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2.1 INTRODUCTION 

 

 To understand the subject of errors in surveying, let us assume that we 

need to measure a certain distance AB using a measuring tape. To do so, we 

gave a team of two people a tape and asked them to measure the distance under 

the following circumstances: 

 

- Perform the measurement on a beautiful day (no wind, comfortable 

temperature and so on) and write down the result. 

- Repeat the measurement immediately on the same day with the 

same tape. 

- Repeat the measurement on a windy day. 

- Repeat the measurement on a hot day. 

- Repeat the measurement on a cold day. 

- Repeat the measurement under the previous conditions but with a 

different tape. 

- Repeat the measurement under the previous conditions, but two 

different people are asked this time to do the job. 

 

2 
ERRORS 

IN 

SURVEYING 
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If we compare the various measurements obtained in the different previous 

scenarios, we will notice that they are not equal. The reason is that all surveying 

operations are subject to three sources of error, which could lead to harmful and 

unexpectable results. These sources are: 

 

a) The imperfections of the instruments, 

b) The fallibility of the human operator, and  

c) The uncontrollable nature of the environment. 

 

 Actually, no surveying measurement is exact and free of error (unless by 

chance), and the true values of the measured parameters are never known.  

Therefore, a surveyor must thoroughly understand the sources of error in the 

various methods of surveying, as well as, the methodology for evaluating the 

achievable accuracy of a surveying program.   

 

 Due to the high importance of the subject of errors, and the need to 

know how to control, avoid and minimize them, I felt the need to introduce this 

subject to the reader before he/she learns about the techniques and equipment 

needed to perform the various surveying operations. This chapter will present 

the fundamental principles of measurement errors and the basic statistical 

techniques used for evaluating the accuracy of various methods of surveying 

and of survey results. 

 

 

2.2 ERRORS IN SURVEYING MEASUREMENTS 

 

 The true error in a surveying measurement is defined as the difference 

between the measured value of a parameter and its true value. 

 

Let e i  = true error 

 x i  = measured value 

 x = true value 

    =  x  -  xiei    . . . . . . . . . . . . . . . . . . . . . . . .(2.1) 

 

But since, as mentioned earlier, the true value (x) can never be determined, the 

true error (e i ) too can never be exactly determined.  Therefore, the error in a 

measurement must be estimated or calculated by comparing it with another 
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more accurately determined value of the same parameter, such as the mean of 

several measurements.  Let x  represent such a value.  Then, an estimate (v i ) of 

the true error (e i ) is: 

 

 x̂ -  x= v ii         . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.2) 

This estimate error is sometimes called the residual error. Once this error is 

calculated, it should be removed from the measured value (xi) by subtracting it 

from xi. An alternative way is to add a correction (Ci) to the measured value. 

This correction is equal to the error in magnitude but with opposite sign, that is: 

correction = - error.  

 

In general, errors in surveying measurements can be divided into three different 

types: 

 

1. Blunders (also referred to as mistakes), 

2. Systematic errors, and 

3. Random errors (also referred to as compensating or accidental errors). 

 

 

2.2.1 BLUNDERS (MISTAKES) 

 

 These are simply mistakes caused by human carelessness, fatigue and 

haste.  Blunders can be positive or negative, large or small and their occurrence 

is unpredictable.  Some examples of blunders are the transposition of digits in 

recording a measurement (such as recording 43.18 instead of 34.18) and 

sighting a wrong target when measuring an angle.   

 

 Blunders are disastrous if left in the surveying measurements, and 

therefore, must be eliminated by careful work and by using field procedures 

that provide checks for blunders as will be explained later in several places in 

this book. 

 

 

2.2.2 SYSTEMATIC ERRORS 

 

 These are mostly caused by the maladjustment of the surveying 

instruments and by the uncontrollable nature of the environment.  Both the 
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signs and magnitudes of systematic errors behave according to a particular 

system or physical law of nature, which may or may not be known.  When the 

law of occurrence is known, systematic errors can be calculated and eliminated 

from the measurements. 

 

 One example of systematic errors is the tape length error when, for 

various reasons, the actual length of the tape will be different from its nominal 

length under calibration conditions. 

