Chapter 5: Direct Current Bridges

Dr. Maen Ishtaiwi Dr. Muna HajjYahya

Physics Department An-Najah National University *m.ishtaiwi@najah.edu*

Electrical Instrumentation

March 23, 2019

Contents

1 The Wheatstone Bridge

- 2 General solution of Wheatstone Bridge
- 3 Slightly Unbalanced Wheatstone Bridge
- 4 Kelvin Bridge
- 5 Bridge-Controlled Circuits
- 6 Applications on DC Bridges Murray Loop

1. The Wheatstone Bridge

Determine the value of the unknown resistor, R_x in the circuit of the Figure assuming a null exists (current through the galvanometer is zero).

2. General solution of Wheatstone Bridge

First: find V_{Th}

General solution of Wheatstone Bridge

Second: find R_{Th}

$$I_G = \frac{V_{Th}}{R_{Th} + R_G} \tag{1}$$

Calculate the current through the galvanometer in the circuit.

3. Slightly Unbalanced Wheatstone Bridge

Use the approximation given in the last section to calculate the current through the galvanometer in the circuit. The galvanometer resistance R_g = 125 Ω

4. Kelvin Bridge

- The kelvin bridge is a modified version of the Wheatstone bridge.
- The purpose of the modification is to eliminate the effects of contact and lead resistance when measuring unknown low resistor.
- Resistors in the range 1 Ω to approximately 1 $\mu\Omega$

If, in the Figure, the ratio of R_a to R_b is 1000, R_1 is 5 Ω , and $R_2 = 2R_1$. Find the value of R_x

5. Bridge-Controlled Circuits

- When a bridge is used as an error detector in a control circuit, the potential difference at the output of the bridge is called an **error signal**.
- Passive circuit elements such as strain gauges, temperature-sensitive resistor (thermistors), or light-sensitive resistors (photoresistors) produce no output voltage.
- However, when they are used as one arm of a Wheatstone bridge, a change in their sensitive parameter (heat, light, pressure) produces a change in their resistance.
- This causes the bridge to be unbalanced. thereby producing an **output** voltage or an error signal.

Resistor R_v in Figure (a) is temperature-sensitive, with the relation between its resistance and temperature as shown in Figure (b).

- At what temperature the bridge is balanced.
- 2 The amplitude of the error signal at 60 $^{\circ}$.

6. Applications on DC Bridges - Murray Loop

The Murry loop test of Figure consists of two conductors of the same material and the same cross-sectional area. Both cables are connected 5280 m from the test setup at the cable terminal. The bridge is balanced, when R_1 is 100 Ω and R_2 is 300 Ω . Find the distance from the ground fault to the test set.

