

6.1 Bituminous materials

TRANSPORTATION SYSTEM ENGINEERING 1 . 10601360

Bituminous materials

- Highway pavements are constructed of either asphaltic concrete or Portland cement concrete and ultimately rest on native soil.
- **Bituminous materials** are used widely all over the world in highway construction
 - These hydrocarbons have adhesive properties.
 - They are found in natural deposits or are obtained as a product of the distillation of crude petroleum as other organic materials.
 - The bituminous materials used in highway construction are either <u>asphalts</u> or <u>tars</u>.

TRANSPORTATION SYSTEM ENGINEERING 1, 10601360

Bituminous materials

- <u>Tars</u> are resides from the destructive distillation of organic substance such as coal.
 - Tars are not nowadays used extensively as binders for highway pavements.
- Asphaltic materials are obtained from
 - Seeps or pools of natural deposits or
 - as a product of the distillation of crude petroleum.

TRANSPORTATION SYSTEM ENGINEERING 1, 10601360

3

Bituminous materials

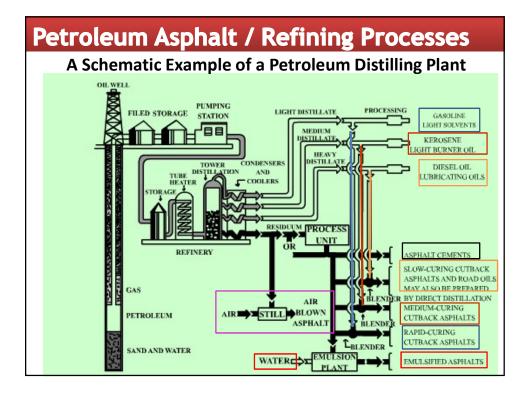
- Sources of Asphalt:
 - 1. Natural deposits
 - » It occur as either native asphalt or rock asphalt.
 - » The largest deposit of native asphalt is known to have existed in Iraq several thousand years ago.
 - » The largest natural deposit of bitumen in the world is the Pitch Lake of southwest Trinidad
 - a. Native asphalt:
 - It was at one time used extensively as binders in highway construction.
 - b. Rock asphalt:
 - It is a natural deposit of sandstone or limestone rocks filled with asphalt.

TRANSPORTATION SYSTEM ENGINEERING 1, 10601360

Bituminous materials

2. Petroleum Asphalt

- » The asphaltic materials obtained from the distillation of petroleum are in the form of different types of asphalts including:
 - Asphalt cements, slow-curing liquid asphalts, medium-curing liquid asphalts, rapid-curing liquid asphalts and asphalt emulsions.
- » The quantity of asphalt obtained from crude petroleum is dependent on the American Petroleum Institute (API) gravity of the petroleum.
- » Crude petroleum with Low API gravity has large quantities of asphalt


TRANSPORTATION SYSTEM ENGINEERING 1 . 10601360

5

Petroleum Asphalt / Refining Processes

- It can be divided into two main groups
 - Fractional distillation
 - Destructive distillation (cracking)
- 1. <u>Fractional distillation</u> processes involve the separation of the different materials in the crude petroleum without significant changes in the chemical composition of each material.
 - It removes the different volatile materials in the crude oil at successively higher temperatures until the petroleum asphalt is obtained as residue.
 - » Steam or a vacuum is used to gradually increase the temperature.

TRANSPORTATION SYSTEM ENGINEERING 1, 10601360

Petroleum Asphalt / Refining Processes

- **2.** <u>Destructive distillation.</u> Cracking processes are used when larger amounts of the light fractions of materials (such as motor fuels) are required.
 - Intense heat and high pressures are applied to produce chemical changes in the material.
 - The asphalt obtained from cracking is not used widely in paving,
 - because it is more susceptible to weather changes than that produced from fractional distillation.

TRANSPORTATION SYSTEM ENGINEERING 1, 10601360

- It is necessary to describe the different bituminous binders and identify the type of construction for which each is used.
- Bituminous binders can be classified into:
 - Asphalt cement,
 - Asphalt cutbacks,
 - Emulsified asphalt.
- Blown asphalt and road tars are also other types of bituminous material that now are not used commonly in highway construction.

TRANSPORTATION SYSTEM ENGINEERING 1 . 10601360

Ĉ

Types and Uses of Bituminous Binders

1. Asphalt cements

- » These are obtained after separation of lubricating oils.
- » They are <u>semisolid hydrocarbons</u> with certain physiochemical characteristics that make them good cementing agents
- » They are very viscous
- » When used as a binder for aggregates in pavement construction, it is necessary to <u>heat</u> both the aggregates and the asphalt cement prior to mixing the two materials

TRANSPORTATION SYSTEM ENGINEERING 1, 10601360

1. Asphalt cements

- » The design of asphalt cement is dependent on its penetration and viscosity.
 - Both of give an indication of the <u>consistency</u> of the material at a given temperature.
- » The penetration is the distance in 0.1mm that a standard needle will penetrate a given sample under specific conditions of loading, time, and temperature.

