

Spot Speed Studies

- It is conducted to estimate the distribution of vehicle speeds in a stream of traffic at a particular location
- Speed: rate of movement of a vehicle (mi/h) or (km/h)

Radar

Cameras

5

 Identified speed characteristics is valid only for the traffic and environmental conditions that exist at the time of the study.

Purpose of Spot Speed Studies

- Establish parameters for traffic operation and control
 - Speed zones, speed limit and passing restrictions
- Evaluate the effectiveness of traffic control devices,
 variable message signs at work zones.
- Monitor the effect of speed enforcement programs
- Evaluate and or determine the adequacy of highway geometric characteristics
- Evaluate the effect of speed on highway safety through the analysis of crash data for different speed characteristics.
- Determine speed trends
- Determine whether complaints about speeding are valid.

Speed Characteristics

 <u>Average Speed</u>: the arithmetic mean of all vehicle speeds (that is, the sum of all spot speeds divided by the number of vehicles).

$$\overline{u} = \frac{\sum f_i u_i}{\sum f_i}$$
 or $\overline{u} = \frac{\sum u_i}{N}$

- <u>Median speed</u>: the representation of the middle value in a series of spot speeds that are arranged in ascending order.
- **Modal speed**: the value of speed that occurs most frequently in a sample of spot speeds

8

Confidence Level (%)	Constant Z
68.3	1.00
86.6	1.50
90.0	1.64
95.0	1.96
95.5	2.00
98.8	2.50
99.0	2.58
99.7	3.00

Car No.	Speed (km/h)	Car No.	Speed (km/h)	Car No.	Speed (km/h)	Car No.	Speed (km/h)
1	35.1	23	46.1	45	47.8	67	56.0
2	44.0	24	54.2	46	47.1	68	49.1
3	45.8	25	52.3	47	34.8	69	49.2
2 3 4 5	44.3	26	57.3	48	52.4	70	56.4
5	36.3	27	46.8	49	49.1	71	48.5
6	54.0	28	57.8	50	37.1	72	45.4
7	42.1	29	36.8	51	65.0	73	48.6
8	50.1	30	55.8	52	49.5	74	52.0
9	51.8	31	43.3	53	52.2	75	49.8
10	50.8	32	55.3	54	48.4	76	63.4
11	38.3	33	39.0	55	42.8	77	60.1
12	44.6	34	53.7	56	49.5	78	48.8
13	45.2	35	40.8	57	48.6	79	52.1
14	41.1	36	54.5	58	41.2	80	48.7
15	55.1	37	51.6	59	48.0	81	61.8
16	50.2	38	51.7	60	58.0	82	56.6
17	54.3	39	50.3	61	49.0	83	48.2
18	45.4	40	59.8	62	41.8	84	62.1
19	55.2	41	40.3	63	48.3	85	53.3
20	45.7	42	55.1	64	45.9	86	53.4
21	54.1	43	45.0	65	44.7		
22	54.0	44	48.3	66	49.5		

1	2	3	4	5	6	7
Speed Class (km/h)	Class Midvalue, u _i	Class Frequency (Number of Observations in Class), f _i	f _t u _i	Percentage of Observations in Class	Cumulative Percentage of All Observations	$f(u_t - \overline{u})^2$
34-35.9	35.0	2	70	2.3	2.30	420.5
36-37.9	37.0	3	111	3.5	5.80	468.75
38-39.9	39.0	2	78	2.3	8.10	220.50
40 - 41.9	41.0	2 3 2 5 3	205	5.8	13.90	361.25
42-43.9	43.0	3	129	3.5	17.40	126.75
44-45.9	45.0	11	495	12.8	30.20	222.75
46-47.9	47.0	4	188	4.7	34.90	25.00
48-49.9	49.0	18	882	21.0	55.90	9.0
50-51.9	51.0	7	357	8.1	64.0	15.75
52-53.9	53.0	8	424	9.3	73.3	98.00
54-55.9	55.0	11	605	12.8	86.1	332.75
56-57.9	57.0	5	285	5.8	91.9	281.25
58-59.9	59.0	2	118	2.3	94.2	180.50
60-61.9	61.0	2	122	2.3	96.5	264.50
62-63.9	63.0	5 2 2 2 <u>1</u> 86	126	2.3	98.8	364.50
64-65.9	65.0	1	65	1.2	100.0	240.25
Totals		86	4260			3632.00

