Chapter 6: Alternating Current Bridges

Dr. Maen Ishtaiwi
Dr. Muna HajjYahya

Physics Department
An-Najah National University
m.ishtaiwi@najah.edu

Electrical Instrumentation

March 23, 2019

Contents

(1) AC Bridge Circuit

(2) Similar-Angle Bridge

(3) Maxwell Bridge

1. AC Bridge Circuit

- AC bridges are used to measure inductance and capacitance.
- All AC bridges circuits are based on the Wheatstone bridges.

AC Bridge Circuit

Example 1

The impedance of the AC bridge are given as shown in the Figure. Determine the value of the unknown arm.

Example 2

Given the $A C$ bridge of the Figure in balance, find the components of the unknown arm Z_{x}

2. Similar-Angle Bridge

- The Similar-Angle Bridge is used to measure the impedance of a capacitive circuit.
- The bridge is sometimes called the capacitance comparison bridge of the series resistance capacitance bridge.

Similar-Angle Bridge

- The Similar-Angle Bridge is not dependent on either the magnitude or the frequency of the applied voltage.
- The unknown resistance and capacitance obtained are referred to as the equivalent-series resistance and the equivalent-series capacitance.

Example 3

A similar angle bridge is used to measure a capacitive impedance at a frequency of 2 kHz . The bridge constants at balance are $C_{3}=100 \mu \mathrm{~F}, R_{1}=$ $10 \mathrm{k} \Omega, R_{2}=50 \mathrm{k} \Omega, R_{3}=100 \mathrm{k} \Omega$.
Find the equivalent-series circuit of the unknown impedance.

3. Maxwell Bridge

- It is possible to determine an unknown inductance with capacitance standard.

Example 4

A Maxwell bridge is used to measure an inductive impedance. The bridge constants at balance are $C_{1}=0.01 \mu \mathrm{~F}, R_{1}=470 \mathrm{k} \Omega, R_{2}=5.1 \mathrm{k} \Omega, R_{3}=$ $100 \mathrm{k} \Omega$.
Find the series-equivalent resistance and inductance.

