Transportation System Engineering 2, 10601461

Chapter 6
 Capacity and LOS of Multi-Lane Highways Sections

AN-NAJAH NATIONAL UNIVERSITY NABLUS, PALESTINE

Multilane Highways

- Multilane highways may exhibit some of the following characteristics:
- Posted speed limits are usually between 60 and $100 \mathrm{~km} / \mathrm{h}$
- They may be undivided or include medians
- They are located in suburban areas or in high-volume rural corridors
- They may include a two-way, left-turn median lane (TWLTL)
- Traffic volumes range from 15,000 to $40,000 /$ day
- Volumes are up to 100,000/day with grade separations and no cross-median access
- Traffic signals at major crossing points are possible
- There is partial control of access

Multilane Highways

Typical Capacity Values

Table 13.1: Capacity Under Ideal Conditions for Uninterrupted Flow Facilities

Type of Facility	Free-Flow Speed $(\mathrm{mi} / \mathrm{h})$	Capacity
Freeways	≥ 70	$2,400 \mathrm{pc} / \mathrm{h} / \mathrm{ln}$
	65	$2,350 \mathrm{pc} / \mathrm{h} / \mathrm{ln}$
	60	$2,300 \mathrm{pc} / \mathrm{h} / \mathrm{ln}$
	55	$2,250 \mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Multilane	≥ 60	$2,200 \mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Highways	55	$2,100 \mathrm{pc} / \mathrm{h} / \mathrm{hn}$
	50	$2,000 \mathrm{pc} / \mathrm{h} / \mathrm{ln}$
	50	$1,900 \mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Two-Lane	All	$3,200 \mathrm{pc} / \mathrm{h}$
Highways		(total, both dir)
		$1,700 \mathrm{pc} / \mathrm{h}$
		$(\mathrm{max} . \mathrm{one} \mathrm{dir})$

Multilane Highways

- Any two of the following three performance characteristics can describe the level of service (LOS) for a multilane highway:
V_{p} : Flow rate ($\mathrm{pc} / \mathrm{h} / \mathrm{ln}$)
S : Average passenger car speed (mi/h)
D : Density defined as number of cars per mi ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)

$$
D=\frac{v_{p}}{S}
$$

Although density is the primary parameter in defining the LOS for Multilane highways

Multilane Highways

- Following figure illustrates the level-of-service regimes Constant up to $1400 \mathrm{pc} / \mathrm{hr} / \mathrm{In}$

Figure 9.15 Speed-Flow Curves with Level-of-Service Criteria for Multilane Highways

Table 9.33 Level-of-Service Criteria for Multilane Highways

Free-Flow Speed	Criteria	LOS				
		A	B	C	D	E
$60 \mathrm{mi} / \mathrm{h}$	Maximum density (pc/mi/ln)	11	18	26	35	40
	Average speed (mi / h)	60.0	60.0	59.4	56.7	55.0
	Maximum volume-to-capacity ratio (v/c)	0.30	0.49	0.70	0.90	1.00
	Maximum service flow rate ($\mathrm{pc} / \mathrm{h} / \mathrm{ln}$)	660	1080	1550	1980	2200
$55 \mathrm{mi} / \mathrm{h}$	Maximum density (pc/mi/ln)	11	18	26	35	41
	Average speed (mi/h	55.0	55.0	54.9	52.9	51.2
	Maximum v/c	0.29	0.47	0.68	0.88	1.00
	Maximum service flow rate (pc/h/ln)	600	990	1430	1850	2100
$50 \mathrm{mi} / \mathrm{h}$	Maximum density (pc/mi/ln)	11	18	26	35	43
	Average speed (mi / h)	50.0	50.0	50.0	48.9	47.5
	Maximum v/c	0.28	0.45	0.65	0.86	1.00
	Maximum service flow rate (pc/h/ln)	550	900	1300	1710	2000
$45 \mathrm{mi} / \mathrm{h}$	Maximum density (pc/mi/ln)	11	18	26	35	45
	Average speed (mi/h)	45.0	45.0	45.0	44.4	42.2
	Maximum v/c	0.26	0.43	0.62	0.82	1.00
	Maximum service flow rate ($\mathrm{pc} / \mathrm{h} / \mathrm{ln}$)	480	810	1170	1550	1900

