

- Multilane highways may exhibit some of the following characteristics:
 - Posted speed limits are usually between 60 and 100 km/h
 - They may be undivided or include medians
 - They are located in <u>suburban areas or in high-volume rural</u> corridors
 - They may include a two-way, left-turn median lane (TWLTL)
 - Traffic volumes range from 15,000 to 40,000/day
 - Volumes are up to 100,000/day with grade separations and no cross-median access
 - Traffic signals at major crossing points are possible
 - There is partial control of access

Table 13.1: C Uninterrupted I	Capacity Under Idea Flow Facilities	l Conditions for
Type of Facility	Free-Flow Speed (mi/h)	Capacity
Freeways	≥70	2,400 pc/h/ln
	65	2,350 pc/h/ln
	60	2,300 pc/h/ln
	55	2,250 pc/h/ln
Multilane	≥60	2,200 pc/h/ln
Highways	55	2,100 pc/h/ln
	50	2,000 pc/h/ln
	50	1,900 pc/h/ln
Two-Lane	All	3,200 pc/h
Highways		(total, both dir)
5.		1,700 pc/h
		(max. one dir)

• Any two of the following three performance characteristics can describe the level of service (LOS) for a multilane highway:

 V_p : Flow rate (pc/h/ln)

- S: Average passenger car speed (mi/h)
- D: Density defined as number of cars per mi (pc/mi/ln)

$$D = \frac{v_p}{S}$$

Although density is the primary parameter in defining the LOS for Multilane highways

	32				LOS		
	Free-Flow Speed	Criteria	A	В	С	D	Ε
	60 mi/h	Maximum density (pc/mi/ln)	11	18	26	35	40
		Average speed (mi/h)	60.0	60.0	59.4	56.7	55.0
		Maximum volume- to-capacity ratio (v/c)	0.30	0.49	0.70	0.90	1.0
Table	12	Maximum service flow rate (pc/h/ln)	660	1080	1550	1980	2200
	55 mi/h	Maximum density (pc/mi/ln)	11	18	26	35	41
9.33		Average speed (mi/h Maximum v/c	55.0 0.29	55.0 0.47	54.9 0.68	52.9 0.88	51.2 1.0
LOS		Maximum service flow rate (pc/h/ln)	600	990	1430	1850	2100
Criteria of	50 mi/h	Maximum density (pc/mi/ln)	11	18	26	35	43
Multilane		Average speed (mi/h)	50.0	50.0	50.0	48.9	47.5
Highways		Maximum v/c Maximum service flow rate (pc/h/ln)	0.28 550	0.45 900	0.65 1300	0.86 1710	1.0 2000
	45 mi/h	Maximum density (pc/mi/ln)	11	18	26	35	45
		Average speed (mi/h)	45.0	45.0	45.0	44.4	42.2
		Maximum v/c Maximum service	0.26 480	0.43 810	0.62 1170	0.82 1550	1.0 1900

Service Flow Rates and Service Volumes

Calculating the Flow Rate for

a Multilane Highway

- To estimate \mathbf{E}_{T} and \mathbf{E}_{R} There are two situations that must be considered:
- 1. Extended general segments

Use Table 9.25

- 2. Specific grades
 - Upgrades: Tables 9.26 and 9.27
 - Downgrades: E_T from Table 9.28 while E_R are treated as if they were on level terrain

13

able 9.25	Passenger-Car Equiv Highway Segments:	valents for Trucks ar Multilane Highway	nd Buses (E_7) and R is and Basic Freewa	Vs (<i>E_R</i>) on General ay Sections
			Type of Terrain	
F	actor	Level	Rolling	Mountainou:
E_T (truck E_R (RVs)	s and buses)	1.5 1.2	2.5 2.0	4.5 4.0