 

 

EXAMPLE 2.1:  

 

 A line was found to be 376.4 m when measured with a tape, which is 

believed to be 20 m long (nominal length).  On checking, the actual tape 

length was found to be 20.04 m.  What is the correct length of the line? 

 

SOLUTION: 

 

Correct length of the line = measured length . 
length  tapenominal

length  tapeactual
 

  Correct length of the line = 376.4 x 
20 04

20

.
 = 377.2 m 

 

 For areas (see Chapter 3: section 3.7): 

 Correct Area = measured area x 
actual length of the tape

nominal length of the tape











2

 

 

 A special type of systematic error is an error that always occurs with the 

same sign and magnitude and is therefore often referred to as a constant error.  

The most common source of constant error is the measuring instruments.  For 

example a 30-m tape may in fact be missing the first 0.10 m (i.e., 10 cm) due to 

the deterioration of the tape after the repeated use.  Then, if not noticed, every 

time the tape is used would contain a constant error of +0.10 m.  Constant 

errors of this type can be detected by careful attention and calibration of the 

instruments. More examples of systematic errors will be given in the next 

chapters. 
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2.2.3 RANDOM ERRORS (COMPENSATING OR ACCIDENTAL ERRORS) 

 

 These are caused by imperfections of the measuring instruments, 

imperfections of the surveyor to make an exact measurement, and the 

uncontrollable variations in the environment.  These errors can be minimized 

by using better instruments and properly designed field procedures and by 

making repeated measurements. 

 

 Random errors have the following characteristics: 

 

1. Positive and negative errors of the same magnitude occur with the same 

frequency. 

2. Small errors occur more frequently than large ones. 

3. Very large errors seldom occur. 

4. The mean of an infinite number of observations is the true value. 

 

 For example, let us assume that a distance is measured using the same 

instrument and the same degree of care, a large number of times, say 1000 

times. Then, the mean or average of the 1000 repeated measurements is 

computed, and the estimated (residual) error in each individual length 

measurement is calculated using Equation (2.2). The estimated error computed 

in this manner is called the deviation from the mean because it is a measure of 

how far is the measurement from the mean.  Now, calculate the range of these 

errors (range = maximum error – minimum error), divide this range into a 

suitable number (5 to 8 intervals) of equal intervals and count the number of 

occurrences in each interval. Plotting the frequency of occurrence against the 

interval limits of the estimated error may result in a histogram similar to that 

shown in Figure 2.1. 

 

 For an infinite number of repetitions of the measurements, this 

histogram approximates to a continuous normal curve with the following 

probability density function (p.d.f): 

 

2
v

2

1
 

e.
2

1
 = )v(f














  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.3) 

Where  v = random error, and 

  = Standard error or deviation of the measurements (see next section). 
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Frequency

Deviations from the mean0- +

FIGURE 2.1: A histogram which shows the distribution of random errors.  
 

This continuous curve is shown in Figure 2.2.  

 

Normalized Frequency

f(v)

Random eroor (v)

0 + -

FIGURE 2.2: Normal curve of error.  
 

The normal curve is symmetrical about v = 0.  The probability that the random 

error in a measurement takes on a value between a and b, is equal to the area 

under the curve and bounded by the values of a and b as shown in Figure 2.3 

 

FIGURE 2.1: A histogram which shows the distribution of random errors. 
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f(v)

Random eroor (v)

0

FIGURE 2.3: Probability of random errors.

P(a < v < b)

a b

 
 

In mathematical terms, if P(a  v  b) represents that probability, then  

 P a e dv

v

    












 v  b) =  
1

2

 

a

b

 



1

2

2

   . . . . . . . . . . . .(2.4) 

The curve is normalized so that the area under the entire curve is equal to 1. 

Since this integral is so complicated, probability values can be taken from 

already prepared tables, which can be found in most statistics book. 

 

 Some representative probabilities for selected error ranges are: 

 

Error Range Probability (%) 

       0.6745  

       1.00  

       1.6449  

       2.00  

       3.00  

50.0 

68.3 

90.0 

95.4 

99.7 
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2.3 MEAN, STANDARD DEVIATION AND STANDARD ERROR OF 

THE MEAN 

 

 Let x1,  x ,  x  . . . x2 3 n  be n repeated measurements of the same quantity, 

and let us assume that all these measurements were made with the same 

instrument and same degree of care.  Then: 

 

1) The mean denoted by x , of the n measurements is computed as follows: 

 x

xi

 =  
n

i = 1

n


  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.5) 

2) An estimate of the standard error x̂ of one measurement of the quantity 

is: 

 

 

1 -n 

x - x

 = ˆ

n

1 = i

2

i

x


   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.6) 

 

The standard error is sometimes called the standard deviation or root-

mean-square (RMS) error of a single measurement. It is a measure for 

the error in a single measurement as compared to the calculated mean. 