Service Flow Rates and Service Volumes

- A Service Flow (SF) Rate is defined as the maximum rate of flow that can be reasonably expected on a lane or roadway under prevailing roadway, traffic, and control conditions while maintaining a particular level of service (LOS).
- Each LOS covers a range of values
- The SF rate is defined as the max. flow rate that can be sustained without exceeding the max.
 density defined for the LOS. There are only 5 SF rates, not 6 .
- LOS F represents unstable flow; exceeds capacity (mostly LOS E).
$\operatorname{LOS} \mathrm{A}$

$\operatorname{LOS} \mathrm{C}$
$\operatorname{LOS} \mathrm{E}$

Multilane Highways

Calculating the Flow Rate for a Multilane Highway

- The flow rate in $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ for a multilane highway is computed as:

$$
v_{p}=\frac{V}{(P H F)(N)\left(f_{p}\right)\left(f_{H V}\right)}
$$

$v_{p}=15$-minute passenger-car equivalent flow rate ($\mathrm{pc} / \mathrm{h} / \mathrm{ln}$)
$V=$ hourly peak vehicle volume ($\mathrm{veh} / \mathrm{h}$) in one direction
$N=$ number of travel lanes in one direction (2 or 3)
$f_{p}=$ driver population factor with a range of 0.85 to 1.00 . Use 1.00 for commuter traffic.
If there is significant recreational or weekend traffic, the value is reduced

Multilane Highways

Calculating the Flow Rate for
 a Multilane Highway

$f_{H V}=$ heavy-vehicle adjustment factor (Eq. 9.4)

$$
f_{H V}=\frac{1}{1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)}
$$

P_{T} and $P_{R}=$ decimal portion of trucks/buses and recreational vehicles in the traffic stream
E_{T} and $E_{R}=$ passenger car equivalents. Number of cars using the same space as a truck/bus or a recreational vehicle

Multilane Highways

Calculating the Flow Rate for a Multilane Highway

- To estimate \mathbf{E}_{T} and \mathbf{E}_{R} There are two situations that must be considered:

1. Extended general segments

$$
\text { Use Table } 9.25
$$

2. Specific grades

- Upgrades: Tables 9.26 and 9.27
- Downgrades: $\mathbf{E}_{\mathbf{T}}$ from Table 9.28 while $\mathbf{E}_{\mathbf{R}}$ are treated as if they were on level terrain

PCEs for trucks \& buses can be determined for three grade conditions:

- 1) extended general segments
- These occur when a single grade is not too long or steep to have significant impact on capacity.
- When grades $\geq 3 \%$ and $<1 / 4 \mathrm{mi}$, or grades $<3 \%$ and $<1 / 2 \mathrm{mi}$
- 2) specific upgrades
- Any segment's grade $\geq 3 \%$ and $>1 / 4 \mathrm{mi}$, or a grade $<3 \%$ and $>1 / 2$ mi , should be considered as a separate segment.
- 3) specific downgrades.
- Composite grades: When a segment of multi-lane highway consists of two or more consecutive upgrades with different slopes, the PCE of heavy vehicles is determined by using :

1. The average grade: by dividing the total rise in elevation by the total horizontal distance. The average grade technique is valid for conditions where grades are $<3 \%$ or the total length of the composite grade is $<4000 \mathrm{ft}$.