Methods of Conducting Spot Speed Studies

Manual and Automatic

→Automatic devices can be grouped into three categories:

1. Road Detectors: Speed data can be collected and volume data as well.

They are laid such that the probability of closing the connection of the meter by a passing vehicle during a speed measurement is reduced to a minimum Road detectors are usually

separated by a distance of 1 to 5 meters

Methods of Conducting Spot Speed Studies

- 1. Road Detectors:
 - *Pneumatic tubes:* laid across the lane in which data are to be collected.
 - Air impulse
 - Two tubes are placed across the lane, usually about 6 ft apart
 - Induction loops: a rectangular wire loop buried under the roadway surface. It usually serves as the detector of a resonant circuit.
 - When a motor vehicle passes across it, a disturbance in the electrical field is created.
 - This results in an impulse being sent to the counter.

19

Presentation of Speed Data

- Histogram, Frequency distribution, Cumulative distribution
- Number of classes chosen is usually between 8 and 20
- To define class range calculate:

$\frac{v_{\rm max} - v_{\rm min}}{8}$	and	$v_{\rm max}$	$\frac{-v_{\rm m}}{20}$	nin 💙	> Cho	ose a s	suitable range
Speed Class (mi/hr)	Class Midvalue, u _l	Class Frequency (Number of Observations in Class), f ₁	f _t u _t	Percentage of Observations in Class	Cumulative Percentage of All Observations	$f(u_t - \overline{u})^2$	
34-35.9	35.0	2	70	2.3	2.30	420.5	
36-37.9	37.0	3	111	3.5	5.80	468.75	
38-39.9	39.0	2	78	2.3	8.10	220.50	
40-41.9	41.0	5	205	5.8	13.90	361.25	E
42-43.9	43.0	3	129	3.5	17.40	126.75	Example 4.2
44-45.9	45.0	11	495	12.8	30.20	222.75	
46-47.9	47.0	4	188	4.7	34.90	25.00	
48-49.9	49.0	18	882	21.0	55.90	9.0	
50-51.9	51.0	7	357	8.1	64.0	15.75	
52-53.9	53.0	8	424	9.3	73.3	98.00	
54-55.9	55.0	11	605	12.8	86.1	332.75	
56-57.9	57.0	5	285	5.8	91.9	281.25	
58-59.9	59.0	2	118	2.3	94.2	180.50	
60-61.9	61.0	2 2 2	122	2.3	96.5	264.50	
62-63.9	63.0	2	126	2.3	98.8	364.50	
64-65.9	65.0	_1	65	1.2	100.0	240.25	
Totals		86	4260			3632.00	23

Example 4.3 Significant Differences in Average Spot Speeds	
Speed data were collected at a section of highway during and after utility mainton nance work. The speed characteristics are given as, \overline{u}_1 , S_1 and \overline{u}_2 , S_2 as shown below Determine whether there was any significant difference between the average spee at the 95% confidence level.	w.
$ \overline{u}_1 = 35.5 \text{ mi/h} \qquad \qquad \overline{u}_2 = 38.7 \text{ mi/h} S_1 = 7.5 \text{ mi/h} \qquad \qquad S_2 = 7.4 \text{ mi/h} n_1 = 250 \qquad \qquad n_2 = 280 $	
Solution:	_
• Use Eq. 4.6.	
$S_{d} = \sqrt{rac{S_{1}^{2}}{n_{1}} + rac{S_{2}^{2}}{n_{2}}}$	
$=\sqrt{\frac{(7.5)^2}{250} + \frac{(7.4)^2}{280}} = 0.65$	
• Find the difference in means.	
38.7 – 35.5 = 3.2 mi/h	
3.2 > (1.96)(0.65)	
3.2 > 1.3 mi/h	
It can be concluded that the difference in mean speeds is significant at the 95% nterchange confidence level.	26

Volume Studies

- OBJECTIVE: collect data on the number of vehicles and/or pedestrians that pass a point on a highway facility during a specified time period.
 - 15 minutes up to a year depending on the purpose of the analysis.
- Estimated traffic volume characteristics are:
- Average Annual Daily Traffic (AADT): the average of 24-hour counts collected every day of the year. Used for:
 - Estimation of highway user revenues
 - Computation of crash rates
 - Evaluation of the economic feasibility of highway projects

Types of Volume Counts

1 Cordon Counts: When information is required within an area such as the central business district (CBD).

Useful for:

- Planning of parking facilities
- Updating and evaluating traffic operational techniques,
- Making long-range plans for freeway and arterial street systems.

