Transportation System Engineering 2, 10601461

Chapter 6 Capacity and LOS of Multi-Lane Highways Sections

AN-NAJAH NATIONAL UNIVERSITY NABLUS, PALESTINE

- Multilane highways may exhibit some of the following characteristics:
 - Posted speed limits are usually between 60 and 100 km/h
 - They may be undivided or include medians
 - They are located in <u>suburban areas or in high-volume rural</u> corridors
 - They may include a two-way, left-turn median lane (<u>TWLTL</u>)
 - Traffic volumes range from 15,000 to 40,000/day
 - Volumes are up to 100,000/day with grade separations and no cross-median access
 - Traffic signals at major crossing points are possible
 - There is partial control of access

Road Diet project in Honolulu, Hawaii.

Typical Capacity Values

Table 13.1: Capacity Under Ideal Conditions for Uninterrupted Flow Facilities

Type of Facility	Free-Flow Speed (mi/h)	Capacity
Freeways	≥70	2,400 pc/h/ln
	65	2,350 pc/h/ln
	60	2,300 pc/h/ln
	55	2,250 pc/h/ln
Multilane	≥60	2,200 pc/h/ln
Highways	55	2,100 pc/h/ln
	50	2,000 pc/h/ln
	50	1,900 pc/h/ln
Two-Lane	All	3,200 pc/h
Highways		(total, both dir)
		1,700 pc/h
		(max. one dir)

 Any two of the following three performance characteristics can describe the level of service (LOS) for a multilane highway:

 V_p : Flow rate (pc/h/ln)

S: Average passenger car speed (mi/h)

D: Density defined as number of cars per mi (pc/mi/ln)

$$D = \frac{v_p}{S}$$

Although density is the primary parameter in defining the LOS for Multilane highways

Following figure illustrates the level-of-service regimes
 Constant up to 1400pc/hr/ln

Figure 9.15 Speed-Flow Curves with Level-of-Service Criteria for Multilane Highways

				LOS		
Free-Flow Speed	Criteria	A	В	С	D	Е
60 mi/h	Maximum density (pc/mi/ln)	11	18	26	35	40
	Average speed (mi/h)	60.0	60.0	59.4	56.7	55.0
	Maximum volume- to-capacity ratio (v/c)	0.30	0.49	0.70	0.90	1.0
	Maximum service flow rate (pc/h/ln)	660	1080	1550	1980	2200
55 mi/h	Maximum density (pc/mi/ln)	11	18	26	35	41
Maxi Maxi	Average speed (mi/h Maximum v/c	55.0 0.29	55.0 0.47	54.9 0.68	52.9 0.88	51.2 1.0
	Maximum service flow rate (pc/h/ln)	600	990	1430	1850	2100
50 mi/h	Maximum density (pc/mi/ln)	11	18	26	35	43
	Average speed (mi/h)	50.0	50.0	50.0	48.9	47.5
	Maximum v/c	0.28	0.45	0.65	0.86	1.0
	Maximum service flow rate (pc/h/ln)	550	900	1300	1710	2000
45 mi/h	Maximum density (pc/mi/ln)	11	18	26	35	45
	Average speed (mi/h)	45.0	45.0	45.0	44.4	42.2
	Maximum v/c	0.26	0.43	0.62	0.82	1.0
	Maximum service flow rate (pc/h/ln)	480	810	1170	1550	1900

Table 9.33

LOS Criteria of Multilane Highways

Service Flow Rates and Service Volumes

- A Service Flow (SF) Rate is defined as the maximum rate of flow that can be reasonably expected on a lane or roadway under prevailing roadway, traffic, and control conditions while maintaining a particular level of service (LOS).
- Each LOS covers a range of values
- The SF rate is defined as the max.
 flow rate that can be sustained without exceeding the max.

- density defined for the LOS. There are only 5 SF rates, not 6.
- LOS F represents unstable flow; exceeds capacity (mostly LOS E).

