

Intersection Design

- An intersection is an area, shared by two or more roads, which has the main function of providing for the change of route directions
- Intersections tend to have a high potential for crashes
 - Drivers have to make decisions concerning which of the alternative routes they wish to take
- The overall traffic flow on any highway depends on the performance of the intersections
 - since intersections usually operate at lower capacities

Types of At-Grade Intersections

a. Rotaries:

- Large diameters that are usually greater than 300ft
 - Allowing speeds exceeding 30 mi/h, with a minimum horizontal deflection of the path

b. Neighborhood traffic circles:

- Their diameters are much smaller than rotaries and therefore allow much lower speeds.
 - At intersection of local streets as a means of traffic calming and/or as an aesthetic device
 - Using pavement markings, not raised islands
 - Stop control or no control
 - Parking might be allowed within circulatory roadway

19

20

Types of At-Grade Intersections

- These characteristics include:
 - Yield control at each approach
 - Separation of conflicting traffic movements by pavement markings or raised islands
 - Geometric characteristics of the central island that typically allow travel speeds of less than 30 mi/h
 - Parking not usually allowed within the circulating roadway

Types of At-Grade Intersections

- c. Roundabouts: Roundabouts can be further categorized into six classes based on the size and environment in which they are located.
 - Mini roundabouts
 - Urban compact roundabouts
 - Urban single-lane roundabouts
 - Urban double-lane roundabouts
 - Rural single-lane roundabouts
 - Rural double-lane roundabouts

Types of At-Grade Intersections

c. Roundabouts:

Design Element	Mini- Roundabout	Urban Compact	Urban Single-Lane	Urban Double-Lane	Rural Single-Lane	Rural Double-Lane
Recommended maximum entry design speed	25 km/h (15 mi/h)	25 km/h (15 mi/h)	35 km/h (20 mi/h)	40 km/h (25 mi/h)	40 km/h (25 mi/h)	50 km/h (30 mi/h)
Maximum number of entering lanes per approach	1	1	1	2	1	2
Typical inscribed circle diameter ¹	13 to 25 m (45 ft to 80 ft)	25 to 30 m (80 to 100 ft)	30 to 40 m (100 to 130 ft)	45 to 55 m (150 to 180 ft)	35 to 40 m (115 to 130 ft)	55 to 60 m (180 to 200 ft)
Splitter island treatment	Raised if poss- ible, crosswalk cut if raised	Raised, with crosswalk cut	Raised, with crosswalk cut	Raised, with crosswalk cut	Raised and extended, with crosswalk cut	Raised and extended, with crosswalk cut
Typical daily service volumes on four-leg roundabout (veh/day)	10,000	15,000	20,000	Refer to the source	20,000	Refer to the source

<section-header><list-item><list-item><list-item>

3 Curves of At-Grade Intersections

- Main influencing factors:
 - Angle of turn
 - Turning speed [R = u² / 127 (e + f)]
 - Design vehicle
 - Traffic volume
- If turning speed is assumed < 15 mi/h (25 km/hr)
 - the curves for the pavement edges are designed to conform to at least the minimum turning path of the design vehicle.
- If turning speed is assumed > 15 mi/h
 - minimum turning radius using the design speed should be considered

35

36

③ Curves of At-Grade Intersections

- The three types of design commonly used when turning speeds are 15 mi/h or less are:
 - The simple curve (an arc of a circular curve),
 - The simple curve with taper, and
 - The three-centered compound curve (three simple curves joined together and turning in the same direction).

