Applied Fluid Mechanics

Chapter 8

Reynolds Number, Laminar Flow, Turbulent Flow, and Energy Losses Due to Friction

Amjad El-Qanni, PhD Spring 2022/2023

In some applications, losses are negligible. In others, like this residential geothermal system with extremely long tubing, losses must be analyzed.

Characterizing Flow as Laminar or Turbulent

 Flows with low Reynolds numbers appear slow and smooth and are called *laminar*.

- Flows with high Reynolds numbers appear fast, chaotic, and rough and are called *turbulent*.
- Reynolds number is calculated as

$$N_R = \frac{\nu D \rho}{\eta} = \frac{\nu D}{\nu}$$

Reynolds Number is Dimensionless and Characterizes Flow

$$N_R = \frac{v D \rho}{\eta} = \frac{v D}{\nu}$$

If $N_R < 2000$, the flow is laminar. If $N_R > 4000$, the flow is turbulent.

$$N_R = \frac{vD\rho}{\eta} = v \times D \times \rho \times \frac{1}{\eta}$$
$$N_R = \frac{m}{s} \times m \times \frac{kg}{m^3} \times \frac{m \cdot s}{kg}$$

Reynolds Number is Dimensionless and Characterizes Flow

TABLE 8.1 Standard units for quantities used in the calculation of Reynolds number to ensure that it is dimensionless

Quantity	SI Units	U.S. Customary Units
Velocity	m/s	ft/s
Diameter	M	ft
Density	kg/m ³ or N·s ² /m ⁴	slugs/ft ³ or lb·s ² /ft ⁴
Dynamic viscosity	N·s/m ² or Pa·s or kg/m·s	lb•s/ft ² or slugs/ft•s
Kinematic viscosity	m ² /s	ft ² /s

Determine whether the flow is laminar or turbulent if glycerin at 25°C flows in a circular passage within a fabricated chemical processing device. The diameter of the passage is 150 mm. The average velocity of flow is 3.6 m/s.

We must first evaluate the Reynolds number using Equation (8-1):

$$V_R = vD\rho/\eta$$

 $v = 3.6 \text{ m/s}$
 $D = 0.15 \text{ m}$
 $\rho = 1258 \text{ kg/m}^3 \text{ (from Appendix B)}$
 $\eta = 9.60 \times 10^{-1} \text{ Pa-s} \text{ (from Appendix B)}$

Then we have

$$N_R = \frac{(3.6)(0.15)(1258)}{9.60 \times 10^{-1}} = 708$$

Because $N_R = 708$, which is less than 2000, the flow is laminar. Notice that each term was expressed in consistent SI units before N_R was evaluated.

Determine whether the flow is laminar or turbulent if water at 70°C flows in a hydraulic copper tube with a 32 mm OD \times 2.0 mm wall. The flow rate is 285 L/min.

Evaluate the Reynolds number, using Eq. (8–1):

$$N_R = rac{v D
ho}{\eta} = rac{v D}{
u}$$

For the copper tube, D = 28 mm = 0.028 m, and $A = 6.158 \times 10^{-4} \text{ m}^2$ (from Appendix G.2). Then we have

$$v = \frac{Q}{A} = \frac{285 \text{ L/min}}{6.158 \times 10^{-4} \text{ m}^2} \times \frac{1 \text{ m}^3/\text{s}}{60\ 000\ \text{ L/min}} = 7.71 \text{ m/s}$$

$$\nu = 4.11 \times 10^{-7} \text{ m}^2/\text{s} \quad \text{(from Appendix A)}$$

$$N_R = \frac{(7.71)(0.028)}{4.11 \times 10^{-7}} = 5.25 \times 10^5$$

Because the Reynolds number is greater than 4000, the flow is turbulent.

Determine the range of average velocity of flow for which the flow would be in the critical region if SAE 10 oil at 60°F is flowing in a 2-in Schedule 40 steel pipe. The oil has a specific gravity of 0.89.