Sample for Average Grade

- The average grade is:

$$
(3.5 \times 2000+5 \times 3000) / 5000=4.4 \%
$$

Or, Total Rise $=0.035 \times 2000+0.05 \times 3000=320 \mathrm{ft}$
Average Grade $=320 / 5000=4.4 \%$

Multilane Highways

Table 9.25 Passenger-Car Equivalents for Trucks and Buses $\left(E_{T}\right)$ and $\mathrm{RVs}\left(E_{R}\right)$ on General Highway Segments: Multilane Highways and Basic Freeway Sections

Factor	Type of Terrain		
	Level	Rolling	Mountainous
E_{T} (trucks and buses)	1.5	2.5	4.5
$E_{R}($ RVs $)$	1.2	2.0	4.0

Table 9.26 Passenger-Car Equivalents for Trucks and Buses (ETT) on Upgrades, Multilane Highways, and Basic Freeway Sections
E_{T}

Multilane Highways

Upgrade (\%)	$\begin{gathered} \text { Length } \\ (\mathrm{mi}) \end{gathered}$	E_{T}								
		Percentage of Trucks and Buses								
		2	4	5	6	8	10	15	20	25
<2	All	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
$\geq 2-3$	$>0.00-0.25$	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	$>0.25-0.50$	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	$>0.50-0.75$	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	$>0.75-1.00$	2.0	2.0	2.0	2.0	1.5	1.5	1.5	1.5	1.5
	$>1.00-1.50$	2.5	2.5	2.5	2.5	2.0	2.0	2.0	2.0	2.0
	>1.50	3.0	3.0	2.5	2.5	2.0	2.0	2.0	2.0	2.0
> $3-4$	$>0.00-0.25$	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	$>0.25-0.50$	2.0	2.0	2.0	2.0	2.0	2.0	1.5	1.5	1.5
	$>0.50-0.75$	2.5	2.5	2.0	2.0	2.0	2.0	2.0	2.0	2.0
	$>0.75-1.00$	3.0	3.0	2.5	2.5	2.5	2.5	2.0	2.0	2.0
	$>1.00-1.50$	3.5	3.5	3.0	3.0	3.0	3.0	2.5	2.5	2.5
	>1.50	4.0	3.5	3.0	3.0	3.0	3.0	2.5	2.5	2.5
>4-5	$>0.00-0.25$	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	$>0.25-0.50$	3.0	2.5	2.5	2.5	2.0	2.0	2.0	2.0	2.0
	$>0.50-0.75$	3.5	3.0	3.0	3.0	2.5	2.5	2.5	2.5	2.5
	$>0.75-1.00$	4.0	3.5	3.5	3.5	3.0	3.0	3.0	3.0	3.0
	>1.00	5.0	4.0	4.0	4.0	3.5	3.5	3.0	3.0	3.0
> 5-6	$>0.00-0.25$	2.0	2.0	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	$>0.25-0.30$	4.0	3.0	2.5	2.5	2.0	2.0	2.0	2.0	2.0
	$>0.30-0.50$	4.5	4.0	3.5	3.0	2.5	2.5	2.5	2.5	2.5
	$>0.50-0.75$	5.0	4.5	4.0	3.5	3.0	3.0	3.0	3.0	3.0
	> $0.75-1.00$	5.5	5.0	4.5	4.0	3.0	3.0	3.0	3.0	3.0
	>1.00	6.0	5.0	5.0	4.5	3.5	3.5	35	3.5	3.5
>6	$>0.00-0.25$	4.0	3.0	2.5	2.5	2.5	2.5	2.0	2.0	2.0
	$>0.25-0.30$	4.5	4.0	3.5	3.5	3.5	3.0	2.5	2.5	2.5
	$>0.30-0.50$	5.0	4.5	4.0	4.0	3.5	3.0	2.5	2.5	2.5
	$>0.50-0.75$	5.5	5.0	4.5	4.5	4.0	3.5	3.0	3.0	3.0
	$>0.75-1.00$	6.0	5.5	5.0	5.0	4.5	4.0	35	3.5	3.5
	>1.00	7.0	6.0	5.5	5.5	5.0	4.5	4.0	4.0	4.0

