

Neural Networks: Tensorflow
Dr. Amjad Hawash

What is TensorFlow?

● Currently, the most famous deep learning
library in the world is Google's TensorFlow.

● Google product uses machine learning in
all of its products to improve the search
engine, translation, image captioning or
recommendations.

What is TensorFlow?

● To give a concrete example, Google users
can experience a faster and more refined
the search with AI.

● If the user types a keyword a the search
bar, Google provides a recommendation
about what could be the next word.

What is TensorFlow?

● Google wants to use machine learning to take
advantage of their massive datasets to give
users the best experience.

● Three different groups use machine learning:
– Researchers.
– Data Scientists.
– Programmers.

● They can all use the same toolset to
collaborate with each other and improve their
efficiency.

What is TensorFlow?

● Google wants to use machine learning to take
advantage of their massive datasets to give
users the best experience.

● Three different groups use machine learning:
– Researchers.
– Data Scientists.
– Programmers.

● They can all use the same toolset to
collaborate with each other and improve their
efficiency.

What is TensorFlow?

● TensorFlow is a library developed by the
Google Brain Team to accelerate machine
learning and deep neural network research.

● It was built to run on multiple CPUs or GPUs
and even mobile operating systems, and it
has several wrappers in several languages
like Python, C++ or Java.

History of TensorFlow

● A couple of years ago, deep learning
started to outperform all other machine
learning algorithms when giving a massive
amount of data.

● Google saw it could use these deep neural
networks to improve its services:
– Gmail.
– Photo.
– Google search engine.

History of TensorFlow

● They build a framework called Tensorflow to let
researchers and developers work together on an AI
model.

● Once developed and scaled, it allows lots of people
to use it.

● It was first made public in late 2015, while the first
stable version appeared in 2017.

● It is open source under Apache Open Source license.
● You can use it, modify it and redistribute the

modified version for a fee without paying anything to
Google.

TensorFlow Architecture

● Tensorflow architecture works in three parts:
– Preprocessing the data.
– Build the model.
– Train and estimate the model.

● It is called Tensorflow because it takes input as
a multi-dimensional array, also known as
tensors.

● You can construct a sort of flowchart of
operations (called a Graph) that you want to
perform on that input.

TensorFlow Architecture

● The input goes in at one end, and then it
flows through this system of multiple
operations and comes out the other end as
output.

● This is why it is called TensorFlow because
the tensor goes in it flows through a list of
operations, and then it comes out the other
side.

Where can Tensorflow run?

● TensorFlow hardware, and software
requirements can be classified into:
– Development Phase:

● This is when you train the mode.
● Training is usually done on your Desktop or laptop.

– Run Phase or Inference Phase:
● Once training is done Tensorflow can be run on many

different platforms.
● You can run it on:

– Desktop running Windows, macOS or Linux
– Cloud as a web service
– Mobile devices like iOS and Android.

Where can Tensorflow run?

● You can train it on multiple machines then you
can run it on a different machine, once you
have the trained model.

● The model can be trained and used on GPUs
as well as CPUs.

● GPUs were initially designed for video games.
● In late 2010, Stanford researchers found that

GPU was also very good at matrix operations
and algebra so that it makes them very fast
for doing these kinds of calculations.

Where can Tensorflow run?

● Deep learning relies on a lot of matrix
multiplication.

● TensorFlow is very fast at computing the matrix
multiplication because it is written in C++.

● Although it is implemented in C++, TensorFlow can
be accessed and controlled by other languages
mainly, Python.

● Finally, a significant feature of TensorFlow is the
TensorBoard.

● The TensorBoard enables to monitor graphically and
visually what TensorFlow is doing.

Introduction to Components of TensorFlow:
Tensor

● Tensorflow's name is directly derived from its
core framework: Tensor.

● In Tensorflow, all the computations involve
tensors.

● A tensor is a vector or matrix of n-dimensions
that represents all types of data.

