

An-Najah National University Faculty Of Engineering And Information Technology Department of Chemical Engineering

Soap and Detergent Manufacturing (10626475)

Mixing and Agitation

Instructor: Majd Shhadi, PhD **Spring 2019**

DEFINITIONS

■ **AGITATION** induced motion, gives a specific flow pattern and provides circulation.

Or it is the **process** to ensure a faster completion of **the mixing process** to reach **homogeneous mixture**.

- MIXING random distribution, into and through one another, of two or more initially separate phases (Various degrees of homogeneity).
- **BLENDING** is a Mixing process of two or more blending components.
- **The Stirring Mechanism** is a rotating arm that is often powered with a drive/motor.
- Different substances will require different levels of mixing, stirring speeds, and elapsed times.

Dr. Majd Shhadi

Purposes of Agitation: Applications

1. Two-phase: Liquid-liquid

- a. Homogenization of miscible liquids (Blending).
- b. Mixing and dispersion of immiscible liquids (Emulsion)

2. Two-phase: Gas-liquid

a. Dispersing a gas through the liquid (Bubble)

3. Two-phase: Solid-liquid

- a. Dispersion of solvable solid (Dissolving)
- b. Suspension of solid particles in liquid (Suspension)

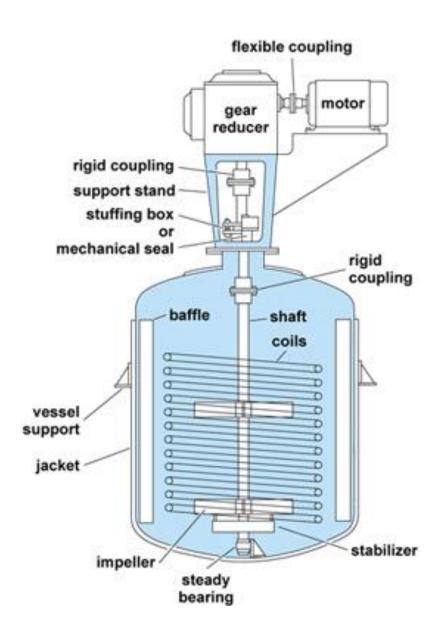
4. Two-phase: Gas-Solid

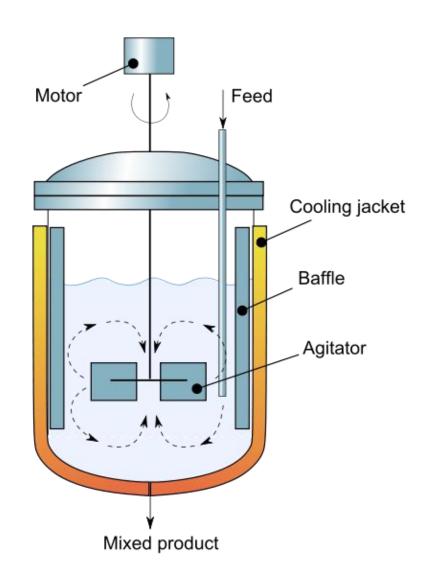
 Gases with granular solids: fluidization, pneumatic Conveying, drying.

Purposes of Agitation: Applications

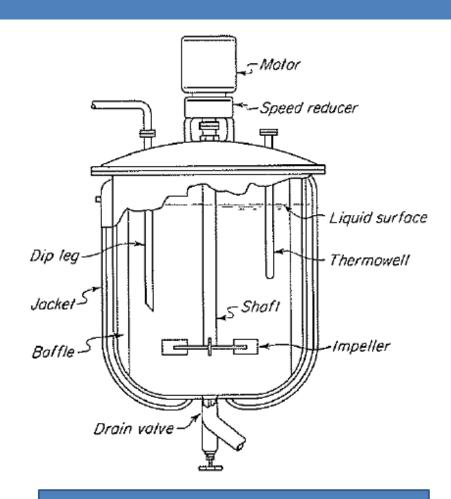
- 5. Three-phase:
 - a) Gas-liquid-liquid (Emulsion)
 - b) Liquid-liquid-solid
- 6. Four-phase:

Gas-liquid-liquid-solid

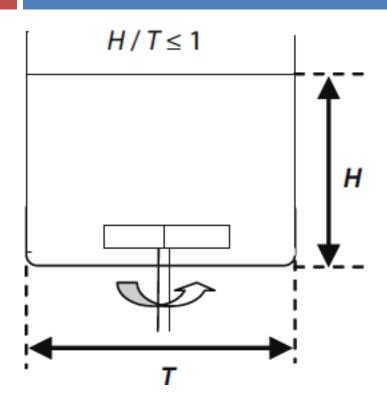

- 7. Solids with solids: mixing of powders.
- 8. Acceleration of chemical reaction and physical transport
- 9. Promoting heat transfer
- 10. Enhancement of mass transfer between dispersed phases.

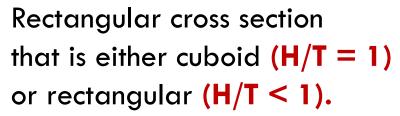

Mechanically Agitated Mixing Equipment

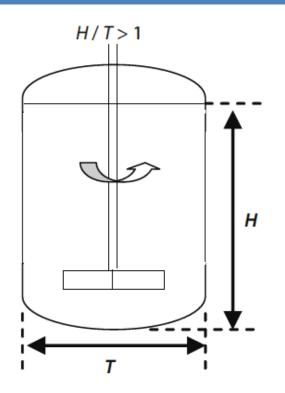
A BASIC STIRRED TANK DESIGN


- □ The internal arrangements depend on the objectives of the operation: whether it is to maintain homogeneity of a reacting mixture or to keep a solid suspended or a gas dispersed or to enhance heat or mass transfer.
- ☐ A set of mixing equipment consists of:
 - > A mixing tank
 - > A driving motor with speed reducer
 - An agitator
 - > Some attached parts.