Types of Volume Counts

- (2) Screen Line Counts: the study area is divided into large sections by running imaginary lines (screen lines) across the study area. Used for:
 - Screen lines might be natural and man-made barriers (rivers railway tracks)
 - Screen lines are usually not crossed more than once by the same street.
 - It facilitates the detection of variations in the traffic volume and traffic flow direction, due to changes in the land-use pattern of the area.

Figure 6.6 Station Locations for a Screen Line Count

Types of Volume Counts

5 Periodic Volume Counts:

- Continuous Counts: taken continuously using mechanical or electronic counters
 - ✓ Permanent count stations
 - ✓ Road classification is necessary for stations selection
 - ✓ A highway link is defined as a homogeneous section that has the same traffic characteristics, such as AADT and daily, weekly, and seasonal variations in traffic volumes.

41

Types of Volume Counts

- **(5)** Periodic Volume Counts:
 - Control Counts: taken at stations known as controlcount stations
 - ✓ Stations are strategically located so representative samples can be taken in an area-wide traffic counting program.
 - ✓ Used to determine <u>seasonal and monthly variations</u> of traffic characteristics so that <u>expansion factors</u> can be determined to estimate year-round average values.
 - ✓ <u>Major</u> control count: monthly, with 24-hour directional counts taken on at least three days a week on major roads
 - ✓ <u>Minor</u> control count: five-day weekday counts taken every other month

42

Types of Volume Counts

5 Periodic Volume Counts:

- Coverage Counts: used to estimate ADT, using expansion factors
 - ✓ Study area is usually divided into zones that have similar traffic characteristics.
 - ✓ At least one coverage station is located in each zone.
 - ✓ A 24-hour non-directional weekday count is taken at least once every four years at each coverage station.
 - The data indicate changes in area-wide traffic characteristics.

43

44

Traffic Volume Data Representation

- Traffic Flow Map
 - Traffic volumes on individual routes
 - Width of a band, which is drawn in proportion to the traffic volume

• Intersection Summary Sheet

- Graphic representations of the volume and direction of all traffic movements.
- These volumes can be either ADTs or PHVs.

LOCATION	l:	Rafidia								CITY:		Nablu	s					
Governora	te	Nablus								DAY:		Tuesd	ay					
OBSERVE	R:	Traffic								DATE:		18/2,	2024					
т	ME		NORTHB		,		SOUTHE				EASTBOL	IND			WESTBO			GRAND
FROM	то	L	Т		Total	L	T	R	Total	L	T		Total	L	T	R	Total	TOTAL
	7:30 AM		61	3	75	5	111	15	131	22	6	22	50	3	8	2	13	269
	7:45 AM		58	1	66	3	110	35	148	15	2	19	36	4	7	1	12	262
	8:00 AM		60	0	71	1	109	29	139	18	3	16	37	5	3	2	10	257
	8:15 AM		74	3	84	1	114	29	144	21	11	17	49	3	5	1	9	286
	8:30 AM		69	3	79	2	107	18	127	11	4	20	35	7	17	8	32	273
	8:45 AM		85	5	99	4	105	26	135	23	8	20	51	7	9	5	21	306
	9:00 AM		78	3	95	3	91	21	115	22	1	26	49	4	6	0	10	269
00 AN	<mark>9:15 AM</mark>	9	79	2	90	6	104	21	131	21	5	33	59	4	9	2	15	295
				N	IB		SE	3			EB				w	В		ntersect
eak	8:15 –	PHF =	C).92			0.9	94			0.82	2			0.6	51		0.93
lour	9:15	PHV =		363			50	8			194	ı			78	3		1143

