycle of a graph, given that a cycle exists. If the graph does not have any cycle, the girth is defined by **zero**.

Circumference: The length of the longest cycle of a grapth, given that a cycle exists. If the graph does not have any cycle, the circumference is defined as **infinity**.

Girth مقاس & Circumference

Subgraphs

Subgraph: A graph $H(V^{,E^{}})$ is said to be a subgraph of G if $V^{\subseteq} V$ and $E^{\subseteq} E$

If a subgraph contains the set of all vertices in the original graph, it is said to be **spanning subgraph**.

Subgraphs (2)

Definition 2.24 (Edge-Induced Subgraph, Vertex-Induced Subgraph) Given an edge set $E' \subseteq E$, the edge induced subgraph by E' is H = (V', E') where $v \in V'$ if and only if it is incident to an edge in E'. Similarly, given a vertex set $V' \subseteq V$, the vertex induced subgraph by V' is H = (V', E') where $\{v_1, v_2\} \in E'$ if and only if both v_1 and v_2 are in V'.

Graph Connectivity

A graph G(V,E) is said to be **connected** if there is a walk between any pair of vertices v1 and v2.

A digraph is said to be **strongly connected** if for every walk from every vertex v1 in V to any vertex v2 in V, there is also a walk from v2 to v1.

Components, Deletion Graphs

Definition 2.26 (Component) A component of a graph G(V, E) is a subgraph G' of G where any pair of vertices in G' is connected. A connected graph G has only one component which is itself.

Definition 2.27 (Edge Deletion Graph) For a graph G(V, E) and $E' \subset E$, the graph G' formed after deleting the edges in E' from G is the subgraph induced by the edge set $E \setminus E'$, which is denoted G' = G - E'.

Definition 2.28 (Vertex Deletion Graph) For the graph G(V, E) and $V' \subset V$, the graph G' formed after deleting the vertices in V' from G is the subgraph induced by the vertex set $V \setminus V'$, which is denoted G' = G - V'.

Components (Example)

There are two connected components in above undirected graph 0 1 2 3 4

Cut Points

Definition 2.29 (Cutpoint) For a graph G(V, E), a vertex $v \in V$ is a *cutpoint* of G if G - v has more components than G has. If G is connected, G - v is disconnected.

The maximal connected subgraph that contains no cut points is said to be a **block**.

Bridges

Definition 2.30 (Bridge, Cutset) For a graph G(V, E), a *bridge* is an edge $e \in E$ deletion of which increases the number of components of G. A minimal set of edges whose deletion disconnects G is called a *cutset* in G.

Connectivity

Vertex Connectivity: The minimum number of vertices whose removal from the graph results either in a disconnected graph or a single vertex.

It is denoted by *K(G)*

K(G) = 1

Connectivity

Edge Connectivity: The minimum number of edges in a graph G whose removal disconnects that graph.

It is denoted by $\varepsilon(G)$

 $\varepsilon(G) = 2$

Trees

Forest: Acyclic graph (graph that contains no cycles) and has more than one component.

Tree: Acyclic graph that has one component.

Trees (2)

The following are equivalent to describe a tree *T* :

- *T* is a tree;
- T contains no cycles and has n 1 edges;
- T is connected and has n 1 edges;
- *T* is connected, and each edge is a bridge;
- Any two vertices of *T* are connected by exactly one path;
- *T* contains no cycles, but the addition of any new edge creates exactly one cycle.

Rooted Tree

Rooted Tree: A tree that has a designated vertex, called the **root**, in which case the edges have natural orientation towards or away from the root.

- **Parent** of a vertex v: The vertex connected to v on the path to the root.

-Child of a vertex v: The vertex whose parent is v

- Leaf: A vertex without children

Spanning Tree

Definition 2.35 (Spanning Forest, Spanning Tree) For graph G(V, E), if H(V', E') is an acyclic subgraph of G where V' = V, then H is called a *spanning forest* of G. If H has one component, it is called a *spanning tree* of G.

Definition 2.36 (Minimum Spanning Tree) For a weighted graph G(V, E) where weights are associated with edges, a spanning tree H of G is called a *minimum spanning tree* of G if the total sum of the weights of its edges is minimal among all possible spanning trees of G.