Calculating the Flow Rate for

a Multilane Highway

 The flow rate in pc/h/ln for a multilane highway is computed as:

$$v_p = \frac{V}{(PHF)(N)(f_p)(f_{HV})}$$

 $v_p = 15$ -minute passenger-car equivalent flow rate (pc/h/ln)

V = hourly peak vehicle volume (veh/h) in one direction

N = number of travel lanes in one direction (2 or 3)

 f_p = driver population factor with a range of 0.85 to 1.00. Use 1.00 for commuter traffic.

If there is significant recreational or weekend traffic, the value is reduced

Calculating the Flow Rate for a Multilane Highway

 f_{HV} = heavy-vehicle adjustment factor (Eq. 9.4)

$$f_{HV} = \frac{1}{1 + P_T(E_T - 1) + P_R(E_R - 1)}$$

 P_T and P_R = decimal portion of trucks/buses and recreational vehicles in the traffic stream

 E_T and E_R = passenger car equivalents. Number of cars using the same space as a truck/bus or a recreational vehicle

Calculating the Flow Rate for

a Multilane Highway

 To estimate E_T and E_R There are two situations that must be considered:

1. Extended general segments

Use Table 9.25

2. Specific grades

- Upgrades: Tables 9.26 and 9.27
- Downgrades: $\mathbf{E_T}$ from Table 9.28 while $\mathbf{E_R}$ are treated as if they were on level terrain

PCEs for trucks & buses can be determined for three grade conditions:

- 1) extended general segments
 - These occur when a single grade is not too long or steep to have significant impact on capacity.
 - When grades ≥ 3% and < ¼ mi, or grades < 3% and < ½ mi
- 2) specific upgrades
 - Any segment's grade ≥ 3% and > ¼ mi, or a grade < 3% and > ½
 mi, should be considered as a separate segment.
- 3) specific downgrades.

- Composite grades: When a segment of multi-lane highway consists of two or more consecutive upgrades with different slopes, the PCE of heavy vehicles is determined by using:
 - 1. The average grade: by dividing the total rise in elevation by the total horizontal distance. The average grade technique is valid for conditions where grades are < 3% or the total length of the composite grade is < 4000 ft.

Sample for Average Grade

The average grade is:

$$(3.5 \times 2000 + 5 \times 3000) / 5000 = 4.4\%$$
Or, Total Rise = $0.035 \times 2000 + 0.05 \times 3000 = 320$ ft
Average Grade = $320 / 5000 = 4.4\%$

Table 9.25 Passenger-Car Equivalents for Trucks and Buses (E_T) and RVs (E_R) on General Highway Segments: Multilane Highways and Basic Freeway Sections

	Type of Terrain				
Factor	Level	Rolling	Mountainous		
E_T (trucks and buses)	1.5	2.5	4.5		
E_R (RVs)	1.2	2.0	4.0		

Table 9.26 Passenger-Car Equivalents for Trucks and Buses (E_T) on Upgrades, Multilane Highways, and Basic Freeway Sections