A BASIC STIRRED TANK DESIGN

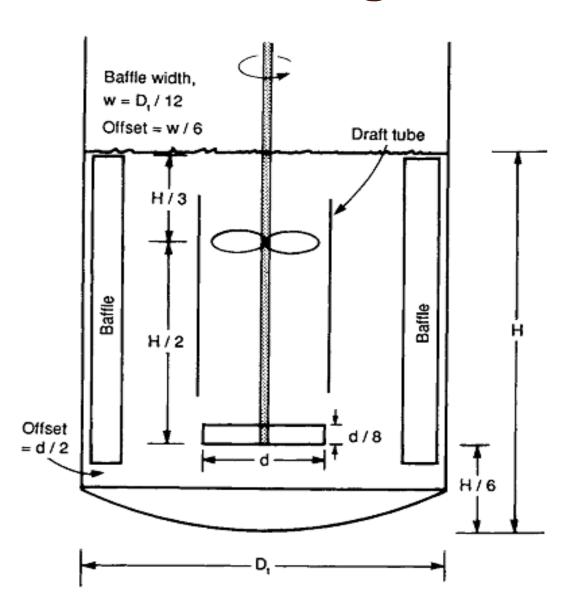


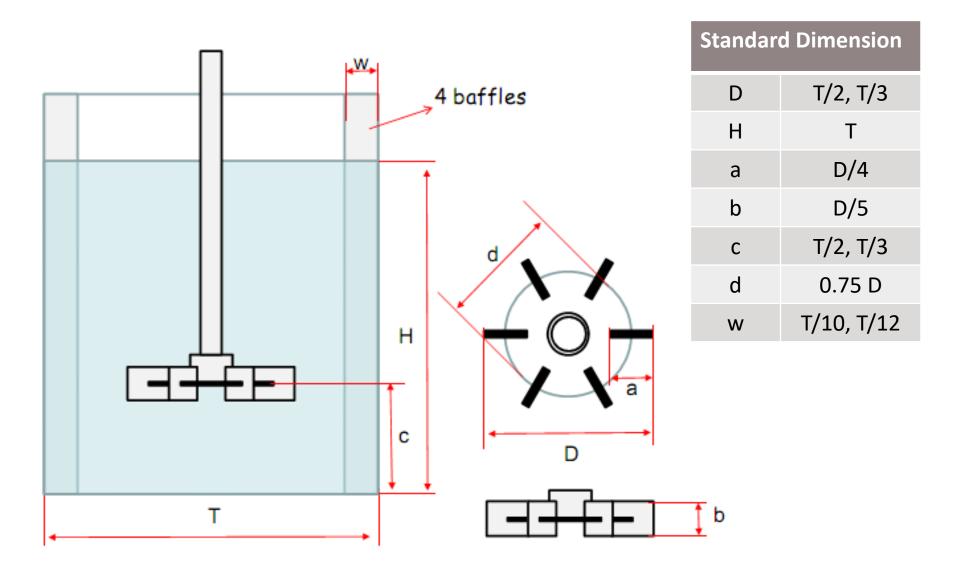

- Cylindrical form, vertical axis,
 closed or open top
- The tank bottom is rounded, not flat.
- □ When a single impeller is to be used, a liquid level equal to the diameter of the tank.
- Is optimum, with the impeller located at the center for an allliquid system.



Typical Agitation process vessel

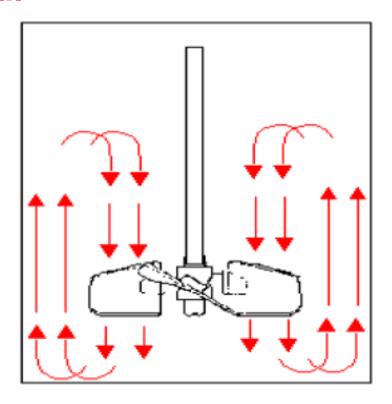
A Basic Stirred Tank Design: The Vessel

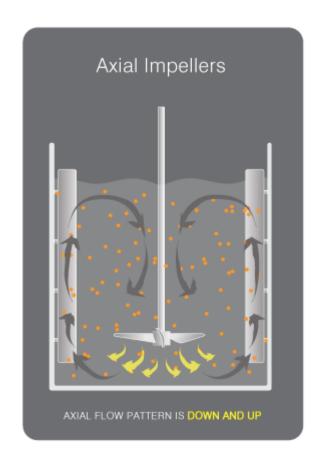



Cylindrical with a liquid height: diameter ratio greater than one (H/T > 1)

A Basic Stirred Tank Design

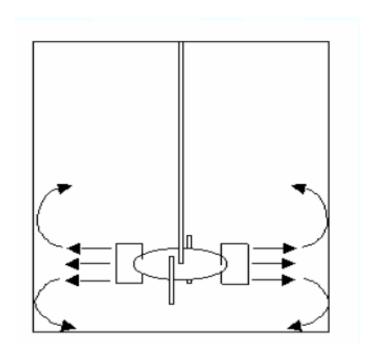
- ☐ Not to scale
- ☐ A lower **radial** impeller and an upper **axial** impeller housed in a draft tube.
- ☐ Four equally spaced **baffles** are standard.