Multilane Highways

Table 9.27 Passenger-Car Equivalents for RVs $\left(E_{R}\right)$ on Uniform Upgrades, Multilane Highways, and Basic Freeway Segments

$$
E_{R}
$$

Percentage of RVs

$\substack{\text { Grade } \\ (\%)}$	Length (mi)	2	4	5	6	8	10	15	20	25
≤ 2	All	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
$>2-3$	$>0.00-0.50$	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
	>0.50	3.0	1.5	1.5	1.5	1.5	1.5	1.2	1.2	1.2
	$>0.00-0.25$	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
$>3-4$	$>0.25-0.50$	2.5	2.5	2.0	2.0	2.0	2.0	1.5	1.5	1.5
	>0.50	3.0	2.5	2.5	2.5	2.0	2.0	2.0	1.5	1.5
	$>0.00-0.25$	2.5	2.0	2.0	2.0	1.5	1.5	1.5	1.5	1.5
$>4-5$	$>0.25-0.50$	4.0	3.0	3.0	3.0	2.5	2.5	2.0	2.0	2.0
	>0.50	4.5	3.5	3.0	3.0	3.0	2.5	2.5	2.0	2.0
	$>0.00-0.25$	4.0	3.0	2.5	2.5	2.5	2.0	2.0	2.0	1.5
>5	$>0.25-0.50$	6.0	4.0	4.0	3.5	3.0	3.0	2.5	2.5	2.0
	>0.50	6.0	4.5	4.0	4.5	3.5	3.0	3.0	2.5	2.0

Multilane Highways

Table 9.28 Passenger-Car Equivalents for Trucks (E_{7}) on Downgrades, Multilane Highways, and Basic Freeway Segments

E_{T}
Percentage of Trucks

Downgrade (\%)	Length (mi)	5	10	15	20
$<4-6$	All	1.5	1.5	1.5	1.5
$4-5$	≤ 4	1.5	1.5	1.5	1.5
$4-5$	>4	2.0	2.0	2.0	1.5
$>5-6$	≤ 4	1.5	1.5	1.5	1.5
$>5-6$	>4	5.5	4.0	4.0	3.0
>6	≤ 4	1.5	1.5	1.5	1.5
>6	>4	7.5	6.0	5.5	4.5

Downgrades: E_{T} from Table 9.28 while E_{R} are treated as if they were on level terrain

- FFS could be field measured (no adjustment), or computed.

Step 1. Compute the Value of Free-Flow Speed. Use Eq. 9.25 to estimate FFS:

$$
\begin{equation*}
F F S=B F F S-f_{L W}-f_{L C}-f_{M}-f_{A} \tag{9.25}
\end{equation*}
$$

where
$F F S=$ estimated free-flow speed (mi/h)
BFFS $=$ base free-flow speed $(\mathrm{mi} / \mathrm{h})$. In the absence of field data, a default value of $60 \mathrm{mi} / \mathrm{h}$ is used for rural/suburban miltilane highways
$f_{L W}=$ adjustment for lane width (Table 9.29)
$f_{L C}=$ adjustment for lateral clearance (Table 9.34)
$f_{M}=$ adjustment for median type (Table 9.35)
$f_{A}=$ adjustment for access-point density (Table 9.36)

Table 9.29 Adjustment $\left(f_{\text {LW }}\right)$ for Lane Width
Lane Width (ft) Reduction in FFS, $f_{\mathrm{LW}}(\mathrm{mi} / \mathrm{h})$

12	0.0
11	1.9
10	6.6

Table 9.34 Adjustment (f_{LC}) for Lateral Clearance
Four-Lane Highways
Six-Lane Highways

Total Lateral Clearance (ft)	Reduction in FFS $(\mathrm{mi} / \mathrm{h})$	Total Lateral Clearance (ft)	Reduction in FFS $(\mathrm{mi} / \mathrm{h})$
12	0.0	12	0.0
10	0.4	10	0.4
8	0.9	8	0.9
6	1.3	6	1.3
4	1.8	4	1.7
2	3.6	2	2.8
0	5.4	0	3.9

Table 9.35 Adjustment $\left(f_{M}\right)$ for Median Type

Median Type	Reduction in $(\mathrm{mi} / \mathrm{h})$
highways	1.6
hways (including TWLTLs)	0.0

