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The problem

● Suppose we have some information about 
obesity, smoking habits, and exercise 
habits of five people. 

● We also know whether these people are 
diabetic or not. Our dataset looks like this:



  

The problem

● It is clearly evident from the dataset that a 
person's obesity is indicative of him being 
diabetic. 

● Our task is to create a neural network that is 
able to predict whether an unknown person is 
diabetic or not given data about his exercise 
habits, obesity, and smoking habits. 

● This is a type of supervised learning problem 
where we are given inputs and corresponding 
correct outputs and our task is to find the 
mapping between the inputs and the outputs.



  

The Solution

X.W=x1w1+x2w2+x3w3+b



  

The problem

● The result from Step 1 can be a set of any 
values. 

● However, in our output we have the values in 
the form of 1 and 0. 

● We want our output to be in the same format. 
● To do so we need an activation function, which 

squashes input values between 1 and 0. 
● One such activation function is the sigmoid 

function.



  

Activation Functions (Sample)

● The sigmoid function returns 0.5 when the 
input is 0. 

● It returns a value close to 1 if the input is a 
large positive number. 

● In case of negative input, the sigmoid 
function outputs a value close to zero.



  

The problem

● Mathematically, the sigmoid function can 
be represented as:

●

● input = np.linspace(-10, 10, 100)
● def sigmoid(x):
●     return 1/(1+np.exp(-x))
● from matplotlib import pyplot as plt
● plt.plot(input, sigmoid(input), c="r")



  

The problem

● You can see that if the 
input is a negative 
number, the output is 
close to zero, otherwise 
if the input is positive 
the output is close to 1. 

● However, the output is always between 0 
and 1. 

● This is what we want.



  

The problem

● This sums up the feedforward part of our neural 
network. 

● It is pretty straightforward. 
● First we have to find the dot product of the input 

feature matrix with the weight matrix. 
● Next, pass the result from the output through an 

activation function, which in this case is the 
sigmoid function. 

● The result of the activation function is basically 
the predicted output for the input features.



  

Back Propagation

● In the beginning, before you do any 
training, the neural network makes random 
predictions which are far from correct.

● We then compare the predicted output of 
the neural network with the actual output. 

● Next, we fine-tune our weights and the bias 
in such a manner that our predicted output 
becomes closer to the actual output, which 
is basically known as "training the neural 
network".



  

The problem

● The first step in the back propagation 
section is to find the "cost" of the 
predictions. 

● The cost of the prediction can simply be 
calculated by finding the difference 
between the predicted output and the 
actual output. 

● The higher the difference, the higher the 
cost will be.



  

The problem

● There are several other ways to find the 
cost, but we will use the mean squared 
error cost function. 

● A cost function is simply the function that 
finds the cost of the given predictions.

● The mean squared error cost function can 
be mathematically represented as:



  

The problem

● Our ultimate purpose is to fine-tune the 
knobs of our neural network in such a way 
that the cost is minimized. 

● If you look at our neural network, you'll 
notice that we can only control the weights 
and the bias. 

● Everything else is beyond our control. 
● We cannot control the inputs, we cannot 

control the dot products, and we cannot 
manipulate the sigmoid function.



  

The problem

● In order to minimize the cost, we need to 
find the weight and bias values for which 
the cost function returns the smallest value 
possible. 

● The smaller the cost, the more correct our 
predictions are.

● This is an optimization problem where we 
have to find the function minima.



  

The problem

● To find the minima of a function, we can 
use the gradient decent algorithm. 

● The gradient decent algorithm can be 
mathematically represented as follows:



  

The problem

● Here in the above equation, J is the cost 
function. 

● Basically what the above equation says is: 
find the partial derivative of the cost 
function with respect to each weight and 
bias and subtract the result from the 
existing weight values to get the new 
weight values.



  

The problem

● The derivative of a function gives us its 
slope at any given point. 

● To find if the cost increases or decreases, 
given the weight value, we can find the 
derivative of the function at that particular 
weight value. 

● If the cost increases with the increase in 
weight, the derivative will return a positive 
value which will then be subtracted from 
the existing value.



  

The problem

● On the other hand, if the cost is decreasing 
with an increase in weight, a negative value 
will be returned, which will be added to the 
existing weight value since negative into 
negative is positive.

● In Equation 1, we can see there is an alpha 
symbol, which is multiplied by the gradient. 
This is called the learning rate. 

● The learning rate defines how fast our 
algorithm learns.



  

The problem



  

The problem

● We need to repeat the execution of 
Equation 1 for all the weights and bias until 
the cost is minimized to the desirable level. 

● In other words, we need to keep executing 
Equation 1 until we get such values for bias 
and weights, for which the cost function 
returns a value close to zero.



  

The implementation

– import numpy as np
– feature_set = np.array([[0,1,0],[0,0,1],[1,0,0],[1,1,0],

[1,1,1]])
– labels = np.array([[1,0,0,1,1]])
– labels = labels.reshape(5,1)

● In the above script, we create our feature set. 
● It contains five records. 
● Similarly, we created a labels set which contains 

corresponding labels for each record in the feature set. 
● The labels are the answers we're trying to predict with 

the neural network.



  

The implementation

● The next step is to define hyper parameters 
for our neural network. 

● Execute the following script to do so:
– np.random.seed(42)
– weights = np.random.rand(3,1)
– bias = np.random.rand(1)
– lr = 0.05

● In the script above we used the random.seed 
function so that we can get the same random 
values whenever the script is executed.



  

The implementation

● In the next step, we initialize our weights 
with normally distributed random numbers. 