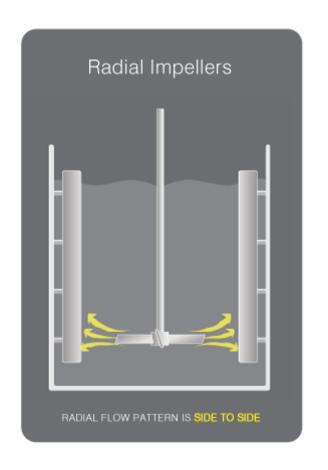



Standard Geometry

IMPELLER TYPES

Axial




Axial (down and up) the liquid is pushed in a downward direction then up

11 Dr. Majd Shhadi

IMPELLER TYPES

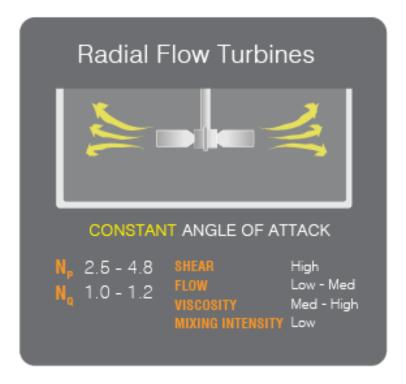
Radial-Flow

Radial (Side to side) the liquid is pushed in towards the wall of the tank

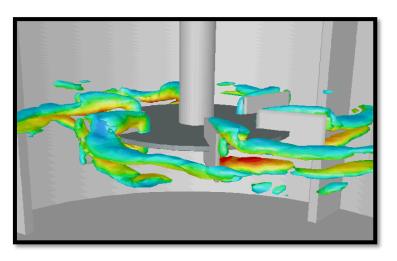
Impeller Types: Radial-Flow

- For low & middle viscosity liquids in dispersion of immiscible liquids.
- Chemical reaction and heat transfer

Types


- Turbines: high speed, wide blade, low flow rate and high head.
- Straight Blades: long vane, low speed and low head, for high viscosity liquids.
- Anchor And Frame: very large diameter and mixing range, very low speed and head. Suitable for high viscosity liquids and capable of preventing the deposit on tank wall.

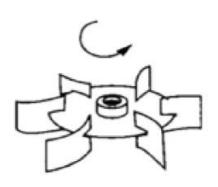
Radial Flow Impellers - Rushton Turbine Impeller

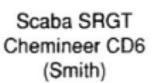

Mixing is achieved with the use of baffles.

Mixing is not as efficient as axial flow mixing.

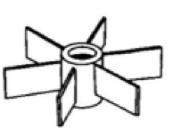
Higher input of energy.

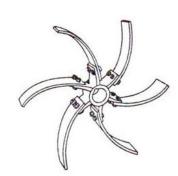
Rushton radial flow Impeller: disc with 6-8 Blades


14 Dr. Majd Shhadi


Radial Flow Impellers

Simple straight-blade turbine (paddle)





Backswept with disk

Anchor And Frame

Open Flat Blade

Curved blade turbine (Backswept open)

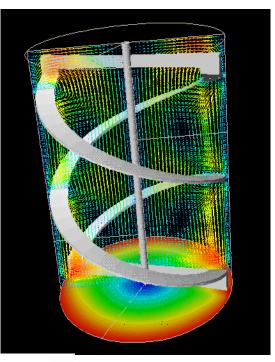
Impeller Types: Axial-Flow

- Suitable for mixing of low viscose liquids
- Particle suspension
- Heat transfer enhance

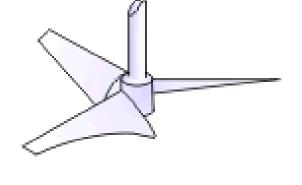
Types:

- Marine Propeller (The three-bladed mixing propeller: small diameter, high speed (up to 1800 rpm), with low viscosity fluids, up to about 4000 cP, large flow rate and low head.
- Helical Ribbon: large diameter and mixing range, low speed, low head. Special design for high viscosity liquid.

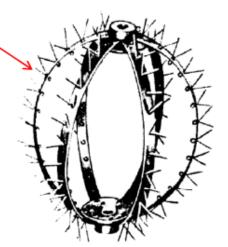
Impeller Types: Axial-Flow



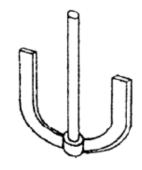
Intermig Impeller-Ekato


Mixed Flow: Both Axial and Radial – Pitched Blade Turbine

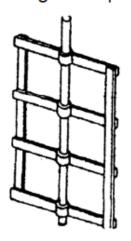
Impeller Types: Axial-Flow


Hydrofoil

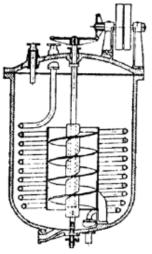
Dr. Majd Shhadi


Agitator types

Cage beater impeller (usually mounted on the same shaft with a standard propeller)



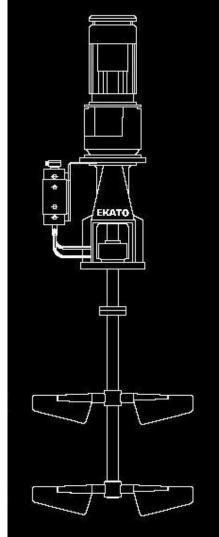
(h)