Table 9.36 Adjustment $\left(f_{A}\right)$ for Access-Point Density

Access Points/Mile	Reduction in FFS $(\mathrm{mi} / \mathrm{h})$
0	0.0
10	2.5
20	5.0
30	7.5
$\$ 40$	10.0

- Lateral Clearance: a total from both sides.
- Ideal = 12 ft (6 from each side)
- Maximum accounted for each side is 6 ft
- For example, right side has a LC = 10 ft , left side $=4 \mathrm{ft}$, then total clearance $=6$ (maximum from the right) $+4=$ 10 ft

Example - Multi-Lane Highway

- A four-lane undivided multilane highway in a suburban area has the following characteristics: posted speed limit $=\mathbf{5 0} \mathbf{~ m i} / \mathrm{h}$; 11 -foot lanes; Lateral clearance $=10 \mathrm{ft}$; 30 access points $/ \mathrm{mi}$ on the right side of the facility. What is the free-flow speed for the direction described?
- Solution:
- Since posted speed limit is $50 \mathrm{mi} / \mathrm{hr}$, the BFFS may be assumed to be 5 or $10 \mathrm{mi} / \mathrm{hr}$ greater
- Assume BFFS = $55 \mathrm{mi} / \mathrm{hr}$
$-\mathrm{f}_{\mathrm{LW}}=1.9 \mathrm{mi} / \mathrm{h}$ (Table 9.29, 11-ft lanes)
$-\mathrm{f}_{\mathrm{LC}}=0.4 \mathrm{mi} / \mathrm{h}$ (Table 9.34)
$-\mathrm{f}_{\mathrm{M}}=1.6 \mathrm{mi} / \mathrm{h}$ (Table 9.35)
$-\mathrm{f}_{\mathrm{A}}=7.5 \mathrm{mi} / \mathrm{h}$ (Table 9.36 access points $/ \mathrm{mi}$)
- FFS $=55-1.9-0.4-1.6-7.5=43.6 \mathrm{mi} / \mathrm{hr}$

Example 9.16

Determining the LOS of a Multilane Highway Segment of Uniform Grade

- A 3200 ft segment of $3.25-\mathrm{mi}$ four-lane undivided multilane highway in a suburban area is at a 1.5% grade.
- The highway is in level terrain, and lane widths are 11 ft.
- The measured free-flow speed is $46.0 \mathrm{mi} / \mathrm{h}$.
- The peak-hour volume is $1900 \mathrm{veh} / \mathrm{h}, \mathrm{PHF}$ is 0.90 , and there are 13% trucks and 2% RVs.
- Determine the LOS, speed, and density for upgrade and downgrade.

Solution:

- Compute v_{p} using Eqs. 9.4 and 9.22. Input data:

$$
\begin{aligned}
V & =1900 \mathrm{veh} / \mathrm{h} \\
P H F & =0.90 \\
\mathrm{~N} & =2 \\
f_{p} & =1.00 \\
f_{H V} & =0.935 \text { computed from Eq. } 9.4 \\
E_{T} & =1.5, E_{R}=1.2 \text { (Table 9.25) since } 1.5 \text { percent grade is considered level ter- } \\
& \text { rain } \\
P_{T} & =0.13, P_{R}=0.02 \\
f_{H V} & =\frac{1}{1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)} \\
& =\frac{1}{1+0.13(1.5-1)+0.02(1.2-1)}=0.935
\end{aligned}
$$

$$
\begin{aligned}
v_{p} & =\frac{V}{(P H F)(N)\left(f_{p}\right)\left(f_{H V}\right)} \\
& =\frac{1900}{(0.90)(2)(1.00)(0.935)}=1129 \mathrm{pc} / \mathrm{h} / \ln
\end{aligned}
$$

Thus,

$$
S=F F S=46 \mathrm{mi} / \mathrm{h}\left(\text { since } v_{p}<1400\right)
$$

- Compute density from Eq. 9.21.

$$
D=\frac{v_{p}}{S}=\frac{1129}{46}=24.5 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}
$$

LOS C (Table 9.33).

