Distributed Algorithms for Computer Networks

Chapter 2

Graphs
Dr. Amjad Hawash
Dr.Ahmed Awad

What is a Graph?

- A data structure that consists of vertices and edges connecting some of these vertices.
- Has wide range of applications in computer science, engineering, bioinformatics, and others.
- Graphs are frequently used to model a communication network where computational nodes are represented by the vertices and communication links between nodes are represented by the edges of the graph.

Formal definition of graphs

A graph G is defined as follows:

$$
G=(V, E)
$$

$V(G)$: a finite, nonempty set of vertices
$E(G)$: a set of edges (pairs of vertices)
A edge is represented by its end points (the vertices it connects).

Example: $e=\{\mathrm{v} 1, \mathrm{v} 2\} \rightarrow$

If an edge has the same end points, it is said to be self-loop

$$
e=\{1\} \rightarrow
$$

Formal definition of graphs

A graph $G=(V, E)$
$|V(G)|:$ The order of G
$|E(G)|$: The size of G.
Multigraph: A graph that contains multiple edges connecting the same vertices.

Simple graph: A graph that does not contain edges that are self-loops and is not a multigraph.

Graph terminology

Adjacent nodes: Two nodes are adjacent if they are connected by an edge (7 is adjacent to 5 , but not vice versa)

Adjacent edges: Two edges are said to be adjacent if there exists a ve (4) hat connects both edges.

Graph terminology

Neighbourhood of a vertex: The set of vertices that are adjacent to that vertex.

$$
N(v)=\{u \in V: e(u, v) \in E\}
$$

$N(v)$ is said to be open neighborhood of v.
$N[v]=N(v) \cup\{v\}$ is said to be closed neighborhood of V.

$$
\begin{gathered}
N(2)=\{1,3,4\} \\
N[2]=\{1,2,3,4\}
\end{gathered}
$$

Graph terminology (2)

Degree of a vertex $v(\operatorname{deg}(v))$: The number of edges plus twice the number of self-loop edges incident to the vertex v.
$\Delta(G)$: The maximum degree of a graph G.
$\delta(G)$: The minimum degree of a graph G.

Directed Graph

When the edges in the graph has directions, the graph is said to be directed graph (digraph).

An edge is represented with an ordered pair (u,v) where u represents the starting point of the edge and v represents the end point of the edge.

Directed Graph (2)

In-Degree of a vertex: The total number of edges in the a digraph that end at that vertex.

Out-Degree of a vertex: The total number of edges in the a digraph that start at that vertex.

$$
\begin{gathered}
\operatorname{deg}_{\text {in }}(4)=2 \\
\operatorname{deg}_{\text {out }}(4)=2
\end{gathered}
$$

Complete Graph

Complete Graph: A graph in which every vertex is connected to all other vertices of the graph.

$$
\forall v \in V, N(v)=V \backslash\{v\}
$$

(b) Complete undirected graph.

Complete Directed Graph

(a) Complete directed graph.

$$
|E|=? ?
$$

Weighted Graph

Weighted Graph: A graph in which every edge carries a value.

Bipartite Graph

Bipartite Graph: A graph $G(V, E)$ whose set of vertices V can be partitioned into two disjoint sets V1 and V2 such that every edge of G joins a vertex in V1 to a vertex in V2.

Complement of a Graph

Complement of a Graph G(V,E): A graph H(V,E') such that $e=\{v 1, v 2\} \in E^{`}$ if and only if $e=\{v 1, v 2\} \notin E$

The complement of a graph G is typically denoted by G.

Fig. 2.3 (a) A graph
$G(V, E)$. (b) Its complement $G^{\prime}\left(V, E^{\prime}\right)$

(a)

(b)

Graph Representations

Adjacency Matrix: An $n \times n$ matrix where n is the number of vertices of a graph $G(V, E)$. An entry (i, j) in the matrix is set to 1 if there is an edge connecting vertex i to vertex j, otherwise the entry is set to 0 .

Graph Representations

Adjacency List: A list of n elements (n represents the number of vertices in the graph), where each element consists of a vertex and its neighbors connected using linked list data structure.