Sawtooth edges flat plate turbine

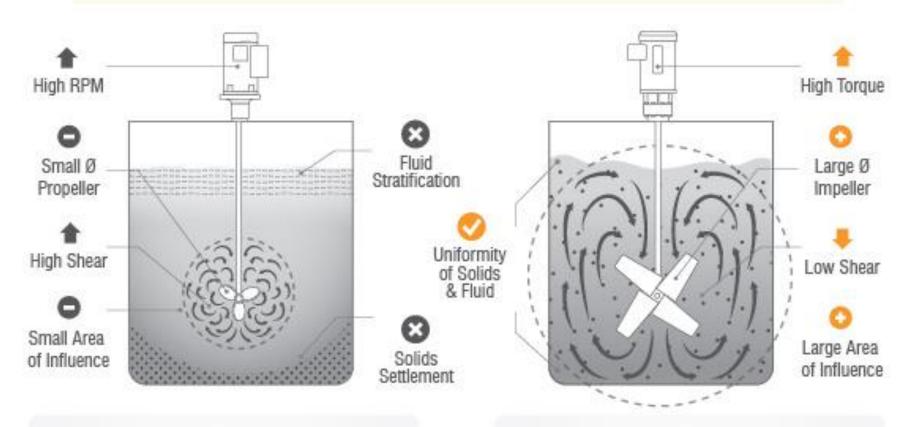
Anchor paddle

Hollow shaft and hollow impeller assembly


shrouded screw impeller and heat exchange coil

Gate paddle

Impeller Types



Impeller Size

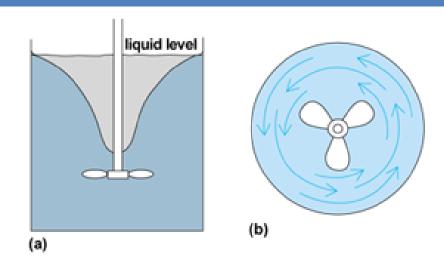
- □ This depends on the kind of impeller and operating conditions described by the Reynolds, Froude, and Power numbers as well as individual characteristics whose effects have been correlated.
- For the popular turbine impeller, the ratio of diameters of impeller and vessel falls in the range, Diameter of impeller to diameter of tank, D/T=0.3-0.6, the lower values at high *rpm*, in gas dispersion.

The Dynamix DIFFERENCE

High Speed, High Shear Mixing VS High Torque, Axial Pumping

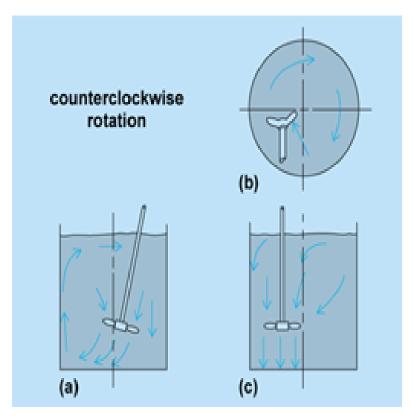
Little / No Product Quality Control

Localized agitation can damage product while failing to address suspension issues

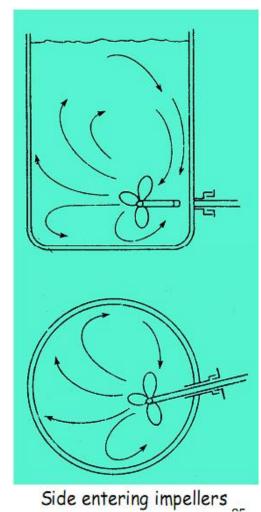

Consistent Product Quality Control

Axial flow pattern achieves uniformity by fully involving the entire mixture

Prevention of Swirling


Prevention of Swirling and vortex formation

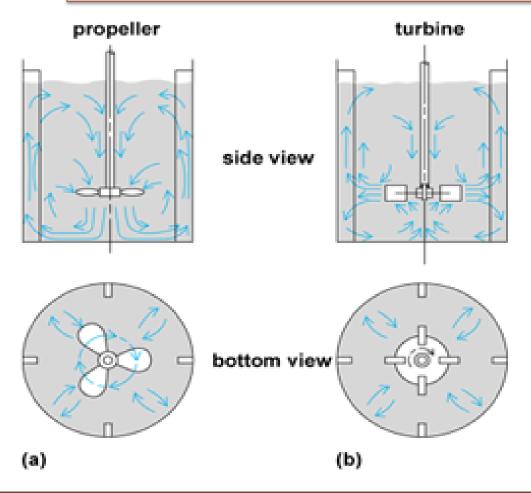
- Off-centered impeller. The impeller can be mounted off center (small tank).
- Side mounted impeller. The agitator may be mounted in the side of the tank with the shaft in a horizontal plane but an angle with a radius (large tank).
- Baffles: Install baffles (large tank with vertical agitators).