		and Basic Freew					E_T				
					P	ercentage	e of Truc	ks and B	uses		
Multilane	Upgrade (%)	Length (mi)	2	4	5	6	8	10	15	20	25
	<2	All	1.5	1.5	1.5	1.5	1.5	1.5	15	1.5	1.
Highways	≥ 2-3	> 0.00 - 0.25 > 0.25 - 0.50 > 0.50 - 0.75	1.5 1.5 1.5	1.5 1.5 1.5	1.5 1.5 1.5	1.5 1.5 1.5	1.5 1.5 1.5	1.5 1.5 1.5	15 15 15	1.5 1.5 1.5	1. 1. 1.
		> 0.75-1.00 > 1.00-1.50 > 1.50	2.0 2.5 3.0	2.0 2.5 3.0	2.0 2.5 2.5	2.0 2.5 2.5	1.5 2.0 2.0	1.5 2.0 2.0	1.5 2.0 2.0	1.5 2.0 2.0	1. 2. 2.
	> 3-4	> 0.00-0.25 > 0.25-0.50 > 0.50-0.75 > 0.75-1.00 > 1.00-1.50 > 1.50	1.5 2.0 2.5 3.0 3.5 4.0	1.5 2.0 2.5 3.0 3.5 3.5	1.5 2.0 2.0 2.5 3.0 3.0	1.5 2.0 2.0 2.5 3.0 3.0	1.5 2.0 2.0 2.5 3.0 3.0	1.5 2.0 2.0 2.5 3.0 3.0	15 15 2.0 2.5 2.5	1.5 1.5 2.0 2.5 2.5	1. 1. 2. 2. 2. 2. 2.
	> 4-5	> 1.30 > 0.00-0.25 > 0.25-0.50 > 0.50-0.75 > 0.75-1.00 > 1.00	1.5 3.0 3.5 4.0 5.0	1.5 2.5 3.0 3.5 4.0	1.5 2.5 3.0 3.5 4.0	1.5 2.5 3.0 3.5 4.0	1.5 2.0 2.5 3.0 3.5	1.5 2.0 2.5 3.0 3.5	1.5 2.0 2.5 3.0 3.0	1.5 2.0 2.5 3.0 3.0	1. 2. 3. 3.
	> 5-6	> 0.00 - 0.25 > 0.25 - 0.30 > 0.30 - 0.50 > 0.50 - 0.75 > 0.75 - 1.00 > 1.00	2.0 4.0 4.5 5.0 5.5 6.0	2.0 3.0 4.0 4.5 5.0 5.0	1.5 2.5 3.5 4.0 4.5 5.0	1.5 2.5 3.0 3.5 4.0 4.5	1.5 2.0 2.5 3.0 3.0 3.5	1.5 2.0 2.5 3.0 3.0 3.5	1.5 2.0 2.5 3.0 3.0 3.5	1.5 2.0 2.5 3.0 3.0 3.5	1. 2. 2. 3. 3. 3. 3.
	> 6	> 0.00-0.25 > 0.25-0.30 > 0.30-0.50 > 0.50-0.75 > 0.75-1.00 > 1.00	4.0 4.5 5.0 5.5 6.0 7.0	3.0 4.0 4.5 5.0 5.5 6.0	2.5 3.5 4.0 4.5 5.0 5.5	2.5 3.5 4.0 4.5 5.0 5.5	2.5 3.5 3.5 4.0 4.5 5.0	2.5 3.0 3.0 3.5 4.0 4.5	2.0 2.5 2.5 3.0 3.5 4.0	2.0 2.5 2.5 3.0 3.5 4.0	2.2.2.3.3.4

Table 9.27 Passenger-Car Equivalents for RVs (E_R) on Uniform Upgrades, Multilane Highways, and Basic Freeway Segments E_R Percentage of RVs Grade Length (%) (mi) 2 4 5 6 8 10 15 20 25 ≤2 1.2 All 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 >2-3 > 0.00-0.50 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.5 1.5 1.2 > 0.503.0 1.5 1.5 1.5 1.2 1.2 1.2 > 0.00-0.25 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 > 3-4 > 0.25-0.50 2.5 2.5 2.0 2.0 2.0 2.0 1.5 1.5 1.5 > 0.503.0 2.5 2.5 2.5 2.0 2.0 2.0 1.5 1.5 1.5 > 0.00 - 0.252.5 2.0 2.0 2.0 1.5 1.5 1.5 1.5 > 4-5 > 0.25-0.50 4.0 3.0 3.0 3.0 2.5 2.5 2.0 2.0 2.0 > 0.50 2.5 4.5 3.5 3.0 3.0 3.0 2.5 2.0 2.0 > 0.00 - 0.254.0 3.0 2.5 2.5 2.5 2.0 2.0 2.0 1.5 >5 > 0.25 - 0.506.0 4.0 4.0 3.5 3.0 3.0 2.5 2.5 2.0 > 0.50 4.5 3.5 6.0 4.5 4.0 3.0 3.0 2.5 2.0 19