The softest grade used for highway pavement construction has a penetration value of 200 to 300

Penetration Test for Bituminous Materials (Asphaltic Cement)

TRANSPORTATION SYSTEM ENGINEERING 1, 10601360

Types and Uses of Bituminous Binders

1. Asphalt cements Table 4.1 Typical Uses of Asphalt **Asphalt Cements** Typical Uses of Asphalt Viscosity Graded-Original Viscosity Graded-Residue Penetration Graded Type Of Construction Asphalt-Aggregate Mixtures Asphalt Concrete and Hot Laid Plant Mix **Pavement Base and Surfaces** Highways x x x x x x x x x x $x \quad x \quad x$ Airports $x \quad x \quad x$ x x x x Parking Areas $x \quad x \quad x$ Driveways x Curbs X X x x x X **Industrial Floors** x x x x x x Blocks x x x x Dam Facings x x x x Canal and Reservoir Linings x x 12

2. Asphalt Cutbacks

» They are used mainly in cold-laid plant mixes, road mixes (mixed-in-place), and as surface treatments.

A) Slow-Curing Asphalts (SC)

- » It can be obtained directly as slow-curing straight run asphalts through the distillation of crude petroleum, or "cutting back" asphalt cement with a heavy distillate such as diesel oil.
- » They have <u>lower viscosities</u> than asphalt cement and are very slow to harden.

TRANSPORTATION SYSTEM ENGINEERING 1 . 10601360

13

Types and Uses of Bituminous Binders

2. Asphalt Cutbacks

A) Slow-Curing Asphalts (SC)

- » Slow-curing asphalts usually are designated as SC-70, SC-250, SC-800, or SC-3000,
 - where the numbers relate to the approximate kinematic viscosity in centistokes at 60C (140F).

Saybolt Viscosity Test (Petroleum Products at Specified Temperatures between 70° and 210° F)

2. Asphalt Cutbacks

B) Medium-Curing Cutback Asphalts (MC)

- » These asphalts are produced by fluxing, or cutting back, the residual asphalt with light fuel oil or kerosene.
- » The term medium refers to the medium volatility (تطایر) of the kerosene-type diluter used.
- » Medium-curing asphalts harden faster than slowcuring liquid asphalts
- » It can be used for the <u>construction of pavements</u> bases, surfaces, and surface treatments

TRANSPORTATION SYSTEM ENGINEERING 1, 10601360

15

Types and Uses of Bituminous Binders

2. Asphalt Cutbacks

C) Rapid-Curing Cutback Asphalts (RC)

- » It is produced by blending asphalt cement with a petroleum distillate that will easily evaporate (Gasoline)
 - to facilitate a quick change from the liquid at time of application to the consistency of the original asphalt cement.

TRANSPORTATION SYSTEM ENGINEERING 1, 10601360

3. Emulsified Asphalts

- » These are produced by breaking asphalt cement, usually of 100-250 penetration range, into minute particles and dispersing them in the water with an emulsifier.
- » In general Asphalt emulsions therefore consist of:
 - asphalt, which make up about 55% to 70% by weight
 - water
 - an <u>emulsifying agent</u>, which in some cases may contain a stabilizer

TRANSPORTATION SYSTEM ENGINEERING 1 . 10601360

17

Types and Uses of Bituminous Binders

3. Emulsified Asphalts

- » These minute particles have like electrical charges and therefore do not coalesce (تكتل).
- » Asphalt emulsions generally are classified as anionic (-), cationic (+), or nonionic(neutral).
- » The anionic and cationic asphalts generally are used in highway maintenance and construction,
 - although it is likely that the nonionics may be used more frequently in the future

TRANSPORTATION SYSTEM ENGINEERING 1, 10601360

3. Emulsified Asphalts

- » Each of these categories is further divided into:
 - rapid-setting (RS),
 - medium-setting (MS),
 - slow-setting (SS).
- » A cationic emulsion is identified by placing the letter "C". Example → CRS-2

TRANSPORTATION SYSTEM ENGINEERING 1, 10601360

19

Types and Uses of Bituminous Binders

3. Emulsified Asphalts

- » Emulsified asphalts are used in <u>cold-laid</u> plant mixes and road mixes (mixed-in- place) for several purposes, including
 - the construction of highway pavement surfaces and bases and in surface treatments.
- » Anionic emulsions (-): more effective in treating aggregates containing electropositive charges (such as limestone)
- » Cationic emulsions (+): more effective with electronegative aggregates (siliceous material).

TRANSPORTATION SYSTEM ENGINEERING 1, 10601360

4. Blown Asphalts

- » Blown asphalt is obtained by <u>blowing air</u> through the semisolid residue obtained during the latter stages of the distillation process.
- » The process involves stopping the regular distillation while the residue is in the liquid form and then transferring it into a tank known as a converter.
- » The material is maintained at a high temperature while air is blown through it. This is continued until the required properties are achieved.

TRANSPORTATION SYSTEM ENGINEERING 1 . 10601360

21

Types and Uses of Bituminous Binders

4. Blown Asphalts

- » Blown asphalts are relatively stiff compared to other types of asphalts
- » It can maintain a firm consistency at the maximum temperature normally experienced when exposed to the environment.
- » Blown asphalt generally is not used as a paving material.
 - However, it is very useful as a roofing material, for automobile undercoating, and as a joint filler for concrete

TRANSPORTATION SYSTEM ENGINEERING 1, 10601360

5. Road Tars

- » Tars are obtained from the destructive distillation (التقطير) of organic materials as coal.
- » Their properties are significantly different from petroleum asphalts.
 - More sensitive to weather conditions than similar grades of asphalts,
 - Set more quickly when exposed to the atmosphere.
- » Tars now are rarely used for highway pavements

TRANSPORTATION SYSTEM ENGINEERING 1 . 10601360