Walks, Trails and Tours مسارات لات

Walk: An alternating sequence of vertices and edges in the graph.

$$
w=\left(v_{0} e_{1} v_{1} e_{2} \ldots e_{n} v_{n}\right)
$$

A walk is said to be closed if $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{n}}$. Otherwise, it is said to be an open walk.

Trail: A walk in the graph where no edge is repeated.
Tour: A closed trail.
Eulerian Trail: A trail that contains exactly one cope of each edge in the graph.

Eulerian Tour: A closed trail that contains exactly one copy of each edge. \rightarrow A graph is said to be Eulerian if it contains an Eulerian tour.

(2)جولات Walks, Trails , مسارات , and Tours

Walk: $v_{1} e_{1} v_{2} e_{3} v_{3} e_{4} v_{3} e_{5} v_{4}$
Trail: $v_{1} e_{1} v_{2} e_{3} v_{3} e_{4} v_{3} e_{5} v_{4}$

Tour: $v_{1} e_{1} v_{2} e_{2} v_{1}$

Paths and Circuits

Path (from vertex u to vertex v in graph G): A trail from u to v that does not contain a repeated vertex.

Length of a path is the number of edges it contains.
For a simple graph, the path can be represented by the set of vertices traversed along that path.

Circuit: A closed walk that contains at least one edge and does not contain a repeated edge.

Hamiltonian Path: A path that contains each vertex in the graph.

Paths and Circuits (2)

Circuit: $v_{2} v_{3} v_{4} v_{5} v_{3} v_{6} v_{2}$

Simple circuit: $v_{2} v_{3} v_{4} v_{5} v_{6} v_{2}$
\rightarrow A simple circuit is a circuit that does not have any other repeated vertex except the first and the last.

Cycles

Cycle: A circuit of length at least 3 and with no repeated edges except the first and last vertices.

Hamiltonian Cycle: A cycle that contains every vertex in the graph.

If a graph contains a Hamiltonian cycle, it is said to be a Hamiltonian graph.

Distance \& Diameter

Distance between two vertices v1 and v2 in a grah G : The length of the shortest walk beginning at v1 and ending at v2, provided that such a walk exists.
$D_{G}\left(v_{1}, v_{2}\right)$: Distance between two vertices $v 1$ and $v 2$ in a graph G.

Eccentricity اللامر كزية \& Radius

Eccentricity of a vertex: The maximum distance from that vertex to any other vertex in the graph.

Radius of a graph: The minimum eccentricity of the vertices of that graph.

Diameter of a graph: The maximum eccentricity of the vertices of that graph.

Eccentricity اللامركزية \& Radius

Consider the graph

Vertices
1
2
have eccentricity 3 and all other vertices have eccentricity 4.
Consider the graph

Vertices
1
2
have eccentricity 3 and all other vertices have eccentricity 4.

Eccentricity اللامركزية \& Radius

graph eccentricities

Girth مقاس \& Circumference

Girth: The length of the shortest cycle of a graph, given that a cycle exists. If the graph does not have any cycle, the girth is defined by zero.

Circumference: The length of the longest cycle of a grapth, given that a cycle exists. If the graph does not have any cycle, the circumference is defined as infinity.

Girth مقاس \& Circumference

Subgraphs

Subgraph: A graph $H\left(V^{\prime}, E^{\prime}\right)$ is said to be a subgraph of G if $V \subseteq V$ and $E^{\prime} \subseteq E$

If a subgraph contains the set of all vertices in the original graph, it is said to be spanning subgraph.

Fig. 2.6 (a) A graph G.
(b)-(d) Spanning subgraphs of G. (e), (f) Subgraphs of G

(a)

(b)

(c)

(d)

(e)

(f)

Subgraphs (2)

Definition 2.24 (Edge-Induced Subgraph, Vertex-Induced Subgraph) Given an edge set $E^{\prime} \subseteq E$, the edge induced subgraph by E^{\prime} is $H=\left(V^{\prime}, E^{\prime}\right)$ where $v \in V^{\prime}$ if and only if it is incident to an edge in E^{\prime}. Similarly, given a vertex set $V^{\prime} \subseteq V$, the vertex induced subgraph by V^{\prime} is $H=\left(V^{\prime}, E^{\prime}\right)$ where $\left\{v_{1}, v_{2}\right\} \in E^{\prime}$ if and only if both v_{1} and v_{2} are in V^{\prime}.