Solution The flow would be in the critical region if $2000 < N_R < 4000$. First, we use the Reynolds number and solve for velocity:

$$N_R = \frac{v D\rho}{\eta}$$
$$v = \frac{N_R \eta}{D\rho}$$
(8-2)

Then we find the values for η , *D*, and ρ :

$$\begin{split} D &= 0.1723 \text{ ft} \quad (\text{from Appendix F}) \\ \eta &= 2.10 \times 10^{-3} \text{ lb-s/ft}^2 \quad (\text{from Appendix D}) \\ \rho &= (\text{sg})(1.94 \text{ slugs/ft}^3) = (0.89)(1.94 \text{ slugs/ft}^3) = 1.73 \text{ slugs/ft}^3 \end{split}$$

Substituting these values into Eq. (8-2), we get

$$v = \frac{N_R (2.10 \times 10^{-3})}{(0.1723)(1.73)} = (7.05 \times 10^{-3}) N_R$$

For $N_R = 2000$, we have

 $v = (7.05 \times 10^{-3})(2 \times 10^{3}) = 14.1 \text{ ft/s}$

For $N_R = 4000$, we have

$$v = (7.05 \times 10^{-3})(4 \times 10^{3}) = 28.2 \text{ ft/s}$$

Therefore, if 14.1 < v < 28.2 ft/s, the flow will be in the critical region.

Darcy's Equation

In the general energy equation

$$\frac{p_1}{\gamma} + z_1 + \frac{v_1^2}{2g} + h_A - h_R - h_L = \frac{p_2}{\gamma} + z_2 + \frac{v_2^2}{2g}$$

the term h_L is defined as the energy loss from the system. One component of the energy loss is due to friction in the flowing fluid. Friction is proportional to the velocity head of the flow and to the ratio of the length to the diameter of the flow stream, for the case of flow in pipes and tubes. This is expressed mathematically as Darcy's equation:

Darcy's Equation for Energy Loss

$$h_L = f \times \frac{L}{D} \times \frac{v^2}{2g}$$

where

- h_L = energy loss due to friction (N·m/N, m, lb-ft/lb, or ft)
- L =length of flow stream (m or ft)
- D = pipe diameter (m or ft)
- v = average velocity of flow (m/s or ft/s)
- f = friction factor (dimensionless)

Friction Loss in Laminar Flow

Because laminar flow is so regular and orderly, we can derive a relationship between the energy loss and the measurable parameters of the flow system. This relationship is known as the Hagen–Poiseuille equation:

Hagen–Poiseuille Equation

$$h_L = \frac{32\eta L v}{\gamma D^2}$$

Friction Factor for Laminar Flow

For orderly laminar flow, the friction factor has a simple, linear relationship with the Reynolds Number

Friction Factor for Laminar Flow

$$f \times \frac{L}{D} \times \frac{v^2}{2g} = \frac{32\eta Lv}{\gamma D^2}$$
$$f = \frac{32\eta Lv}{\gamma D^2} \times \frac{D2g}{Lv^2} = \frac{64\eta g}{v D\gamma}$$

Because $\rho = \gamma/g$, we get

$$f = \frac{64\eta}{vD\rho}$$

Copyright © 2022 Pearson Education, Inc. All Rights Reserved

 $f = \frac{0\pi}{N_{-}}$

Determine the energy loss if glycerin at 25°C flows 30 m through a standard DN 150-mm Schedule 80 pipe with an average velocity of 4.0 m/s.

Solution First, we must determine whether the flow is laminar or turbulent by evaluating the Reynolds number:

$$N_R = \frac{v D \rho}{\eta}$$

From Appendix B, we find that for glycerin at 25°C

$$ho = 1258 \text{ kg/m}^3$$

 $ho = 9.60 \times 10^{-1} \text{ Pa-s}$

Then, we have

$$N_R = \frac{(4.0)(0.1463)(1258)}{9.60 \times 10^{-1}} = 767$$

Because $N_R < 2000$, the flow is laminar.