Cu	irves d	of At-(Grade	Inte	rsec	tions	
	Table 7.2 M Si	inimum Edge of P mple Curves and S	avement Design for imple Curves with 1	Turns at Inter aper	sections:		
	Angle			Simple C	urve Radius wi	th Taper	
	of Turn (degree)	Design Vehicle	Simple Curve Radius (ft)	Radius (ft)	Offset (ft)	Taper L:T	
	30	Р	60	3-21	<u></u>		
		SU	100	3-0	-		
		WB-40	150	3 <u>—</u> 3		0.00	
		WB-50	200		-		
		WB-62	360	220	3.0	15:1	
		WB-67	380	220	3.0	15:1	
		WB-100T	260	125	3.0	15:1	
		WB-109D	475	260	3.5	20:1	
	45	Р	50	_	_	-	
		SU	75		-		
		WB-40	120		-	100	
		WB-50	175	120	2.0	15:1	
		WB-62	230	145	4.0	15:1	
		WB-67	250	145	4.5	15:1	
		WB-100T	200	115	2.5	15:1	
		WB-109D	-	200	4.5	20:1	
	60	Р	40	-		_	
		SU	60	8 -		_	
		WB-40	90	3	1000	122	
		WB-50	150	120	3.0	15.1	
		WB-62	170	140	4.0	15:1	
		WB-67	200	140	4.5	15:1	
		WB-100T	150	95	25	15.1	
		WB-100D	1.50	180	15	20.1	
		10 D-109D		100	4.5	249.1	

	Three-Centered	Curves	in for furns at	Intersections:		
		3-Centered (Compound	3-Centere	d Compound	
Angle of Turn (degree)	Design Vehicle	Curve Radii (ft)	Symmetric Offset (ft)	Curve Radii (ft)	Asymmetr Offset (ft	ric)
30	Р		1.12	SS	500	
	SU	22%				
	WB-40	100		-	1	
	WB-50	100			1.00	
	WB-62	and the second	0.00		and the second	
	WB-67	460-175-460	4.0	300-175-550	2.0-4.5	
	WB-100T	220 -80-220	4.5	200-80-300	2.5-5.0	The cimple curve with ter
	WB-109D	550-250-550	5.0	250-200-650	1.5-7.0	The simple curve with tap
45	Р	<u>12.12</u>		5 <u>-</u> 2	5000	closely approximates the
	SU				-	closely approximates the
	WB-40	2220	225		100	centered curve in the field
	WB-50	200-100-200	3.0	10000	- \	centered carve in the new
	WB-62	460-240-460	2.0	120-140-500	3.0-8.5	
	WB-67	460-175-460	4.0	250-125-600	1.0-6.0	
	WB-100T	250- 80-250	4.5	200- 80-300	2.5-5.5	
	WB-109D	550-200-550	5.0	200-170-650	1.5-7.0	
60	Р	~		3 — 3	0.000	
	SU					
	WB-40	12.00	225	-	0.000	
	WB-50	200- 75-200	5.5	200- 75-275	2.0-7.0	
	WB-62	400-100-400	15.0	110-100-220	10.0-12.5	5
	WB-67	400-100-400	8.0	250-125-600	1.0-6.0	
	WB-100T	250- 80-250	4.5	200- 80-300	2.0-5.5	
	WB-109D	650-150-650	5.5	200-140-600	15-80	