			E	T	
		39 	of Trucks		
Downgrade (%)	Length (mi)	5	10	15	20
< 4-6	All	1.5	1.5	1.5	1.
4-5	≤ 4	1.5	1.5	1.5	1.
4-5	>4	2.0	2.0	2.0	1.
> 5 - 6	≤ 4	1.5	1.5	1.5	1.
> 5-6	> 4	5.5	4.0	4.0	3.
> 6	≤ 4	1.5	1.5	1.5	1.
>6	>4	7.5	6.0	5.5	4.

 f_M = adjustment for median type (Table 9.35) f_A = adjustment for access-point density (Table 9.36)

interchange

Table 9.29 Adjust	ment (f _{LW}) for Lane Wi	dth				
La	ane Width (ft)	Reduction in FFS, f _{LW} (mi/h)	61			
	12	0.0				
	11	1.9				
	10	6.6				
Table 9.34 Adjust	ment (f_{LC}) for Lateral Cl	earance				
Four-Lan	ne Highways	Six-Lane Highways				
Total Lateral Clearance (ft)	Reduction in FFS (mi/h)	Total Lateral Clearance (ft)	Reduction in FFS (mi/h)			
12	0.0	12	0.0			
10	0.4	10	0.4			
8	0.9	8	0.9			
6	1.3	6	1.3			
4	1.8	4 2 0	1.7			
	0.0	2	2.8			
2	3.6	2	2.0			

Median Type	Reduction in FFS (mi/h)		
Undivided highways Divided highways (including TWLTLs)	1.6 0.0		
able 9.36 Adjustment (f_A) for Access-Point D	lensity		
Access Points/Mile	Reduction in FFS (mi/h)		
0	0.0		
10	2.5		
20	5.0		
30	7.5		
\$40	10.0		

Types of problems / analysis

- 1. Given highway volume, number of lanes, and FFS, determine LOS (Operational Analysis).
- 2. Given the highway volume, FFS, and the desired LOS, determine the number of lanes required (design).
- 3. Given the LOS and FFS, determine the hourly flow rate and the service volume rate, as well as the speed.

interchange

Example - Multi-Lane Highway

• A four-lane undivided multilane highway in a suburban area has the following characteristics: **posted speed limit = 50 mi/h**; 11-foot lanes; Lateral clearance = 10 ft; 30 access points/mi on the right side of the facility. What is the free-flow speed for the direction described?

• Solution:

- Since posted speed limit is 50 mi/hr, the BFFS may be assumed to be 5 or 10 mi/hr greater
- Assume BFFS = 55 mi/hr
- $f_{LW} = 1.9 \text{ mi/h}$ (Table 9.29, 11-ft lanes)
- $f_{LC} = 0.4 \text{ mi/h} (\text{Table } 9.34)$
- $f_{M} = 1.6 \text{ mi/h} (\text{Table } 9.35)$
- $f_A = 7.5 \text{ mi/h}$ (Table 9.36 access points/mi)
- FFS = 55 1.9 0.4 1.6 7.5 = 43.6 mi/hr

interchange

25

Example 9.16

Determining the LOS of a Multilane Highway Segment of Uniform Grade

- <u>A 3200 ft segment of 3.25-mi</u> four-lane <u>undivided</u> multilane highway in a suburban area is at <u>a 1.5% grade</u>.
- The highway is in level terrain, and lane widths are 11 ft.
- The measured free-flow speed is 46.0 mi/h.
- The peak-hour volume is 1900 veh/h, PHF is 0.90, and there are 13% trucks and 2% RVs.
- Determine the LOS, speed, and density for upgrade and downgrade.

