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Abstract

A crucial question in the design of efficient logistics systems is the identification of locations for distribution centers
(DCs). However, the optimization of these location decisions requires careful attention to the inherent trade-offs among
facility costs, inventory costs, transportation costs, and customer responsiveness. This paper presents a modeling ap-
proach that provides such an integrated view, and illustrates how it works in the context of a specific example involving
the distribution of finished vehicles by an automotive manufacturer. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

US manufacturers and retailers are increasing
their focus on logistics systems, looking for ways
to reduce costs and improve customer respon-
siveness (providing a desired product where and
when the customer wants it). The goal of cost re-
duction provides motivation for centralization of
inventories (Eppen, 1979; Stulman, 1987; Chang
and Lin, 1991). On the other hand, the goal of
customer responsiveness provides motivation for
having goods as near to the final consumer as
possible. Thus, there is a basic conflict between
these objectives, and locating distribution centers
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(DCs) is a critical decision in finding an effective
balance between them. Location decisions for DCs
also affect transportation costs. This paper de-
scribes a modeling approach that provides an in-
tegrated view of inventory costs, transportation
costs, and service levels when making DC location
decisions.

2. Background

Thomas (1997) has provided the data plotted in
Fig. 1, which show inventory and freight trans-
portation costs for the US economy in 1985, and
through the 1990s. Freight transportation costs
have been nearly constant (at about 6% of GNP)
over the entire period of the data. Inventory
costs fell significantly between 1985 and 1992, as
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Fig. 1. Physical distribution (inventory and transportation) costs in the US.

companies implemented just-in-time systems and
the economy grew steadily. However, since 1992
there has been almost no change in inventory
costs, and total physical distribution costs seem
to have reached a plateau. Further improve-
ments are likely to require simultaneous attention
to both inventory and transportation cost ele-
ments.

In addition to concern with total inventory and
transportation costs, measures of service quality,
or customer responsiveness must also be consid-
ered in the design of distribution systems. For
example, General Motors is instituting a ‘“‘cus-
tomer express delivery” system in an attempt to
provide better availability of a wide range of ve-
hicles to customers, while reducing the amount of
inventory held on dealer lots.

With the customer express delivery program,
new vehicles would be held at DCs and be made
available to the dealers on order, using a 24-hour
delivery standard. A pilot test in Florida started in
1994 (Wall Street Journal, 1995), and has since
been expanded to include areas in Maryland and
California. The locations of the DCs which will
hold the vehicle inventory is a critical set of deci-
sions, and GM’s efforts to address this problem
have provided a major motivation to the work
described here.

However, re-examination of DC locations and
inventory holding policies is by no means limited
to the automotive industry. For example, Bow-
man (1996) describes the efforts of Best Buy (a
large consumer electronics retailer) to reconfigure
their DCs, and emphasizes customer responsive-
ness as a critical factor. He also notes that the

desire to provide just-in-time delivery to cus-
tomers, using smaller, more frequent shipments,
means that outbound transportation costs from
the DC are relatively high. Thus, there is an
additional incentive to locate near major cus-
tomers.

Bucko (1996) describes how The Gap (a large
clothing retailer) is reconfiguring their distribution
operations. Their suppliers now ship initial orders
directly to retail outlets, and the DCs receive only
items intended for use as replenishment stock. This
changes the role of the DCs. They now handle only
about 50% of the flow of goods, and must be able
to replenish stocks of specific items at individual
retail stores very quickly. As a result, The Gap is
re-evaluating the number and locations of the
DCs.

There is a clear need to evaluate trade-offs
among inventory costs, transportation costs, and
customer responsiveness. The purpose of this pa-
per is to focus on the integration of discrete choice
location models, inventory analysis and multi-ob-
jective techniques to model the overall logistics
impacts of locating DCs. As a first step in the
analysis, an approximate inventory cost function is
proposed that can be embedded in a fixed-charge
facility location model. This allows the decisions
on the optimal number and location of DCs to be
directly tied to inventory cost implications. As a
second step, the fixed-charge location model is
extended to incorporate multiple objectives (min-
imizing cost and maximizing service coverage).
The third step shows how this integrated model
can be used to explore important trade-offs in the
DC location decisions.
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3. Modeling inventory costs

Fig. 2 provides a simple illustration of product
flow from plants to retail outlets through DCs.
Retailers demand products from DCs to which
they are assigned in response to customer demand.
DCs backorder excess demand. In parallel to these
actions, orders are placed for the same products at
the plants. That is, the inventory policy adopted at
the DCs is continuous review with one-for-one
replacement.

