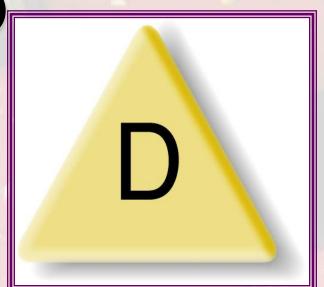
A-PDF Manual Split Demo. Purchase from www.A-PDF.com to remove the watermark

7-Dehydrocholesterol

 $H_{\mathfrak{g}}C_{\lambda}$

$$H_3C$$
 CH_3 CH_3 CH_2 $Cholecalciferol (vitamin D_3)$


 $_{\rm CH_{\odot}}$

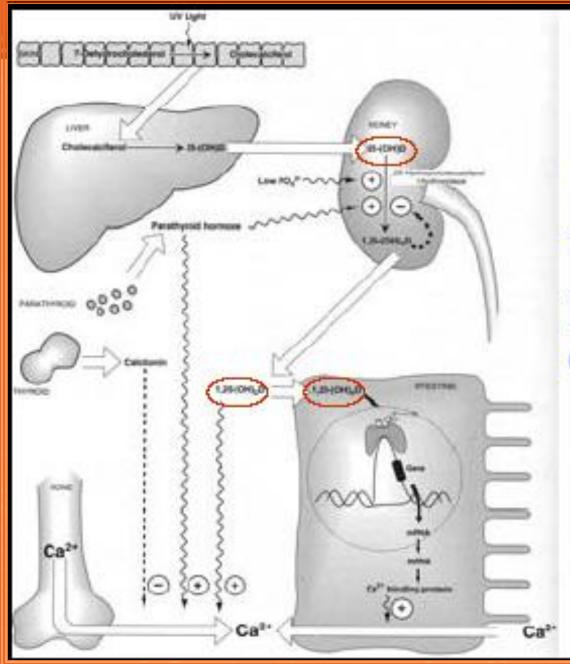
$$H_3C$$
 CH_3
 CH_3

1,25-Dihydroxycholecalciferol (1,25-dihydroxyvitamin D₃)

Vitamin D

- Synthesis
 - Made in the skin from cholesterol
 - Activated in liver and kidney
- Functions
 - Regulates blood calcium levels
- Food sources
 - Fortified milk, fortified cereals
- Deficiency
 - Rickets in children; osteomalacia in adults
- Toxicity

Vitamin D: Functions


- Helps regulate blood calcium levels
- Dietary calcium absorption
- Urinary calcium excretion
- Bone calcium metabolism

H₁C Eroscalciferol. Cholecalc fferol Synthesis ile skin H-C-CH-CH-CH-C 7-Dehydrocholesterol

Vitamin D: Hormone for Calcium and Phosphate regulation

You either need preformed vitamin D's in the diet, or you need to get some sun:

You can synthesize vitamin D from a cholesterol intermediate using sunlight in the skin.

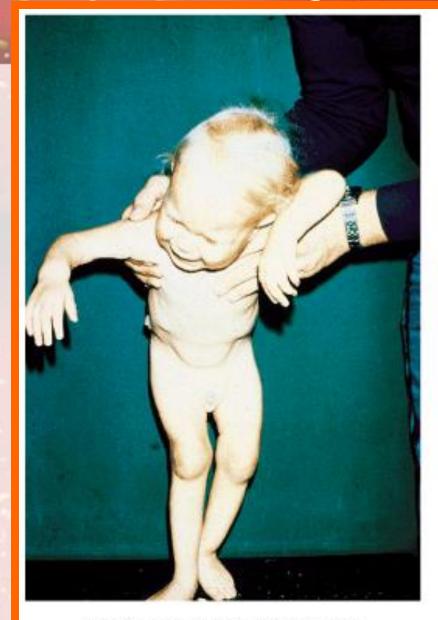
1,25-(OH)2D3 maintains plasma calcium levels