● All values in a tensor hold identical data type
with a known (or partially known) shape.

● The shape of the data is the dimensionality of
the matrix or array.

Introduction to Components of TensorFlow:
Tensor

● A tensor can be originated from the input
data or the result of a computation.

● In TensorFlow, all the operations are
conducted inside a graph.

● The graph is a set of computation that
takes place successively.

● Each operation is called an op node and
are connected to each other.

Introduction to Components of TensorFlow:
Tensor

● The graph outlines the ops and
connections between the nodes.

● However, it does not display the values.
● The edge of the nodes is the tensor, i.e., a

way to populate the operation with data.

Introduction to Components of TensorFlow:
Graphs

● TensorFlow makes use of a graph framework.
● The graph gathers and describes all the series

computations done during the training.
● The graph has lots of advantages:

– It was done to run on multiple CPUs or GPUs and even
mobile operating system

– The portability of the graph allows to preserve the
computations for immediate or later use.

– The graph can be saved to be executed in the future.
– All the computations in the graph are done by

connecting tensors together.

List of Prominent Algorithms supported by
TensorFlow

● Currently, TensorFlow 1.10 has a built-in API for:
– Linear regression: tf.estimator.LinearRegressor
– Classification:tf.estimator.LinearClassifier
– Deep learning classification:

tf.estimator.DNNClassifier
– Deep learning wipe and deep:

tf.estimator.DNNLinearCombinedClassifier
– Booster tree regression:

tf.estimator.BoostedTreesRegressor
– Boosted tree classification:

tf.estimator.BoostedTreesClassifier

Simple TensorFlow Example

● import numpy as np
● import tensorflow as tf
● In the first two line of code, we have

imported tensorflow as tf.
● Let 's practice the elementary workflow of

Tensorflow with a simple example.
● Let 's create a computational graph that

multiplies two numbers together.

Simple TensorFlow Example

● During the example, we will multiply X_1
and X_2 together.

● Tensorflow will create a node to connect
the operation.

● In our example, it is called multiply.
● When the graph is determined, Tensorflow

computational engines will multiply
together X_1 and X_2.

Simple TensorFlow Example

Simple TensorFlow Example

● Finally, we will run a TensorFlow session that will
run the computational graph with the values of X_1
and X_2 and print the result of the multiplication.

● Let 's define the X_1 and X_2 input nodes.
● When we create a node in Tensorflow, we have to

choose what kind of node to create.
● The X1 and X2 nodes will be a placeholder node.
● The placeholder assigns a new value each time we

make a calculation.
● We will create them as a TF dot placeholder node.

Step 1: Define the variable

● X_1 = tf.placeholder(tf.float32, name = "X_1")
● X_2 = tf.placeholder(tf.float32, name = "X_2")
● When we create a placeholder node, we have to pass

in the data type will be adding numbers here so we
can use a floating-point data type, let's use tf.float32.

● We also need to give this node a name.
● This name will show up when we look at the graphical

visualizations of our model.
● Let's name this node X_1 by passing in a parameter

called name with a value of X_1 and now let's define
X_2 the same way. X_2.

Step 2: Define the computation

● multiply = tf.multiply(X_1, X_2, name = "multiply")
● Now we can define the node that does the multiplication

operation.
● In Tensorflow we can do that by creating a tf.multiply node.
● We will pass in the X_1 and X_2 nodes to the multiplication

node.
● It tells tensorflow to link those nodes in the computational

graph, so we are asking it to pull the values from x and y
and multiply the result.

● Let's also give the multiplication node the name multiply. It
is the entire definition for our simple computational graph.

Step 3: Execute the operation

● To execute operations in the graph, we
have to create a session.

● In Tensorflow, it is done by tf.Session().
● Now that we have a session we can ask the

session to run operations on our
computational graph by calling session.

● To run the computation, we need to use
run.

Step 3: Execute the operation

● When the addition operation runs, it is
going to see that it needs to grab the
values of the X_1 and X_2 nodes, so we
also need to feed in values for X_1 and
X_2.

