Chapter 19: Thermal Properties

ISSUES TO ADDRESS...

- How do materials respond to the application of heat?
- How do we define and measure...
 - -- heat capacity?
 - -- thermal expansion?
 - -- thermal conductivity?
 - -- thermal shock resistance?
- How do the thermal properties of ceramics, metals, and polymers differ?

Heat Capacity

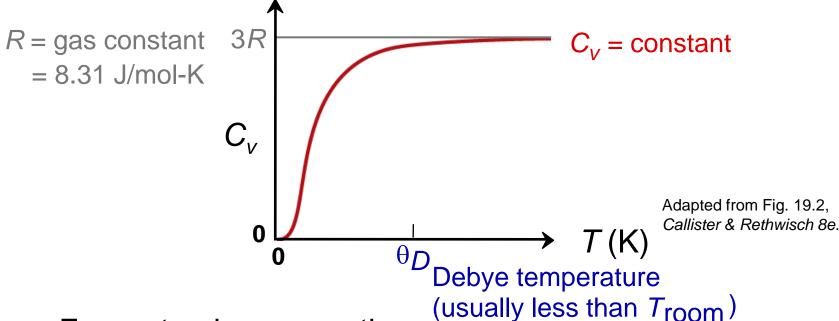
The ability of a material to absorb heat

 Quantitatively: The energy required to produce a unit rise in temperature for one mole of a material.

heat capacity (J/mol-K) energy input (J/mol)
$$C = \frac{dQ}{dT}$$
 temperature change (K)

Two ways to measure heat capacity:

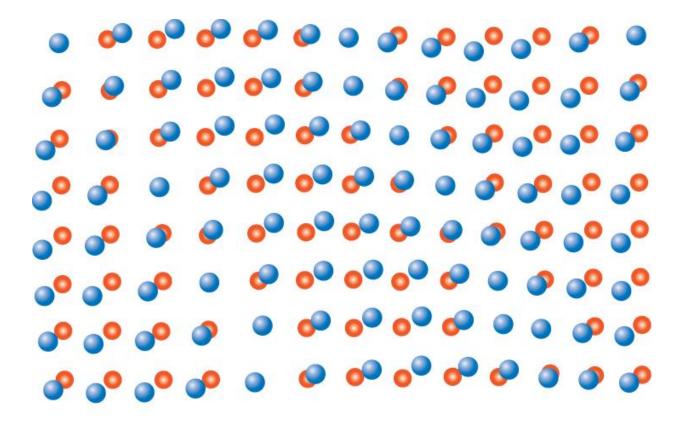
 C_p : Heat capacity at constant pressure. C_v : Heat capacity at constant volume.


$$C_p$$
 usually > C_V

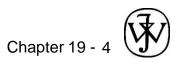
• Heat capacity has units of $\frac{J}{\text{mol} \cdot \text{K}} \left(\frac{\text{Btu}}{\text{lb} - \text{mol} \cdot {}^{\circ}\text{F}} \right)$

Dependence of Heat Capacity on Temperature

- Heat capacity...
 - -- increases with temperature
 - -- for solids it reaches a limiting value of 3R



- From atomic perspective:
 - -- Energy is stored as atomic vibrations.
 - As temperature increases, the average energy of atomic vibrations increases.


Atomic Vibrations

Atomic vibrations are in the form of lattice waves or phonons

- Normal lattice positions for atoms
- Positions displaced because of vibrations

Adapted from Fig. 19.1, Callister & Rethwisch 8e.

Specific Heat: Comparison

M	laterial	c_p (J/kg-K) at room T
• <u>P</u>	<u>olymers</u>	at room T
	Polypropylene	1925
	Polyethylene	1850
	Polystyrene	1170
-	Teflon	1050

 c_p (specific heat): (J/kg-K) C_p (heat capacity): (J/mol-K)

Why is c_p significantly

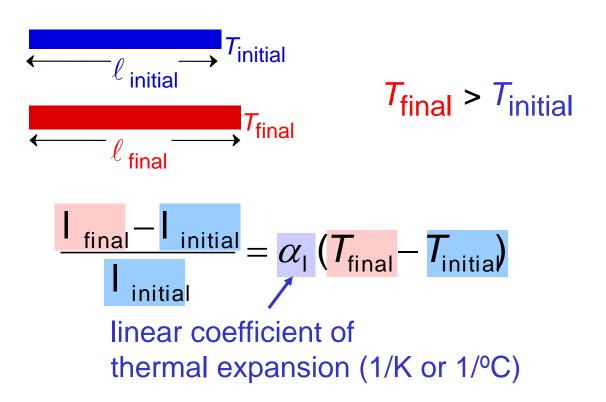
larger for polymers?