interchange

Solution: • Compute v_p using Eqs. 9.4 and 9.22. Input data: V = 1900 veh/h PHF = 0.90 N = 2 $f_p = 1.00$ $f_{HV} = 0.935$ computed from Eq. 9.4 $E_T = 1.5, E_R = 1.2$ (Table 9.25) since 1.5 percent grade is considered level terrain $P_T = 0.13, P_R = 0.02$ $f_{HV} = \frac{1}{1 + P_T(E_T - 1) + P_R(E_R - 1)}$ $= \frac{1}{1 + 0.13(1.5 - 1) + 0.02(1.2 - 1)} = 0.935$ interchange

$$v_{p} = \frac{V}{(PHF)(N)(f_{p})(f_{HV})}$$

$$= \frac{1900}{(0.90)(2)(1.00)(0.935)} = 1129 \text{ pc/h/ln}$$
Thus,

$$S = FFS = 46 \text{ mi/h} (\text{since } v_{p} < 1400)$$
• Compute density from Eq. 9.21.

$$D = \frac{v_{p}}{S} = \frac{1129}{46} = 24.5 \text{ pc/mi/ln}$$
LOS C (Table 9.33).
• Compute v_{p} using Eq. 9.21 for the upgrade direction.
Input data:

$$V = 1900$$
intercha $PHF = 0.9$

$$N = 2$$

 $f_p = 1.00$
 $f_{HV} = 0.905$ computed from Eq. 9.4
 $E_T = 1.5$, (Table 9.26) $E_R = 3.0$ (Table 9.27)
 $P_T = 0.13$, $P_R = 0.02$
 $f_{HV} = \frac{1}{1 + P_T(E_T - 1) + P_R(E_R - 1)}$
 $= \frac{1}{1 + 0.13(1.5 - 1) + 0.02(3.0 - 1)} = 0.905$ $f_{HV} = 0.935$
 $v_p = \frac{V}{(PHF)(N)(f_p)(f_{HV})} = \frac{1900}{(0.90)(2)(1.00)(0.905)} = 1166 \text{ pc/h/ln}$
Thus,
FFS = 46 mi/h (since $v < 1400$)
Compute density from Eq. 9.21
 $D = \frac{v_p}{S} = \frac{1166}{46} = 25.3 \text{ pc/mi/ln}$
interch: LOS C (Table 9.33).

Multi-Lane Highway - Design

- Determine the number of lanes required for a divided multi-lane highway of 0.35-mi long and a 4.5% grade, if the section is to operate at LOS C. The following design features apply to this section:
 - V 3000 veh/h (weekly commuter traffic)
 - PHF 0.95
 - Trucks and Buses 10%
 - RVs 2%
 - Base Free Flow Speed (BFFS) = 50 mi/h
 - Lane width 11 ft
 - Lateral obstruction: None
 - Access spacing 1 mi (no access within the section)
 - Driver population familiar drivers

interchange

able 9.29 Adjust	ment (f _{LW}) for Lane Wi	dth				
La	ne Width (ft)	Reduction in FFS, $f_{\rm LW}$ (m	i/h)			
	12	0.0				
	11	1.9				
	10	6.6				
Table 9.34 Adjustr	nent (f _{LC}) for Lateral Cl	earance				
Four-Lan	e Highways	Six-Lane Highways				
Total Lateral Clearance (ft)	Reduction in FFS (mi/h)	Total Lateral Clearance (ft)	Reduction in FFS (mi/h)			
12	0.0	12	0.0			
10	0.4	10	0.4			
8	0.9	8	0.9			
6	1.3	6	1.3			
- 4	1.8	4	1.7			
4	3.6	2	2.8			
4 2	5.0					

able 9.35 Adjustment (f _M) for Median Type	
Median Type	Reduction in FFS (mi/h)
Undivided highways Divided highways (including TWLTLs)	1.6 0.0
Fable 9.36 Adjustment (f_A) for Access-Point Definition	ensity
Access Points/Mile	Reduction in FFS (mi/h)
0	0.0
10	2.5
20	5.0
	7.5
30	1.5