For a given number of retail outlets, inventory
levels can be determined to provide a given level-
of-service. Consider a single product configuration
or group of configurations that for inventory
planning purposes can be analyzed together and
for which demand levels are assumed to be inde-
pendent. That is, a temporary shortage of one
product does not increase the demand for related
products.

Assume that there are n retail locations as-
signed to the DC, each with a Poisson demand
process whose mean rate is /4;, where 1<i<n.
Therefore, the demand at the DC follows a Pois-
son distribution with a mean rate:

A=Y (1

Assume the DC has s units of a product in in-
ventory, and orders one unit from the plant each

Retail Outlets
DC’s

Plants

/s

Fig. 2. A basic DC system.

time one unit is sent to a retail outlet. Let u and o2
represent the mean delivery time and its variance
for a product shipment from plant to DC.
Stockout rate, or the percentage of demand that
cannot be satisfied from on-hand inventory, is an
important level-of-service measure in inventory
systems. In the presence of uncertain demand, an
amount of safety stock will be carried to reduce
stockout rates. Palm’s Theorem (Feeney and
Sherbrooke, 1966) states that if demand is Poisson
distributed and replacements are made on a one-
for-one basis, the total number of units in replen-
ishment (on order) is also Poisson distributed. If
the demand rate at the DC is A, and the average
replenishment time is u, then the number of units
on order, m, is Poisson distributed with parameter
Au. If the established stock level is s, then the
probability of a stockout is simply Pr(m > s):

Pr(m > 5) = f: e (Au)’ 2)

|
k=s+1 k!

Eq. (2) can be used to find the minimum inventory
necessary for a maximum stockout rate. If r is the
desired stockout rate, then find s,, the smallest
value of s such that Eq. (2) is less than or equal to
r. Inventory savings from consolidation result
from reductions in safety stock, as discussed be-
low.

Nozick and Turnquist (1998) show that for a
given stockout rate the safety stock held at each
DC varies with the square root of the number of
DCs. This is consistent with results provided by
other authors like Eppen (1979). Nozick and
Turnquist (1998) also show that for a given
stockout rate and total demand, safety stock can
be accurately approximated with a linear function
as long as the number of DCs is relatively large.
This provides an effective way to incorporate in-
ventory costs into location models. They also show
that if safety stock is calculated based on an equal
allocation of demand to each DC, the result is an
upper bound on actual safety stock required for
any other demand assignments to DCs. This
means that a conservative estimate of safety stock
requirements can be determined from the number
of DCs, without specifying exact locations and
demand volumes.
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In order to illustrate these concepts, suppose an
auto manufacturer sells 700 products or new ve-
hicle ““configurations” in the continental US of
which 200 have yearly demand of 8000 units, 225
have yearly demand of 6000 units, and 275 have
yearly demand of 4000 units. Total annual demand
for all products is therefore 4,050,000 new vehicles.
Fig. 3 shows the expected safety stock for different
numbers of DCs, given yearly volumes and a 5%
stockout rate. Notice that safety stock is relatively
linear in the range of 15-50 DCs.

A linear regression equation is estimated to
predict safety stock requirements for each of the
three demand volumes shown in Fig. 3 using data
for the 15-50 DCs range. The equations are then
aggregated using the number of configurations
with each demand volume, yielding the following
regression relationship between safety stock and
number of DCs:

s = 58,836 42140 * N. (3)

If average vehicle price is assumed to be $15000,
and yearly holding cost is 22%, the inventory cost
equation is as follows:

$194,158,800 + $7,063,523 * N (4)

implying that a safety stock annual inventory cost
is slightly over $7 million for each additional DC.
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Clearly, parameter values in (4) reflect assump-
tions concerning product prices, number of prod-
ucts, annual demand, etc. However, the idea is that
if total inventory costs can be represented by a
linear function of the number of DCs to be lo-
cated, inventory costs can be embedded directly
into a location model.