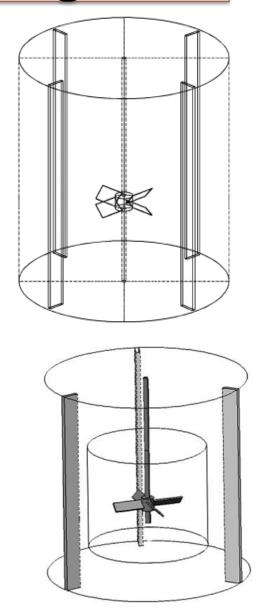


Swirling flow pattern for impeller of any shape, without baffles. (a) Side view. (b) Bottom view

Prevention of Swirling

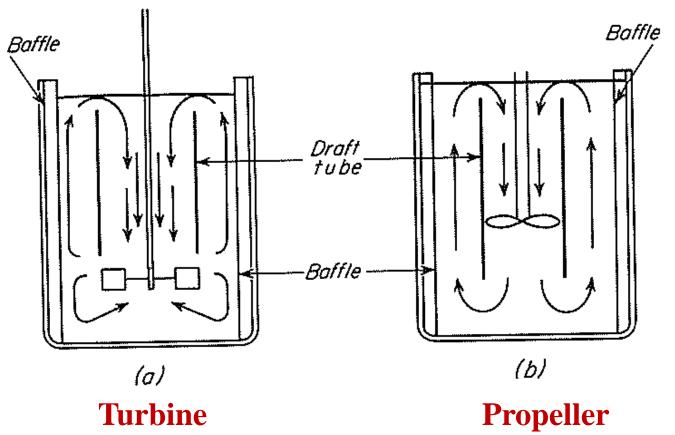
Flow pattern for top-entering, off-center propeller without baffles: (a) front, (b) top, and (c) side views.





24

Prevention of Swirling


Flow patterns with baffles. (a) Flow pattern for propeller with baffles at tank wall. (b) Flow pattern for turbine with baffles at tank wall.

DRAFT TUBES

DRAFT TUBES

- Controls direction and velocity of flow
- Useful when high shear is desired such as emulsions and suspensions

Dr. Majd Shhadi

26

Circulation, Velocities, & Power Consumption

- Volume of fluid circulated by impeller must be sufficient to sweep out entire vessel in reasonable time.
- Velocity of stream leaving impeller must be sufficient to carry current to remotest parts of tank.
- In mixing, also it needs turbulence
 - Results from properly directed currents and large velocity gradients in liquid
- □ Circulation and generation of turbulence both consume energy
 - Large impeller + medium speed = flow
 - Small impeller + high speed = turbulence

Flow Pattern In Mixing Tank

- Flow pattern is related with the geometries of tank, stirrer and baffle, liquid properties and stirrer speed.
- For agitation operation, the useful flows are axial and radial not the tangential.

Impeller Characteristics:

Reynolds Number for tank

Reynolds
$$N_{Re} = \frac{N D^2 \rho}{\mu}$$

$$u = DN$$

Flow Pattern In Mixing Tank

- □ For a fully baffled standard tank with an 6 straight blades turbine, the following flow regimes hold
- 1<Re<10 near the turbine: laminar flow, other zones: almost static.</p>
- □ Re>10: laminar axis flow, flow starts from blade's tips.
- □ 100<Re<10³ transition, around turbine: turbulent flow, other zones: laminar axis flow.</p>
- Re>10³: turbulent in whole tank.

Why Dimensionless Numbers?

- Empirical correlations to estimate the POWER required to rotate a given impeller at a given speed, with respect to other variables in system.
- Measurements of tank and impeller
- Distance of impeller from tank floor
- Liquid depth
- Dimensions of baffles
- Viscosity, density, speed

Flow Rates Pumped by the Impeller

Pumping flow rate Q: flow rate pumped through a "reference" surface of the agitator.

Pumping Number
$$N_Q = \frac{Q}{ND^3}$$

- Where Q is the volumetric flow rate, measured over a fixed control surface (depending on the agitator type)
- \square N is the rotational speed (rps)
- D is the impeller diameter.

Flow Rates Pumped by the Impeller

For turbulent flow, $N_{\rm O}$ is a constant, not a function of Re

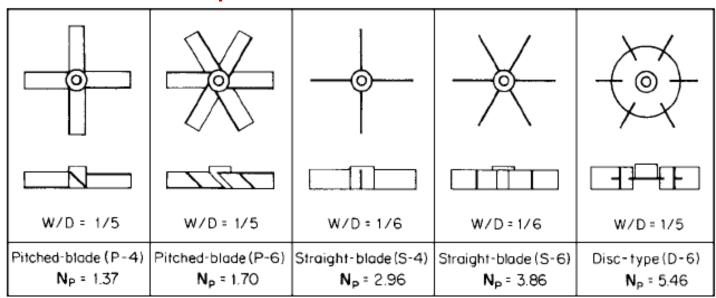
Typical No values:

- \square Standard flat-blade turbine, $N_{\Omega} = 1.3$
- \square Marine propellers, $N_Q = 0.5-0.9$ (dep. on pitch)
- \square 4-blade 45° turbine, $N_Q = 0.5$

Why Dimensionless Numbers?