● We can do that by supplying a parameter
called feed_dict.

● We pass the value 1,2,3 for X_1 and 4,5,6
for X_2.

Step 3: Execute the operation

● We print the results with print(result).
● We should see 4, 10 and 18 for 1x4, 2x5

and 3x6

Step 3: Execute the operation

● X_1 = tf.placeholder(tf.float32, name =
"X_1")

● X_2 = tf.placeholder(tf.float32, name =
"X_2")

● multiply = tf.multiply(X_1, X_2, name =
"multiply")

● with tf.Session() as session:
● result = session.run(multiply,

feed_dict={X_1:[1,2,3], X_2:[4,5,6]})
● print(result)

Options to Load Data into TensorFlow

● The first step before training a machine learning algorithm is
to load the data.

● There is two commons way to load data:
– Load data into memory:

● It is the simplest method.
● You load all your data into memory as a single array. You can write a Python

code.
● This lines of code are unrelated to Tensorflow.

– Tensorflow data pipeline:
● Tensorflow has built-in API that helps you to load the data, perform the

operation and feed the machine learning algorithm easily.
● This method works very well especially when you have a large dataset.
● For instance, image records are known to be enormous and do not fit into

memory.
● The data pipeline manages the memory by itself

Load data in memory

● If your dataset is not too big, i.e., less than
10 gigabytes, you can use the first method.

● The data can fit into the memory.
● You can use a famous library called Pandas

to import CSV files.
● You will learn more about pandas in the

next tutorial.

Load data with Tensorflow pipeline

● The second method works best if you have a
large dataset.

● For instance, if you have a dataset of 50
gigabytes, and your computer has only 16
gigabytes of memory then the machine will
crash.

● In this situation, you need to build a
Tensorflow pipeline.

● The pipeline will load the data in batch, or
small chunk.

Load data with Tensorflow pipeline

● Each batch will be pushed to the pipeline
and be ready for the training.

● Building a pipeline is an excellent solution
because it allows you to use parallel
computing.

● It means Tensorflow will train the model
across multiple CPUs.

● It fosters the computation and permits for
training powerful neural network.

Create Tensorflow pipeline

● In the example before, we manually add
three values for X_1 and X_2.

● Now we will see how to load data to
Tensorflow.

Step 1: Create the data

● First of all, let's use numpy library to
generate two random values.

● import numpy as np
● x_input = np.random.sample((1,2))
● print(x_input)

Step 2: Create the placeholder

● Like in the previous example, we create a
placeholder with the name X.

● We need to specify the shape of the tensor
explicitly.

● In case, we will load an array with only two
values. We can write the shape as shape=[1,2]

● # using a placeholder
● x = tf.placeholder(tf.float32,

shape=[1,2], name = 'X')

Step 3: Define the dataset method

● next, we need to define the Dataset where
we can populate the value of the
placeholder x.

● We need to use the method
tf.data.Dataset.from_tensor_slices

● dataset =
tf.data.Dataset.from_tensor_slices(x)

Step 4: Create the pipeline

● In this step, we need to initialize the
pipeline where the data will flow.

● We need to create an iterator with
make_initializable_iterator.

● We name it iterator. Then we need to call
this iterator to feed the next batch of data,
get_next. We name this step get_next.

● Note that in our example, there is only one
batch of data with only two values.

Step 4: Create the pipeline

● iterator =
dataset.make_initializable_iterator()

● get_next = iterator.get_next()

Step 5: Execute the operation

● The last step is similar to the previous
example.

● We initiate a session, and we run the
operation iterator. We feed the feed_dict
with the value generated by numpy.

● These two value will populate the
placeholder x.

● Then we run get_next to print the result.

Step 5: Execute the operation

● with tf.Session() as sess:
● # feed the placeholder with data
● sess.run(iterator.initializer,

feed_dict={ x: x_input })
● print(sess.run(get_next))

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