Vitamin D: Types and Sources

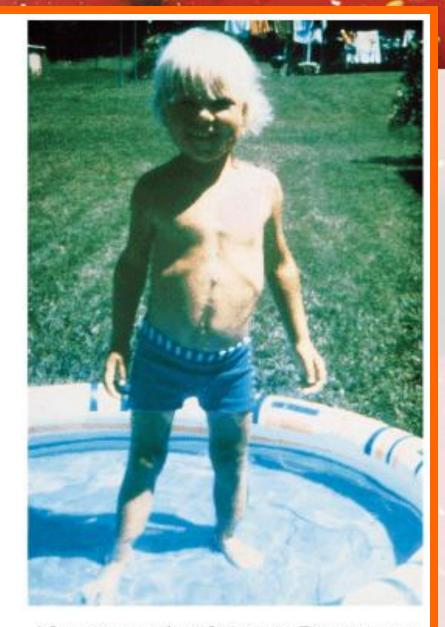
- Dietary sources: animal foods, fortified milk
- Human Synthesis of Vitamin D
- Skin: cholesterol + sunlight
 - "Sunshine Vitamin" UV-B rays
 - Vitamin D₃
 - 5-10 minutes, arms and legs, mid-day sun
- Liver & Kidney for activation
 - 1,25-di-OH-D₃

When Vitamin D goes Bad

- Too Little: (Northern Latitudes) Rickets, Osteoporosis - demineralization of bones.
- Too Much: It's the most toxic of the vitamins
 - Nausea, thirst, loss of appetite, stupor
 - Hypercalcemia: Calcium gets deposited in organs: Arteries and Kidneys.


Vitamin D: Deficiency

Rickets


bone deformities in children

Osteomalacia

- weak bones due to low calcium content
- Vitamin D deficiency
- Calcium deficiency
- multiple pregnancies

Before vitamin D treatment

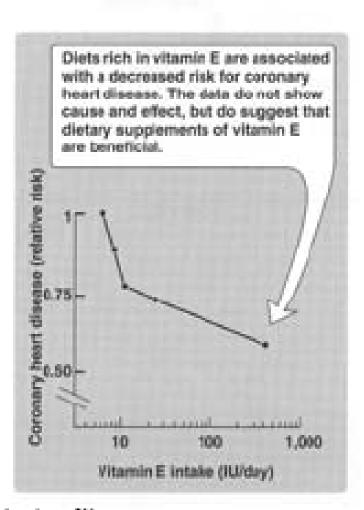
After 14 months of vitamin D treatment

Vitamin D: Toxicity

- 5 times the RDA chronically
 - -calcification of soft tissue
 - toxicity due to excessive vitamin supplementation

Vitamin E (a-tocopherol)

- *A reducing reagent that scavenges oxygen and free radicals
- May prevent damage to fatty acids in membranes


Vitamin E (a-tocopherol)

Vitamin E

- Vitamin E is fat-soluble
- Antioxidant activity
- Vitamin E is found in eggs and vegetable oils.
- Deficiency is very rare in humans; primary symptom is fragile erythrocytes.
- Vitamin E quenches superoxide anions; the resulting radical is then oxidized by Vitamin

H₂C CH₃ CH₃

Vitamin C and E Antioxidants

Vitamin E is an antioxidant

Deficiency is only seen in premature infants - sensitive to oxidants.

Other antioxidant vitamins:

_

Vitamin E

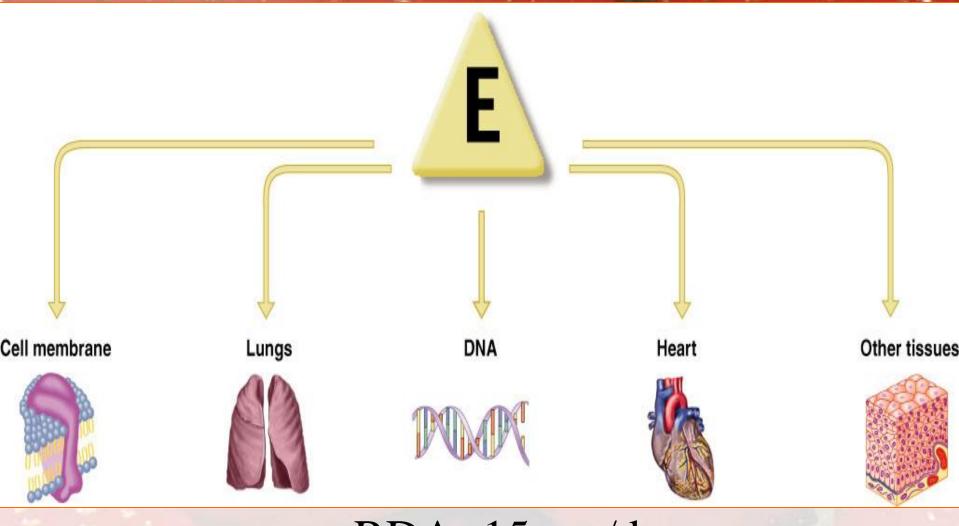
- alpha (E₁), beta (E₂) and gamma(E₃) tocopherol
- sources: plant oils (corn, peanut, wheat germ), green leafy vegetables, meat, eggs
- value resides in the antioxidant properties of vitamin E (may prevent the formation of peroxides)