			PHI	F =	$\overline{4 \times}$	volun	Vol ne du				k hou 1 with		eak l	nour				
TIM	AE	N	ORTHB				SOUTHB				EASTBOL				WESTBO	סאווכ		GRAND
FROM	TO	L	Т		, Total	L	Т	R	Total	Ľ	T		Total	L	T	R	Total	TOTAL
		_				_								_		_		
:15 AM 8		7	69	3	79	2	107	18	127	11	4	20	35	7	17	8	32	273
	8:45 AM	9	85	5	99	4	105	26	135	23	8	20	51	7	9	5	21	306
	9:00 AM 9:15 AM	14 9	78 79	3 2	95 90	3 6	91 104	21 21	115 131	22 21	1 5	26 33	49 59	4	6 9	0	10 15	269 295
									-91									
					NB			SB			EB			W	В	Inte	ersed	tion
PH	IF=			0	.92			0.94	k (1)		0.82			0.6	51		0.93	3
PH	IV=			:	363			508			194			78	3		114	3
Pe	ak 15 n	nin=			99			135			59			32	2		306	;

• Summa – Sumr	Volume Data Representa ary Tables mary of traffic volume data such IV, VC, and ADT	ation
Table 4.4	Summary of Traffic Volume Data for a Highwa	ay Section 430
	ADT	5375
	ADT Vehicle Classification (VC)	5375
		5375 70%
	Vehicle Classification (VC)	
	Vehicle Classification (VC) Passenger cars	70%

	.250	.100	.050	.025	.010	.005	.0025	.0005
		Leve	l of Signific	cance for a T	Fwo-Tailed	Test		
Degrees of Freedom	.500	.200	.100	.050	.020	.010	.005	.001
1.	1.000	3.078	6.314	12.706	31.821	63.657	27.321	536.627
2.	.816	1.886	2.920	4.303	6.965	9.925	14.089	31,599
3.	.765	1.638	2.353	3.182	4.541	5.841	7.453	12.924
4.	.741	1.533	2.132	2.776	3.747	4.604	5.598	8.610
5.	.727	1.476	2.015	2.571	3.365	4.032	4.773	6.869
6.	.718	1.440	1.943	2.447	3.143	3.707	4.317	5.959
7.	.711	1.415	1.895	2.365	2.998	3.499	4.029	5.408
8.	.706	1.397	1.860	2.306	2.896	3.355	3.833	5.041
9.	.703	1.383	1.833	2.262	2.821	3.250	3.690	4.781
10.	.700	1.372	1.812	2.228	2.764	3.169	3.581	4.587
11.	.697	1.363	1.796	2.201	2.718	3.106	3.497	4.437
12.	.695	1.356	1.782	2.179	2.681	3.055	3.428	4.318
13.	.694	1.350	1.771	2.160	2.650	3.012	3.372	4.221
14.	.692	1.345	1.761	2.145	2.624	2.977	3.326	4.140
15.	.691	1.341	1.753	2.131	2.602	2.947	3.286	4.073
16.	.690	1.337	1.746	2.120	2.583	2.921	3.252	4.015
17.	.689	1.333	1.740	2.110	2.567	2.898	3.222	3.965
18.	.688	1.330	1.734	2.101	2.552	2.878	3.197	3.922
19.	.688	1.328	1.729	2.093	2.539	2.861	3.174	3.883
20.	.687	1.325	1.725	2.086	2.528	2.845	3.153	3.850
21.	.686	1.323	1.721	2.080	2.518	2.831	3.135	3.819