 

3) An estimate of the standard error of the mean of the n measurements, to 

be denoted by   x  , can be computed as follows: 

 

 

 1 -n n

x - x

 = ˆ

n

1 = i

2

i

x


   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.7) 

 Or 

 
n

ˆ
 = ˆ x

x


    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.8) 

 

 x̂ is also called the RMS error of the mean. It is a measure for the error 

in the mean itself as compared to the true value or an acceptable 

estimate of it. 
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2.4 PROBABLE AND MAXIMUM ERRORS 

 

 The probable error of a measurement is defined to be equal to 0.6745.  

There is a 50% probability that the actual error exceeds the probable error, as 

well as, a 50% probability that it is less than the probable error. The probable 

error was widely used in surveying in the past as a measure of precision, now it 

is replaced by the standard error. 

 

 The maximum error in a measurement is defined as being equal to 3. 

There is a 99.7% probability that the actual error falls within 3, and only a 

0.3% probability that the actual error exceeds 3. 

 

Example: If the standard error of an angle measurement is  3.0 seconds, then, 

 The probable error   =  (0.6745 x 3.0)  =  2.0 seconds 

 The maximum error =  (3 x 3.0)  =  9.0 seconds  

 

 The maximum error is usually used as a measure for detecting and 

isolating blunders from the surveying measurements.  For example, after the 

mean and standard deviation of n repeated measurements have been computed, 

the deviation (v i ) of each measurement from the mean can be computed 

(vi =  x  -  xi ). If any measurement deviates from the mean by more than 3, 

the measurement is considered to have a blunder.  It is rejected, and a new 

mean and standard deviation are computed without this particular 

measurement. 

 

 

EXAMPLE 2.2:  

 

A distance was repeatedly measured 12 times, and the following results 

(in meters) were recorded:  

58.78, 58.83, 58.80, 58.85, 58.18, 58.77, 58.79, 58.80, 58.81, 58.82, 

58.79 & 58.82  

 

Check these measurements for the existence of any blunders, reject 

them (if any), and compute the mean, the standard deviation, and 

estimated standard error of the mean. 
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SOLUTION: 

 

Measurement  

(m) 

First Iteration 

d - d = v ii      (m) 

Second Iteration 

d - d = v ii      (m) 

58.78 

58.83 

58.80 

58.85 

58.18 

58.77 

58.79 

58.80 

58.81 

58.82 

58.79 

58.82 

0.03 

0.08 

0.05 

0.10 

-0.57 

0.02 

0.04 

0.05 

0.06 

0.07 

0.04 

0.07 

-0.03 

0.02 

-0.01 

0.04 

blunder      rejected 

-0.04 

-0.02 

-0.01 

0.00 

0.01 

-0.02 

0.01 

 

First Iteration: (n = 12) 

Mean = 58.75 m 

Standard deviation =  0.18 m 

Estimated standard error of the mean = 
12

0.18 
 =  0.05 m 

Maximum error of a single measurement =  3 x 0.18 =  0.54 m 

 Reject measurement 58.18 m (possibly the surveyor recorded 58.18 

m instead of 58.81 m) 

 

Second Iteration: (n = 11) 

Mean = 58.81 m 

Standard deviation =  0.02 m 

Estimated standard error of the mean = 
11

0.02 
 =  0.007 m   0.01 m 

Maximum error of a single measurement =  3 x 0.02 =  0.06 m 

 No more measurements are rejected. 
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2.5 PRECISION AND ACCURACY 

 

Precision:  A measurement is considered to have high precision if it has a small 

standard deviation.  For example, assume that team A measured a distance with 
A =   0.05  m, and team B measured the same distance with B =   0.10  

m.  The measurement of team A is said to be more precise than that of team B.  