 Given: Speed <15mi/hr Design vehicle: WB-100T Angle of turn: 45 Our design alternatives are: From Table 7.2: Simple Curve with Radius= 200 ft From Table 7.2: Simple Curve Radius with Taper % Radius: 115 ft % Offset: 2.5 ft % Taper15:1 From Table 7.3: Three-Centered Curves % Curve Radii (ft): (200- 80-200) % Symmetric offset: 4.5 ft % Curve Radii (ft): (200- 80-300) % Symmetric offset: 2.5-5.5 	Example						
 Given: Speed <15mi/hr Design vehicle: WB-100T Angle of turn: 45 Our design alternatives are: From Table 7.2: Simple Curve with Radius= 200 ft # P 30 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		Table 7.2	Minimum Edge of P Simple Curves and S	avement Design fo simple Curves with	or Turns at Inte i Taper	rsections:	
 Given: Speed <15mi/hr Design vehicle: WB-100T Angle of turn: 45 Our design alternatives are: From Table 7.2: Simple Curve with Radius = 200 ft From Table 7.2: Simple Curve Radius with Taper Radius: 115 ft Offset: 2.5 ft Offset: 2.5 ft Symmetric offset: 4.5 ft Curve Radii (ft): (250- 80-250) Symmetric offset: 4.5 ft Curve Radii (ft): (200- 80-300) Symmetric offset: 2.5-5.5 Firechange 		Angle			Simple	Curve Radius wit	h Taper
Image: Speed <15mi/hr	• Given	of Turn (degree)	Design Vehicle	Simple Curve Radius (fi)	Radius (ft)	Offset (ft)	Taper 1.:T
- Speed (15) - Super (15) - Design vehicle: WB-100T	Spood <15mi/br	30	Р	60	-	-	-
- Design vehicle: WB-100T - Angle of turn: 45 • Our design alternatives are: • From Table 7.2: Simple Curve with Radius= 200 ft * From Table 7.2: Simple Curve Radius with Taper * Radius: 115 ft * Offset: 2.5 ft * Taper15:1 • From Table 7.3: Three-Centered Curves * Curve Radii (ft): (250- 80-250) * Symmetric offset: 4.5 ft OR * Curve Radii (ft): (200- 80-300) * Symmetric offsets: 2.5-5.5 interchange			SU WE-10	100	-		
- Angle of turn: 45 • Our design alternatives are: • From Table 7.2: Simple Curve with Radius= 200 ft • From Table 7.2: Simple Curve Radius with Taper * Radius: 115 ft * Offset: 2.5 ft * Taper15:1 • From Table 7.3: Three-Centered Curves * Curve Radii (ft): (250- 80-250) * Symmetric offset: 4.5 ft OR * Curve Radii (ft): (200- 80-300) * Symmetric offsets: 2.5-5.5 • Curve Radii (ft): (200- 80-300) * Symmetric offsets: 2.5-5.5 • Curve Radii (ft): (200- 80-300) * Symmetric offsets: 2.5-5.5 • Maid $\frac{1}{100}$ $\frac{1}{1$	 Design vehicle: WB-100T 		WB-50	200	-	-	-
• Our design alternatives are: $WE + 007$ 260 123 30 121 • From Table 7.2: Simple Curve with Radius= 200 ft 45 91 93 $ -$ • From Table 7.2: Simple Curve Radius with Taper • Radius: 115 ft $WE + 007$ 260 123 35 921 • Muedo 130 $ -$ • From Table 7.2: Simple Curve Radius with Taper $Radius: 115$ ft $ -$	 Angle of turn: 45 		WB-62 WB-67	360	220	3.0	15:1
• Our design alternatives are: wB-box 45 260 3.5 201 • From Table 7.2: Simple Curve with Radius= 200 ft 45 p 30 -1 -1 -1 • From Table 7.2: Simple Curve Radius with Taper $N Radius: 115 ft N Radius: 115 ft 3Centered Correst Correst Radius 3Centered Correst Correst Radius Correst Radius$			WB-100T	260	125	3.0	15:1
 From Table 7.2: Simple Curve with Radius= 200 ft From Table 7.2: Simple Curve Radius with Taper	 Our design alternatives are: 		WB-109D	475	260	3.5	20:1
With the set of the se	 From Table 7 2: Simple Curve with Radius= 200 f 	ft 45	P	50	-		-
 From Table 7.2: Simple Curve Radius with Taper Radius: 115 ft	rioni lable 7.2. Simple Curve with Radius= 200	i c	WB-40	120	-		