		_	LOS							
	Free-Flow Speed	Criteria	A	В	С	D	E			
	60 mi/h	Maximum density (pc/mi/ln)	11	18	26	35	40			
		Average speed (mi/h)	60.0	60,0	59.4	56.7	55.0			
		Maximum volume- to-capacity ratio (v/c)	0.30	0.49	0.70	0.90	1.00			
Table		Maximum service flow rate (pc/h/ln)	660	1080	1550	1980	2200			
	55 mi/h	Maximum density (pc/mi/ln)	11	18	26	35	41			
9.33		Average speed (mi/h Maximum v/c	55.0 0.29	55.0 0.47	54.9 0.68	52.9 0.88	51.2 1.00			
LOS		Maximum service flow rate (pc/h/ln)	600	990	1430	1850	2100			
Criteria of	50 mi/h	Maximum density (pc/mi/ln)	11	18	26	35	43			
Multilane		Average speed (mi/h)	50.0	50.0	50.0	48.9	47.5			
Highways		Maximum v/c Maximum service flow rate (pc/h/ln)	0.28 550	0.45 900	0.65 1300	0.86 1710	1.00 2000			
	45 mi/h	Maximum density (pc/mi/ln)	11	18	26	35	45			
		Average speed (mi/h)	45.0	45.0	45.0	44.4	42.2			
		Maximum v/c Maximum service	0.26 480	0.43 810	0.62 1170	0.82 1550	1.00 1900			

Solutio	n:									
	Determine PCE equivale	nts.								
		.0 (Table 9.26) .0 (Table 9.27)								
	Compute heavy-vehicle adjustment factor									
	$f_{HV} = \frac{1}{1 + P_T(E_T - 1) + P_R(E_R - 1)}$									
	$f_{HV} = \frac{1}{1 + 0.1(2 - 1) + 0}$	$\overline{0.02(4-1)} = 0.86$								
	vert vehicle/hour to peak 15 for two, three, and four land	5-minute passenger-car equivalent flov es.								
	$v_P = \frac{V}{PHF \times N \times f_p \times f_{HV}}$ 3000	For $N = 3$ $v_p = 1223 \text{ pc/h/ln}$ For $N = 4$ $v_p = 917 \text{ pc/h/ln}$								
interchange	$= \frac{1}{0.95 \times 2 \times 1.00 \times 0.86}$ $= 1834 \text{ pc/h/ln}$	Then, 3 lanes are required 36								

	Table 9.26	Passenger-Car E and Basic Freew			icks and	Buses (<i>E</i> _T)	on Upgr	ades, Mu	ltilane H	ighways,	3
							E_T				
					ŀ	ercentage	e of Truc	ks and B	uses		
Multilane	Upgrade (%)	Length (mi)	2	4	5	6	8	10	15	20	25
	<2	All	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Highways	≥ 2-3	> 0.00 - 0.25 > 0.25 - 0.50 > 0.50 - 0.75 > 0.75 - 1.00	1.5 1.5 1.5 2.0	1.5 1.5 1.5 2.0	1.5 1.5 1.5 2.0	1.5 1.5 1.5 2.0	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	15 15 15 15	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5
		> 1.00 -1.50 > 1.50	2.5 3.0	2.5	2.5	2.5 2.5	2.0	2.0	2.0	2.0	2.0 2.0
	> 3-4	> 0.00 -0.25 > 0.25-0.50 > 0.50-0.75 > 0.75-1.00 > 1.00-1.50 > 1.50	1.5 2.0 2.5 3.0 3.5 4.0	1.5 2.0 2.5 3.0 3.5 3.5	1.5 2.0 2.5 3.0 3.0	1.5 2.0 2.0 2.5 3.0 3.0	1.5 2.0 2.5 3.0 3.0	1.5 2.0 2.5 3.0 3.0	15 15 2.0 2.0 2.5 2.5	1.5 1.5 2.0 2.0 2.5 2.5	1.5 1.5 2.0 2.0 2.5
	> 45	> 0.00 - 0.25 > 0.25-0.50 > 0.50-0.75 > 0.75-1.00 > 1.00	1.5 3.0 3.5 4.0 5.0	1.5 2.5 3.0 3.5 4.0	1.5 2.5 3.0 3.5 4.0	1.5 2.5 3.0 3.5 4.0	1.5 2.0 2.5 3.0 3.5	1.5 2.0 2.5 3.0 3.5	15 2.0 2.5 3.0 3.0	1.5 2.0 2.5 3.0 3.0	1.5 2.0 2.5 3.0 3.0
	> 5-6	> 0.00 - 0.25 > 0.25 - 0.30 > 0.30 - 0.50 > 0.50 - 0.75 > 0.75 - 1.00 > 1.00	2.0 4.0 4.5 5.0 5.5 6.0	2.0 3.0 4.0 4.5 5.0 5.0	1.5 2.5 3.5 4.0 4.5 5.0	1.5 2.5 3.0 3.5 4.0 4.5	1.5 2.0 2.5 3.0 3.0 3.5	1.5 2.0 2.5 3.0 3.0 3.5	1.5 2.0 2.5 3.0 3.0 3.5	1.5 2.0 2.5 3.0 3.0 3.5	1.5 2.0 2.5 3.0 3.0 3.5
	> 6	> 0.00 - 0.25 > 0.25 - 0.30 > 0.30 - 0.50 > 0.50 - 0.75 > 0.75 - 1.00 > 1.00	4.0 4.5 5.0 5.5 6.0 7.0	3.0 4.0 4.5 5.0 5.5 6.0	2.5 3.5 4.0 4.5 5.0 5.5	2.5 3.5 4.0 4.5 5.0 5.5	2.5 3.5 3.5 4.0 4.5 5.0	2.5 3.0 3.5 4.0 4.5	2.0 2.5 2.5 3.0 3.5 4.0	2.0 2.5 2.5 3.0 3.5 4.0	2.0 2.5 2.5 3.0 3.5 4.0