Figure 2.4 shows that a large standard deviation means a flatter distribution 

curve for the random errors. 

 

-0.05-0.10 0.05 0.100
BB AA

Normal curve of error

Normal curve of error

A -
+for 0.05=

B -
+for 0.10=

f(v) = 
2

1.0
e 2 2

-v2

Random measurement error (v)

FIGURE 2.4: Standard error and the distribution of random errors.  
 

 

Accuracy:  A measurement is considered to have high accuracy if it is close to 

the true value.  High precision does not necessarily mean high accuracy.  A 

measurement that is highly precise is also highly accurate if it contains little or 

no systematic errors with all blunders removed. Figure 2.5 shows the four 

possible combinations of precision and accuracy. 
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EXAMPLE 2.3:  

 

A distance was measured by two independent parties, with the 

following results: 

Party A:  DA  = 257.361  0.032 m 

Party B:  DB = 257.538  0.011 m 

 

This distance was later measured by highly calibrated EDM (see 

Chapter 6) and found to be 257.407 m (with all blunders and systematic 

errors removed). 

 

Compare between the two teams in terms of precision and accuracy. 

 

SOLUTION: 

 
B  = ± 0.011 m    A   = ± 0.032 m 

 Party B measurement is more precise than Party A. 

 

True value of the distance can be assumed to be D = 257.407 m 

 

FIGURE 2.5: Possible combinations of precision and accuracy. 

(a) High precision, high accuracy (b) High precision, low accuracy 

(c) Low precision, high accuracy (d) Low precision, low accuracy 

: Observation 

: True value 
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Absolute error in party A measurement = m 0.046 = 257.407 -361.257  

Absolute error in party B measurement = m 0.131 = 257.407- 538.257  

0.131  0.046  Party B measurement is less accurate than Party A. 

 

Result:  Party B measurement is more precise but less accurate than 

Party A measurement. 

 

 In general, to obtain high precision and high accuracy in surveying, the 

following strategies must be followed: 

 

1. Follow techniques that will help detect and eliminate all the blunders. 

2. Eliminate or correct all systematic errors by frequent calibration and 

adjustment of the instruments, and 

3. Minimize the random errors by using good instruments and field 

procedures. 

 

 

2.6 RELATIVE PRECISION 

 

Relative precision is a term that is commonly used to describe the 

precision of distance measurement in surveying.  Suppose that a distance D is 

measured with a standard error D , then: 

 

Relative precision of the measured distance at 1  = 
1

D
D

 . . . . . . . . . . . . (2.9) 

 Usually, it is adequate enough to round off the denominator in the 

relative precision fraction to one or two non-zero digits.  For example:  a 

distance (D) was measured and found to be 4576.2  0.3m, then: 

Relative precision of the measured distance at 1  = 
15,000

1
  

15,254

1
 = 

3.0

2.4576

1
  

This means that if we measure a distance of length 15,000 units (could be m or 

ft), then there is a 68.3% chance that the error is within 1 unit. Some agencies 

choose to represent the relative precision at 2 or 3 level accuracy. For the 

previous distance:  
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Relative precision of measured distance at 3  = 
5,000

1
  

5,085

1
 = 

3.0 x 3

2.4576

1
  

 

This means that if we measure a distance of length 5,000 units, then there is a 

99.7% chance that the error is within 1 unit. 

 

 

2.7 REPEATED MEASUREMENTS 

 

 Equation (2.8) [
n

ˆ
 = ˆ x

x


 ] shows that 

n

1
  ˆ

x  .  This means that as the 

number of repeated observations (n) of a parameter increases, the standard error 

of the mean of these measurements (  x ) decreases; leading to a high precision 

in the measured value of the mean. Equation (2.8) can be modified to look like 

this: 

 
x

x

ˆ

ˆ
 = n



 

    

2

x

x

ˆ

ˆ
 =n 












   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.10) 

which means that if the standard deviation of a single measurement is ( x̂ ), 

then n measurements are needed to achieve a certain value of (  x ) for the 

standard error of the mean. 