• From Table 7.2: Simple Curve Radius with Taper 3-Centered Compound 3-Centered Compound * Radius: 115 ft * Offset: 2.5 ft $angle different Design angle different Design an$	- Franz Table 7.2. Granda Curra Dadius with Taraa	Table 7	.3 Minimum Edge Three-Centered	of Pavement Desig Curves	gn for Turns a	Intersections:	
\gg Radius: 115 ft \gg Offset: 2.5 ft $> Taper15:1$ $Aagleof Tam(dgree)CarreDeign(H)CarreRadiiCarreRadi$	• From Table 7.2: Simple Curve Rudius with Tuper			3-Centered	Compound	3-Centere	d Compound
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	» Radius: 115 ft	Ang	le	Curve		Curve	
* Offset: 2.5 ft * Taper15:1 • From Table 7.3: Three-Centered Curves * Curve Radii (ft): (250- 80-250) * Symmetric offset: 4.5 ft OR * Curve Radii (ft): (200- 80-300) * Symmetric offsets: 2.5-5.5 interchange * M_{B-0} * M_{B-		of Tu (dear	rn Design ea) Vahicla	Radii	Symmetric Officet (ft)	Radii	Asymmetric Offret (ft)
 Taper15:1 From Table 7.3: Three-Centered Curves <i>WB-0</i> <li< td=""><td>» Offset: 2.5 ft</td><td>20</td><td>D</td><td>09</td><td>Offset (fi)</td><td>00</td><td>0)/361 ()/)</td></li<>	» Offset: 2.5 ft	20	D	09	Offset (fi)	00	0)/361 ()/)
• From Table 7.3: Three-Centered Curves • Curve Radii (ft): (250- 80-250) • Symmetric offset: 4.5 ft OR • Curve Radii (ft): (200- 80-300) • Curve Radii (ft): (200- 80-300) • Symmetric offsets: 2.5-5.5 • Curve Radii (ft): (200- 80-300) • Curve Radii (ft	» Taner15·1 🖌	- 30	SU	-			-
 From Table 7.3: Three-Centered Curves WB-07 WB-07<			WB-40		-	_	
 From Table 7.3: Three-Centered Curves » Curve Radii (ft): (250- 80-250) » Symmetric offset: 4.5 ft OR » Curve Radii (ft):(200- 80-300) » Suppression (ft):(200- 80-300) » Asymmetric offsets: 2.5-5.5 interchange wise quarters of the second seco			WB-62				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	 From Table 7.3: Three-Centered Curves 		WB-67	460-175-460	4.0	300-175-550	2.0-4.5
 Curve Radii (ft): (250-80-250) Symmetric offset: 4.5 ft OR Curve Radii (ft): (200-80-300) Curve Radii (ft): (200-80-300) Asymmetric offsets: 2.5-5.5 P Interchange 			WB-1001 WB-109D	550-250-550	4.5	250-200-650	1.5-7.0
» Symmetric offset: 4.5 ft OR superior -	» Curve Radii (ft): (250- 80-250)	45	р	_	_	_	_
with and provide the off sets: 2.5-5.5 with an off sets: 2.5-5.5	» Symmetric offset: 1 5 ft	10	SU	-	-	-	-
OR WB-2 402-20-40 2.0 120-40-590 10.45 >> Curve Radii (ft):(200-80-300) WB-1000 250-155/0 106-10 106-10 >> Asymmetric offsets: 2.5-5.5 60 P - - - - interchange WB-2 900-75200 55 200-75275 20-70 106-10	" Symmetric Ojjsel. 4.5 jl		WB-40 WB-50	200-100-200	3.0	-	
wrbs/ w	OR	\leftarrow	WB-62	460-240-460	2.0	120-140-500	3.0-8.5
$ \begin{array}{c} & \text{ Sc } U = V \\ \text{ we read in (ft):}(200-80-300) \\ & \text{ we read in (ft):}(2$	Come Deal!! (ft) (200, 00, 200)		WB-07	460-175-460	4.0	250-125-600	1.0-6.0
» Asymmetric offsets: 2.5-5.5 "0	» Curve Radii (ft):(200- 80-300)		WB-109D	550-200-550	5.0	200-200-300	1.5-7.0
interchange	» Asymmetric offsets: 2 5-5 5	60	Р		-	-	-
interchange WB-0 200 75-200 5.5 200 75-275 2.0.7.0 WB-62 400-100-400 15.0 110-100-220 10.0.12.5	<i>" "</i> (3)/11/10/10/03/30/13. 2.3 3.3		SU	-	-	-	-
WB-62 400-100-400 15.0 110-100-220 10.0-12.5	interchange	4	WB-40 WB-50	200- 75-200	5.5	200- 75-275	2.0-7.0
WD (7 100 100 100 00 00 100 100 100 100 100		2	WB-62	400-100-400	15.0	110-100-220	10.0-12.5