4. A location model

The fixed-charge facility location model can be
specified as follows (Daskin, 1995):

Minimize ijXj +o z hidy; Yy (5)
J ij
subject to
Y Yy=1 Vi (6)
j
X;€(0,1) Vj, (8)
Y, €(0,1) Vi, 9)

where f; is the fixed cost of creating a facility at
candidate site j, #; the demand at location i, dj; the

004,000
E6,000
38,000

35 40 50 60 70

Number of RDCs

Fig. 3. Safety stock for different number of DCs and annual demand level.
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distance from demand location i to candidate site
J, o the cost per unit distance per unit demand,

v 1 if a facility is located at candidate site j,
7710 otherwise,

1 if demands at i are served by
Y, = a facility at candidate site j,
0 otherwise.

The linear approximation to safety stock require-
ments is incorporated into the fixed-charge coeffi-
cient, f;, for the candidate sites. The “slope”
parameter from the inventory cost equation (4)
becomes part of f;, because it reflects a constant
increment in inventory safety stock needed for an
additional DC. The intercept term in (4) is inde-
pendent of the number or location of facilities, so
it plays no role in the optimization.

The model specified by (5)—(9) minimizes both
inventory costs and transportation costs. Solution
procedures for the fixed-charge model include a
variety of greedy heuristics including the add,
drop, and exchange heuristics, Lagrangian relax-
ation, and branch and bound (Mirchandani and
Francis, 1990; Daskin, 1995; Dresner, 1995). A
hybrid heuristic using a combination of a greedy-
add and an improvement algorithm is used in this
paper, as discussed by Daskin (1995).

Integration of inventory costs into the location
model is an important step for overall cost mini-
mization, but it still does not deal with the com-
peting objective of providing a high level of
customer responsiveness in the distribution sys-
tem. Stockout rate indirectly reflects customer
demands, but the distance between DC and retail
outlet may be too large to meet time-based service
standards.

The objective of providing fast, reliable, deliv-
ery of products to retail outlets may be met by
operating a large number of DCs conveniently
located, implying large facility development and
operating costs, and higher inventory costs. Thus,
there is a fundamental trade-off between customer
responsiveness and costs when designing a DC
system.

A mathematical model to maximize coverage
ensures that a proportion of demand that is within

a specified “coverage” distance of a DC will be
met. Delivery is then guaranteed for the set of re-
tail outlets within a certain radius (e.g., 200 miles)
of the DC. The objective of maximizing the pro-
portion of total demand covered by a set of N
facilities was first described by Church and Re-
Velle (1974). An equivalent model which minimizes
uncovered demand was formulated by Hillsman
(1984). This formulation facilitates the integration
of coverage maximization and cost minimization.
Defining the following variable:

1 if a facility located at candidate
qij = site j cannot cover demand at i,
0 otherwise,

the minimization of uncovered demand can be
expressed as follows:

ij
subject to
D Yy=1 Vi, (1)
J

> x =N, (12)

J

Y, <X Vi, (13)
Yij € (07 1) Viaj7 (14)
X, € (0,1) V). (15)

Constraints (11) and (13)—(15) in this model are
identical to constraints (6)—(9) in the fixed-charge
model, allowing integration of the total cost ob-
jective and the coverage objective. More specifi-
cally

Minimize Y fiX; + > {Whiqy; + ahidy} Y, (16)
ij

J
subject to

Y ¥y=1 v (17)

J
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Yy <X, Vij, (18)
X €(0,1) ), (19)
Yy €(0,1) Vi j. (20)

where W is the weight given to the objective of
minimizing uncovered demand. Notice that the
number of DCs is endogenous to the model, in the
fixed-charge facility location model. All demand
will be served but the uncovered demand will be
served at a lower level-of-service.