 E_{rr}

						E_T				
				P	ercentage	of Truci	ks and B	uses		
Upgrade	Length									
(%)	(mi)	2	4	5	6	8	10	15	20	25
< 2	All	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	> 0.00-0.25	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	> 0.25 - 0.50	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
$\geq 2-3$	> 0.50-0.75	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	> 0.75-1.00	2.0	2.0	2.0	2.0	1.5	1.5	1.5	1.5	1.5
	> 1.00-1.50	2.5	2.5	2.5	2.5	2.0	2.0	2.0	2.0	2.0
	> 1.50	3.0	3.0	2.5	2.5	2.0	2.0	2.0	2.0	2.0
	> 0.00-0.25	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	> 0.25-0.50	2.0	2.0	2.0	2.0	2.0	2.0	1.5	1.5	1.5
> 3-4	> 0.50 - 0.75	2.5	2.5	2.0	2.0	2.0	2.0	2.0	2.0	2.0
	> 0.75-1.00	3.0	3.0	2.5	2.5	2.5	2.5	2.0	2.0	2.0
	> 1.00-1.50	3.5	3.5	3.0	3.0	3.0	3.0	2.5	2.5	2.5
	> 1.50	4.0	3.5	3.0	3.0	3.0	3.0	2.5	2.5	2.5
	> 0.00 - 0.25	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	> 0.25 - 0.50	3.0	2.5	2.5	2.5	2.0	2.0	2.0	2.0	2.0
> 4-5	> 0.50-0.75	3.5	3.0	3.0	3.0	2.5	2.5	2.5	2.5	2.5
	> 0.75-1.00	4.0	3.5	3.5	3.5	3.0	3.0	3.0	3.0	3.0
	> 1.00	5.0	4.0	4.0	4.0	3.5	3.5	3.0	3.0	3.0
	> 0.00 - 0.25	2.0	2.0	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	> 0.25-0.30	4.0	3.0	2.5	2.5	2.0	2.0	2.0	2.0	2.0
> 5-6	> 0.30 - 0.50	4.5	4.0	3.5	3.0	2.5	2.5	2.5	2.5	2.5
	> 0.50 - 0.75	5.0	4.5	4.0	3.5	3.0	3.0	3.0	3.0	3.0
	> 0.75-1.00	5.5	5.0	4.5	4.0	3.0	3.0	3.0	3.0	3.0
	> 1.00	6.0	5.0	5.0	4.5	3.5	3.5	3.5	3.5	3.5
	> 0.00-0.25	4.0	3.0	2.5	2.5	2.5	2.5	2.0	2.0	2.0
	> 0.25 - 0.30	4.5	4.0	3.5	3.5	3.5	3.0	2.5	2.5	2.5
> 6	> 0.30-0.50	5.0	4.5	4.0	4.0	3.5	3.0	2.5	2.5	2.5
	> 0.50 - 0.75	5.5	5.0	4.5	4.5	4.0	3.5	3.0	3.0	3.0
	> 0.75-1.00	6.0	5.5	5.0	5.0	4.5	4.0	3.5	3.5	3.5
	> 1.00	7.0	6.0	5.5	5.5	5.0	4.5	4.0	4.0	4.0

Table 9.27 Passenger-Car Equivalents for RVs (E_R) on Uniform Upgrades, Multilane Highways, and Basic Freeway Segments

			E_R							
			Percentage of RVs							
Grade (%)	Length (mi)	2	4	5	6	8	10	15	20	25
≤ 2	All	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
> 2-3	> 0.00-0.50	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
	> 0.50	3.0	1.5	1.5	1.5	1.5	1.5	1.2	1.2	1.2
> 3-4	> 0.00-0.25	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
	> 0.25-0.50	2.5	2.5	2.0	2.0	2.0	2.0	1.5	1.5	1.5
	> 0.50	3.0	2.5	2.5	2.5	2.0	2.0	2.0	1.5	1.5
> 4-5	> 0.00-0.25	2.5	2.0	2.0	2.0	1.5	1.5	1.5	1.5	1.5
	> 0.25-0.50	4.0	3.0	3.0	3.0	2.5	2.5	2.0	2.0	2.0
	> 0.50	4.5	3.5	3.0	3.0	3.0	2.5	2.5	2.0	2.0
> 5	> 0.00-0.25	4.0	3.0	2.5	2.5	2.5	2.0	2.0	2.0	1.5
	> 0.25-0.50	6.0	4.0	4.0	3.5	3.0	3.0	2.5	2.5	2.0
	> 0.50	6.0	4.5	4.0	4.5	3.5	3.0	3.0	2.5	2.0

Table 9.28 Passenger-Car Equivalents for Trucks (E_T) on Downgrades, Multilane Highways, and Basic Freeway Segments

