

Neural Network Structure
Dr. Amjad Hawash

The problem

● Suppose we have some information about
obesity, smoking habits, and exercise
habits of five people.

● We also know whether these people are
diabetic or not. Our dataset looks like this:

The problem

● It is clearly evident from the dataset that a
person's obesity is indicative of him being
diabetic.

● Our task is to create a neural network that is
able to predict whether an unknown person is
diabetic or not given data about his exercise
habits, obesity, and smoking habits.

● This is a type of supervised learning problem
where we are given inputs and corresponding
correct outputs and our task is to find the
mapping between the inputs and the outputs.

The Solution

X.W=x1w1+x2w2+x3w3+b

The problem

● The result from Step 1 can be a set of any
values.

● However, in our output we have the values in
the form of 1 and 0.

● We want our output to be in the same format.
● To do so we need an activation function, which

squashes input values between 1 and 0.
● One such activation function is the sigmoid

function.

Activation Functions (Sample)

● The sigmoid function returns 0.5 when the
input is 0.

● It returns a value close to 1 if the input is a
large positive number.

● In case of negative input, the sigmoid
function outputs a value close to zero.

The problem

● Mathematically, the sigmoid function can
be represented as:

●

● input = np.linspace(-10, 10, 100)
● def sigmoid(x):
● return 1/(1+np.exp(-x))
● from matplotlib import pyplot as plt
● plt.plot(input, sigmoid(input), c="r")

The problem

● You can see that if the
input is a negative
number, the output is
close to zero, otherwise
if the input is positive
the output is close to 1.

● However, the output is always between 0
and 1.

● This is what we want.

The problem

● This sums up the feedforward part of our neural
network.

● It is pretty straightforward.
● First we have to find the dot product of the input

feature matrix with the weight matrix.
● Next, pass the result from the output through an

activation function, which in this case is the
sigmoid function.

● The result of the activation function is basically
the predicted output for the input features.

Back Propagation

● In the beginning, before you do any
training, the neural network makes random
predictions which are far from correct.

● We then compare the predicted output of
the neural network with the actual output.

● Next, we fine-tune our weights and the bias
in such a manner that our predicted output
becomes closer to the actual output, which
is basically known as "training the neural
network".

The problem

● The first step in the back propagation
section is to find the "cost" of the
predictions.

● The cost of the prediction can simply be
calculated by finding the difference
between the predicted output and the
actual output.

● The higher the difference, the higher the
cost will be.

The problem

● There are several other ways to find the
cost, but we will use the mean squared
error cost function.

● A cost function is simply the function that
finds the cost of the given predictions.

● The mean squared error cost function can
be mathematically represented as:

The problem

● Our ultimate purpose is to fine-tune the
knobs of our neural network in such a way
that the cost is minimized.

● If you look at our neural network, you'll
notice that we can only control the weights
and the bias.

● Everything else is beyond our control.
● We cannot control the inputs, we cannot

control the dot products, and we cannot
manipulate the sigmoid function.

The problem

● In order to minimize the cost, we need to
find the weight and bias values for which
the cost function returns the smallest value
possible.

● The smaller the cost, the more correct our
predictions are.

● This is an optimization problem where we
have to find the function minima.

The problem

● To find the minima of a function, we can
use the gradient decent algorithm.

● The gradient decent algorithm can be
mathematically represented as follows:

The problem

● Here in the above equation, J is the cost
function.

● Basically what the above equation says is:
find the partial derivative of the cost
function with respect to each weight and
bias and subtract the result from the
existing weight values to get the new
weight values.

The problem

● The derivative of a function gives us its
slope at any given point.

● To find if the cost increases or decreases,
given the weight value, we can find the
derivative of the function at that particular
weight value.

● If the cost increases with the increase in
weight, the derivative will return a positive
value which will then be subtracted from
the existing value.

The problem

● On the other hand, if the cost is decreasing
with an increase in weight, a negative value
will be returned, which will be added to the
existing weight value since negative into
negative is positive.

● In Equation 1, we can see there is an alpha
symbol, which is multiplied by the gradient.
This is called the learning rate.

● The learning rate defines how fast our
algorithm learns.

The problem

The problem

● We need to repeat the execution of
Equation 1 for all the weights and bias until
the cost is minimized to the desirable level.

● In other words, we need to keep executing
Equation 1 until we get such values for bias
and weights, for which the cost function
returns a value close to zero.

The implementation

– import numpy as np
– feature_set = np.array([[0,1,0],[0,0,1],[1,0,0],[1,1,0],

[1,1,1]])
– labels = np.array([[1,0,0,1,1]])
– labels = labels.reshape(5,1)

● In the above script, we create our feature set.
● It contains five records.
● Similarly, we created a labels set which contains

corresponding labels for each record in the feature set.
● The labels are the answers we're trying to predict with

the neural network.

The implementation

● The next step is to define hyper parameters
for our neural network.

● Execute the following script to do so:
– np.random.seed(42)
– weights = np.random.rand(3,1)
– bias = np.random.rand(1)
– lr = 0.05

● In the script above we used the random.seed
function so that we can get the same random
values whenever the script is executed.

The implementation

● In the next step, we initialize our weights
with normally distributed random numbers.