Alpha Tocoperol

$$H_3C \xrightarrow{CH_3} CH_3$$

$$CH_3 \xrightarrow{CH_3} CH_3$$

ALPHA TOCOPHEROL


Found in a variey of different sources (primarily vegetable fats)

Vitamin E

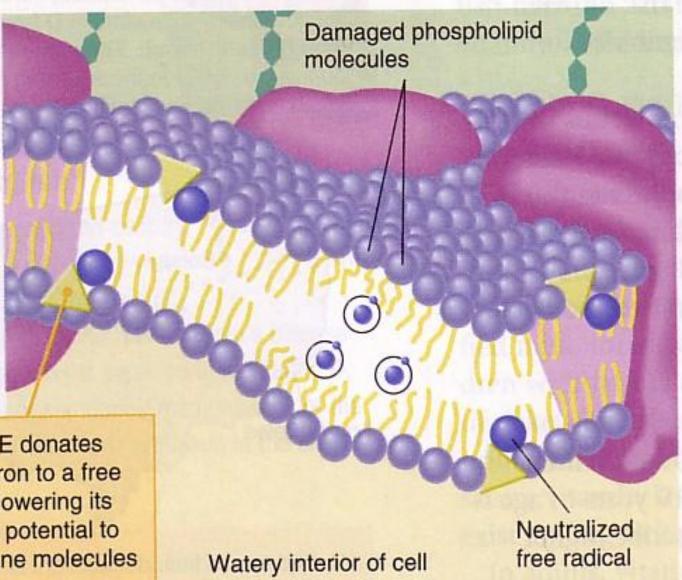
- Functions
 - Antioxidant: stop the chain reaction of free radicals producing more free radicals; protects cell components and membranes from destruction; prevents oxidation of PUFA; reduce risk of heart disease by protecting LDL against oxidation
 - *Food Sources: nuts, seeds, wheat germ, oils, margarine, salad dressing
- Deficiency: rare
- Toxicity: UL=1000 mg/day

Vitamin E

- Estimated requirements: 5 mg/day + 0.6 mg/day of unstaurated fat
- Biological function antioxidant for fatty acids
 - Acts like vitamin C; prevents lipid peroxidation and/or damage to cells by lipid hydroperoxides

RDA=15 mg/day

Key



Vitamin E

Neutralized free radical

> Vitamin E donates an electron to a free radical, lowering its damage potential to membrane molecules

Uses for vitamin E

- hemolytic anemia in premature infants, unresponsive to B₁₂, Fe and folic acid
- macrocytic megaloblastic anemia seen in children with severe protein-calorie malnutrition

Vitamin K

- Vitamin K (phylloquinone) is fat-soluble
- Vitamin K is a blood-clotting cofactor
- ❖It undergoes oxidation and then reduction during the formation of active prothrombin, a blood protein required for clot formation.
- Vitamin K is found in green plant leaves; deficiency is very rare.

Blood Clotting: Vitamin K

- Needed for modifications of blood clotting factors.
- Made by Bacteria in intestine and absorbed with lipids.
- Deficiency:
 - Occurs with long antibiotic treatment and in infants.
- Too much: Anemia toxic to red cell membrane.