			E	T		
		Percentage of Trucks				
Downgrade (%)	Length (mi)	5	10	15	20	
< 4-6	All	1.5	1.5	1.5	1	
4-5	≤ 4	1.5	1.5	1.5	1	
4-5	> 4	2.0	2.0	2.0	1.	
> 5-6	≤ 4	1.5	1.5	1.5	1	
> 5-6	> 4	5.5	4.0	4.0	3.	
> 6	≤ 4	1.5	1.5	1.5	1	
> 6	> 4	7.5	6.0	5.5	4.:	

Downgrades: E_T from Table 9.28 while E_R are treated as if they were on level terrain

Calculating the Average Passenger Car Speed (S), Density (D), and Level of Service (LOS) for a Multilane Highway

 FFS could be <u>field measured (no adjustment)</u>, or computed.

Step 1. Compute the Value of Free-Flow Speed. Use Eq. 9.25 to estimate FFS:

$$FFS = BFFS - f_{LW} - f_{LC} - f_M - f_A$$
 (9.25)

where

FFS = estimated free-flow speed (mi/h)

BFFS = base free-flow speed (mi/h). In the absence of field data, a default value of 60 mi/h is used for rural/suburban miltilane highways

 f_{LW} = adjustment for lane width (Table 9.29)

 f_{LC} = adjustment for lateral clearance (Table 9.34)

 f_M = adjustment for median type (Table 9.35)

 f_A = adjustment for access-point density (Table 9.36)

Table 9.29	Adjustment (f_{LW}) for Lane	Width	
	Lane Width (ft)	Reduction in FFS, f_{LW} (mi/h)	
	12	0.0	
	11	1.9	
	10	6.6	

Four-Lane	Highways	Six-Lane I	Highways
Total Lateral Clearance (ft)	Reduction in FFS (mi/h)	Total Lateral Clearance (ft)	Reduction in FFS (mi/h)
12	0.0	12	0.0
10	0.4	10	0.4
8	0.9	8	0.9
6	1.3	6	1.3
4	1.8	4	1.7
2	3.6	2	2.8
0	5.4	0	3.9

Table 9.35Adjustment (f_M) for Median Type	
Median Type	Reduction in FFS (mi/h)
Undivided highways	1.6
Divided highways (including TWLTLs)	0.0

Access Points/Mile	Reduction in FFS (mi/h)
0	0.0
10	2.5
20	5.0
30	7.5
\$40	10.0

- Lateral Clearance: a total from both sides.
- Ideal = 12 ft (6 from each side)
- Maximum accounted for each side is 6 ft
- For example, right side has a LC = 10 ft, left side = 4 ft, then total clearance = 6 (maximum from the right) + 4 = 10 ft

Example - Multi-Lane Highway

• A four-lane undivided multilane highway in a suburban area has the following characteristics: **posted speed limit = 50 mi/h**; 11-foot lanes; Lateral clearance = 10 ft; 30 access points/mi on the right side of the facility. What is the free-flow speed for the direction described?

• Solution:

- Since posted speed limit is 50 mi/hr, the BFFS may be assumed to be 5 or 10 mi/hr greater
- Assume BFFS = 55 mi/hr
- $f_{LW} = 1.9 \text{ mi/h}$ (Table 9.29, 11-ft lanes)
- $f_{LC} = 0.4 \text{ mi/h} \text{ (Table 9.34)}$
- $f_M = 1.6 \text{ mi/h} \text{ (Table 9.35)}$
- $f_A = 7.5 \text{ mi/h}$ (Table 9.36 access points/mi)
- FFS = 55 1.9 0.4 1.6 7.5 = 43.6 mi/hr

Example 9.16

Determining the LOS of a Multilane Highway Segment of Uniform Grade

- <u>A 3200 ft segment of 3.25-mi</u> four-lane <u>undivided</u> multilane highway in a suburban area is at <u>a 1.5% grade</u>.
- The highway is in <u>level terrain</u>, and <u>lane widths are 11 ft</u>.
- The measured free-flow speed is 46.0 mi/h.
- The peak-hour volume is 1900 veh/h, PHF is 0.90, and there are 13% trucks and 2% RVs.
- Determine the LOS, speed, and density for upgrade and downgrade.