③ Curves of At-Grade Intersections • The minimum design for passenger cars is used only at locations where the absolute minimum turns will occur, such as the intersections of local roads with major highways where only occasional turns are made at intersections of two minor highways carrying low volumes • It is recommended when conditions permit that the minimum design for the SU truck be used.

④ Channelization of At-Grade Intersections

- Channelization: the separation of conflicting traffic movements into definite paths of travel by traffic islands or pavement markings to facilitate the safe and orderly movements of both vehicles and pedestrians
- Traffic island: the area between traffic lanes that is used to regulate the movement of vehicles or to serve as a pedestrian refuge (Vehicular traffic is excluded from the island area)

(4) Channelization of At-Grade Intersections

- A properly channelized intersection will result in
 - Increased capacity
 - Enhanced safety
 - Increased driver confidence
- Over-channelization should be avoided since this frequently creates confusion for the motorist and may even result in a lower operating level

(4) Channelization of At-Grade Intersections

- Channelization objectives:
 - 1. Direct the paths of vehicles so that not more than two paths cross at any one point
 - 2. Control the merging, diverging, or crossing angle of vehicles
 - 3. Decrease vehicle wander and the area of conflict among vehicles by reducing the amount of paved area
 - 4. Provide a clear indication of the proper path for different movements
 - 5. Give priority to the predominant movements
 - 6. Provide pedestrian refuge
 - 7. Provide separate storage lanes for turning vehicles, thereby creating space away from the path of through vehicles for turning vehicles to wait

47

(4) Channelization of At-Grade Intersections

- Channelization objectives:
 - 8. Provide space for traffic control devices so that they can be readily seen
 - 9. Control prohibited turns
 - **10**. Separate different traffic movements at signalized intersections with multiple-phase signals
 - 11. Restrict the speeds of vehicles

④ Channelization of At-Grade Intersections

Based on their physical characteristics, they are classified into:

1. Curbed Traffic Islands: classified into mountable or barrier

- Used mainly in urban highways where approach speed is not excessively high and pedestrian volume is relatively high
- Because of glare, curbed islands may be difficult to see at night

④ Channelization of At-Grade Intersections

1. Traffic Islands Formed by Pavement Markings

- Flushed island
- Markers include paint, thermoplastic striping, and raised retroreflective markers
- Preferred over curbed islands at intersections where approach speeds are relatively high, pedestrian traffic is low, and signals or sign mountings are not located on the island

(5) Minimum Pavement Widths of Turning Roadways

- In cases where vehicle speeds are expected to be greater than 15 mi/h, it is necessary to increase the pavement widths of the turning roadways
- Three classifications of pavement widths:
 - Case I: one-lane, one-way operation with no provision for passing a stalled vehicle
 - Case II: one-lane, one-way operation with provision for passing a stalled vehicle
 - Case III: two-lane operation, either one-way or two-way