The power P dissipated divided $\rho N^3 D^5$ corresponds to an important dimensionless parameter of mixers, the Power Number Np:

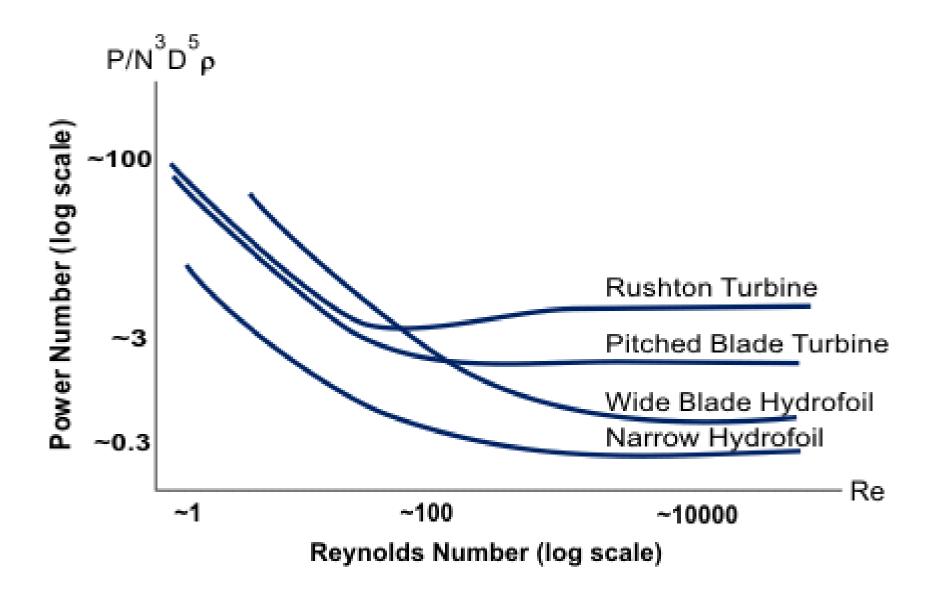
Power Number
$$N_P = \frac{P}{\rho N^3 D^5}$$


- P is the mechanical power dissipated (watts), measured at the tip of the blades,
- N is the rotational speed (rps),
- $f \square$ D is the impeller diameter and f
 ho is the fluid density.

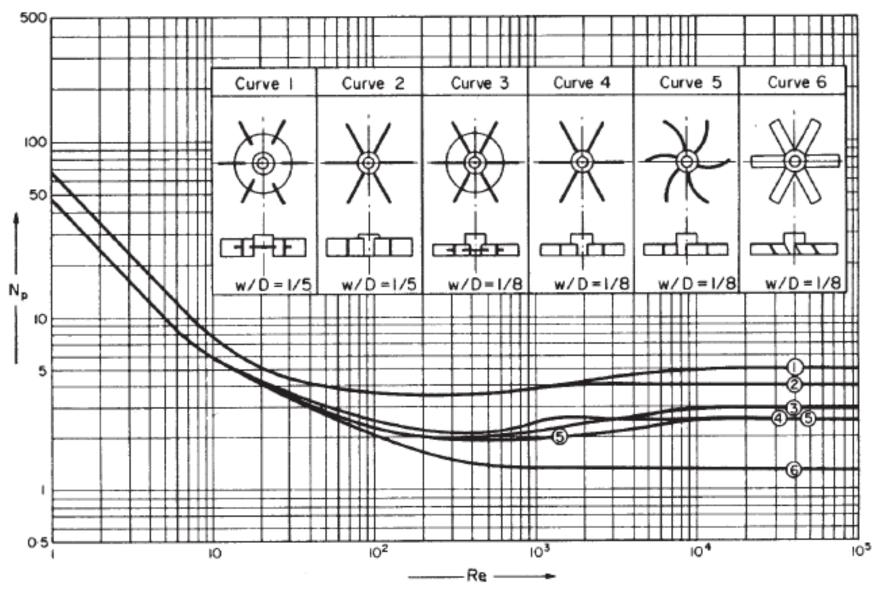
The power number is a function of the impeller, blade width, number of blades, blade angle, D/T, baffle configuration and impeller elevation.

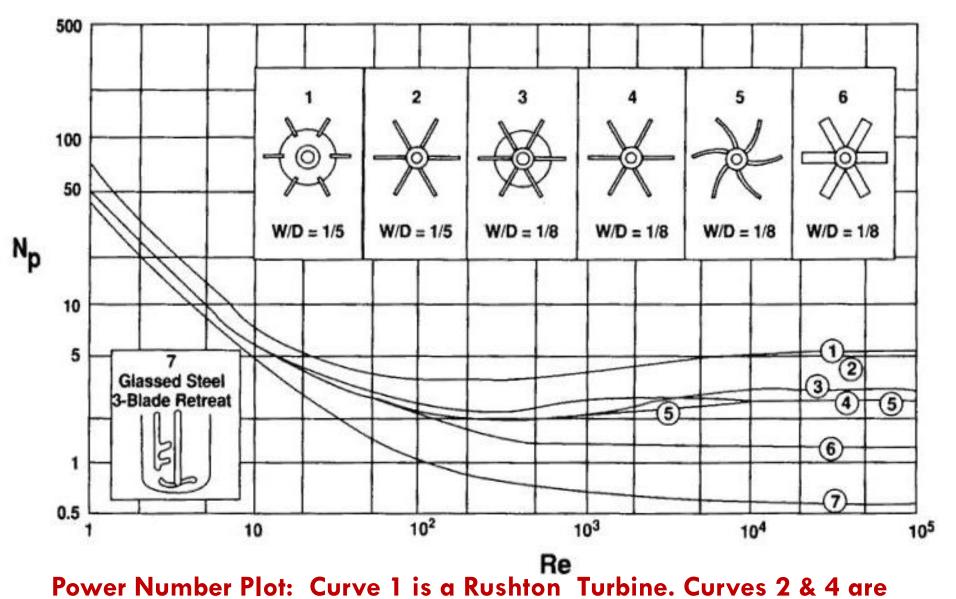
Why Dimensionless Numbers?