Vitamin K (phylloquinone)

- *Required for synthesis of <u>blood coagulation</u> proteins
- A coenzyme for mammalian carboxylases that convert glutamate to g-carboxyglutamate residues
- Calcium binds to the g-carboxyGlu residues of these coagulation proteins which adhere to platelet surfaces
- ❖ Vitamin K analogs (used as competitive inhibitors to prevent regeneration of dihydrovitamin K) are given to individuals who suffer excessive blood clotting

(a) Structure of vitamin K

(b) Vit K-dependent carboxylation

Glutamate residue

Vitamin K-dependent carboxylase

$$CO_2$$
 H^{\oplus}

$$\begin{array}{c|c}
O \\
\parallel \\
CH - C \\
CH_2
\\
CH
\end{array}$$

$$\begin{array}{c|c}
CH \\
COO^{\bigcirc}
\end{array}$$

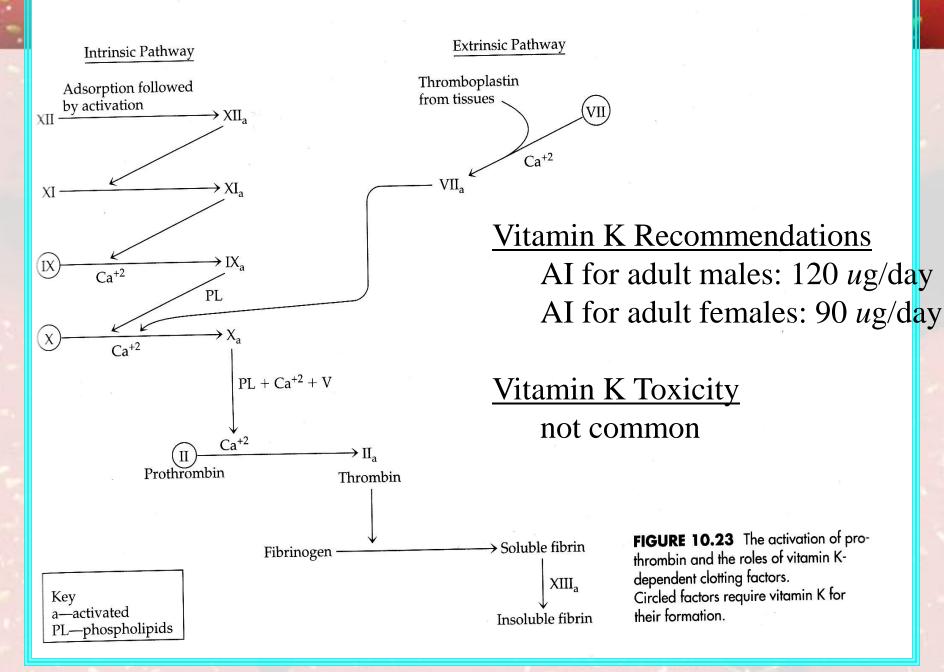
γ-Carboxyglutamate residue

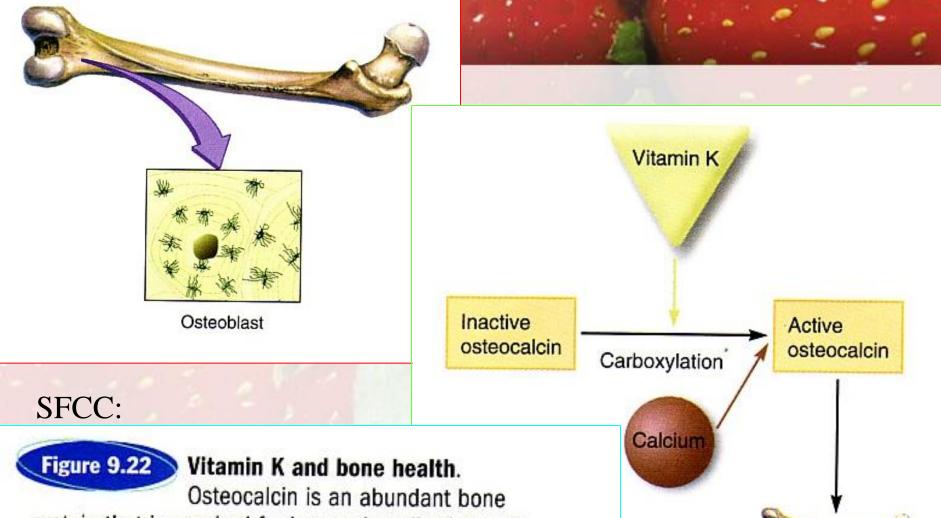
vitamin K_2 is another important qunione. This vitamin is essential to the biosynthesis of prothrombin, a clotting agent, that takes place in the liver.

$$\begin{array}{c}
O \\
CH_3 \\
\hline
O \\
Vitamin K_2
\end{array}$$

The natural vitamins of the K family have for the most part been replaced by synthetic preparations in food supplements. Menandione, an analog with vitamin K activity has a hydrogen in the place of the isoprene tail. Menandione can be prepared from 2-methyl naphthalene via a chromic acid oxidation under mild conditions.