● Since we have three features in the input, 
we have a vector of three weights. 

● We then initialize the bias value with 
another random number. 

● Finally, we set the learning rate to 0.05.



  

The implementation

● Next, we need to define our activation 
function and its derivative (I'll explain in a 
moment why we need to find the derivative of 
the activation). 

● Our activation function is the sigmoid 
function, which we covered earlier.

● The following Python script creates this 
function:
– def sigmoid(x):
–     return 1/(1+np.exp(-x))



  

The implementation

● And the method that calculates the 
derivative of the sigmoid function is 
defined as follows:
– def sigmoid_der(x):
–     return sigmoid(x)*(1-sigmoid(x))

● The derivative of sigmoid function is simply 
sigmoid(x) * sigmoid(1-x).



  

The implementation

● Now we are ready to train our neural network that will be able to predict whether a person 
is obese or not.
– inputs = feature_set
–

–     # feedforward step1
–     XW = np.dot(feature_set, weights) + bias  
–     #feedforward step2
–     z = sigmoid(XW) # predicted outputs
–     # backpropagation step 1
–     error = z – labels #amount of error
–     print(error.sum())
–     # backpropagation step 2
–     dcost_dpred = error 
–     dpred_dz = sigmoid_der(z)
–     z_delta = dcost_dpred * dpred_dz
–     inputs = feature_set.T
–     weights -= lr * np.dot(inputs, z_delta)
–     for num in z_delta:
–         bias -= lr * num



  

The implementation

● In the first step, we define the number of 
epochs. 

● An epoch is basically the number of times we 
want to train the algorithm on our data. 

● We will train the algorithm on our data 20,000 
times. 

● The error is pretty much minimized after 20,000 
iterations. 

● You can try with a different number. 
● The ultimate goal is to minimize the error.



  

The implementation

● Next we store the values from the 
feature_set to the input variable. 

● We then execute the following line:
– XW = np.dot(feature_set, weights) + bias

● Here we find the dot product of the input 
and the weight vector and add bias to it. 

● This is Step 1 of the feedforward section.
● In this line:

– z = sigmoid(XW)



  

The implementation

● We pass the dot product through the sigmoid activation 
function, as explained in Step 2 of the feedforward 
section. 

● This completes the feed forward part of our algorithm.
● Now is the time to start backpropagation. 
● The variable z contains the predicted outputs. 
● The first step of the backpropagation is to find the error. 
● We do so in the following line:

– error = z – labels
● We then print the error on the screen.



  

The implementation

● Now is the time to execute Step 2 of 
backpropagation, which is the core of this 
code.

● We know that our cost function is:



  

The implementation

● We need to differentiate this function with 
respect to each weight. 

● We will use the chain rule of differentiation 
for this purpose. 

● Let's suppose "d_cost" is the derivate of 
our cost function with respect to weight 
"w", we can use chain rule to find this 
derivative, as shown below:



  

The implementation

● Here,
● can be calculated as:
● Here, 2 is constant and therefore can be 

ignored. 
● This is basically the error which we already 

calculated. In the code, you can see the 
line:
– dcost_dpred = error # ........ (2)



  

The implementation

● Next we have to find:
● Here "d_pred" is simply the sigmoid 

function and we have differentiated it with 
respect to input dot product "z". 

● In the script, this is defined as:
– dpred_dz = sigmoid_der(z) # ......... (3)

● Finally, we have to find:
● We know that:



  

The implementation

● Therefore, derivative with respect to any 
weight is simply the corresponding input. 

● Hence, our final derivative of the cost 
function with respect to any weight is:
– slope = input x dcost_dpred x dpred_dz

● Take a look at the following three lines:
– z_delta = dcost_dpred * dpred_dz
– inputs = feature_set.T
– weights -= lr * np.dot(inputs, z_delta)



  

The implementation

● Here we have the z_delta variable, which 
contains the product of dcost_dpred and 
dpred_dz. 

● Instead of looping through each record and 
multiplying the input with corresponding 
z_delta, we take the transpose of the input 
feature matrix and multiply it with the z_delta. 

● Finally, we multiply the learning rate variable lr 
with the derivative to increase the speed of 
convergence.



  

The implementation

● We then looped through each 
derivative value and update 
our bias values, as well as 
shown in this script.

● Once the loop starts, you will 
see that the total error starts 
decreasing as shown below:



  

The implementation

● You can see that error is extremely small at 
the end of the training of our neural 
network. 

● At this point of time our weights and bias 
will have values that can be used to detect 
whether a person is diabetic or not, based 
on his smoking habits, obesity, and 
exercise habits.



  

The implementation

● You can now try and predict the value of a 
single instance. 

● Let's suppose we have a record of a patient 
that comes in who smokes, is not obese, 
and doesn't exercise. 

● Let's find if he is likely to be diabetic or not. 
● The input feature will look like this: [1,0,0].



  

The implementation

● Execute the following script:
– single_point = np.array([1,0,0])
– result = sigmoid(np.dot(single_point, weights) 

+ bias)
– print(result)

● In the output you will see: [0.00707584]
● You can see that the person is likely not 

diabetic since the value is much closer to 0 
than 1.



  

The implementation

● Now let's test another person who doesn't, smoke, is 
obese, and doesn't exercises. 

● The input feature vector will be [0,1,0]. Execute this 
script:
– single_point = np.array([0,1,0])
– result = sigmoid(np.dot(single_point, weights) + bias)
– print(result)

● In the output you will see the following value:
[0.99837029]

● You can see that the value is very close to 1, which 
is likely due to the person's obesity.
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