Typical values:

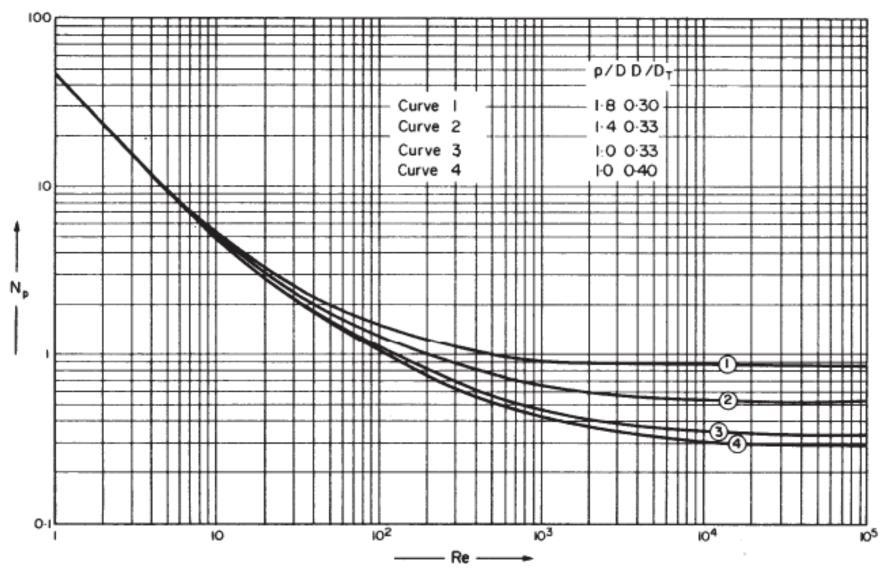

- \square Standard flat-blade turbine, baffled vessels $N_p = 5$
- \square Standard flat-blade turbine, unbaffled vessels $N_p = 1$
- Marine propellers, N_P = 1

Values of turbulent power number N_P for various impeller geometries.


Note: W/D is actual blade-width-to-impeller-diameter ratio.


Correlations & Power Curves

Dr. Majd Shhadi


N_P vs Re for different turbines

Power Number Plot: Curve 1 is a Rushton Turbine. Curves 2 & 4 are Open Flat Blades. Curve 5 is a Backswept open Impeller. Curve 6 is a Pitched Blade Turbine (PBT).

N_D vs Re for propellers

Power correlation for single three-bladed

p = blade pitch D = impeller diameter $D_T = tank diameter$

Calculation of Power Consumption

$$P = N_P N^3 D^5 \rho$$

At low Re (<10), density is no longer a factor:

$$N_P = \frac{K_L}{Re} \qquad P = K_L N^2 D^3 \mu$$

At Re>10 000 in baffled tanks, P is independent of Reynolds Number and viscosity is not a factor:

$$N_P = K_T \qquad P = K_T N^3 D^5 \rho$$

 K_L and K_T are constants for various types of impellers and tanks

Please note the dependency of P on μ or ρ depending on the flow regime (laminar or turbulent).

Power constants at low (K_L) and high (K_T) Reynolds number

Type of Impeller	K _L	K _T
Propeller, 3 blades		
Pitch 1.0	41	0.32
Pitch 1.5	55	0.87
Turbine		
6-blade disk (S ₃ =0.25 S ₄ =0.2)	65	5.75
6 curved blades (S ₄ =0.2)	70	4.80
6 pitched blades (45°, S ₄ =0.2)	-	1.63
4 pitched blades (45°, S ₄ =0.2)	44.5	1.27
Flat paddle, 2 blades (45°, S ₄ =0.2)	36.5	1.70
Anchor	300	0.35

Dr. Majd Shhadi

Correlations And Power Curves

- For a complicated mixing process, dimensional analysis is often used to correlate the experimental data and find the empirical Eqs.
- ➤ With a **standard mixing** unit, following results can be found from the **dimensional analysis**

$$Pw = f\left(N, D, \rho, \mu, g\right) \quad N_P = \frac{Pw}{\rho N^3 D^5} = f\left(\frac{ND^2 \rho}{\mu}, \frac{N^2 D}{g}\right) \quad N_P = f\left(\text{Re, Fr}\right)$$

 N_{ρ} — power number

Re — stirring Reynolds number for flow pattern

Fr — Froude number for circulating flow with free surface

Scaling up criterion

(1) power consumption per volume (Pw/V) = Const.

Used for constant liquid properties and relatively small scaling-up ratio. Good for turbulent mixing dominated situation in fully turbulent flow.

$$N_1^3 D_1^2 = N_2^3 D_2^2$$

(2) Tip speed constant

Keep the agitator torque constant in a geometrical analogue system. Suitable for operation of high head.

$$N_1 D_1 = N_2 D_2$$

(3) Reynolds number, Re= Const.

$$N_1 D_1^2 = N_2 D_2^2$$

Scaling up criterion

(4) Froude number, Fr=Cost.

$$N_1^2 D_1 = N_2^2 D_2$$

(5) Webber number, We= Const.

$$N_1^2 D_1^3 = N_2^2 D_2^3$$

Which scaling up process should be used? depends on the practical situation.