This Reaction is fair game for the Final!

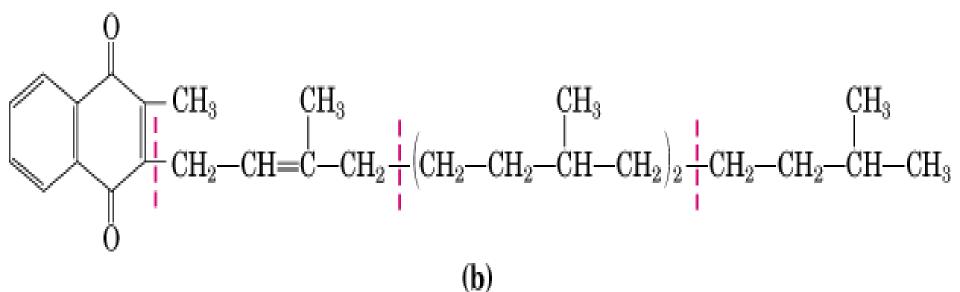

Vitamin K


- Warfarin (coumadin), with a similar structure, is used to prevent excessive blood clotting.
- ❖ By inhibiting epoxide reductase in the liver

Vitamin K₁: a blood-clotting cofactor (phylloquinone)

Vitamin K

- *K for "koagulation" or "coagulation" or "clotting"
- Functions
 - Blood clotting
 - Formation of bone
- ❖ Bacteria in GI tract synthesize vitamin K
- Food sources
 - Green vegetables, liver, egg yolks
- *Deficiency: rare; injection for newborn babies
- Interferes with anticoagulant medications



protein that is required for bone mineralization and maturation. Vitamin K helps in the carboxylation of osteocalcin, greatly enhancing its calcium binding properties.

Healthy bone mineralization and maturation

Isoprenoids

- Vitamins E and K are isoprenoid derivatives
- Similarly, ubiquinone (also called coenzymeQ) is an isoprenoid.
- Recall where ubiquinone is located, and the role of Vitamin E ...

Vitamin K₁: a blood-clotting cofactor (phylloquinone) (a) Vitamin E: an antioxidant

(b)

Vitamin K₁: a blood-clotting cofactor (phylloquinone)

$$\begin{array}{c} CH_{3} & CH_{3} & CH_{3} \\ CH_{2}-CH=C-CH_{2} + (CH_{2}-CH_{2}-CH-CH_{2})_{2} + CH_{2}-CH_{2}-CH-CH_{3} \\ \end{array}$$

(e)

Warfarin: a blood anticoagulant

(d)

Ubiquinone: a mitochondrial electron carrier (coenzyme Q) (n = 4-8)

(e)

Plastoquinone: a chloroplast electron carrier (n = 4-8)

(f)

Dolichol: a sugar carrier (n = 9-22)

$$\begin{array}{c} \operatorname{CH_3} & \operatorname{CH_3} & \operatorname{CH_3} \\ \operatorname{HO} - \operatorname{CH_2} - \operatorname{CH} - \operatorname{CH_2} + (\operatorname{CH_2} - \operatorname{CH} - \operatorname{C} - \operatorname{CH_2})_n + \operatorname{CH_2} - \operatorname{CH} - \operatorname{C} - \operatorname{CH_3} \end{array}$$

Metal Cofactors

- Why transition metals?
 - Good electrophiles
 - Can generally interact with more than one ligand to orient substrate in active site.
 - Since transition metals have multiple valence states, they can function in oxidation-reduction reactions.