able 9.2	7 Passenger-Car and Basic Free			Vs (E _R) on	Uniform	Upgrade	s, Multila	ne Highw	ays,	
	and basic free	way begi	licitis			E_R				
Grade (%)	Length (mi)	Percentage of RVs								
		2	4	5	6	8	10	15	20	2
≤2	All	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.
>2-3	> 0.00 - 0.50 > 0.50	1.2 3.0	1.2 1.5	1.2 1.5	1.2 1.5	1.2 1.5	1.2 1.5	1.2 1.2	1.2 1.2	1. 1.
> 3-4	> 0.00 - 0.25 > 0.25 - 0.50 > 0.50	1.2 2.5 3.0	1.2 2.5 2.5	1.2 2.0 2.5	1.2 2.0 2.5	1.2 2.0 2.0	1.2 2.0 2.0	1.2 1.5 2.0	1.2 1.5 1.5	1. 1. 1.
> 4-5	> 0.00 - 0.25 > 0.25 - 0.50 > 0.50	2.5 4.0 4.5	2.0 3.0 3.5	2.0 3.0 3.0	2.0 3.0 3.0	1.5 2.5 3.0	1.5 2.5 2.5	1.5 2.0 2.5	1.5 2.0 2.0	1. 2. 2.
> 5	> 0.00 - 0.25 > 0.25 - 0.50 > 0.50	4.0 6.0 6.0	3.0 4.0 4.5	2.5 4.0 4.0	2.5 3.5 4.5	2.5 3.0 3.5	2.0 3.0 3.0	2.0 2.5 3.0	2.0 2.5 2.5	1. 2. 2.

			LOS					
	Free-Flow Speed	Criteria	A	B	С	D	Ε	
	60 mi/h	Maximum density (pc/mi/ln)	11	18	26	35	40	
		Average speed (mi/h)	60.0	60.0	59.4	56.7	55.0	
		Maximum volume- to-capacity ratio (v/c)	0.30	0.49	0.70	0.90	1.0	
Table		Maximum service flow rate (pc/h/ln)	660	1080	1550	1980	2200	
	55 mi/h	Maximum density (pc/mi/ln)	11	18	26	35	41	
9.33		Average speed (mi/h Maximum v/c	55.0 0.29	55.0 0.47	54.9 0.68	52.9 0.88	51.2 1.0	
LOS		Maximum service flow rate (pc/h/ln)	600	990	1430	1850	2100	
Criteria of	50 mi/h	Maximum density (pc/mi/ln)	11	18	26	35	43	
Multilane		Average speed (mi/h)	50.0	50.0	50.0	48.9	47.5	
Highways	~	Maximum v/c Maximum service flow rate (pc/h/ln)	0.28 550	0.45 900	0.65 1300	0.86 1710	1.0 2000	
	45 mi/h	Maximum density (pc/mi/ln)	11	18	26	35	45	
		Average speed (mi/h)	45.0	45.0	45.0	44.4	42.2	
		Maximum v/c Maximum service flow rate (pc/h/ln)	0.26 480	0.43 810	0.62 1170	0.82 1550	1.0 1900	