 

For example:  Suppose that an angle can be measured with x =   3"  in one 

repetition by using a certain instrument, then the number of repetitions required 

to determine the angle with x =   0.8"  is: 

 n =  
3

0.8
  14









 

2

 

 

 

 

 

 



CHAPTER 2: ERRORS IN SURVEYING                                                            N T 

 31 

2.8 PROPAGATION OF RANDOM ERRORS 

 

 So far, the precision and accuracy discussed earlier have been about 

parameters (such as angles and distances) that are directly measured using 

surveying equipment. However, it often happens that a quantity is derived from 

the measured values of other parameters that could be statistically correlated or 

uncorrelated. For example, a long distance D (Figure 2.6) is obtained by adding 

the two individually measured sections d1 and d2. Now, assuming that each of 

these two sections has its own standard deviation (i.e. 
1d  & 

2d ), what would 

be the standard deviation of the derived quantity D? 

 

 

 

 

 

 

 

 

 

 

The answer for the previous question will be given here for the simplest 

case when the measured values are statistically uncorrelated. In general, assume 

that the value of parameter y can be derived from the measured values of n 

other uncorrelated parameters: x ,  x ,  .  .  .  x1 2 n .  Let y be related to the n 

parameters by a continuous function: 

 

  y =  F x ,  x ,  .  .  .  x1 2 n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(2.11) 

 

Furthermore, let xi
 be the estimated standard error of parameter x i and y  be 

the estimated standard error of y.  Then: 

 

 2

x

2

n

2

x

2

2

2

x

2

1

2

y n21
ˆ

x

F
 + . . . + ˆ

x

F
 + ˆ

x

F
 = ˆ 






































  . . . . . . . . . .  .(2.12) 

 

d1 d2 
A 

 
B 

 

C 

D 

FIGURE 2.6: Measuring a long distance in two sections. 
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This law is called the law of propagation of random errors. It is beyond the 

scope of this book to give the mathematical derivation for this law, but 

interested readers can refer to some of the references listed at the end of the 

book. 

 

 From the law of propagation of random errors, it follows that: 

1) Error of a sum: 

 If  y =  x  +  x  +  . . . x1 2 n , 

    =   +   +  . .  .  +      y x x x1 2 n

      
2 2 2

 

 

2) Error of a product: 

 If  y =  x   x1 2   , 

      =   x    +  x   y 2

2

x 1

2

x1 2

    
2 2

 

3) Let y = Ax, where A is a constant and x is a measured quantity 

 Then, 

 xy
ˆ .A  = ˆ   

 

Problem:  Prove the above results. 

 

 

EXAMPLE 2.4:  

 

The radius (r) of a circular tract of land is measured to be 40.25 m with 

an estimated standard error (  r ) of 0.01 m.  Compute the area (A) of 

the tract of land and its estimated standard error ( A ). 

 

SOLUTION: 

 A =  r  =  40.25   5089.58 m2
2

2    

By the law of propagation of random errors: 

rA

2

r

2

2

A
ˆ 

r

A
 = ˆ      ˆ 

r

A
 = ˆ 

























  

     2

rA m 2.53   0.0140.25 x 2 = ˆ r2 = ˆ   

 A = 5089.58  2.53 m2  
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EXAMPLE 2.5:  

 

The radius (R) of the base of a cone is measured as 14.000  0.002 cm.  

The height (h) of the cone is measured as 35.000  0.018 cm.  What is 

the standard error of the volume? 

 

SOLUTION: 

 

V
h

 =  
R

 =  
 x 14  x 35

3
 =  7183.775 cm

2 2
3 

3
 

R  =  0.002 cm,  h  =  0.018 cm 

 




 V

R cm
 =  

Rh
 =  

2  x 14  x 35
 =  1026.254 cm32

3 3
 

 





 V

h cm
 =  

R
 =  

 x 14
 =  205.251 cm

2 2
3

3 3
 

 

2

h

2

2

R

2

V
ˆ 

h

V
+ ˆ 

R

V
 = ˆ 

























  

 

             =  1026.254  +  205.251  =   4.226 cm3 
2 2 2 2

0 002 0 018   

 

          V = 7183.775  4.226 cm3  

 

 

EXAMPLE 2.6:  

 

Two sides and the included angle of a triangular land parcel were 

measured with the following results: a =  45.12  0.05 m, b = 38.64  

0.03 m, and θ = 52° 15  30.  Calculate the area of the land parcel and 

its standard error. 
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SOLUTION: 

 

The area of the triangle is given by 

the following relationship: 