Ceramics Magnesia (MgO) 940

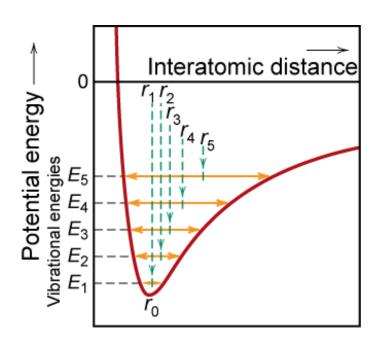
Alumina (Al_2O_3) 775

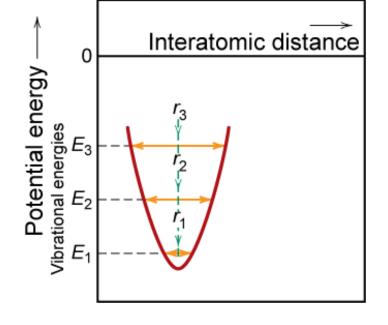
Glass 840

Metals


Aluminum 900 486 Steel Tungsten 138 Gold

128


Selected values from Table 19.1, Callister & Rethwisch 8e.


Thermal Expansion

Materials change size when temperature is changed

Atomic Perspective: Thermal Expansion

Asymmetric curve:

- -- increase temperature,
- -- increase in interatomic separation
- -- thermal expansion

Symmetric curve:

- -- increase temperature,
- -- no increase in interatomic separation
- -- no thermal expansion

increasing $lpha_{ ho}$

Coefficient of Thermal Expansion: Comparison

B 4	4	
IN /I	ate	$r_{1} \cap$
11/1	710	1171
1 V I	$\alpha \iota \cup$	Hai

 α_{ℓ} (10⁻⁶/°C) at room T

Polymers

Polypropylene 145-180 Polyethylene 106-198 Polystyrene 90-150 Teflon 126-216 Polymers have larger α_ℓ values because of weak secondary bonds

• Metals

Aluminum Steel Tungsten Gold 23.6 12

4.5 14.2 Q: Why does α_ℓ
 generally decrease
 with increasing
 bond energy?

• Ceramics

Magnesia (MgO) 13.5 Alumina (Al_2O_3) 7.6 Soda-lime glass 9 Silica (cryst. SiO_2) 0.4

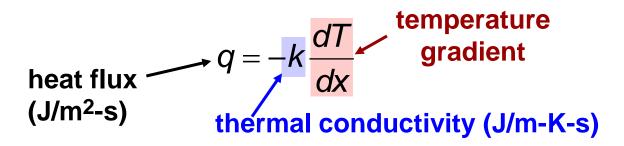
Selected values from Table 19.1, *Callister & Rethwisch 8e.*

Thermal Expansion: Example

Ex: A copper wire 15 m long is cooled from 40 to -9°C. How much change in length will it experience?

• Answer: For Cu $\alpha_{\ell} = 16.5 \times 10^{-6} \ (^{\circ}\text{C})^{-1}$

rearranging Equation 19.3b


$$\Delta \ell = \alpha_{\ell} \ell_{0} \Delta T = [16.5 \times 10^{-6} (1/^{\circ}C)](15 \text{ m})[40^{\circ}C - (-9^{\circ}C)]$$

 $\Delta \ell = 0.012 \text{ m} = 12 \text{ mm}$

Thermal Conductivity

The ability of a material to transport heat.

Fourier's Law

 Atomic perspective: Atomic vibrations and free electrons in hotter regions transport energy to cooler regions.

Thermal Conductivity: Comparison

	Material	k (W/m-K)	Energy Transfer Mechanism
	• <u>Metals</u>		
	Aluminum	247	atomic vibrations
	Steel	52	and motion of free
	Tungsten Gold	178	electrons
		315	
increasing <i>k</i>	• <u>Ceramics</u>		
ng	Magnesia (MgO)	38	
	Alumina (Al ₂ O ₃)	39	atomic vibrations
6 9	Soda-lime glass	1.7	
C	Silica (cryst. SiO ₂) 1.4	
.⊆	 Polymers 		
	Polypropylene	0.12	
	Polyethylene	0.46-0.50	vibration/rotation of
	Polystyrene	0.13	chain molecules
	Teflon	0.25	

Chapter 19

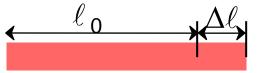
Thermal Stresses

- Occur due to:
 - -- restrained thermal expansion/contraction
 - -- temperature gradients that lead to differential dimensional changes

Thermal stress =
$$\sigma$$

= $E\alpha_{\ell}(T_0 - T_f) = E\alpha_{\ell}\Delta T$

Example Problem

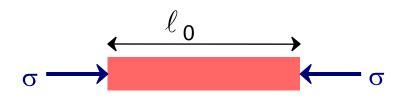

- -- A brass rod is stress-free at room temperature (20°C).
- -- It is heated up, but prevented from lengthening.
- -- At what temperature does the stress reach -172 MPa?