	.250	.100	.050	.025	.010	.005	.0025	.0005
		Level	of Significa	unce for a T	wo-Tailed T	est		
Degrees of Freedom	.500	.200	.100	.050	.020	.010	.005	.001
22.	.686	1.321	1.717	2.074	2.508	2.819	3.119	3.792
23.	.685	1.319	1.714	2.069	2.500	2.807	3.104	3.768
24.	.685	1.318	1.711	2.064	2.492	2.797	3.091	3.745
25.	.684	1.316	1.708	2.062	2.485	2.787	3.078	3.725
26.	.684	1.315	1.706	2.056	2.479	2.779	3.067	3.707
27.	.684	1.314	1.703	2.052	2.473	2.771	3.057	3.690
28.	.683	1.313	1.701	2.048	2.467	2.763	3.047	3.674
29.	.683	1.311	1.699	2.045	2.462	2.756	3.038	3.659
30.	.683	1.310	1.697	2.042	2.457	2.750	3.030	3.646
35.	.682	1.306	1.690	2.030	2.438	2.724	2.996	3.591
40.	.681	1.303	1.684	2.021	2.423	2.704	2.971	3.551
45.	.680	1.301	1.679	2.014	2.412	2.690	2.952	3.520
50.	.679	1.299	1.676	2.009	2.403	2.678	2.937	3.496
55.	.679	1.297	1.673	2.004	2.396	2.668	2.925	3.476
60.	.679	1.296	1.671	2.000	2.390	2.660	2.915	3.460
65.	.678	1.295	1.669	1.997	2.385	2.654	2.906	3.447
70.	.678	1.294	1.667	1.994	2.381	2.648	2.899	3.435
80.	.678	1.292	1.664	1.990	2.374	2.639	2.887	3.416
90.	.677	1.291	1.662	1.987	2.368	2.632	2.878	3.402
100.	.677	1.290	1.660	1.984	2.364	2.626	2.871	3.390
125.	.676	1.288	1.657	1.979	2.357	2.616	2.858	3.370
150.	.676	1.287	1.655	1.976	2.351	2.609	2.849	3.357
200.	.676	1.286	1.653	1.972	2.345	2.601	2.839	3.340
00	.6745	1.2816	1.6448	1.9600	2.3267	2.5758	2.8070	3.290

Hour	Volume	HEF	Hour	Volume	HEF
6:00-7:00 a.m.	294	42.00	6:00-7:00 p.m.	743	16.62
7:00-8:00 a.m.	426	29.00	7:00-8:00 p.m.	706	17.49
8:00-9:00 a.m.	560	22.05	8:00-9:00 p.m.	606	20.38
9:00-10:00 a.m.	657	18.80	9:00-10:00 p.m.	489	25.26
10:00-11:00 a.m.	722	17.10	10:00-11:00 p.m.	396	31.19
11:00-12:00 p.m.	667	18.52	11:00-12:00 a.m.	360	34.31
12:00-1:00 p.m.	660	18.71	12:00-1:00 a.m.	241	51.24
1:00-2:00 p.m.	739	16.71	1:00-2:00 a.m.	150	82.33
2:00-3:00 p.m.	832	14.84	2:00-3:00 a.m.	100	123.50
3:00-4:00 p.m.	836	14.77	3:00-4:00 a.m.	90	137.22
4:00-5:00 p.m.	961	12.85	4:00-5:00 a.m.	86	143.60
5:00-6:00 p.m.	892	13.85	5:00-6:00 a.m.	137	90.14
Total daily volume =	12,350.				
				ume for 24	
ee 8:00 – 9:00	0 a.m.		volume	e for partic	ular hour
IEF = 12,350 /		~~ ~-			
	L G M -	1)) (NL			

	Day of Week	Volume	DEF	-	
		MU-ENVIOLES:	10000	•	See Friday
	Sunday	7895	9.515		DEE - 75 122 / 12 125 -
	Monday	10,714 9722	7.012		DEF = 75,122 / 13,125 =
	Tuesday Wednesday	11.413	6.582		5.724
	Thursday	10,714	7.012	•	Or the 7-day volume =
	Friday	13,125	5.724		,
	Saturday	11.539	6.510		13,125 x 5.724 = 75,122
Total weekly volume					
	Month	ADT		MEF	
	Month	ADT		MEF	
	(SARASSIC) Sets	VE.GRAND		1000000	
	January	1350		1.756	
	January February	1350 1200		1.756 1.975	See June
	January February March	1350 1200 1450		1.756 1.975 1.635	 See June MEF = 2370 / 2500 =
	January February March April	1350 1200		1.756 1.975	00000000
	January February March	1350 1200 1450 1600		1.756 1.975 1.635 1.481	• MEF = 2370 / 2500 = 0.948
	January February March April May	1350 1200 1450 1600 1700		1.756 1.975 1.635 1.481 1.394	 MEF = 2370 / 2500 = 0.948 Or the AADT =
	January February March April May June	1350 1200 1450 1600 1700 2500		1.756 1.975 1.635 1.481 1.394 0.948	• MEF = 2370 / 2500 = 0.948
	January February March April May June July	1350 1200 1450 1600 1700 2500 4100		1.756 1.975 1.635 1.481 1.394 0.948 0.578	 MEF = 2370 / 2500 = 0.948 Or the AADT =
	January February March April May June July August	1350 1200 1450 1600 1700 2500 4100 4550		1.756 1.975 1.635 1.481 1.394 0.948 0.578 0.521	 MEF = 2370 / 2500 = 0.948 Or the AADT =
	January February March April May June July August September	1350 1200 1450 1600 1700 2500 4100 4550 3750		1.756 1.975 1.635 1.481 1.394 0.948 0.578 0.521 0.632	 MEF = 2370 / 2500 = 0.948 Or the AADT =