 

2m 689.26     

)51 (52sin  38.64 x 45.12 x 
2

1
     

 sin  ab
2

1
 A 







  

 

 

The standard error of the area is (from Equation 2.12): 

2

2

2

b

2

2

a

2

A
ˆ 

A
 ˆ 

b

A
+ ˆ 

a

A
 = ˆ







































  

a̂  =  0.05 m, b̂  =  0.03 m,  ̂ =  radian 1.454x10 
180

 x
3600

30 4-


 

m 15.28 = )51 (52sin  38.64 x 
2

1
 = sin  b 

2

1
 = 

a

A




   

m 17.84 = )51 (52sin  45.12 x 
2

1
 = sin  a 

2

1
 = 

b

A




   

2m 533.68 = )51 (52 cos 38.64 x 45.12 x 
2

1
 =  cos ab 

2

1
 = 

A




   

 
       

2

2422222

A

m 94.0 =           

)10x454.1((533.68)03.017.84 + 05.015.28 =ˆ 



 

 

 

 

2.9 WEIGHTS AND WEIGHTED MEAN 

 

 Sometimes, one measurement (observation) of a series may be more 

reliable than another.  Such an observation should exert greater influence upon 

the calculation of the results. The degree of reliability is commonly termed the  

weight of the measurement. This is merely the relative value of that observation 

to the others of the series. 

FIGURE 2.7: A triangular land parcel. 

A 

B C 
 =52° 15 

b 

a 
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 When calculating the mean value of some quantity from two or more 

sets of observations, it is logical to give consideration to the calculated 

precision of each of the sets.  The weights are taken to be inversely proportional 

to the square of the standard error, that is. 

 
w

w
1

2

2

1

2
 =  2


 

Or w
k

i i

i i      w     
1

2 2
 

 

 Let k = 0

2
 

 w
i

i
0 =  





2

2
   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.13) 

 

 0 is called the standard error of unit weight because if the standard 

error  i  of a measurement is equal to 0 , then it has a weight of 1. 

 

 Since the weight is inversely proportional to the square of the standard 

error  i  , then, the more precise the measurement is, the smaller will be its 

standard error and the larger will be its weight. 

 

 Now, let x ,  x ,  x  .  .  .  x1 2 3 n  be n independent measurements of a 

quantity, and let n321
ˆ . . . ˆ ,ˆ ,ˆ   be the corresponding standard errors of these 

measurements.  This means that the measurements are assumed to be made 

with different precision.  It can be shown that the most probable or accepted 

value ( x ) of the quantity is given by the weighted mean of these n 

measurements; that is: 

 x
n

 =  
w x  +  w x  +  .  .  .  w x

w  +  w  +  .  .  .  w
 =  

w x

w

1 1 2 2 n n

1 2 n

i i

i = 1

n

i

i = 1




 . . . . . .  . . . . .(2.14) 

 

Moreover, an estimate of the standard error of the weighted mean ( x̂̂ ) can be 

computed as follows: 
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




n

1 = i

i

0

x

w

  = ˆ     . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(2.15) 

 

Problem: Use the law of propagation of random errors to prove that the 

previous equation is correct. 

 

 

EXAMPLE 2.7:  

 

Compute the weighted mean ( ̂ ) and the estimated standard error of the 

weighted mean (
̂

 ) for the following four independent measurements 

of a distance: 

  1 = 2746.34 0.02 ft   2  = 2746.38  0.06 ft 

  3  = 2746.26  0.05 ft   4  = 2746.31  0.04 ft 

 

SOLUTION: 

 

Let 0  =  0.06 ft, then: 

9 = 
0.02

0.06
 = w

2

1 







,  1.44 = 

0.05

0.06
 = w

2

3 







 

1 = 
0.06

0.06
 = w

2

2 







,  2.25 = 

0.04

0.06
 = w

2

4 







 

2.25 + 1.44 + 1 + 9

2.25 x 2746.31 + 1.44 x 2746.26 + 1 x 2746.38 + 9 x 34.2746
     ˆ   

       = 2746.33 ft 

ft 0.02  = 
13.69

0.06
    ˆ 


 

 

Problem:  Prove that the weighted mean and its standard error will not change 

regardless of the chosen value for 0. Support your proof by 

choosing a different value for 0  in the previous example and solve 

it again. 
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2.10 SIGNIFICANT FIGURES 

 

 The significant figures in a number are those digits with known values.  