Fig. 2.7 (a) A graph G.
(b) Edge-induced graph of G of edges $\{1,4\}$, $\{4,3\}$.
(c) Vertex-induced graph of G of vertices $2,3,4$

(a)

(b)

(c)

Graph Connectivity

A graph $G(V, E)$ is said to be connected if there is a walk between any pair of vertices v 1 and v 2 .

A digraph is said to be strongly connected if for every walk from every vertex v 1 in V to any vertex v 2 in V , there is also a walk from v 2 to v 1 .

Components, Deletion Graphs

Definition 2.26 (Component) A component of a graph $G(V, E)$ is a subgraph G^{\prime} of G where any pair of vertices in G^{\prime} is connected. A connected graph G has only one component which is itself.

Definition 2.27 (Edge Deletion Graph) For a graph $G(V, E)$ and $E^{\prime} \subset E$, the graph G^{\prime} formed after deleting the edges in E^{\prime} from G is the subgraph induced by the edge set $E \backslash E^{\prime}$, which is denoted $G^{\prime}=G-E^{\prime}$.

Definition 2.28 (Vertex Deletion Graph) For the graph $G(V, E)$ and $V^{\prime} \subset V$, the graph G^{\prime} formed after deleting the vertices in V^{\prime} from G is the subgraph induced by the vertex set $V \backslash V^{\prime}$, which is denoted $G^{\prime}=G-V^{\prime}$.

Components (Example)

There are two connected components in above undirected graph 012
34

Cut Points

Definition 2.29 (Cutpoint) For a graph $G(V, E)$, a vertex $v \in V$ is a cutpoint of G if $G-v$ has more components than G has. If G is connected, $G-v$ is disconnected.

The maximal connected subgraph that contains no cut points is said to be a block.

Bridges

Definition 2.30 (Bridge, Cutset) For a graph $G(V, E)$, a bridge is an edge $e \in E$ deletion of which increases the number of components of G. A minimal set of edges whose deletion disconnects G is called a cutset in G.

Connectivity

Vertex Connectivity: The minimum number of vertices whose removal from the graph results either in a disconnected graph or a single vertex.

It is denoted by $K(G)$

$$
K(G)=1
$$

Connectivity

Edge Connectivity: The minimum number of edges in a graph G whose removal disconnects that graph.

It is denoted by $\varepsilon(\boldsymbol{G})$

$$
\varepsilon(G)=2
$$

Trees

Forest: Acyclic graph (graph that contains no cycles) and has more than one component.

Tree: Acyclic graph that has one component.

Forest

Trees (2)

The following are equivalent to describe a tree T :

- T is a tree;
- T contains no cycles and has $n-1$ edges;
- T is connected and has $n-1$ edges;
- T is connected, and each edge is a bridge;
- Any two vertices of T are connected by exactly one path;
- T contains no cycles, but the addition of any new edge creates exactly one cycle.

Rooted Tree

Rooted Tree: A tree that has a designated vertex, called the root, in which case the edges have natural orientation towards or away from the root.

- Parent of a vertex v : The vertex connected to v on the path to the root.
-Child of a vertex v : The vertex whose parent is v
- Leaf: A vertex without children

Spanning Tree

Definition 2.35 (Spanning Forest, Spanning Tree) For graph $G(V, E)$, if $H\left(V^{\prime}, E^{\prime}\right)$ is an acyclic subgraph of G where $V^{\prime}=V$, then H is called a spanning forest of G. If H has one component, it is called a spanning tree of G.

Definition 2.36 (Minimum Spanning Tree) For a weighted graph $G(V, E)$ where weights are associated with edges, a spanning tree H of G is called a minimum spanning tree of G if the total sum of the weights of its edges is minimal among all possible spanning trees of G.

Fig. 2.9 (a) A spanning tree.
(b) The minimum spanning tree rooted at vertex 2

(a)

(b)