- Compute v_{p} using Eq. 9.21 for the upgrade direction. Input data:

$$
V=1900
$$

intercha $P H F=0.9$

$$
\begin{aligned}
N & =2 \\
f_{p} & =1.00 \\
f_{H V} & =0.905 \text { computed from Eq. } 9.4 \\
E_{T} & =1.5, \text { (Table 9.26) } E_{R}-3.0 \text { (Table 9.27) } \quad \mathrm{E}_{\mathrm{R}}=1.2 \\
P_{T} & =0.13, P_{R}=0.02 \\
f_{H V} & =\frac{1}{1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)} \\
& =\frac{1}{1+0.13(1.5-1)+0.02(3.0-1)}=0.905 \quad \mathrm{f}_{\mathrm{HV}}=0.935 \\
v_{p} & =\frac{V}{(P H F)(N)\left(f_{p}\right)\left(f_{H V}\right)}=\frac{1900}{(0.90)(2)(1.00)(0.905)}=1166 \mathrm{pc} / \mathrm{h} / \mathrm{ln}
\end{aligned}
$$

Thus,

$$
\mathrm{FFS}=46 \mathrm{mi} / \mathrm{h}(\text { since } v<1400)
$$

Compute density from Eq. 9. 21

$$
D=\frac{v_{p}}{S}=\frac{1166}{46}=25.3 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}
$$

Multi-Lane Highway - Design

- Determine the number of lanes required for a divided multi-lane highway of $0.35-\mathrm{mi}$ long and a 4.5% grade, if the section is to operate at LOS C. The following design features apply to this section:
- V 3000 veh/h (weekly commuter traffic)
- PHF 0.95
- Trucks and Buses 10\%
- RVs 2\%
- Base Free Flow Speed (BFFS) $=50 \mathrm{mi} / \mathrm{h}$
- Lane width 11 ft
- Lateral obstruction: None
- Access spacing 1 mi (no access within the section)
- Driver population - familiar drivers

Compute free-flow speed.

$$
F F S=B F F S-f_{L W}-f_{L C}-f_{M}-f_{A}
$$

$-\mathrm{BFFS}=50$
$-\mathrm{f}_{\mathrm{LW}}=1.9$
$-f_{L C}=0.0$
$-\mathbf{f}_{\mathrm{M}}=0.0$
$-\mathbf{f}_{\mathrm{A}}=\mathbf{0 . 0}$

- FFS $=50-1.9=48.1 \mathrm{mph}$
- Then, use FFS = 50 mph
- Maximum SF @ LOS C for $S=50 \mathbf{~ m p h}=1300 \mathrm{pc} / \mathrm{hr} / \mathrm{ln}$ (Table 9.33)

Table 9.33 Level-of-Service Criteria for Multilane Highways

LOS

Free-Flow Speed	Criteria	LOS				
		A	B	C	D	E
$60 \mathrm{mi} / \mathrm{h}$	Maximum density (pc/mi/ln)	11	18	26	35	40
	Average speed $(\mathrm{mi} / \mathrm{h})$	60.0	60.0	59.4	56.7	55.0
	Maximum volume-to-capacity ratio (v/c)	0.30	0.49	0.70	0.90	1.00
	Maximum service flow rate (pc/h/ln)	660	1080	1550	1980	2200
$55 \mathrm{mi} / \mathrm{h}$	Maximum density (pc/mi/ln)	11	18	26	35	41
	Average speed (mi/h Maximum v/c	$\begin{gathered} 55.0 \\ 0.29 \end{gathered}$	$\begin{gathered} 55.0 \\ 0.47 \end{gathered}$	$\begin{gathered} 54.9 \\ 0.68 \end{gathered}$	$\begin{gathered} 52.9 \\ 0.88 \end{gathered}$	$\begin{gathered} 51.2 \\ 1.00 \end{gathered}$
	Maximum service flow rate (pc/h/ln)	600	990	1430	1850	2100
$50 \mathrm{mi} / \mathrm{h}$	Maximum density (pc/mi/ln)	11	18	26	35	43
	Average speed (mi/h)	50.0	50.0	50.0	48.9	47.5
	Maximum v/c Maximum service flow rate ($\mathrm{pc} / \mathrm{h} / \mathrm{ln}$)	$\begin{gathered} 0.28 \\ 550 \end{gathered}$	$\begin{gathered} 0.45 \\ 900 \end{gathered}$	$\begin{aligned} & 0.65 \\ & 1300 \end{aligned}$	$\begin{aligned} & 0.86 \\ & 1710^{0} \end{aligned}$	$\begin{gathered} 1.00 \\ 2000 \end{gathered}$
$45 \mathrm{mi} / \mathrm{h}$	Maximum density (pc/mi/ln)	11	18	26	35	45
	Average speed (mi/h)	45.0	45.0	45.0	44.4	42.2
	Maximum v/c	0.26	0.43	0.62	0.82	1.00
	Maximum service flow rate ($\mathrm{pc} / \mathrm{h} / \mathrm{ln}$)	480	810	1170	1550	1900