They are identified by proceeding from left to right, beginning with the first 

non-zero digit and ending with the last digit of the number.  The following rules 

may be helpful: 

 

1 - All non-zero digits are significant 

2 - Zeros at the beginning of a number merely indicate the position of the 

decimal point.  They are not significant. 

3 - Zeros between digits are significant 

4 - Zeros at the end of a decimal number are significant. 

 

Examples: 

a -   456.300 has six significant figures 

b -   0.0036 has two significant figures 

c -   6.000350 has seven significant figures 

d -   54.0 has three significant figures 

 

 The subject of significant figures is important in both fieldwork and 

office computations.  Since neither the measurements nor the quantities 

mathematically deduced from them could be exact, it is essential to use the 

appropriate number of significant figures to express a final meaningful result. 

 

 When there are more significant figures in a quantity than are required, 

the number is rounded off to the number of places needed.  The following 

points should be taken into consideration when deciding upon the number of 

significant figures in surveying operations: 

 

1) Any calculated value should correspond with its standard error.  For 

example, if the standard error of a distance is 0.002 m, the value of the 

distance should be reported to the third decimal place. 

 

2) The number of decimal places in a measurement should not exceed the 

accuracy of the fieldwork.  For example, if a distance can be measured 

with a tape which can read up to 0.001 m, then it is not reasonable to 

report a distance with more than three decimal places. 
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3) When performing addition, subtraction, multiplication or division, the 

answer can not be more precise than the least precise number included 

in the mathematical operation. 

 For example: 

   24.217 

   + 468.46 

  +1563.1 

        ________ 

          2055.777 

 

 The sum must be rounded off to 2055.8 because 1563.1 has only one 

decimal place. 
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PROBLEMS 

 

2.1  For the following set of repeated measurements of a distance:  576.39, 

576.29, 576.31, 576.34, 576.35, 576.30, 576.33, 576.27, 576.34 and 

576.30 m. 

 

a. Compute the mean, standard deviation and estimated standard error 

of the mean. 

b. Check for the presence of any blunders. Reject blunders if any and 

repeat calculations in part (a). 

c. Choose an appropriate interval and  plot  a  histogram  for the errors. 

(for simplicity use 5  intervals) 

 

2.2  A distance is measured to be 456.31 m with an estimated  standard error 

of   0.05 m. Compute for this measured distance: 

 a. The probable error.   b. The maximum error. 

 c. The relative precision at 1. d. The relative precision at 3. 

 

2.3 The length and width of a rectangular field are 5420 ft and 1510 ft 

respectively. If the area of the field must be determined with a standard 

error of  0.1 acre, determine the relative precision at 1 with which the 

length and width of the field must be measured. 

 

2.4 A tract of land is trapezoidal in 

shape with the  following  

dimensions: 

 

 1 = 472.3    0.1 m 

 2  = 583.7   0.3 m 

h   = 241.8    0.2 m 

  

  

Compute the area of the tract and its estimated standard error. 

 

 

h 

1 

2 

FIGURE 2.8: A trapezoidal land parcel  
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2.5 A line was carefully measured 10 times on  3  different  days.  The  

mean and the estimated standard error of each day's measurement were 

computed to be as follows: 

 

Day Mean Estimated Standard Error 

1 

2 

3 

2815.46 m 

2816.72 m 

2816.38 m 

 0.05 m 

0.03 m 

0.02 m 

 

Compute: 

a.  The weighted mean of the three measurements. 

b.  The estimated standard error of the weighted mean. 

 

2.6 Given below are the elevations and the RMS errors measured from two 

surveys for two subsidence-monitoring points: 

 

                        POINT                     ELEVATIONS 

               #             JUNE 1974             JUNE 1984              

 

    101        563.14  0.03 m      563.01  0.06 m 

             102        579.26  0.04 m      579.05  0.05 m 

 

 

a. Compute for each point the change in elevation, the RMS error of 

the change, and the maximum expected survey error in the change.  

Make a table. 

b. Which point has an elevation change exceeding the maximum 

expected survey error? 

 

2.7 Derive equation (2.8). 

 

 