xample 4.5 Calculating AADT Using Expansion Factors
A traffic engineer urgently needs to determine the AADT on a rural primary road that has the volume distribution characteristics shown in Tables 4.5, 4.6, and 4.7. She collected the data shown below on a Tuesday during the month of May. Determine the AADT of the road.
7:00-8:00 a.m. 400
8:00-9:00 a.m. 535
9:00-10:00 a.m. 650
10:00-11:00 a.m. 710
11:00-12 noon 650
Solution:
Estimate the 24-hr volume for Tuesday using the factors given in Table 4.5.
$\frac{(400 \times 29.0 + 535 \times 22.05 + 650 \times 18.80 + 710 \times 17.10 + 650 \times 18.52)}{(400 \times 29.0 + 535 \times 22.05 + 650 \times 18.80 + 710 \times 17.10 + 650 \times 18.52)} \approx 11.950$
5
 Adjust the 24-hr volume for Tuesday to an average volume for the week using the factors given in Table 4.6.
'Total 7-day volume = 11,959 × 7.727
11,959 × 7.727
Average 24-hr volume = $\frac{11}{7}$ = 13,201
 Since the data were collected in May, use the factor shown for May in Table 4.7 to obtain the AADT.
AADT = 13,201 × 1,394 = 18,402

Section Travel Time Trave	Comments Record Checkpoints must be submitted Per Section sumulative Delay Stops (#) Special ravel Time Travel Time
Note: Record Checkpoints must be submitted Per Section Checkpoint Cumulative Delay Stops (#) Special Section Section Travel Time Travel Travel Travel Travel	Record Checkpoints must be submitted Per Section Cumulative Delay Stops (#) Special Section Travel Time
checkpoint Cumulative Cumulative Delay Stops (#) Special Sec Section Travel Time	tumulative Delay Stops (#) Special Section ravel Time Travel Time
checkpoint Cumulative Cumulative Delay Stops (#) Special Sec Section Travel Time	tumulative Delay Stops (#) Special Section ravel Time Travel Time
Number Length (ft,mi) (min:sec) (sec,min) Notes (sec Image: Strain	(min:sec) (sec,min) Notes (sec,min
Image: state	

Definition of Terms Related to Time/Delay Studie	-5
 3. <u>Delay:</u> c. <u>Fixed delay</u>: that part of the delay <u>caused by</u> <u>control devices</u> such as traffic signals. 	
 Occurs regardless of the traffic volume or the impedance that may exist. 	
4. <u>Travel-time Delay:</u>	
 Actual travel time Actual travel time The vehicle traverses with an average speed equal to that for an uncongested traffic flow 	68

Methods for Conducting Travel Time/Delay Studies

- These methods can be grouped into:
 - A) Those using a test vehicle
 - **B)** Those not requiring a test vehicles

Methods for Conducting Travel Time/Delay Studies

A) Those using a test vehicle

1. Floating-Car Technique:

Table 6.8 Approximate Minimum Sample Size Requirementsfor Travel Time and Delay Studies with Confidence Level of95.0 Percent

Average Range in	Minimum N	Number of F	Runs for Sp	ecified Peri	mitted Error	
Travel Speed (kph)	± 2.0 kph	±3.5 kph	± 5.0 kph	± 6.5 kph	± 8.0 kph	
5	4	3	2	2	2	
10	8	4	3	3	2	
15	14	7	5	3	3	
20	21	9	6	5	4	
25	28	13	8	6	5	
30	38	16	10	7	6	

Methods for Conducting Travel Time/Delay Studies

A) Those using a test vehicle

- 2. Average-Speed Technique: driving the test car at a speed that, in the opinion of the driver, is the average speed of the traffic stream.
 - The travel time is recorded.
 - The test run is repeated for the minimum number of times as calculated by Equation 4.8

Alternatively, the driver alone can collect the data by using a laptop computer with internal clock and distance functions.