If W is very large then the model given by
Egs. (16)—(20) is equivalent to minimizing uncov-
ered demand. This will result in the location of a
large number of DCs because the constraint that
limits the number of facilities to locate has been
removed. If W is small, then the model is equiva-
lent to minimizing total cost. By varying the
value of the weight, W, a variety of trade-off
solutions can be identified. As the model given by
Egs. (16)—(20) has the same structure as the fixed-
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100000 S0000 25000
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charge facility location model, standard algorithms
for solving that problem can be used.

In any given application of the model, the
percentage coverage is determined by the trade-off
with total cost. If a pre-specified percentage of
coverage must be guaranteed, then an alternative
formulation (and solution method) may be used,
as described by Nozick (2000).

5. Application of the methodology

An automotive manufacturer serving the conti-
nental US through discrete demand areas is used as
an illustration. For this analysis, a set of 698 de-
mand areas (defined as an aggregation of counties)
are used, all of which also represent potential DC
locations. Demand within each demand area is
assumed to occur at the centroid of the area as
shown in Fig. 4, where the size of the circles rep-
resents volume of demand. Centroid to centroid
distances have been calculated using available
electronic representation of the highway network
(Bureau of Transportation Statistics, 1996).

Fig. 4. Demand centroids and relative demand volumes.
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Assume that DC construction costs are $10
million with an expected life of 30 years, and that
capital costs to the manufacturer are 15% per year
implying an amortized annual facility cost of $1.5
million. Further, assume that the per-mile cost for
delivering vehicles from the DCs to dealerships is
60 cents.

The problem specified by (16)-(20) can be
solved for varying values of the weighting pa-
rameter, W, to identify a family of possible
distribution system designs. A similar sort of
multi-objective location model is discussed by
ReVelle and LaPorte (1996). They describe a
slightly different model formulation and discuss
possible solution procedures, but do not solve
the problem or provide illustrations. ReVelle and
LaPorte (1996) also note that a weighting
method for finding the efficient frontier may not
identify all efficient solutions, because the feasi-
ble region of the optimization problem is non-
convex.

Fig. 5 illustrates the efficient frontier for the
automotive example. At one extreme, the weight-
ing parameter W, set to zero, generates a minimum
cost solution with 23 DCs. This solution has a
total annual cost of $641 million, and covers 87%
of demand within 200 miles of a DC. A map of the
solution is shown in Fig. 6.

900 -
850 -
800 -

750 -

At the other extreme, a very large value of W
covers 100% of demand within 200 miles. How-
ever, this solution requires 64 DCs, and has an
annual cost of $912 million. A map of this solution
is provided in Fig. 7. Due to the widely dispersed
demand locations in central and western states, a
large number of additional DCs is necessary to
provide complete coverage. Fig. 8 shows a solution
which covers 94% of demand at a cost of $672
million with a total number of 29 DCs. This is a
good trade-off solution because in practical terms
it is as far “down and to the right” as possible
(Fig. 5). Notice that the locations selected for the
minimum cost solution (23 DCs) are included in
the 29 DC solution.

Fig. 9 illustrates the cost composition for each
of the solutions shown in Fig. 5. In the minimum
cost solution, transportation and inventory costs
are nearly equal. As the number of DCs increases,
transportation costs decrease (because the DCs are
closer to final demand points), but inventory costs
increase at a faster rate. The primary cost trade-
offs seems to be between transportation and in-
ventory costs, fixed facility costs being relatively
less significant. Had the inventory costs been
omitted from the optimization, the solutions
would have failed to capture a major element of
the cost analysis.

64DC’s o

52DCs

44DC’s o

37DCs‘

Cost ($ Millions)
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600

32DC’s

*
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Fig. 5. “Trade-off” solutions (radius of coverage =200 miles).
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6. Conclusions

This paper has developed an analysis proce-
dure for the location of DCs that integrates fa-
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Fig. 6. Minimum total cost solution (23 DCs).
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Fig. 7. Maximum coverage solution (64 DCs).

cility costs, inventory costs, transportation
costs and service responsiveness. That procedure
integrates ideas in queuing theory, discrete
choice location analysis and multi-objective
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Fig. 9. Cost composition of efficient solutions.

decision-making. Using this procedure, decision-
makers can easily understand the service-cost
trade-offs that are available, so that optimal lo-
cation decisions can be reached. An application
to the US automotive industry is discussed in
detail.
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