Metal Cofactors

Enzyme—
$$Zn^{2+}$$
 + H_2O Enzyme— Zn^{2+} OH + H^+

Enzyme— Zn^{2+} OH + OH

H⁺

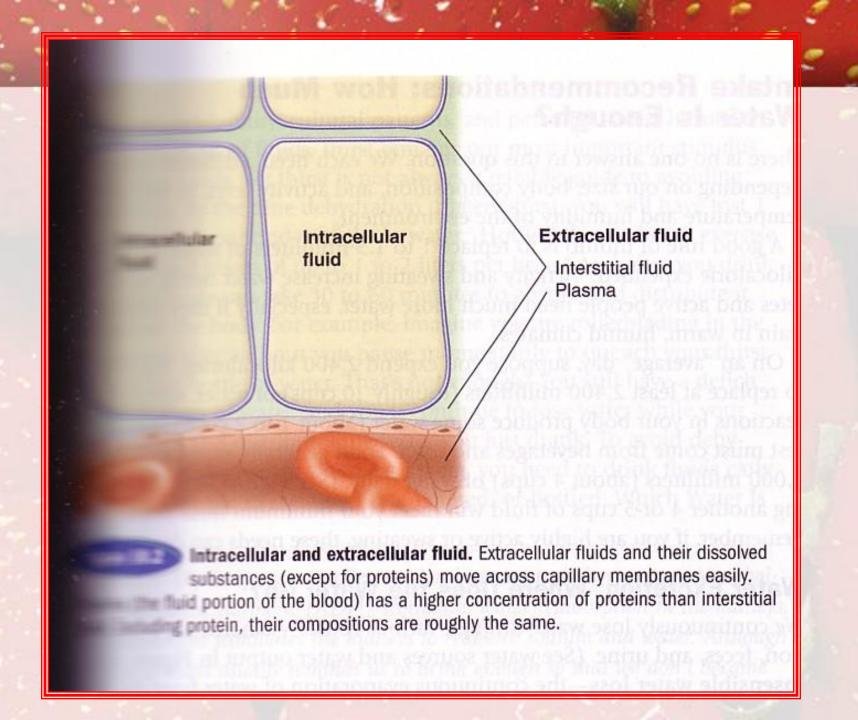
Many Enzymes Require Inorganic Cations

- Enzymes requiring metal ions for full activity:
 - (1) Metal-activated enzymes have an absolute requirement or are stimulated by metal ions (examples: K+, Ca²⁺, Mg²⁺)
 - (2) Metalloenzymes contain firmly bound metal ions at the enzyme active sites (examples: iron, zinc, copper, cobalt)