Methods for Conducting Travel Time/Delay Studies						
A) Those using a test vehicle 3. Moving-Vehicle Technique:						
	Volume	Average Travel time				
Westbound	$V_{w} = \frac{(N_{e} + O_{w} - P_{w})60}{T_{e} + T_{w}}$	$\overline{T}_w = T_w - \frac{(O_w - P_w)60}{V_w}$				
Eastbound	$V_{e} = \frac{(N_{w} + O_{e} - P_{e})60}{T_{e} + T_{w}}$	$\overline{T}_e = T_e - \frac{(O_e - P_e)60}{V_e}$				
Example 4.6 76						

Run Direction/ Number	Travel Time (min)	No. of Vehicles Traveling in Opposite Direction	No. of Vehicles That Overtook Test Vehicle	No. of Vehicles Overtaken by Test Vehicle
Eastward				
1	2.75	80	1	1
2	2.55	75	2	1
3	2.85	83	0	3
4	3.00	78	0	1
5	3.05	81	1	1
6	2.70	79	3	2
7	2.82	82	1	1
8	3.08	78	0	$\frac{2}{1.50}$
Average	2.85	79.50	1.00	1.50
Westward				
1	2.95	78	2	0
2	3.15	83	1	1
3	3.20	89	1	1
4	2.83	86	1	0
5	3.30	80	2	1
6	3.00	79	2 1 2	2
7	3.22	82	2	1
8	2.91	81	0	1
Average	3.07	82.25	1.25	0.875

Methods for Conducting Travel Time/Delay Studies B) Those not requiring a test vehicles 1. License-Plate Observations: requires that observers be positioned at the beginning and end of the test section. Each observer records the last three or four digits of the license plate of each car that passes together with the time at which the car passes. ✓ It has been suggested that a sample size of 50 matched license plates will give reasonably accurate results.

Methods for Conducting Travel Time/Delay Studies

B) Those not requiring a test vehicles

- **2.** *Interviews*: It is carried out by obtaining information from individuals who drive on the study site regarding their travel times and experience of delays.
 - It facilitates the collection of a large amount of data in a relatively short time
 - Results depends on the information given by the contacted people
- **3.** ITS Advanced Technologies (TELEMATICS): The integrated use of telecommunications and informatics.

Parking Studies

- Any traveling vehicle will at one time or another be parked for short time or a much longer time.
- Great need for parking spaces in areas where land uses include business, residential, or commercial activities.
- "park-and-ride" increased the demand for parking spaces at transit stations.
- Providing adequate parking space in the CBD may necessitate the need for
 - parking bays along curbs which reduces the capacity of the streets and may affect the level of service

83

Parking Studies

- Parking studies are used to:
 - Determine the demand for and the supply of parking facilities in an area,
 - Projection of the demand,
 - Views of various interest groups on how best to solve the parking problems.
- Types of parking facilities:
 - 1. <u>On-Street Parking Facilities</u>: Parking bays are provided alongside the curb on one or both sides of the street
 - unrestricted parking or restricted parking facilities
 - <u>Off-Street Parking Facilities</u>: privately or publicly owned; surface lots and garages

84

Definitions of Parking Terms

- 1. <u>Space-hour</u>: a unit of parking that defines the use of a single parking space for a period of 1 hour
- 2. <u>Parking Volume</u>: total number of vehicles that park in a study area during a specific length of time, usually a day
- 3. <u>Parking Accumulation</u>: number of parked vehicles in a study area <u>at any specified time</u>
 - curve of parking accumulation against time, which shows the variation of the parking accumulation during the day