Solution:

Determine PCE equivalents.

$$
\begin{aligned}
& E_{T}=2.0(\text { Table } 9.26) \\
& E_{R}=4.0(\text { Table } 9.27)
\end{aligned}
$$

Compute heavy-vehicle adjustment factor

$$
\begin{aligned}
f_{H V} & =\frac{1}{1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)} \\
f_{H V} & =\frac{1}{1+0.1(2-1)+0.02(4-1)}=0.86
\end{aligned}
$$

Convert vehicle/hour to peak 15-minute passenger-car equivalent flov rate for two, three, and four lanes.

$$
\begin{array}{rl|ll}
v_{P} & =\frac{V}{P H F \times N \times f_{p} \times f_{H V}} & \begin{array}{l}
\text { For } N=3 \\
\text { For } N=4
\end{array} & \begin{array}{l}
v_{p}=1223 \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\
v_{p}=917 \mathrm{pc} / \mathrm{h} / \mathrm{ln}
\end{array} \\
& =\frac{3000}{0.95 \times 2 \times 1.00 \times 0.86} & & \\
& =1834 \mathrm{pc} / \mathrm{h} / \mathrm{ln} & \text { Then, 3 lanes are required }
\end{array}
$$

Or an alternate way (not highly accurate)

- FFS 48.1 mph (calculated before)
- Density ($D=v_{p} / S$). Maximum D at LOS C $=26$ pe/mi/ln
- $26=v_{p} / 48.1 ; v_{p}=1251 \mathrm{pc} / \mathrm{hr} / \mathrm{ln}$
- $\mathrm{N}=3000$ / ($\mathbf{1 2 5 1 \times 0 . 9 5 \times 1 . 0 \times 0 . 8 6) ~}$
- $\mathrm{N}=2.94$ lanes; 3 lanes are required in each direction
- Another type of question is how much (additional) traffic the highway can accommodate to maintain specific LOS.
- (Example) A 6-lane multi-lane highway with a measured FFS of 47 mph and a directional flow rate of $2000 \mathrm{veh} / \mathrm{hr}$ on rolling terrain and PHF of 0.90. $\mathrm{f}_{\mathrm{HV}}=0.89$. Determine how much additional traffic the highway can accommodate to maintain LOS C?
- Maximum service volume for LOS C $=1170 \mathrm{pc} / \mathrm{hr} / \mathrm{ln}$
- $1170=\mathrm{V} /\{(0.90)(3)(1.0)(0.89)$
- $\mathrm{V}=2812 \mathrm{veh} / \mathrm{hr}$

$$
v_{p}=\frac{V}{(P H F)(N)\left(f_{p}\right)\left(f_{H V}\right)}
$$

- Therefore, additional traffic $=2812-2000=812 \mathrm{veh} / \mathrm{hr}$

Chapter 6

Capacity and LOS of Multi-Lane Highways and Freeway Sections