Using Darcy's equation, we get

$$h_L = f \times \frac{L}{D} \times \frac{v^2}{2g}$$

$$f = \frac{64}{N_R} = \frac{64}{767} = 0.0835$$

$$h_L = 0.0835 \times \frac{30}{0.1463} \times \frac{(4.0)^2}{2(9.81)} m = 13.96 m$$

Notice that each term in each equation is expressed in the units of the SI unit system. Therefore, the resulting units for h_L are m or N·m/N. This means that 13.96 N·m of energy is lost by each newton of the glycerin as it flows along the 30 m of pipe.

Friction Factor for Turbulent Flow

TABLE 8.2 Pipe roughness—design values				
Material	Roughness ε (m)	Roughness ε (ft)		
Glass	Smooth	Smooth		
Plastic	3.0×10^{-7}	1.0×10^{-6}		
Drawn tubing; copper, brass, steel	1.5×10^{-6}	5.0×10^{-6}		
Steel, commercial or welded	4.6×10^{-5}	1.5×10^{-4}		
Galvanized iron	1.5×10^{-4}	5.0×10^{-4}		
Ductile iron—coated	1.2×10^{-4}	4.0×10^{-4}		
Ductile iron—uncoated	2.4×10^{-4}	8.0×10^{-4}		
Concrete, well made	1.2×10^{-4}	4.0×10^{-4}		
Riveted steel	1.8×10^{-3}	6.0×10^{-3}		

Friction Factor for Turbulent Flow

- Most industrial systems are turbulent, not laminar.
- Determining the friction factor is a more complex process, either relying on careful interpolation from Moody's Diagram or a lengthy equation given in Section 8.8 of the textbook.
- The friction factor depends on the velocity of fluid flow, the diameter of the pipe, the inside surface finish of the pipe, and the viscosity of the fluid.
- It take some practice to become proficient at reading the Moody's Diagram, and practice exercises with solutions are provided in the book.

Moody's diagram

Pearson

Determine the friction factor f if water at 160°F is flowing at 30.0 ft/s in a 1-in Schedule 40 steel pipe.

The Reynolds number must first be evaluated to determine whether the flow is laminar or turbulent:

$$N_R = \frac{vD}{v}$$

From Appendix F: D = 1.049 in = 0.0874 ft. For the water, from Appendix A.2, $\nu = 4.38 \times 10^{-6}$ ft²/s, then

$$N_R = \frac{(30.0)(0.0874)}{4.38 \times 10^{-6}} = 5.98 \times 10^5$$

Thus, the flow is turbulent. Now the relative roughness must be evaluated. From Table 8.2 we find $\varepsilon = 1.5 \times 10^{-4}$ ft. Then the relative roughness is

$$\frac{D}{\varepsilon} = \frac{0.0874 \text{ ft}}{1.5 \times 10^{-4} \text{ ft}} = 583$$

Notice that for D/ε to be a dimensionless ratio, both D and ε must be in the same units.

The final steps in the procedure are as follows:

1. Locate the Reynolds number on the abscissa of the Moody diagram:

$$N_R = 5.98 \times 10^5$$

- 2. Project vertically until the curve for $D/\varepsilon = 583$ is reached. You must interpolate between the curve for 500 and the one for 750 on the vertical line for $N_R = 5.98 \times 10^5$.
- **3.** Project horizontally to the left, and read f = 0.023.

If the flow velocity of water in Problem 8.5 was 0.45 ft/s with all other conditions being the same, determine the friction factor *f*.

$$N_R = \frac{\nu D}{\nu} = \frac{(0.45)(0.0874)}{4.38 \times 10^{-6}} = 8.98 \times 10^3$$
$$\frac{D}{\varepsilon} = \frac{0.0874}{1.5 \times 10^{-4}} = 583$$

Then, from Fig. 8.7, f = 0.0343. Notice that this is on the curved portion of the D/ε curve and that there is a significant increase in the friction factor over that in Example Problem 8.5.