Dr. Majd Shhadi

Example 1

• A flat-blade turbine with six blades is installed centrally in a vertical tank. The tank is 3.6 m in diameter, the turbine is 1.2 m in diameter & is positioned 1.2 m from the bottom of the tank. The turbine blades are 240 mm wide. The tank is filled to a depth of 3.6 m with a solution of 50% caustic soda at 65.6 °C, which has a viscosity of 10.785 P and a density of 1498 kg/m³. The turbine is operated at 60 rpm. What power will be required to operate the agitator if:- (a)The tank was baffled & (b) The tank was unbaffled.

Answer:

$$n = 60 rpm / 60 s = 1.0 r/s$$

$$D_a = E = 1.2 m$$

$$\mu = 10.785 P = 1.0785 kg/ms$$

Dr. Majd Shhadi

(a) Baffled tank

$$N_{RE} = \frac{D_a^2 n \rho}{\mu} = \frac{(1.2)^2 (1)(1498)}{1.0785} = 2000$$

From Fig. 9.12, curve A for baffle, $N_p = 5.0$

$$\therefore P = N_p n^3 D_a^5 \rho = (5)(1)^3 (1.2)^5 (1498) = 1.86 \times 10^4 W$$

(b) Unbaffled tank

From Fig 9.12, curve D, $N_p = 2.0$.

Froude number,
$$N_{Fr} = \frac{n^2 D_a}{g} = \frac{(1)^2 (1.2)}{9.81} = 0.122$$

From Table 9.1, a & b are 1.0 & 40.0 respectively

$$m = \frac{a - \log_{10} N_{\text{Re}}}{b} = \frac{1.0 - \log_{10} 2000}{40} = -0.0575$$

So the corrected value of NP,

$$N_{P(Corr)} = N_P X N_{Fr}^m = 2X0.122^{0.0575} = 2.257$$

Thus power,

$$P = N_p n^3 D_a^5 \rho$$

= (2.257)(1)³(1.2)⁵(1498)
= 8413mN/s = 8413W

Example 2

• A propeller with three blades is installed centrally in a vertical tank. The tank is 2.7 m in diameter, the propeller is 0.81 m in diameter & is positioned 0.81 m from the bottom of the tank. The tank is filled to a depth of 2.7 m with a caustic soda solution, which has a viscosity of 1.5 cP and a density of 1498 kg/m³. The turbine is operated at 3.21 rpm. What power will be required to operate the agitator if:- The tank was baffled & (b) The tank was unbaffled

Answer:

$$n = 3.21$$
rpm / 60 s = 0.0535 r/s
 $D_a = E = 0.81$ m
 $\mu = 1.5$ cP = 1.5 x10⁻³ kg/ms

Dr. Maid Shhadi

(a) Baffled tank

$$N_{RE} = \frac{D_a^2 n \rho}{\mu} = \frac{(0.81)^2 (0.0535)(1498)}{1.5 \times 10^{-3}} = 3.51 \times 10^{-4}$$

From Fig. 9.13, $N_p = 0.9$

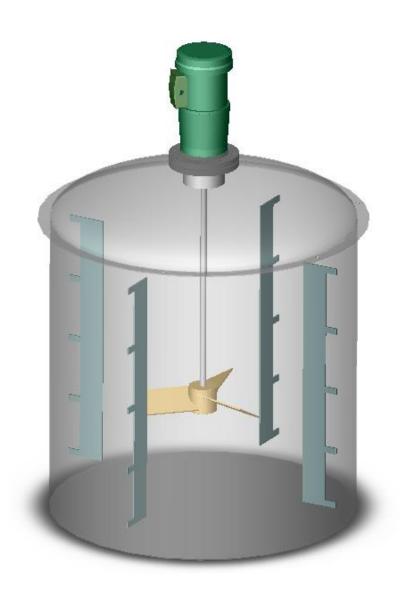
$$\therefore P = N_p n^3 D_a^5 \rho = (0.9)(0.0535)^3 (0.81)^5 (1498) = 0.072W$$

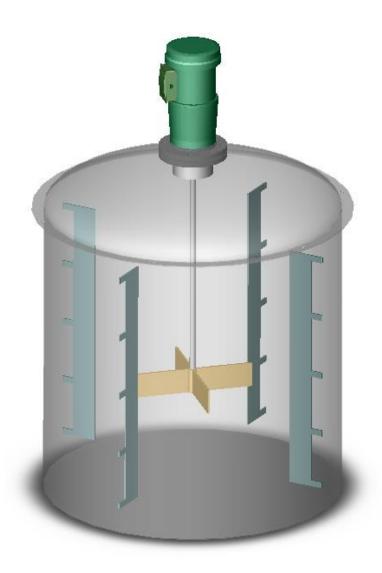
(b) Unbaffled tank

From Fig 9.13, $N_p = 0.58$.

Froude number, $N_{Fr} = \frac{n^2 D_a}{g} = \frac{(0.0535)^2 (0.81)}{9.81} = 2.36 \times 10^{-4}$

From Table 9.1, a & b are 1.7 & 18.0 respectively


$$m = \frac{a - \log_{10} N_{\text{Re}}}{b} = \frac{1.7 - \log_{10} 35055}{18} = -0.158$$


So the corrected value of NP,

$$N_{P(Corr)} = N_P X N_{Fr}^m = 0.58X(2.36x10^{-4})^{-0.158} = 2.17$$

Thus power,

$$P = N_p n^3 D_a^5 \rho$$

= (2.17)(0.0535)³(0.81)⁵(1498)
= 0.173mN/s = 0.173W

Dr. Majd Shhadi