_	_	
7	7	

Table 7.4	- /	.4	giv	/es	va	lue	es f	or	th	e r	eq	uir	ed	ра	vei	me	ent	wi	idt
idole ili	Der	ived Pa	ivemen	t Width	is for Tu	urning R	loadway	s for E	Differen	t Desig	in Vehic r	cles							
Radius on	2.						Case I No Prov	One-L	ane, Or or Passi.	ne-Way ng a Sta	Operati lled Veh	on vicle							
pavement R (ft)	P	SU	BUS- 40	BUS- 45	CITY- BUS	S- BUS36	S- BUS40	A- BUS	WB- 40	WB- 50	WB- 62	WB- 65	WB- 67D	WB- 100T	WB- 109D	MH	P/T	P/B	MH/E
50	13	18	22	23	21	19	18	22	23	32	43	49	29	37	-	18	19	18	21
75	13	17	19	20	19	17	17	19	20	25	29	32	23	27	43	17	17	17	19
100	13	16	18	19	18	16	16	18	18	22	25	27	21	24	34	16	16	16	17
150	12	15	17	17	17	16	15	17	17	19	21	22	19	21	27	15	16	15	16
200	12	15	16	17	16	15	15	16	16	18	20	20	18	19	23	15	15	15	16
300	12	15	16	16	16	15	15	16	15	17	18	18	17	17	20	15	15	15	15
400	12	15	16	16	16	15	15	16	15	17	18	18	17	17	20	15	15	15	15
500	12	15	16	16	16	15	15	16	15	17	18	18	17	17	20	15	15	15	15
Tangent	12	14	15	15	15	14	14	15	14	15	15	15	15	15	15	14	14	14	14
			CA	ASE I	I On	e–La	ne On	e-Wa	ay Op	eratio	on Pro	vision	for P	assing	Stalle	ed Vel	hicle		
50	20	30	39	42	38	31	32	40	39	56	79	93	50	67	_	30	30	28	36
75	19	27	32	35	32	27	28	34	32	42	52	56	39	47	79	27	27	26	30
100	18	25	30	31	29	25	26	30	29	36	43	46	34	40	60	25	25	24	28
150	18	23	27	28	27	23	24	27	26	31	35	37	29	33	45	23	23	23	25
200	17	22	25	26	25	23	23	26	24	28	32	33	27	30	39	22	22	22	24
300	17	22	24	24	24	22	22	24	23	26	28	29	25	21	33	22	22	21	23
400	17	21	20	24	23	21	21	23	22	25	20	21	24	25	30	21	21	21	22
Tangant	17	20	20	23	25	20	20	23	20	24	20	20	25	21	20	20	20	20	20
rangent	1)	20	di k	21	21	20	20	21	20	-24	21	24	21	-241	21	20	20	20	20
					C	ASE I	II Tw	∕o−L	ane (Opera	tion-	One	or Tw	o Wag	y				
50	26	36	45	48	44	37	38	46	45	62	85	99	56	73		36	36	34	42
75	25	33	38	41	38	33	34	40	38	48	58	62	45	53	85	33	33	32	36
100	24	31	36	37	35	31	32	36	35	42	49	52	40	46	66	31	31	30	34
150	24	29	33	34	33	29	30	33	32	37	41	43	35	39	51	29	29	29	31
200	23	28	31	32	31	29	29	32	30	34	38	39	33	36	45	28	28	28	30
300	23	28	30	30	30	28	28	30	29	32	34	35	31	33	39	28	28	27	29
400	23	27	29	30	29	27	27	29	28	31	32	33	30	31	36	27	27	27	28
500	23	27	29	29	29	27	27	29	28	30	31	32	29	31	34	27	27	27	27
	00	36	07	27	27	26	26	27	26	27	27	27	27	27	27	26	26	26	26