Typically when engineering calculations become tedious, a software solution is available, and this is no exception.

PIPE-FLO is excellent software and is available to all users of this textbook. Tutorials are offered in the textbook, guiding students through responsible use of the program to solve problems like those solved manually.

Contact PIPE-FLO in Lacey, WA. More information is available on PIPE-FLO throughout the textbook.

Consider the use of PIPE-FLO software to make these calculations

Unnamed* — P	IPE-FLO P	rofessio	nal	
File Edit View	System	Insert	Tools	Help
	📼 Unit	ts		Kno
Toolbox	Fluid	d Zones		
✓ FLO-Sheet Tools	🕺 Spe	cificatio	ns	
Select	L Line	ups		
Q Zoom	Calo	ulate	F5	5
🖑 Pan				
Close Pipe				

Data entry is clean and complete, and extensive unit systems are available

ressure settings.	Quantity Type	Unit
ressure Reference: 🔿 absolute 🛛 💿 gage	Volumetric Flow	L/min
tmospheric Pressure: 14.7 psi a	 Velocity 	m/s
Calculate Atmospheric Pressure	Pressure	kPa
	Power	kW
low rate type:	Length	m
Volumetric O Mass O Standard	Elevation	m
	Pipe Diameter	mm
stom Units	Roughness	m
	Area	m²
	Volume	L
	Density	kg/m³
	Dynamic Viscosity	Pa*s
	Temperature	°C
	Specific Heat Cap	J/kgK
	Heat Transfer Coe	W/m²K
	Heat Transfer Rate	kW
	Thermal Capacitar	W/°C
	Thermal Insulance	m²K/W
	Thermal Resistanc	°C/W
	Flow Coefficient	Kv

Standard materials are available, saving the time to look up all values

 > Cc > Cc > D > D > D > PP > PP > P > Re > SS > St ✓ St 	d Pipe Tables opper Pipe B42 opper Tube H23 uctile Iron AWWA C151 Mech uctile Iron AWWA C151 Push-On on Pipe (IPS) E Pipe ASTM F714 (DIPS) E Pipe ASTM F714 (ISO 161) E Pipe ASTM F714 D3035 (IPS) VC Plastic Pipe ed Brass Pipe B43 Steel ASTM-A-269 tainless Steel ASME B36.19M teel ASME B.36.10M 5 10 20 30		Pipe Material: Stee Schedule: 40 Roughness: 4.57 C: 140 Size Range: 6 mm Sizing Criteria Criteria: None Design Limits Velocitv (m/s) Pressure (kPa o Revnolds No	M ASME B.36.10M	max] n
	40	~				
Downlo	ad Pipe Tables					

Solutions are graphical, clear, complete, and accurate.

\square			
	Pipe 1 Flow: 520.3	L/min	Flow Demand 1 P Total: 538.4 kPa g
Tank1 Set P: 750 kPa g	Property Grid		
	Property	Value	^
	Name	Pipe 1	
1	> Fluid Zone	Water @ 25C	
	> Specification	Steel Sched 40	
1	✓ Size	50 mm	
	I.D.	52.5 mm	
	Length	100 m	
	K (Valves & Fittings)		
1 1 1	Close Pipe		
	Prevent Backflow		
	✓ Pipe Results		
	Flow Rate	520.3 L/min	
	Velocity	4.006 m/s	
	Vmax	0 m/s	
	Total Pressure Drop	309.4 kPa	
	V&F Pressure Drop	0 kPa	
	Head Loss	31.65 m	

Fire protection system for Problem 8.33

Well Pump for Problem 8.34

Copyright $\ensuremath{\textcircled{C}}$ 2022 Pearson Education, Inc. All Rights Reserved

Fertilizer truck for Problem 8.36

Water supply system for Problem 8.40

Reservoir pump for Problems 8.44 and 8.45

Oil recirculation system for Problem 8.47

Copyright