Solution:

Compute v_p using Eqs. 9.4 and 9.22.
 Input data:

$$V = 1900 \text{ veh/h}$$

$$PHF = 0.90$$

$$N = 2$$

$$f_p = 1.00$$

$$f_{HV} = 0.935 \text{ computed from Eq. 9.4}$$

$$E_T = 1.5, E_R = 1.2 \text{ (Table 9.25) since 1.5 percent grade is considered level terrain}$$

$$P_T = 0.13, P_R = 0.02$$

$$f_{HV} = \frac{1}{1 + P_T(E_T - 1) + P_R(E_R - 1)}$$

$$= \frac{1}{1 + 0.13(1.5 - 1) + 0.02(1.2 - 1)} = 0.935$$

$$v_p = \frac{V}{(PHF)(N)(f_p)(f_{HV})}$$

$$= \frac{1900}{(0.90)(2)(1.00)(0.935)} = 1129 \text{ pc/h/ln}$$

Thus,

$$S = FFS = 46 \text{ mi/h (since } v_p < 1400)$$

Compute density from Eq. 9.21.

$$D = \frac{v_p}{S} = \frac{1129}{46} = 24.5 \text{ pc/mi/ln}$$

LOS C (Table 9.33).

Compute v_p using Eq. 9.21 for the upgrade direction.
 Input data:

$$V = 1900$$
 intercha $PHF = 0.9$

$$\begin{split} N &= 2 \\ f_p &= 1.00 \\ f_{HV} &= 0.905 \text{ computed from Eq. 9.4} \\ E_T &= 1.5, \text{ (Table 9.26) } E_R = 3.0 \text{ (Table 9.27)} \\ P_T &= 0.13, P_R = 0.02 \\ f_{HV} &= \frac{1}{1 + P_T(E_T - 1) + P_R(E_R - 1)} \\ &= \frac{1}{1 + 0.13(1.5 - 1) + 0.02(3.0 - 1)} = 0.905 \qquad f_{\text{HV}} = 0.935 \\ v_p &= \frac{V}{(PHF)(N)(f_p)(f_{HV})} = \frac{1900}{(0.90)(2)(1.00)(0.905)} = 1166 \text{ pc/h/ln} \end{split}$$

Thus,

FFS =
$$46 \text{ mi/h} \text{ (since } v < 1400)$$

Compute density from Eq. 9. 21

$$D = \frac{v_p}{S} = \frac{1166}{46} = 25.3 \text{ pc/mi/ln}$$

Multi-Lane Highway - Design

- Determine the number of lanes required for a divided multi-lane highway of 0.35-mi long and a 4.5% grade, if the section is to operate at LOS C. The following design features apply to this section:
 - V 3000 veh/h (weekly commuter traffic)
 - PHF 0.95
 - Trucks and Buses 10%
 - RVs 2%
 - Base Free Flow Speed (BFFS) = 50 mi/h
 - Lane width 11 ft
 - Lateral obstruction: None
 - Access spacing 1 mi (no access within the section)
 - Driver population familiar drivers

Compute free-flow speed.

$$FFS = BFFS - f_{LW} - f_{LC} - f_M - f_A$$

$$-BFFS = 50$$

$$- f_{LW} = 1.9$$

$$-\mathbf{f}_{LC} = \mathbf{0.0}$$

$$-\mathbf{f}_{\mathbf{M}} = \mathbf{0.0}$$

$$-\mathbf{f}_{\mathbf{A}}=\mathbf{0.0}$$

$$- FFS = 50 - 1.9 = 48.1 \text{ mph}$$

- Then, use FFS = 50 mph
- Maximum SF @ LOS C for S = 50 mph = 1300 pc/hr/ln (Table 9.33)