	gir marin	a or raven		arning Koa	uways				
			U.,	S. CUSTO	MARY				
Radius on	One- Oj Provi a S	Case I Lane, One peration—l ision for Pa italled Vehi	-Way No assing icle	One- Op Provi a S	Case II Lane, One eration—w sion for Pa talled Veh	-Way vith issing icle	Two-1 Eith	Case III ane Opera er One-Wa Two-Way	ttion ty or
inner edge of pavement				Design	Traffic Co.	nditions			
R(ft)	A	В	С	A	B	С	A	B	C
50 75 100 150 200 300 400 500 Tangent	18 16 15 14 13 13 13 12 12	18 17 16 15 15 15 15 15 14 None	23 20 18 17 16 15 15 15 14 Width	20 19 18 18 17 17 17 17 17 17 17	26 23 22 21 20 20 19 19 18 <i>on Regard</i> : None	30 27 25 23 22 21 21 20 <i>ing Edge</i> 7	31 29 28 26 26 25 25 25 25 24 <i>Treatment</i>	36 33 31 29 28 28 27 27 26 None	4: 3: 3: 3: 2: 2: 2: 2: 2:
Sloping curb		None		8	None	2		None	
Vertical curb: One side Two sides		Add 1 ft Add 2 ft			None Add 1 ft			Add 1 ft Add 2 ft	
Stabilized shoulder, one or both sides	La conc tangen to 12 f	ane width f fitions B& it may be r it where sh 4 ft or wid	for C on educed oulder ler	Deduc mini width	t shoulder mum pave as under (width; ment Case I	Dec should	luct 2 ft wi er is 4 ft o	here r wider

Example 7.1

Example 7.1 Determining the Width of a Turning Roadway at an Intersection

A ramp from an urban expressway with a design speed of 30 mi/h connects with a local road forming a T intersection. An additional lane is provided on the local road to allow vehicles on the ramp to turn right onto the local road without stopping. The turning roadway has a mountable curb on one side and will provide for a one-lane, one-way operation with provision for passing a stalled vehicle. Determine the width of the turning roadway if the predominant vehicles on the ramp are single-unit trucks but give some consideration to semitrailer vehicles. Use 0.08 for the superel-evation.

6Sight Distance at Intersections

- High crash potential can be reduced by providing sight distances that allow drivers to have an unobstructed view of the entire intersection at a distance great enough to permit control of the vehicle
- Two types of sight triangles:
 - 1. Approach sight triangles: It allows for the drivers on both the major roads and minor roads to see approaching intersecting vehicles in sufficient time to avoid a potential collision by reducing the vehicle's speed or by stopping.
 - 2. Departure sight triangles: It allows for the driver of a stopped vehicle on the minor road to enter or cross the major road without conflicting with an approaching vehicle from either direction of the major road

6Sight Distance at Intersections

- A sight obstruction is considered as an object having a minimum height of 4.35 ft (1.33 m) that can be seen by a driver with an eye height of:
 - 3.5 ft (1.00 m) for a passenger car
 - 7.6 ft (2.3 m) for truck
- The lengths of the legs of the sight triangle depends on:
 - Major road speed
 - Minor road speed
 - Type of control

	Control	ents of Sight-Triangle Leg Case A—No Traffic
-	Design Speed (mi/h)	Length of Leg (ft)
	15	70
	20	90
	25	115
	30	140
	35	165
	40	195
	45	220
	50	245
	55	285
	60	325
	65	365
	70	405
	75	445
	80	485

6Sight Distance at Intersections

• Case A: With no control

 Table 7.7
 Suggested Lengths and Adjustments of Sight-Triangle Leg Case A–No Traffic Control

Approac. Grade	h					Desi	ign Sp	eed (m	i/h)					
(%)	15	20	25	30	35	40	45	50	55	60	65	70	75	80
-6	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.2	1.2	1.2	1.2	1.2	1.2	1.2
-5	1.0	1.0	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.2	1.2	1.2	1.2
-4	1.0	1.0	1.0	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
-3 to 3	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
+4	1.0	1.0	1.0	1.0	1.0	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
+5	1.0	1.0	1.0	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
+6	1.0	1.0	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9

Control	ts of Sight-Triangle Leg Case A—No T
Design Speed (mi/h)	Length of Leg (ft)
 15	70
20	90
25	115
30	140
35	165
40	195
45	220
50	245
55	285
60	325
65	365
70 75	405
75	445
 80	465