Definitions of Parking Terms
 Parking Load: the area under the accumulation curve between two specific times
 Given as the number of space-hours used during the specified period of time
 <u>Parking Duration</u>: length of time a vehicle is parked at a parking bay.
 Average parking duration gives an indication of how frequently a parking space becomes available.
6. <u>Parking Turnover</u> : rate of use of a parking space
Parling Turnover $=\frac{\text{Parking Volume for a specific period}}{\text{Number of parking spaces}}$
86

Methodology of Parking Studies

- A comprehensive parking study usually involves:
 - **1. Inventory of existing parking facilities**: A detailed listing of the location and all other relevant characteristics of each legal parking facility, private and public, in the study area
 - Type and number of parking spaces at each parking facility
 - Times of operation and limit on duration of parking, if any
 - ✓ Type of ownership (private or public)
 - ✓ Parking fees, if any, and method of collection
 - Restrictions on use (open or closed to the public)
 - ✓ Other restrictions, if any (loading and unloading zones)
 - ✓ Probable degree of permanency

Updated at regular intervals of about four to five years

87

Methodology of Parking Studies						
 A comprehensive parking study usually involves: 						
3. Identification of parking generators: It involves						
 Identifying parking generators (for example, shopping centers or transit terminals) 	 Identifying parking generators (for example, shopping centers or transit terminals) 					
 Locating these on a well-Prepared map or the study a 	 Locating these on a well-Prepared map or the study area 					
4. Parking demand: It is obtained by interviewing drivers at the various parking facilities listed during the inventory						
Information Sought for Parking Demand Interview						
(1) trip origin(2) purpose of trip(3) driver's destination reached on foot after parking.						
The interview must also note the location of the parking facility, the times of arrival and departure, and the vehicle type.	90					

94

Analysis Parking Data

• Space-hours of supply

$$S = f \sum_{i=1}^{N} (t_i)$$

- S = practical number of space-hours of supply for a specific period of time
- N = number of parking spaces available
- t_i = total length of time in hours when the *i*th space can be legally parked on during the specific period
- f = efficiency factor

Analysis Parking Data

- The efficiency factor *f* is used to correct for time lost in each turnover.
 - It is determined on the basis of the best performance a parking facility is expected to produce.
 - Efficiency factors is determined for different types of parking facilities
 - Curb parking (during highest demand) \rightarrow 78% 96%
 - Surface lots and garages \rightarrow 75% 92%

Average values for the efficiency factor

- 90% for curb parking,
- 80% for garages
- 85% for surface lots.

Example 4-7

- The owner of a parking garage located in a CBD has observed that 20% of those wishing to park are turned back every day during the open hours of 8 a.m. to 6 p.m. (10 hours) because of lack of parking spaces.
- An analysis of data collected at the garage indicates that 60% of those who park are commuters, with an average parking duration of 9 hr, and the remaining are shoppers, whose average parking duration is 2 hr.
- If 20% of those who cannot park are commuters and the rest are shoppers, and a total of 200 vehicles currently park daily in the garage, <u>determine the number of</u> <u>additional spaces required to meet the excess demand</u>. Assume parking efficiency is 0.90.

interchange

Solution: • Calculate the space-hours of demand using Eq. 4.12. $D = \sum_{i=1}^{N} (n_i t_i)$ Commuters now being served = $0.6 \times 200 \times 9 = 1080$ space-hr Shoppers now being served = $0.4 \times 200 \times 2 = 160$ space-hr Total number of vehicles turned away = $\frac{200}{0.8} - 200 = 50$

Commuters not being served = $0.2 \times 50 \times 9 = 90$ space-hr Shoppers not being served = $0.8 \times 50 \times 2 = 80$ space-hr Total space-hours of demand = (1080 + 160 + 90 + 80) = 1410Total space-hours served = 1080 + 160 = 1240Number of space-hours required = 1410 - 1240 = 170

• Determine the number of parking spaces required from Eq. 4.13.

$$S = f \sum_{i=1}^{N} t_i = 170 \text{ space-hr}$$

• Use the length of time each space can be legally parked on (8 a.m. through 6 p.m. = 10 hr) to determine the number of additional spaces.

$$0.9 \times 10 \times N = 170$$

 $N = 18.89$

At least 19 additional spaces will be required, since a fraction of a space cannot be used.

interchange

+4-14
4-15
4-18
4-19
4-20