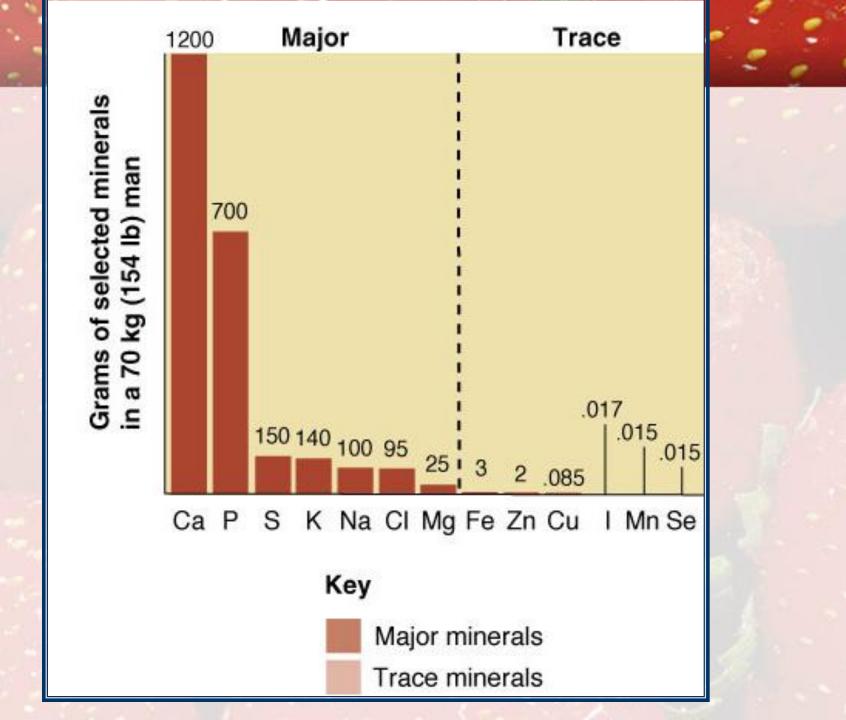
Inorganic Cofactors

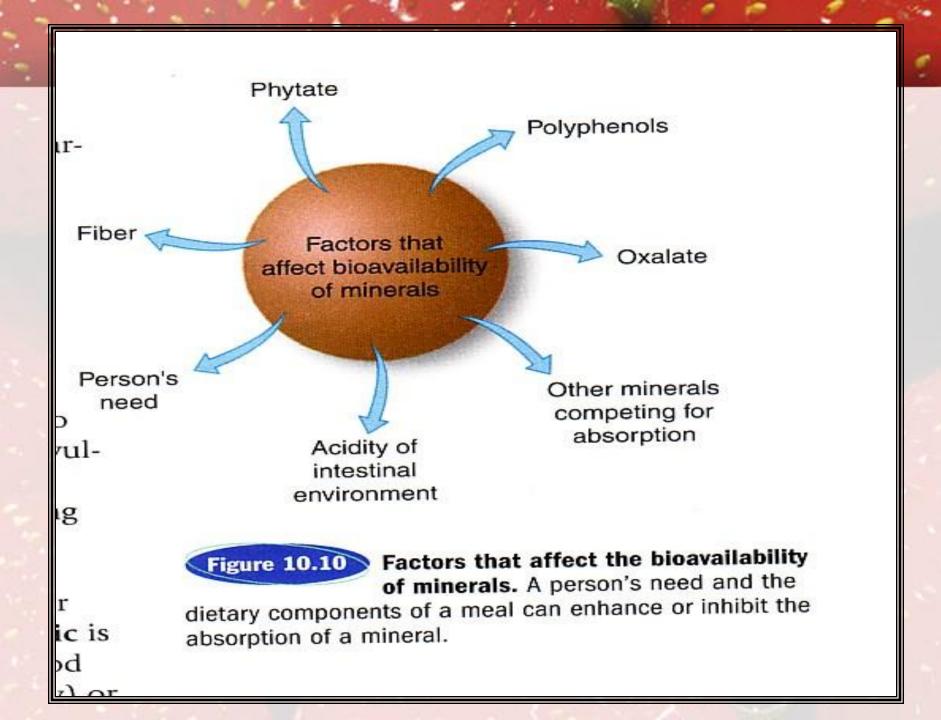
Inorganic Cofactor	<u>Function</u>	Enzyme Class	
Magnesium Calcium Potassium	substrate binding substrate activation structure stabilization	kinases hydrolases pyruvate kinase	
Iron Zinc	oxygen binding, electron transport substrate binding, structure stability	cytochromes DNA binding	
Copper	dioxygen activation	oxidases	
Manganese	dioxygen activation	oxidases	
Cobalt	group transfer	mutases (with B12)	
Selenium	peroxidation	peroxidases	

Water: Crucial to Life


- Functions of water
 - -Moves nutrients and wastes
 - -Lubricates joints
 - -Participates in chemical reactions
 - -Helps maintain body temperature

Water: Crucial to Life


- Water excretion
 - lungs, skin, feces, urine
 - low humidity, high temp, fever, high pro & Na
- Water balance
- Other factors affecting fluid balance
 - alcohol, caffeine, diuretic medications
- Dehydration
- Water intoxication


Electrolytes and Water

- The main positively charged ions (cations) are sodium and potassium
- The main negatively charged ions (anions) are chloride and phosphate
- Sodium main cation in extracellular fluid
- > Potassium main cation in intracellular fluid
- Na-K pumps: maintain balance of Na and K; all cell membranes have;

Electrolytes	Extracellular* fluid concentration	Intracellular** fluid concentration
	meq/L	meq/L
Cations		
Sodium (Na+)	140	13
Potassium (K+)	5	140
Calcium (Ca ²⁺)	5	Minimal
Magnesium (Mg ²⁺)	2	7
Total	151	160
Anions		
Chloride (CI ⁻)	104	3
Bicarbonate (HCO ₃ ⁻)	24	10
Sulfate (SO ₄ 2-)	1	
Phosphate (HPO ₄ ²⁻)	2	107
Proteins	15	40
Organic anions	5	
Total	151	160

Minerals

- A naturally occurring, homogeneous, inorganic substance required by humans in amts of 100 mg/day or more
 - -functions
 - -high and low serum levels
 - -absorption
 - --excretion
 - -deficiency
 - --toxicity

Enjoy your food and your good health!