6Si	ght Dis	tance a	t Inters	ections	3	
• Cas	e C : Wit	h yield c	ontrol or	n the mir	nor road	
$t_g = $	$t_a + (w$	$+ L_a)/($	$0.88v_{\rm minor}$	$d_{\rm ISD} =$	1.47v _{maj}	$r^{t_{g}}$
	Table 7.9 Case C Road	C1—Crossing Maneu Leg and Travel Times	vers from Yield-Cont 5	rolled Approaches—	Length of Minor	
		Minor-Road	d Approach	Travel Time t	g (seconds)	
	Design Speed (mi/h)	Length of Leg ¹ (ft) d b	Travel Time $t_a^{1,2}$ (seconds)	Calculated Value	Design Value ^{3,4}	
	15	75	3.4	6.7	6.7	
	20	100	3.7	6.1	6.5	
	25	130	4.0	6.0	6.5	
	30	160	4.3	5.9	6.5	
	35	195	4.6	6.0	6.5	
	40	235	4.9	6.1	6.5	
	45	275	5.2	6.3	6.5	
	50	320	5.5	6.5	6.5	
	55	370	5.8	6.7	6.7	
	60	420	6.1	6.9	6.9	
	65	470	6.4	7.2	7.2	
	70	530	6.7	7.4	7.4	
	75 80	590 660	7.0 7.3	7.7 7.9	7.7 7.9	102

Т		orthe	sigh	it dista	ance	(d _{ISD})	on t is est	he r imate	ninc ed in ⁻	D r rO a Table 7	ad .1(
	able 7.1	0 Length	of Sigh	nt Triangle I	Leg along	g Major R	oad–Case	C1–Cros	sing Mar	ieuver at	
-		Yield-C	Controll	ed Intersec	tion						
	Major Road Design Speed	Stopping Sight Distance			N	tinor-Rod	ad Design	Speed (n	ni/h)		
	(mi/h)	Yield-C Stopping Sight Distance (ft) 80 115 155 200 250 305	15	20-50	55	60	65	70	75	80	
	15	80	150	145	150	155	160	165	170	175	
	20	115	200	195	200	205	215	220	230	235	
	25	155	250	240	250	255	265	275	285	295	
	30	200	300	290	300	305	320	330	340	350	
	35	250	345	335	345	360	375	385	400	410	
	40	305	395	385	395	410	425	440	455	465	
	45	360	445	430	445	460	480	490	510	525	
	50	425	495	480	495	510	530	545	570	585	
	55	495	545	530	545	560	585	600	625	640	
	60	570	595	575	595	610	640	655	680	700	
	65	645	645	625	645	660	690	710	740	755	
	70	730	690	670	690	715	745	765	795	815	
	10		740	720	740	765	705	705	850	075	
	75	820	140	120	740	100	193	195	000	010	

• Case C: With yield control on the minor road

 It should be noted that these values are for a passenger car as the design vehicle, and approach grades of 3 percent or less

• If actual conditions are different, use the equation.

• Appropriate corrections should be done when the grade is higher than 3 percent using (Table 7.7b)

Solution: Use Eq. 7.6 to determine time (t_a) as the travel time to reach and clear the intersection.

 $t_g = t_a + (w + L_a)/0.88v_{\min}$

 $t_a = 4.6$ sec for passenger vehicles from Table 7.9 w = $(4 \times 11 + 8) = 52$ ft $t_g = 4.6 + (52 + 22)/(0.88 \times 35)$ = 7.0 sec

Use Eq. 7.7 to determine the length of the sight on the major road.

 $d_{\rm ISD} = 1.47 v_{\rm major} t_g$ = 1.47 × 55 × 7.0 = 566 ft

inter**change**

Homework	
• P7-8	
• 7-10	
• 7-13	
• 7-15	
• 7-16	
Interchange Natur Unsuratively were placed with a grant day	108