● Since we have three features in the input,
we have a vector of three weights.

● We then initialize the bias value with
another random number.

● Finally, we set the learning rate to 0.05.

The implementation

● Next, we need to define our activation
function and its derivative (I'll explain in a
moment why we need to find the derivative of
the activation).

● Our activation function is the sigmoid
function, which we covered earlier.

● The following Python script creates this
function:
– def sigmoid(x):
– return 1/(1+np.exp(-x))

The implementation

● And the method that calculates the
derivative of the sigmoid function is
defined as follows:
– def sigmoid_der(x):
– return sigmoid(x)*(1-sigmoid(x))

● The derivative of sigmoid function is simply
sigmoid(x) * sigmoid(1-x).

The implementation

● Now we are ready to train our neural network that will be able to predict whether a person
is obese or not.
– inputs = feature_set
–

– # feedforward step1
– XW = np.dot(feature_set, weights) + bias
– #feedforward step2
– z = sigmoid(XW) # predicted outputs
– # backpropagation step 1
– error = z – labels #amount of error
– print(error.sum())
– # backpropagation step 2
– dcost_dpred = error
– dpred_dz = sigmoid_der(z)
– z_delta = dcost_dpred * dpred_dz
– inputs = feature_set.T
– weights -= lr * np.dot(inputs, z_delta)
– for num in z_delta:
– bias -= lr * num

The implementation

● In the first step, we define the number of
epochs.

● An epoch is basically the number of times we
want to train the algorithm on our data.

● We will train the algorithm on our data 20,000
times.

● The error is pretty much minimized after 20,000
iterations.

● You can try with a different number.
● The ultimate goal is to minimize the error.

The implementation

● Next we store the values from the
feature_set to the input variable.

● We then execute the following line:
– XW = np.dot(feature_set, weights) + bias

● Here we find the dot product of the input
and the weight vector and add bias to it.

● This is Step 1 of the feedforward section.
● In this line:

– z = sigmoid(XW)

The implementation

● We pass the dot product through the sigmoid activation
function, as explained in Step 2 of the feedforward
section.

● This completes the feed forward part of our algorithm.
● Now is the time to start backpropagation.
● The variable z contains the predicted outputs.
● The first step of the backpropagation is to find the error.
● We do so in the following line:

– error = z – labels
● We then print the error on the screen.

The implementation

● Now is the time to execute Step 2 of
backpropagation, which is the core of this
code.

● We know that our cost function is:

The implementation

● We need to differentiate this function with
respect to each weight.

● We will use the chain rule of differentiation
for this purpose.

● Let's suppose "d_cost" is the derivate of
our cost function with respect to weight
"w", we can use chain rule to find this
derivative, as shown below:

The implementation

● Here,
● can be calculated as:
● Here, 2 is constant and therefore can be

ignored.
● This is basically the error which we already

calculated. In the code, you can see the
line:
– dcost_dpred = error # (2)

The implementation

● Next we have to find:
● Here "d_pred" is simply the sigmoid

function and we have differentiated it with
respect to input dot product "z".

● In the script, this is defined as:
– dpred_dz = sigmoid_der(z) # (3)

● Finally, we have to find:
● We know that:

The implementation

● Therefore, derivative with respect to any
weight is simply the corresponding input.

● Hence, our final derivative of the cost
function with respect to any weight is:
– slope = input x dcost_dpred x dpred_dz

● Take a look at the following three lines:
– z_delta = dcost_dpred * dpred_dz
– inputs = feature_set.T
– weights -= lr * np.dot(inputs, z_delta)

The implementation

● Here we have the z_delta variable, which
contains the product of dcost_dpred and
dpred_dz.

● Instead of looping through each record and
multiplying the input with corresponding
z_delta, we take the transpose of the input
feature matrix and multiply it with the z_delta.

● Finally, we multiply the learning rate variable lr
with the derivative to increase the speed of
convergence.

The implementation

● We then looped through each
derivative value and update
our bias values, as well as
shown in this script.

● Once the loop starts, you will
see that the total error starts
decreasing as shown below:

The implementation

● You can see that error is extremely small at
the end of the training of our neural
network.

● At this point of time our weights and bias
will have values that can be used to detect
whether a person is diabetic or not, based
on his smoking habits, obesity, and
exercise habits.

The implementation

● You can now try and predict the value of a
single instance.

● Let's suppose we have a record of a patient
that comes in who smokes, is not obese,
and doesn't exercise.

● Let's find if he is likely to be diabetic or not.
● The input feature will look like this: [1,0,0].

The implementation

● Execute the following script:
– single_point = np.array([1,0,0])
– result = sigmoid(np.dot(single_point, weights)

+ bias)
– print(result)

● In the output you will see: [0.00707584]
● You can see that the person is likely not

diabetic since the value is much closer to 0
than 1.

The implementation

● Now let's test another person who doesn't, smoke, is
obese, and doesn't exercises.

● The input feature vector will be [0,1,0]. Execute this
script:
– single_point = np.array([0,1,0])
– result = sigmoid(np.dot(single_point, weights) + bias)
– print(result)

● In the output you will see the following value:
[0.99837029]

● You can see that the value is very close to 1, which
is likely due to the person's obesity.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