	Table 9.33	evel-of-Service Criteria for N	Multilane Hi	ghways			
		_			LOS		
	Free-Flow Speed	Criteria	A	В	C	D	E
	60 mi/h	Maximum density (pc/mi/ln)	11	18	26	35	40
		Average speed (mi/h)	60.0	60.0	59.4	56.7	55.0
		Maximum volume- to-capacity ratio (v/c)	0.30	0.49	0.70	0.90	1.00
Table		Maximum service flow rate (pc/h/ln)	660	1080	1550	1980	2200
	55 mi/h	Maximum density (pc/mi/ln)	11	18	26	35	41
9.33		Average speed (mi/h Maximum v/c	55.0 0.29	55.0 0.47	54.9 0.68	52.9 0.88	51.2 1.00
LOS		Maximum service flow rate (pc/h/ln)	600	990	1430	1850	2100
Criteria of	50 mi/h	Maximum density (pc/mi/ln)	11	18	26	35	43
Multilane		Average speed (mi/h)	50.0	50.0	50.0	48.9	47.5
Highways —		Maximum v/c Maximum service flow rate (pc/h/ln)	0.28 550	0.45 900	0.65 1300	0.86 1710	1.00 2000
	45 mi/h	Maximum density (pc/mi/ln)	11	18	26	35	45
		Average speed (mi/h)	45.0	45.0	45.0	44.4	42.2
		Maximum v/c Maximum service flow rate (pc/h/ln)	0.26 480	0.43 810	0.62 1170	0.82 1550	1.00 1900

Solution:

Determine PCE equivalents.

$$E_T = 2.0$$
 (Table 9.26)
 $E_R = 4.0$ (Table 9.27)

Compute heavy-vehicle adjustment factor

$$f_{HV} = \frac{1}{1 + P_T(E_T - 1) + P_R(E_R - 1)}$$

$$f_{HV} = \frac{1}{1 + 0.1(2 - 1) + 0.02(4 - 1)} = 0.86$$

Convert vehicle/hour to peak 15-minute passenger-car equivalent flow rate for two, three, and four lanes.

$$v_P = \frac{V}{PHF \times N \times f_p \times f_{HV}}$$

$$= \frac{3000}{0.95 \times 2 \times 1.00 \times 0.86}$$

$$= 1834 \text{ pc/h/ln}$$

For
$$N = 3$$
 $v_p = 1223 \text{ pc/h/ln}$
For $N = 4$ $v_p = 917 \text{ pc/h/ln}$

Then, 3 lanes are required

Or an alternate way (not highly accurate)

- FFS 48.1 mph (calculated before)
- Density (D = v_p / S). Maximum D at LOS C = 26 pc/mi/ln
- $26 = v_p / 48.1$; $v_p = 1251$ pc/hr/ln
- $N = 3000 / (1251 \times 0.95 \times 1.0 \times 0.86)$
- N = 2.94 lanes; 3 lanes are required in each direction

- Another type of question is **how much (additional) traffic** the highway can accommodate to maintain specific LOS.
- (Example) A 6-lane multi-lane highway with a measured FFS of 47 mph and a directional flow rate of 2000 veh/hr on rolling terrain and PHF of 0.90. $f_{HV} = 0.89$. Determine how much additional traffic the highway can accommodate to maintain LOS C?
- Maximum service volume for LOS C = 1170 pc/hr/ln
- $1170 = V / \{(0.90)(3)(1.0)(0.89)$ • V = 2812 yeh/hr $v_p = \frac{V}{(PHF)(N)(f_p)(f_{HV})}$
- Therefore, additional traffic = 2812 2000 = 812 veh/hr

Chapter 6 Capacity and LOS of Multi-Lane Highways and Freeway Sections