Solution:

Original conditions

Step 1: Assume unconstrained thermal expansion

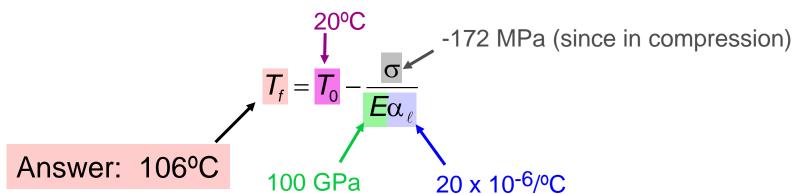
$$T_f$$


$$\frac{\Delta \ell}{\ell_{\text{room}}} = \epsilon_{\text{thermal}} = \alpha_{\ell} (T_f - T_0)$$

Step 2: Compress specimen back to original length

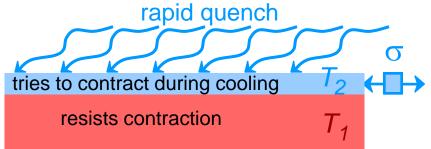
$$arepsilon_{ ext{compress}} = rac{-\Delta \ell}{\ell_{ ext{room}}} = -arepsilon_{ ext{thermal}}$$

Example Problem (cont.)


The thermal stress can be directly calculated as

$$\sigma = E(\varepsilon_{\text{compress}})$$

Noting that $\varepsilon_{\text{compress}} = -\varepsilon_{\text{thermal}}$ and substituting gives


$$\sigma = -E(\varepsilon_{thermal}) = -E\alpha_{\ell}(T_f - T_0) = E\alpha_{\ell}(T_0 - T_f)$$

Rearranging and solving for T_f gives

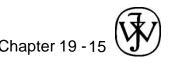
Thermal Shock Resistance

- Occurs due to: nonuniform heating/cooling
- Ex: Assume top thin layer is rapidly cooled from T_1 to T_2

← Tension develops at surface

$$\sigma = -E\alpha_{\ell}(T_1 - T_2)$$

Temperature difference that can be produced by cooling:


$$\frac{(T_1 - T_2)}{\uparrow} = \frac{\text{quench rate}}{k}$$

set equal

Critical temperature difference for fracture (set $\sigma = \sigma_f$)

$$\frac{(T_1 - T_2)_{\text{fracture}}}{E\alpha_{\ell}} = \frac{\sigma_f}{E\alpha_{\ell}}$$

- (quench rate) for fracture = Thermal Shock Resistance (TSR) $\propto \frac{\sigma_f k}{E\alpha_\ell}$
- Large TSR when $\frac{\sigma_f k}{E\alpha_\ell}$ is large

Thermal Protection System

Application:

Chapter-opening photograph, Chapter 23, *Callister 5e* (courtesy of the National Aeronautics and Space Administration.)

- Silica tiles (400-1260°C):
 - -- large scale application

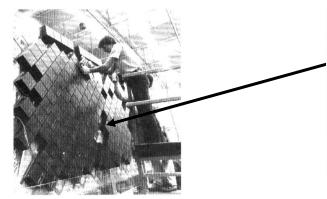


Fig. 19.3W, *Callister 5e.* (Fig. 19.3W courtesy the National Aeronautics and Space Administration.)

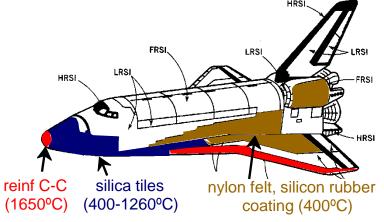
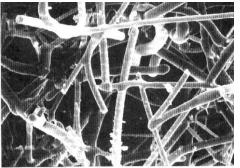



Fig. 19.2W, *Callister 6e*. (Fig. 19.2W adapted from L.J. Korb, C.A. Morant, R.M. Calland, and C.S. Thatcher, "The Shuttle Orbiter Thermal Protection System", *Ceramic Bulletin*, No. 11, Nov. 1981, p. 1189.)

-- microstructure:

~90% porosity! SiO2 fibers bonded to one another during heat treatment.

←—100 μm——→

Fig. 19.4W, *Callister 5e*. (Fig. 219.4W courtesy Lockheed Aerospace Ceramics Systems, Sunnyvale, CA.) Chapter 19 -

Summary

The thermal properties of materials include:

- Heat capacity:
 - -- energy required to increase a mole of material by a unit T
 - -- energy is stored as atomic vibrations
- Coefficient of thermal expansion:
 - -- the size of a material changes with a change in temperature
 - -- polymers have the largest values
- Thermal conductivity:
 - -- the ability of a material to transport heat
 - -- metals have the largest values
- Thermal shock resistance:
 - -- the ability of a material to be rapidly cooled and not fracture
 - -- is proportional to $\frac{\sigma_f k}{E\alpha_\ell}$

ANNOUNCEMENTS

Reading:

Core Problems:

Self-help Problems: