
An-Najah National University
Faculty of Engineering and IT

Energy Engineering & Environment Dept.
Modeling & Simulating Energy Systems

(10656312)

Dr. Mohammed F. Alsayed

Introduction

• What is energy modeling and simulation?

• Why energy modeling and simulation?

• How to model and simulate energy systems?

• How to become good in energy modeling and simulation?

Dr. Alsayed - Energy Modeling & Simulation

Lets start with very simple examples

Dr. Alsayed - Energy Modeling & Simulation

Ex. 1: Residential solar water heater

• What equations and data do we need to
model and simulate the system?

• Output required!!

Dr. Alsayed - Energy Modeling & Simulation

Ex. 1: Residential solar water heater

of days month MJ/m2 Ta Tm (tap) L (MJ)
31 January 12.13 7.7 12.7 61.29
28 February 15.12 8.2 13.2 54.77
31 March 19.08 10.4 15.4 57.79
30 April 24.52 15.1 22 47.65
31 May 28.19 19.1 22 49.24
30 June 30.85 21.4 23.5 45.77
31 July 30.24 23.1 18.1 54.29
31 August 28.26 23.1 18.1 54.29
30 September 24.23 21.8 16.8 54.17
31 October 19.01 19.1 23.1 47.82
30 November 13.46 14.1 19.1 51.29
31 December 10.98 9.7 14.7 58.70

Dr. Alsayed - Energy Modeling & Simulation

Ex. 1: Residential solar water heater

• Conclusions:

• Energy balance & mass balance are essential.

• Data visualization is an art.

• Accuracy is not cheap.

Dr. Alsayed - Energy Modeling & Simulation

Ex. 2: Building simulation using Energy 3D software

• Download it free from:

• Energy3D (free) download Windows version
(freedownloadmanager.org)

• What do think the main differences between the two approaches?

• Which one you liked more?

Dr. Alsayed - Energy Modeling & Simulation

https://en.freedownloadmanager.org/Windows-PC/Energy3D-FREE.html

Ex. 3: Building AC simulation

Dr. Alsayed - Energy Modeling & Simulation

0

10

20

30

40

50

60

70

80

90

M
W

h

• Use linear
regression to
develop a model.

Ex. 4: Population versus energy consumption

• Use the PCBS website to find population and energy consumption
historical data. Then, develop suitable modeling equation.

Dr. Alsayed - Energy Modeling & Simulation

Dr. Alsayed - Energy Modeling & Simulation

Textbook & Outlines

Dr. Alsayed - Energy Modeling & Simulation

Textbook and outlines

• Online Resources
• You can find all the supplementary resources for the book online at
• https://nostarch.com/pythoncrashcourse2e/ or

http://ehmatthes.github.io/pcc_2e/.
• These resources include:

• Setup instructions These instructions are identical to what’s in the book but include
active links you can click for all the different pieces.

• Updates Python, like all languages, is constantly evolving.
• Solutions to exercises You should spend significant time on your own attempting the

exercises in the “Try It Yourself” sections. But if you’re stuck and can’t make any
progress, solutions to most of the exercises are online.

• Cheat sheets A full set of downloadable cheat sheets for a quick reference to major
concepts is also online.

Dr. Alsayed - Energy Modeling & Simulation

https://nostarch.com/pythoncrashcourse2e/
http://ehmatthes.github.io/pcc_2e/

Why Python?

• Python is an incredibly efficient language: your programs will do more
in fewer lines of code.

• Python’s syntax will also help you write “clean” code. Your code will be
easy to read, easy to debug, and easy to extend and build upon
compared to other languages.

• Python is also used heavily in scientific fields for academic research
and applied work.

• Python community includes an incredibly diverse and welcoming
group of people.

Dr. Alsayed - Energy Modeling & Simulation

Chapter 1: Getting Started

Dr. Alsayed - Energy Modeling & Simulation

Python Versions

• As of this writing, the latest version is Python 3.7, but everything in
this book should run on Python 3.6 or later.

• Appendix A contains a comprehensive guide to installing the latest
version of Python on each major operating system as well.

Dr. Alsayed - Energy Modeling & Simulation

PYTHON installation

• Python on windows

• Installing Python
• First, check whether Python is installed on your system. Open a command

window by entering command into the Start menu or by holding down the
shift key while right-clicking on your desktop and selecting Open command
window here from the menu.

• In the terminal window, enter python in lowercase. If you get a Python prompt
(>>>) in response, Python is installed on your system. If you see an error
message telling you that python is not a recognized command, Python isn’t
installed.

Dr. Alsayed - Energy Modeling & Simulation

• In that case, or if you see a version of Python earlier than Python 3.6,
you need to download a Python installer for Windows.

• Go to https://python.org/

• Hover over the Downloads link. You should see a button for
downloading the latest version of Python. Click the button, which
should automatically start downloading the correct installer for your
system.

Dr. Alsayed - Energy Modeling & Simulation

PYTHON installation

https://python.org/

• When you click the link, you will go to:

Dr. Alsayed - Energy Modeling & Simulation

PYTHON installation

• Go to downloads and select ‘’Windows’’

Dr. Alsayed - Energy Modeling & Simulation

PYTHON installation

• After you’ve downloaded the file, run the installer. Make sure you select the option Add
Python to PATH, which will make it easier to configure your system correctly.

Dr. Alsayed - Energy Modeling & Simulation

PYTHON installation

• Running Python in a Terminal Session
• Open a command window and enter python in lowercase. You should see a

Python prompt (>>>), which means Windows has found the version of Python
you just installed.

Dr. Alsayed - Energy Modeling & Simulation

PYTHON installation

• Enter the following line in your Python session, and make sure you see
the output Hello Python interpreter!

• Any time you want to run a snippet of Python code, open a command
window and start a Python terminal session. To close the terminal
session, press ctrl-Z and then press enter, or enter the command exit().

Dr. Alsayed - Energy Modeling & Simulation

PYTHON installation

• Installing Sublime Text

• You can download an installer for Sublime Text at:

• https://sublimetext.com/

• Click the download link and look for a Windows installer. After
downloading the installer, run the installer and accept all of its
defaults.

Dr. Alsayed - Energy Modeling & Simulation

PYTHON installation

https://sublimetext.com/

Dr. Alsayed - Energy Modeling & Simulation

PYTHON installation

Running a Hello World Program

• Configuring Sublime Text to Use the Correct Python Version
• If the python command on your system runs Python 3, you won’t need to

configure anything and can skip to the next section. If you use the python3
command, you’ll need to configure Sublime Text to use the correct Python
version when it runs your programs.

• Click the Sublime Text icon to launch it, or search for Sublime Text in your
system’s search bar and then launch it. Go to Tools → Build System → New
Build System, which will open a new configuration file for you. Delete what you
see and enter the following:

Dr. Alsayed - Energy Modeling & Simulation

Dr. Alsayed - Energy Modeling & Simulation

Running a Hello World Program

• For easy copy and paste:
• "cmd": ["python3", "-u", "$file"],

• This code tells Sublime Text to use your system’s python3 command
when running your Python program files. Save the file as
Python3.sublime-build in the default directory that Sublime Text opens
when you choose Save.

Dr. Alsayed - Energy Modeling & Simulation

Running a Hello World Program

• Running hello_world.py
• Before you write your first program, make a folder called python_work

somewhere on your system for your projects.

• It’s best to use lowercase letters and underscores for spaces in file and folder
names, because Python uses these naming conventions.

• Open Sublime Text, and save an empty Python file (File → Save As) called
hello_world.py in your python_work folder.

• The extension .py tells Sublime Text that the code in your file is written in
Python, which tells it how to run the program and highlight the text in a helpful
way. After you’ve saved your file, enter the following line in the text editor:

Dr. Alsayed - Energy Modeling & Simulation

Running a Hello World Program

• If the python command works on your system, you can run your
program by selecting Tools → Build in the menu or by pressing ctrl-B.

• If you had to configure Sublime Text in the previous section, select
Tools → Build System and then select Python.

• From now on you’ll be able to select Tools → Build or just press ctrl-B
to run your programs.

Dr. Alsayed - Energy Modeling & Simulation

Running a Hello World Program

• When a program contains a significant error, Python displays a traceback, which is
an error report.

• Step away from your computer, take a short break, and then try again.

• Start over again.

• Ask someone else to follow the steps in this chapter, on your computer or a
different one, and watch what they do carefully.

• Find someone who knows Python and ask them to help you get set up.

• The setup instructions in this chapter are also available through the book’s
companion website at https://nostarch.com/pythoncrashcourse2e/.

• Ask for help online. Appendix C provides a number of resources, such as forums
and live chat sites, where you can ask for solutions from people who’ve already
worked through the issue you’re currently facing.

Dr. Alsayed - Energy Modeling & Simulation

Troubleshooting

https://nostarch.com/pythoncrashcourse2e/

• Most of the programs you write in your text editor you’ll run directly
from the editor.

• You can do this on any system with Python installed if you know how
to access the directory where the program file is stored.

• To try this, make sure you’ve saved the hello_world.py file in the
python_work folder on your desktop.

Dr. Alsayed - Energy Modeling & Simulation

Running Python Programs from a Terminal

• On Windows
• You can use the terminal command cd, for change directory, to navigate

through your filesystem in a command window. The command dir, for
directory, shows you all the files that exist in the current directory. Open a new
terminal window and enter the following commands to run hello_world.py:

Dr. Alsayed - Energy Modeling & Simulation

Running Python Programs from a Terminal

Try It Yourself

• 1-1. python.org: Explore the Python home page (https://python.org/) to find
topics that interest you.

• 1-2. Hello World Typos: Open the hello_world.py file you just created. Make
a typo somewhere in the line and run the program again. Can you make a
typo that generates an error? Can you make sense of the error message?
Can you make a typo that doesn’t generate an error? Why do you think it
didn’t make an error?

• 1-3. Infinite Skills: If you had infinite programming skills, what would you
build? You’re about to learn how to program. If you have an end goal in
mind, you’ll have an immediate use for your new skills; now is a great time
to draft descriptions of what you want to create. It’s a good habit to keep an
“ideas” notebook that you can refer to whenever you want to start a new
project. Take a few minutes now to describe three programs you want to
create.

Dr. Alsayed - Energy Modeling & Simulation

Chapter 2: Variables and
Simple Data Types

Dr. Alsayed - Energy Modeling & Simulation

Variables

• Let’s try using a variable in hello_world.py. Add a new line at the
beginning of the file, and modify the second line:

• Run this program to see what happens. You should see the same
output you saw previously:

Dr. Alsayed - Energy Modeling & Simulation

• Let’s expand on this program by modifying hello_world.py to print a
second message. Add a blank line to hello_world.py, and then add two
new lines of code:

• Now when you run hello_world.py, you should see two lines of output:

Dr. Alsayed - Energy Modeling & Simulation

Variables

Naming and Using Variables

• Be sure to keep the following variable rules in mind:
• Variable names can contain only letters, numbers, and underscores. They can start

with a letter or an underscore, but not with a number. For instance, you can call a
variable message_1 but not 1_message.

• Spaces are not allowed in variable names, but underscores can be used to separate
words in variable names.

• Avoid using Python keywords and function names as variable names; that is, do not
use words that Python has reserved for a particular programmatic purpose, such as
the word print. (See “Python Keywords and Built-in Functions” on page 471.)

• Variable names should be short but descriptive. For example, name is better than n,
student_name is better than s_n, and name_length is better than
length_of_persons_name.

• Be careful when using the lowercase letter l and the uppercase letter O because they
could be confused with the numbers 1 and 0.

Dr. Alsayed - Energy Modeling & Simulation

• Note:

• The Python variables you’re using at this point should be lowercase.
You won’t get errors if you use uppercase letters, but uppercase letters
in variable names have special meanings that we’ll discuss in later
chapters

Dr. Alsayed - Energy Modeling & Simulation

Naming and Using Variables

Avoiding Name Errors When Using Variables

• We’ll write some code that generates an error on purpose.

• The Python interpreter doesn’t spellcheck your code, but it does
ensure that variable names are spelled consistently

Dr. Alsayed - Energy Modeling & Simulation

Variables Are Labels

• Variables are often described as boxes you can store values in. This
idea can be helpful the first few times you use a variable, but it isn’t
an accurate way to describe how variables are represented internally
in Python.

• It’s much better to think of variables as labels that you can assign to
values. You can also say that a variable references a certain value.

Dr. Alsayed - Energy Modeling & Simulation

Good Advice

• The best way to understand new programming concepts is to try
using them in your programs. If you get stuck while working on an
exercise in this book, try doing something else for a while. If you’re
still stuck, review the relevant part of that chapter.

• If you still need help, see the suggestions in Appendix C.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• Write a separate program to accomplish each of these exercises. Save
each program with a filename that follows standard Python
conventions, using lowercase letters and underscores, such as
simple_message.py and simple_messages.py.

• 2-1. Simple Message: Assign a message to a variable, and then print
that message.

• 2-2. Simple Messages: Assign a message to a variable, and print that
message. Then change the value of the variable to a new message,
and print the new message.

Dr. Alsayed - Energy Modeling & Simulation

Strings

• A string is a series of characters. Anything inside quotes is considered
a string in Python, and you can use single or double quotes around
your strings like this:

Dr. Alsayed - Energy Modeling & Simulation

Changing Case in a String with Methods

• Try

• A method is an action that Python can perform on a piece of data. The dot
(.) after name in name.title() tells Python to make the title() method act on
the variable name.

• The title() method changes each word to title case, where each word
begins with a capital letter. This is useful because you’ll often want to think
of a name as a piece of information. For example, you might want your
program to recognize the input values Ada, ADA, and ada as the same
name, and display all of them as Ada.

Dr. Alsayed - Energy Modeling & Simulation

• Try also

• The lower() method is particularly useful for storing data. Many times
you won’t want to trust the capitalization that your users provide, so
you’ll convert strings to lowercase before storing them. Then when
you want to display the information, you’ll use the case that makes
the most sense for each string.

Dr. Alsayed - Energy Modeling & Simulation

Changing Case in a String with Methods

• In some situations, you’ll want to use a variable’s value inside a string.

• These strings are called f-strings. The f is for format, because Python
formats the string by replacing the name of any variable in braces
with its value.

Dr. Alsayed - Energy Modeling & Simulation

Using Variables in Strings

• Try

Dr. Alsayed - Energy Modeling & Simulation

Using Variables in Strings

Adding Whitespace to Strings with Tabs or Newlines

• To add a tab to your text, use the character combination \t:

• To add a newline in a string, use the character combination \n:

Dr. Alsayed - Energy Modeling & Simulation

• You can combine it together

Dr. Alsayed - Energy Modeling & Simulation

Adding Whitespace to Strings with Tabs or Newlines

Stripping Whitespace

• Extra whitespace can be confusing in your programs. To programmers
'python' and 'python ' look pretty much the same. But to a program,
they are two different strings.

• Python can look for extra whitespace on the right and left sides of a
string. To ensure that no whitespace exists at the right end of a string,
use the rstrip() method.

Dr. Alsayed - Energy Modeling & Simulation

• When you ask Python for this value in a terminal session, you can see
the space at the end of the value. When the rstrip() method acts on
the variable favorite_language, this extra space is removed. However,
it is only removed temporarily.

• To remove the whitespace from the string permanently, you have to
associate the stripped value with the variable name:

Dr. Alsayed - Energy Modeling & Simulation

Stripping Whitespace

• You can also strip whitespace from the left side of a string using the lstrip()
method, or from both sides at once using strip():

• In the real world, these stripping functions are used most often to clean up
user input before it’s stored in a program.

Dr. Alsayed - Energy Modeling & Simulation

Stripping Whitespace

Avoiding Syntax Errors with Strings

• A syntax error occurs when Python doesn’t recognize a section of your
program as valid Python code.

• For example, if you use an apostrophe within single quotes, you’ll
produce an error. This happens because Python interprets everything
between the first single quote and the apostrophe as a string. It then
tries to interpret the rest of the text as Python code, which causes
errors.

Dr. Alsayed - Energy Modeling & Simulation

• Develop the following program and call it apostrophe.py

Dr. Alsayed - Energy Modeling & Simulation

Avoiding Syntax Errors with Strings

• Save each of the following exercises as a separate file with a name like
name_cases.py. If you get stuck, take a break or see the suggestions in
Appendix C.

• 2-3. Personal Message: Use a variable to represent a person’s name,
and print a message to that person. Your message should be simple,
such as, “Hello Eric, would you like to learn some Python today?”

• 2-4. Name Cases: Use a variable to represent a person’s name, and
then print that person’s name in lowercase, uppercase, and title case.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 2-5. Famous Quote: Find a quote from a famous person you admire.
Print the quote and the name of its author. Your output should look
something like the following, including the quotation marks:
• Albert Einstein once said, “A person who never made a mistake never tried

anything new.”

• 2-6. Famous Quote 2: Repeat Exercise 2-5, but this time, represent the
famous person’s name using a variable called famous_person. Then
compose your message and represent it with a new variable called
message. Print your message.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

Try It Yourself

• 2-7. Stripping Names: Use a variable to represent a person’s name, and
include some whitespace characters at the beginning and end of the
name. Make sure you use each character combination, "\t" and "\n",
at least once. Print the name once, so the whitespace around the
name is displayed. Then print the name using each of the three
stripping functions, lstrip(), rstrip(), and strip().

Dr. Alsayed - Energy Modeling & Simulation

Numbers

• Let’s first look at how Python manages integers, because they’re the
simplest to work with.

• You can add (+), subtract (-), multiply (*), and divide (/) integers in
Python.

Dr. Alsayed - Energy Modeling & Simulation

• Python uses two multiplication symbols to represent exponents:

Dr. Alsayed - Energy Modeling & Simulation

Numbers

• Python supports the order of operations too, so you can use multiple
operations in one expression. You can also use parentheses to modify
the order of operations.

• The spacing in these examples has no effect on how Python evaluates
the expressions.

Dr. Alsayed - Energy Modeling & Simulation

Numbers

Floats

• Python calls any number with a decimal point a float.

Dr. Alsayed - Energy Modeling & Simulation

Integers and Floats

• When you divide any two numbers, even if they are integers that
result in a whole number, you’ll always get a float.

• If you mix an integer and a float in any other operation, you’ll get a
float as well.

Dr. Alsayed - Energy Modeling & Simulation

Underscores in Numbers

• When you’re writing long numbers, you can group digits using
underscores to make large numbers more readable:

Dr. Alsayed - Energy Modeling & Simulation

Multiple Assignment

• You can assign values to more than one variable using just a single
line.

• You need to separate the variable names with commas, and do the
same with the values, and Python will assign each value to its
respectively positioned variable. As long as the number of values
matches the number of variables, Python will match them up
correctly.

Dr. Alsayed - Energy Modeling & Simulation

Constants

• A constant is like a variable whose value stays the same throughout
the life of a program.

• Python doesn’t have built-in constant types, but Python programmers
use all capital letters to indicate a variable should be treated as a
constant and never be changed.

• When you want to treat a variable as a constant in your code, make
the name of the variable all capital letters.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 2-8. Number Eight: Write addition, subtraction, multiplication, and
division operations that each result in the number 8. Be sure to
enclose your operations in print() calls to see the results. You should
create four lines that look like this:
• print(5+3)

• Your output should simply be four lines with the number 8 appearing once on
each line.

• 2-9. Favorite Number: Use a variable to represent your favorite
number. Then, using that variable, create a message that reveals your
favorite number. Print that message.

Dr. Alsayed - Energy Modeling & Simulation

Comments

• A comment allows you to write notes in English within your programs.

• In Python, the hash mark (#) indicates a comment. Anything following
a hash mark in your code is ignored by the Python interpreter.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 2-10. Adding Comments: Choose two of the programs you’ve written,
and add at least one comment to each. If you don’t have anything
specific to write because your programs are too simple at this point,
just add your name and the current date at the top of each program
file. Then write one sentence describing what the program does.

Dr. Alsayed - Energy Modeling & Simulation

The Zen of Python

• Python community’s philosophy is contained in “The Zen of Python” by
Tim Peters.

Dr. Alsayed - Energy Modeling & Simulation

Chapter 3: Introducing Lists

Dr. Alsayed - Energy Modeling & Simulation

What Is a List?

• A list is a collection of items in a particular order.

• You can make a list that includes the letters of the alphabet, the digits
from 0–9, or the names of all the people in your family.

• In Python, square brackets ([]) indicate a list, and individual elements
in the list are separated by commas.

Dr. Alsayed - Energy Modeling & Simulation

What Is a List?

• Because this isn’t the output you want your users to see, let’s learn
how to access the individual items in a list.

Dr. Alsayed - Energy Modeling & Simulation

Accessing Elements in a List

• You can access any element in a list by telling Python the position, or
index.

Dr. Alsayed - Energy Modeling & Simulation

Index Positions Start at 0, Not 1

• Python considers the first item in a list to be at position 0, not
position 1.

• The second item in a list has an index of 1. Using this counting system,
you can get any element you want from a list by subtracting one from
its position in the list.

Dr. Alsayed - Energy Modeling & Simulation

Index Positions Start at 0, Not 1

• Python has a special syntax for accessing the last element in a list. By
asking for the item at index -1, Python always returns the last item in
the list:

• This convention extends to other negative index values as well. The
index -2 returns the second item from the end of the list, the index -3
returns the third item from the end, and so forth.

Dr. Alsayed - Energy Modeling & Simulation

Using Individual Values from a List

• You can use individual values from a list just as you would any other
variable.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• Try these short programs to get some firsthand experience with Python’s lists.
You might want to create a new folder for each chapter’s exercises to keep them
organized.

• 3-1. Names: Store the names of a few of your friends in a list called names. Print
each person’s name by accessing each element in the list, one at a time.

• 3-2. Greetings: Start with the list you used in Exercise 3-1, but instead of just
printing each person’s name, print a message to them. The text of each message
should be the same, but each message should be personalized with the person’s
name.

• 3-3. Your Own List: Think of your favorite mode of transportation, such as a
motorcycle or a car, and make a list that stores several examples. Use your list to
print a series of statements about these items, such as “I would like to own a
Honda motorcycle.”

Dr. Alsayed - Energy Modeling & Simulation

Changing, Adding, and Removing Elements

• Modifying Elements in a List
• The syntax for modifying an element is similar to the syntax for accessing an

element in a list.

Dr. Alsayed - Energy Modeling & Simulation

Changing, Adding, and Removing Elements

• Adding Elements to a List
• You might want to add a new element to a list for many reasons.

• Appending Elements to the End of a List
• The simplest way to add a new element to a list is to append the item to the list. When

you append an item to a list, the new element is added to the end of the list.

Dr. Alsayed - Energy Modeling & Simulation

Changing, Adding, and Removing Elements

• The append() method makes it easy to build lists dynamically.

• For example, you can start with an empty list and then add items to
the list using a series of append() calls. Using an empty list, let’s add
the elements 'honda', 'yamaha', and 'suzuki' to the list:

Dr. Alsayed - Energy Modeling & Simulation

Changing, Adding, and Removing Elements

• Inserting Elements into a List
• You can add a new element at any position in your list by using the insert()

method.

Dr. Alsayed - Energy Modeling & Simulation

Changing, Adding, and Removing Elements

• Removing Elements from a List
• Removing an Item Using the del Statement

• If you know the position of the item you want to remove from a list, you can use the del
statement.

Dr. Alsayed - Energy Modeling & Simulation

Changing, Adding, and Removing Elements

Dr. Alsayed - Energy Modeling & Simulation

Changing, Adding, and Removing Elements

• Removing an Item Using the pop() Method
• For example, you might want to get the x and y position of an alien that was

just shot down, so you can draw an explosion at that position.

• In a web application, you might want to remove a user from a list of active
members and then add that user to a list of inactive members.

• The pop() method removes the last item in a list, but it lets you work
with that item after removing it.

Dr. Alsayed - Energy Modeling & Simulation

Changing, Adding, and Removing Elements

Dr. Alsayed - Energy Modeling & Simulation

Changing, Adding, and Removing Elements

• Popping Items from any Position in a List
• You can use pop() to remove an item from any position in a list by including

the index of the item you want to remove in parentheses.

Dr. Alsayed - Energy Modeling & Simulation

Changing, Adding, and Removing Elements

• Remember that each time you use pop(), the item you work with is
no longer stored in the list.

• If you’re unsure whether to use the del statement or the pop()
method, here’s a simple way to decide: when you want to delete an
item from a list and not use that item in any way, use the del
statement; if you want to use an item as you remove it, use the pop()
method.

Dr. Alsayed - Energy Modeling & Simulation

Changing, Adding, and Removing Elements

• Removing an Item by Value
• Sometimes you won’t know the position of the value you want to remove

from a list. If you only know the value of the item you want to remove, you
can use the remove() method.

Dr. Alsayed - Energy Modeling & Simulation

Changing, Adding, and Removing Elements

Dr. Alsayed - Energy Modeling & Simulation

Changing, Adding, and Removing Elements

• Note: the remove() method deletes only the first occurrence of the
value you specify. If there’s a possibility the value appears more than
once in the list, you’ll need to use a loop to make sure all occurrences
of the value are removed. You’ll learn how to do this in Chapter 7.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• The following exercises are a bit more complex than those in Chapter
2, but they give you an opportunity to use lists in all of the ways
described.

• 3-4. Guest List: If you could invite anyone, living or deceased, to
dinner, who would you invite? Make a list that includes at least three
people you’d like to invite to dinner. Then use your list to print a
message to each person, inviting them to dinner.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 3-5. Changing Guest List: You just heard that one of your guests can’t
make the dinner, so you need to send out a new set of invitations.
You’ll have to think of someone else to invite.
• Start with your program from Exercise 3-4. Add a print() call at the end of

your program stating the name of the guest who can’t make it.

• Modify your list, replacing the name of the guest who can’t make it with the
name of the new person you are inviting.

• Print a second set of invitation messages, one for each person who is still in
your list.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 3-6. More Guests: You just found a bigger dinner table, so now more
space is available. Think of three more guests to invite to dinner.
• Start with your program from Exercise 3-4 or Exercise 3-5. Add a print() call to

the end of your program informing people that you found a bigger dinner
table.

• Use insert() to add one new guest to the beginning of your list.

• Use insert() to add one new guest to the middle of your list.

• Use append() to add one new guest to the end of your list.

• Print a new set of invitation messages, one for each person in your list.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 3-7. Shrinking Guest List: You just found out that your new dinner table won’t
arrive in time for the dinner, and you have space for only two guests.

• Start with your program from Exercise 3-6. Add a new line that prints a message
saying that you can invite only two people for dinner.

• Use pop() to remove guests from your list one at a time until only two names
remain in your list. Each time you pop a name from your list, print a message to
that person letting them know you’re sorry you can’t invite them to dinner.

• Print a message to each of the two people still on your list, letting them know
they’re still invited.

• Use del to remove the last two names from your list, so you have an empty list.
Print your list to make sure you actually have an empty list at the end of your
program.

Dr. Alsayed - Energy Modeling & Simulation

Organizing a List

• Often, your lists will be created in an unpredictable order, because
you can’t always control the order in which your users provide their
data.

• Although this is unavoidable in most circumstances, you’ll frequently
want to present your information in a particular order.

• Sometimes you’ll want to preserve the original order of your list, and
other times you’ll want to change the original order.

Dr. Alsayed - Energy Modeling & Simulation

Sorting a List Permanently with the sort() Method

• Imagine we have a list of cars and want to change the order of the list
to store them alphabetically.

Dr. Alsayed - Energy Modeling & Simulation

Sorting a List Permanently with the sort() Method

• You can also sort this list in reverse alphabetical order by passing the
argument reverse=True to the sort() method.

Dr. Alsayed - Energy Modeling & Simulation

Sorting a List Temporarily with the sorted() Function

• To maintain the original order of a list but present it in a sorted order,
you can use the sorted() function. The sorted() function lets you
display your list in a particular order but doesn’t affect the actual
order of the list.

Dr. Alsayed - Energy Modeling & Simulation

Sorting a List Temporarily with the sorted() Function

• The sorted() function can also accept a reverse=True argument if you
want to display a list in reverse alphabetical order.

• Note: Sorting a list alphabetically is a bit more complicated when all
the values are not in lowercase. There are several ways to interpret
capital letters when determining a sort order, and specifying the exact
order can be more complex than we want to deal with at this time.
However, most approaches to sorting will build directly on what you
learned in this section.

Dr. Alsayed - Energy Modeling & Simulation

Printing a List in Reverse Order

• To reverse the original order of a list, you can use the reverse()
method.

• The reverse() method changes the order of a list permanently, but
you can revert to the original order anytime by applying reverse() to
the same list a second time.

Dr. Alsayed - Energy Modeling & Simulation

Finding the Length of a List

• You can quickly find the length of a list by using the len() function.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 3-8. Seeing the World: Think of at least five places in the world you’d like to visit.

• Store the locations in a list. Make sure the list is not in alphabetical order.

• Print your list in its original order. Don’t worry about printing the list neatly, just print it as a raw
Python list.

• Use sorted() to print your list in alphabetical order without modifying the actual list.

• Show that your list is still in its original order by printing it.

• Use sorted() to print your list in reverse alphabetical order without changing the order of the
original list.

• Show that your list is still in its original order by printing it again.

• Use reverse() to change the order of your list. Print the list to show that its order has changed.

• Use reverse() to change the order of your list again. Print the list to show it’s back to its original
order.

• Use sort() to change your list so it’s stored in alphabetical order. Print the list to show that its
order has been changed.

• Use sort() to change your list so it’s stored in reverse alphabetical order. Print the list to show that
its order has changed.

Try It Yourself

• 3-9. Dinner Guests: Working with one of the programs from Exercises
3-4 through 3-7 (page 42), use len() to print a message indicating the
number of people you are inviting to dinner.

• 3-10. Every Function: Think of something you could store in a list. For
example, you could make a list of mountains, rivers, countries, cities,
languages, or anything else you’d like. Write a program that creates a
list containing these items and then uses each function introduced in
this chapter at least once.

Dr. Alsayed - Energy Modeling & Simulation

Avoiding Index Errors When Working with Lists

• One type of error is common to see when you’re working with lists for
the first time. Let’s say you have a list with three items, and you ask
for the fourth item:

Dr. Alsayed - Energy Modeling & Simulation

Avoiding Index Errors When Working with Lists

• Keep in mind that whenever you want to access the last item in a list
you use the index -1. This will always work, even if your list has
changed size since the last time you accessed it.

• The only time this approach will cause an error is when you request
the last item from an empty list.

Dr. Alsayed - Energy Modeling & Simulation

Avoiding Index Errors When Working with Lists

• Note: if an index error occurs and you can’t figure out how to resolve
it, try printing your list or just printing the length of your list. Your list
might look much different than you thought it did, especially if it has
been managed dynamically by your program. Seeing the actual list, or
the exact number of items in your list, can help you sort out such
logical errors.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 3-11. Intentional Error: If you haven’t received an index error in one
of your programs yet, try to make one happen. Change an index in
one of your programs to produce an index error. Make sure you
correct the error before closing the program.

Dr. Alsayed - Energy Modeling & Simulation

Chapter 4: Working With Lists

Dr. Alsayed - Energy Modeling & Simulation

What it is about?

• In Chapter 3 you learned how to make a simple list, and you learned
to work with the individual elements in a list.

• In this chapter you’ll learn how to loop through an entire list using
just a few lines of code regardless of how long the list is.

• Looping allows you to take the same action, or set of actions, with
every item in a list.

• As a result, you’ll be able to work efficiently with lists of any length,
including those with thousands or even millions of items.

Dr. Alsayed - Energy Modeling & Simulation

Looping Through an Entire List

• Let’s use a for loop to print out each name in a list of magicians:

Dr. Alsayed - Energy Modeling & Simulation

A Closer Look at Looping

• For example, here’s a good way to start a for loop for a list of cats, a
list of dogs, and a general list of items:

• Using singular and plural names can help you identify whether a
section of code is working with a single element from the list or the
entire list.

Dr. Alsayed - Energy Modeling & Simulation

Doing More Work Within a for Loop

• You can do just about anything with each item in a for loop. Let’s
build on the previous example by printing a message to each
magician, telling them that they performed a great trick:

Dr. Alsayed - Energy Modeling & Simulation

Doing More Work Within a for Loop

• You can also write as many lines of code as you like in the for loop.

• Every indented line following the line for magician in magicians is
considered inside the loop, and each indented line is executed once
for each value in the list.

• Therefore, you can do as much work as you like with each value in the
list.

Dr. Alsayed - Energy Modeling & Simulation

Doing Something After a for Loop

• Start the new line without ‘indentation’’

Dr. Alsayed - Energy Modeling & Simulation

Avoiding Indentation Errors

• Python uses indentation to determine how a line, or group of lines, is
related to the rest of the program.

• Basically, it uses whitespace to force you to write neatly formatted
code with a clear visual structure.

• As you begin to write code that relies on proper indentation, you’ll
need to watch for a few common indentation errors.

• For example, people sometimes indent lines of code that don’t need
to be indented or forget to indent lines that need to be indented.

Dr. Alsayed - Energy Modeling & Simulation

Avoiding Indentation Errors

• Forgetting to Indent
• Always indent the line after the for statement in a loop. If you forget, Python

will remind you:

Dr. Alsayed - Energy Modeling & Simulation

Avoiding Indentation Errors

• Forgetting to Indent Additional Lines
• Sometimes your loop will run without any errors but won’t produce the

expected result. This can happen when you’re trying to do several tasks in a
loop and you forget to indent some of its lines.

Dr. Alsayed - Energy Modeling & Simulation

Avoiding Indentation Errors

• Indenting Unnecessarily
• If you accidentally indent a line that doesn’t need to be indented, Python

informs you about the unexpected indent:

Dr. Alsayed - Energy Modeling & Simulation

Avoiding Indentation Errors

• Indenting Unnecessarily After the Loop
• Sometimes this prompts Python to report an error, but often this will result in

a logical error.

Dr. Alsayed - Energy Modeling & Simulation

Avoiding Indentation Errors

• Forgetting the Colon
• The colon at the end of a for statement tells Python to interpret the next line

as the start of a loop.

• If you accidentally forget the colon, you’ll get a syntax error because Python
doesn’t know what you’re trying to do.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 4-1. Pizzas: Think of at least three kinds of your favorite pizza. Store
these pizza names in a list, and then use a for loop to print the name
of each pizza.
• Modify your for loop to print a sentence using the name of the pizza instead

of printing just the name of the pizza. For each pizza you should have one line
of output containing a simple statement like I like pepperoni pizza.

• Add a line at the end of your program, outside the for loop, that states how
much you like pizza. The output should consist of three or more lines about
the kinds of pizza you like and then an additional sentence, such as I really
love pizza!

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 4-2. Animals: Think of at least three different animals that have a
common characteristic. Store the names of these animals in a list, and
then use a for loop to print out the name of each animal.
• Modify your program to print a statement about each animal, such as A dog

would make a great pet.

• Add a line at the end of your program stating what these animals have in
common. You could print a sentence such as Any of these animals would
make a great pet!

Dr. Alsayed - Energy Modeling & Simulation

Making Numerical Lists

• Using the range() Function
• Python’s range() function makes it easy to generate a series of numbers.

• For example, you can use the range() function to print a series of numbers like
this:

Dr. Alsayed - Energy Modeling & Simulation

Making Numerical Lists

• Using the range() Function – continued
• The range() function causes Python to start counting at the first value you give

it, and it stops when it reaches the second value you provide.

• Because it stops at that second value, the output never contains the end
value, which would have been 5 in this case.

• To print the numbers from 1 to 5, you would use range(1, 6):

Dr. Alsayed - Energy Modeling & Simulation

Making Numerical Lists

• Using the range() Function – continued
• If your output is different than what you expect when you’re using

• range(), try adjusting your end value by 1.

• You can also pass range() only one argument, and it will start the sequence of
numbers at 0.

• For example, range(6) would return the numbers from 0 through 5.

Dr. Alsayed - Energy Modeling & Simulation

Making Numerical Lists

• Using range() to Make a List of Numbers
• In the example in the previous section, we simply printed out a series of

numbers. We can use list() to convert that same set of numbers into a list.

Dr. Alsayed - Energy Modeling & Simulation

Making Numerical Lists

• Using range() to Make a List of Numbers - continued
• We can also use the range() function to tell Python to skip numbers in a given

range. If you pass a third argument to range(), Python uses that value as a
step size when generating numbers.

Dr. Alsayed - Energy Modeling & Simulation

Making Numerical Lists

• Using range() to Make a List of Numbers - continued
• You can create almost any set of numbers you want to using the

range()function.

• For example, consider how you might make a list of the first 10 square
numbers (that is, the square of each integer from 1 through 10).

• In Python, two asterisks (**) represent exponents.

Dr. Alsayed - Energy Modeling & Simulation

Making Numerical Lists

• Simple Statistics with a List of Numbers
• The examples in this section use short lists of numbers in order to fit easily on

the page. They would work just as well if your list contained a million or more
numbers.

Dr. Alsayed - Energy Modeling & Simulation

Making Numerical Lists

• List Comprehensions
• The approach described earlier for generating the list squares consisted of

using three or four lines of code.

• A list comprehension allows you to generate this same list in just one line of
code.

• A list comprehension combines the for loop and the creation of new elements
into one line, and automatically appends each new element.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 4-3. Counting to Twenty: Use a for loop to print the numbers from 1
to 20, inclusive.

• 4-4. One Million: Make a list of the numbers from one to one million,
and then use a for loop to print the numbers. (If the output is taking
too long, stop it by pressing ctrl-C or by closing the output window.)

• 4-5. Summing a Million: Make a list of the numbers from one to one
million, and then use min() and max() to make sure your list actually
starts at one and ends at one million. Also, use the sum() function to
see how quickly Python can add a million numbers.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 4-6. Odd Numbers: Use the third argument of the range() function to make
a list of the odd numbers from 1 to 20. Use a for loop to print each number.

• 4-7. Threes: Make a list of the multiples of 3 from 3 to 30. Use a for loop to
print the numbers in your list.

• 4-8. Cubes: A number raised to the third power is called a cube. For
example, the cube of 2 is written as 2**3 in Python. Make a list of the first
10 cubes (that is, the cube of each integer from 1 through 10), and use a
for loop to print out the value of each cube.

• 4-9. Cube Comprehension: Use a list comprehension to generate a list of
the first 10 cubes.

Dr. Alsayed - Energy Modeling & Simulation

Working with Part of a List

• In Python, you can also work with a specific group of items in a list,
which Python calls a slice.

• Slicing a List
• To make a slice, you specify the index of the first and last elements you want

to work with. As with the range() function, Python stops one item before the
second index you specify.

Dr. Alsayed - Energy Modeling & Simulation

Working with Part of a List

Dr. Alsayed - Energy Modeling & Simulation

Working with Part of a List

• A similar syntax works if you want a slice that includes the end of a
list.

Dr. Alsayed - Energy Modeling & Simulation

Working with Part of a List

• Recall that a negative index returns an element a certain distance from the
end of a list; therefore, you can output any slice from the end of a list. For
example, if we want to output the last three players on the roster, we can
use the slice players [-3:]:

• This prints the names of the last three players and would continue to work
as the list of players changes in size.

• Note: You can include a third value in the brackets indicating a slice. If a
third value is included, this tells Python how many items to skip between
items in the specified range.

Dr. Alsayed - Energy Modeling & Simulation

Working with Part of a List

• Looping Through a Slice
• You can use a slice in a for loop if you want to loop through a subset of the

elements in a list.

Dr. Alsayed - Energy Modeling & Simulation

Working with Part of a List

• Copying a List
• To copy a list, you can make a slice that includes the entire original list by

omitting the first index and the second index ([:]). This tells Python to make a
slice that starts at the first item and ends with the last item, producing a copy
of the entire list.

Dr. Alsayed - Energy Modeling & Simulation

Working with Part of a List

• To prove that we actually have two separate lists, we’ll add a new
food to each list and show that each list keeps track of the
appropriate person’s favorite foods.

Dr. Alsayed - Energy Modeling & Simulation

Working with Part of a List

• Be careful: If we had simply set friend_foods equal to my_foods, we
would not produce two separate lists. For example, here’s what
happens when you try to copy a list without using a slice.

Dr. Alsayed - Energy Modeling & Simulation

Working with Part of a List

• Instead of storing a copy of my_foods in friend_foods, we set
friend_foods equal to my_foods. This syntax actually tells Python to
associate the new variable friend_foods with the list that is already
associated with my_foods, so now both variables point to the same
list.

Dr. Alsayed - Energy Modeling & Simulation

Working with Part of a List

• Note: Don’t worry about the details in this example for now. Basically,
if you’re trying to work with a copy of a list and you see unexpected
behavior, make sure you are copying the list using a slice, as we did in
the first example.

Dr. Alsayed - Energy Modeling & Simulation

Try it yourself

• 4-10. Slices: Using one of the programs you wrote in this chapter, add
several lines to the end of the program that do the following:
• Print the message The first three items in the list are:. Then use a slice to

print the first three items from that program’s list.

• Print the message Three items from the middle of the list are:. Use a slice to
print three items from the middle of the list.

• Print the message The last three items in the list are:. Use a slice to print the
last three items in the list.

Dr. Alsayed - Energy Modeling & Simulation

Try it yourself

• 4-11. My Pizzas, Your Pizzas: Start with your program from Exercise 4-1
(page 56). Make a copy of the list of pizzas, and call it friend_pizzas. Then,
do the following:
• Add a new pizza to the original list.
• Add a different pizza to the list friend_pizzas.
• Prove that you have two separate lists. Print the message My favorite pizzas are:,

and then use a for loop to print the first list.
• Print the message My friend’s favorite pizzas are:, and then use a for loop to print

the second list. Make sure each new pizza is stored in the appropriate list.

• 4-12. More Loops: All versions of foods.py in this section have avoided
using for loops when printing to save space. Choose a version of foods.py,
and write two for loops to print each list of foods.

Dr. Alsayed - Energy Modeling & Simulation

Tuples

• The ability to modify lists is particularly important when you’re
working with a list of users on a website or a list of characters in a
game. However, sometimes you’ll want to create a list of items that
cannot change.

• Python refers to values that cannot change as immutable, and an
immutable list is called a tuple.

Dr. Alsayed - Energy Modeling & Simulation

Tuples

• Defining a Tuple
• A tuple looks just like a list except you use parentheses instead of square

brackets.

• Once you define a tuple, you can access individual elements by using each
item’s index, just as you would for a list.

Dr. Alsayed - Energy Modeling & Simulation

Tuples

• Let’s see what happens if we try to change one of the items in the
tuple dimensions.

Dr. Alsayed - Energy Modeling & Simulation

Tuples

• Note: Tuples are technically defined by the presence of a comma; the
parentheses make them look neater and more readable. If you want
to define a tuple with one element, you need to include a trailing
comma:

• It doesn’t often make sense to build a tuple with one element, but
this can happen when tuples are generated automatically.

Dr. Alsayed - Energy Modeling & Simulation

Tuples

• Looping Through All Values in a Tuple

Dr. Alsayed - Energy Modeling & Simulation

Tuples

• Writing over a Tuple
• Although you can’t modify a tuple, you can assign a new value to a variable

that represents a tuple.

Dr. Alsayed - Energy Modeling & Simulation

Try it yourself

• 4-13. Buffet: A buffet-style restaurant offers only five basic foods.
Think of five simple foods, and store them in a tuple.
• Use a for loop to print each food the restaurant offers.

• Try to modify one of the items, and make sure that Python rejects the change.

• The restaurant changes its menu, replacing two of the items with different
foods. Add a line that rewrites the tuple, and then use a for loop to print each
of the items on the revised menu.

Dr. Alsayed - Energy Modeling & Simulation

Styling Your Code

• The Style Guide
• When someone wants to make a change to the Python language, they write a

Python Enhancement Proposal (PEP). One of the oldest PEPs is PEP 8, which
instructs Python programmers on how to style their code.

• The Python style guide was written with the understanding that code is read
more often than it is written.

• Given the choice between writing code that’s easier to write or code that’s
easier to read, Python programmers will almost always encourage you to
write code that’s easier to read.

Dr. Alsayed - Energy Modeling & Simulation

Styling Your Code

• The Style Guide – cont.

• The following guidelines will help you write clear code from the start:
• Indentation

• PEP 8 recommends that you use four spaces per indentation level. Using four spaces
improves readability while leaving room for multiple levels of indentation on each line.

• Line Length
• Many Python programmers recommend that each line should be less than 80 characters.

• Note: Appendix B shows you how to configure your text editor so it always inserts four
spaces each time you press the tab key and shows a vertical guideline to help you follow
the 79-character limit.

Dr. Alsayed - Energy Modeling & Simulation

Styling Your Code

• The Style Guide – cont.
• Blank Lines

• To group parts of your program visually, use blank lines. You should use blank lines to
organize your files, but don’t do so excessively. By following the examples provided in
this book, you should strike the right balance. For example, if you have five lines of code
that build a list, and then another three lines that do something with that list, it’s
appropriate to place a blank line between the two sections.

Dr. Alsayed - Energy Modeling & Simulation

Try it yourself

• 4-14. PEP 8: Look through the original PEP 8 style guide at
https://python.org/dev/peps/pep-0008/. You won’t use much of it
now, but it might be interesting to skim through it.

• 4-15. Code Review: Choose three of the programs you’ve written in
this chapter and modify each one to comply with PEP 8:
• Use four spaces for each indentation level. Set your text editor to insert four

spaces every time you press tab, if you haven’t already done so (see Appendix
B for instructions on how to do this).

• Use less than 80 characters on each line, and set your editor to show a
vertical guideline at the 80th character position.

• Don’t use blank lines excessively in your program files.

Dr. Alsayed - Energy Modeling & Simulation

https://python.org/dev/peps/pep-0008/

Chapter 5: IF statements

Dr. Alsayed - Energy Modeling & Simulation

A Simple Example

Dr. Alsayed - Energy Modeling & Simulation

Conditional Tests

• Checking for Equality
• Most conditional tests compare the current value of a variable to a specific

value of interest.

Dr. Alsayed - Energy Modeling & Simulation

Conditional Tests

• Ignoring Case When Checking for Equality
• Testing for equality is case sensitive in Python.

Dr. Alsayed - Energy Modeling & Simulation

Conditional Tests

• Ignoring Case When Checking for Equality - continued
• In the previous example, this test would return True no matter how the value

'Audi' is formatted because the test is now case insensitive.

• The lower() function doesn’t change the value that was originally stored in
car, so you can do this kind of comparison without affecting the original
variable.

Dr. Alsayed - Energy Modeling & Simulation

Conditional Tests

• Ignoring Case When Checking for Equality - continued
• How can this be useful?

• Websites enforce certain rules for the data that users enter in a manner
similar to this. For example, a site might use a conditional test like this to
ensure that every user has a truly unique username, not just a variation on
the capitalization of another person’s username. When someone submits a
new username, that new username is converted to lowercase and compared
to the lowercase versions of all existing usernames. During this check, a
username like 'John' will be rejected if any variation of 'john’ is already in use.

Dr. Alsayed - Energy Modeling & Simulation

Conditional Tests

• Checking for Inequality
• The exclamation point represents not, as it does in many programming

languages.

Dr. Alsayed - Energy Modeling & Simulation

Conditional Tests

• Numerical Comparisons

Dr. Alsayed - Energy Modeling & Simulation

Conditional Tests

• Numerical Comparisons - continued
• You can include various mathematical comparisons in your conditional

statements as well.

Dr. Alsayed - Energy Modeling & Simulation

Checking Multiple Conditions

• Using and to Check Multiple Conditions
• To improve readability, you can use parentheses around the individual tests,

but they are not required.

Dr. Alsayed - Energy Modeling & Simulation

Checking Multiple Conditions

• Using or to Check Multiple Conditions

Dr. Alsayed - Energy Modeling & Simulation

Checking Whether a Value Is in a List

Dr. Alsayed - Energy Modeling & Simulation

Checking Whether a Value Is Not in a List

Dr. Alsayed - Energy Modeling & Simulation

Boolean Expressions

• As you learn more about programming, you’ll hear the term Boolean expression
at some point. A Boolean expression is just another name for a conditional test. A
Boolean value is either True or False, just like the value of a conditional
expression after it has been evaluated.

• Boolean values are often used to keep track of certain conditions, such as
whether a game is running or whether a user can edit certain content on a
website.

• Boolean values provide an efficient way to track the state of a program or a
particular condition that is important in your program.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 5-1. Conditional Tests: Write a series of conditional tests. Print a
statement describing each test and your prediction for the results of
each test. Your code should look something like this:

• Look closely at your results, and make sure you understand why each line
evaluates to True or False.

• Create at least ten tests. Have at least five tests evaluate to True and another
five tests evaluate to False.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 5-2. More Conditional Tests: You don’t have to limit the number of
tests you create to ten. If you want to try more comparisons, write
more tests and add them to conditional_tests.py. Have at least one
True and one False result for each of the following:
• Tests for equality and inequality with strings

• Tests using the lower() method

• Numerical tests involving equality and inequality, greater than and less than,
greater than or equal to, and less than or equal to

• Tests using the and keyword and the or keyword

• Test whether an item is in a list

• Test whether an item is not in a list

Dr. Alsayed - Energy Modeling & Simulation

if Statements

• Simple if Statements
• The simplest kind of if statement has one test and one action.

• If the conditional test evaluates to True, Python executes the code following
the if statement.

• If the test evaluates to False, Python ignores the code following the if
statement.

Dr. Alsayed - Energy Modeling & Simulation

if Statements

• Simple if statements – continued
• Indentation plays the same role in if statements as it did in for loops.

Dr. Alsayed - Energy Modeling & Simulation

if-else Statements

• Often, you’ll want to take one action when a conditional test passes
and a different action in all other cases.

• Python’s if-else syntax makes this possible. It allows you to define an
action or set of actions that are executed when the conditional test
fails.

Dr. Alsayed - Energy Modeling & Simulation

if-else Statements

Dr. Alsayed - Energy Modeling & Simulation

The if-elif-else Chain

• Often, you’ll need to test more than two possible situations, and to
evaluate these you can use Python’s if-elif-else syntax. Python
executes only one block in an if-elif-else chain. It runs each
conditional test in order until one passes.

• When a test passes, the code following that test is executed and
Python skips the rest of the tests.

Dr. Alsayed - Energy Modeling & Simulation

The if-elif-else Chain

Dr. Alsayed - Energy Modeling & Simulation

The if-elif-else Chain

Dr. Alsayed - Energy Modeling & Simulation

Using Multiple elif Blocks

• You can use as many elif blocks in your code as you like.

Dr. Alsayed - Energy Modeling & Simulation

Omitting the else Block

• Python does not require an else block at the end of an if-elif chain.
Sometimes an else block is useful; sometimes it is clearer to use an
additional elif statement that catches the specific condition of
interest.

Dr. Alsayed - Energy Modeling & Simulation

Testing Multiple Conditions

• The if-elif-else chain is powerful, but it’s only appropriate to use when
you just need one test to pass. As soon as Python finds one test that
passes, it skips the rest of the tests.

• This behavior is beneficial, because it’s efficient and allows you to test
for one specific condition.

• However, sometimes it’s important to check all of the conditions of
interest. In this case, you should use a series of simple if statements
with no elif or else blocks.

• This technique makes sense when more than one condition could be
True, and you want to act on every condition that is True.

Dr. Alsayed - Energy Modeling & Simulation

Testing Multiple Conditions

Dr. Alsayed - Energy Modeling & Simulation

Testing Multiple Conditions

• The previous code would not work properly if we used an if-elif-else
block, because the code would stop running after only one test
passes.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 5-3. Alien Colors #1: Imagine an alien was just shot down in a game.
Create a variable called alien_color and assign it a value of 'green',
'yellow', or 'red'.
• Write an if statement to test whether the alien’s color is green. If it is, print a

message that the player just earned 5 points.

• Write one version of this program that passes the if test and another that
fails. (The version that fails will have no output.)

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 5-4. Alien Colors #2: Choose a color for an alien as you did in Exercise
5-3, and write an if-else chain.
• If the alien’s color is green, print a statement that the player just earned 5

points for shooting the alien.

• If the alien’s color isn’t green, print a statement that the player just earned 10
points.

• Write one version of this program that runs the if block and another that runs
the else block.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 5-5. Alien Colors #3: Turn your if-else chain from Exercise 5-4 into an
if-elif-else chain.
• If the alien is green, print a message that the player earned 5 points.

• If the alien is yellow, print a message that the player earned 10 points.

• If the alien is red, print a message that the player earned 15 points.

• Write three versions of this program, making sure each message is printed for
the appropriate color alien.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 5-6. Stages of Life: Write an if-elif-else chain that determines a person’s
stage of life. Set a value for the variable age, and then:
• If the person is less than 2 years old, print a message that the person is a baby.

• If the person is at least 2 years old but less than 4, print a message that the person is
a toddler.

• If the person is at least 4 years old but less than 13, print a message that the person
is a kid.

• If the person is at least 13 years old but less than 20, print a message that the person
is a teenager.

• If the person is at least 20 years old but less than 65, print a message that the person
is an adult.

• If the person is age 65 or older, print a message that the person is an elder.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 5-7. Favorite Fruit: Make a list of your favorite fruits, and then write a
series of independent if statements that check for certain fruits in
your list.
• Make a list of your three favorite fruits and call it favorite_fruits.

• Write five if statements. Each should check whether a certain kind of fruit is in
your list. If the fruit is in your list, the if block should print a statement, such
as You really like bananas!

Dr. Alsayed - Energy Modeling & Simulation

Using if Statements with Lists

• You can do some interesting work when you combine lists and if
statements. You can watch for special values that need to be treated
differently than other values in the list. You can manage changing
conditions efficiently, such as the availability of certain items in a
restaurant throughout a shift. You can also begin to prove that your
code works as you expect it to in all possible situations.

Dr. Alsayed - Energy Modeling & Simulation

Using if Statements with Lists

• Checking for Special Items

Dr. Alsayed - Energy Modeling & Simulation

Using if Statements with Lists

• Checking for Special Items - continued
• But what if the pizzeria runs out of green peppers? An if statement inside the

for loop can handle this situation appropriately.

Dr. Alsayed - Energy Modeling & Simulation

Using if Statements with Lists

• Checking That a List Is Not Empty

Dr. Alsayed - Energy Modeling & Simulation

Using if Statements with Lists

• Using Multiple Lists

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 5-8. Hello Admin: Make a list of five or more usernames, including the
name 'admin'. Imagine you are writing code that will print a greeting to
each user after they log in to a website. Loop through the list, and print a
greeting to each user:
• If the username is 'admin', print a special greeting, such as Hello admin, would you

like to see a status report?
• Otherwise, print a generic greeting, such as Hello Jaden, thank you for logging in

again.

• 5-9. No Users: Add an if test to hello_admin.py to make sure the list of
users is not empty.
• If the list is empty, print the message We need to find some users!
• Remove all of the usernames from your list, and make sure the correct message is

printed.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 5-10. Checking Usernames: Do the following to create a program that
simulates how websites ensure that everyone has a unique
username.
• Make a list of five or more usernames called current_users.
• Make another list of five usernames called new_users. Make sure one or two

of the new usernames are also in the current_users list.
• Loop through the new_users list to see if each new username has already

been used. If it has, print a message that the person will need to enter a new
username. If a username has not been used, print a message saying that the
username is available.

• Make sure your comparison is case insensitive. If 'John' has been used, 'JOHN'
should not be accepted. (To do this, you’ll need to make a copy of
current_users containing the lowercase versions of all existing users.)

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 5-11. Ordinal Numbers: Ordinal numbers indicate their position in a
list, such as 1st or 2nd. Most ordinal numbers end in th, except 1, 2,
and 3.
• Store the numbers 1 through 9 in a list.

• Loop through the list.

• Use an if-elif-else chain inside the loop to print the proper ordinal ending for
each number. Your output should read "1st 2nd 3rd 4th 5th 6th 7th 8th 9th",
and each result should be on a separate line.

Dr. Alsayed - Energy Modeling & Simulation

Styling Your if Statements

• In every example in this chapter, you’ve seen good styling habits. The
only recommendation PEP 8 provides for styling conditional tests is to
use a single space around comparison operators, such as ==, >=, <=.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 5-12. Styling if statements: Review the programs you wrote in this
chapter, and make sure you styled your conditional tests
appropriately.

• 5-13. Your Ideas: At this point, you’re a more capable programmer
than you were when you started this book. Now that you have a
better sense of how real-world situations are modeled in programs,
you might be thinking of some problems you could solve with your
own programs. Record any new ideas you have about problems you
might want to solve as your programming skills continue to improve.
Consider games you might want to write, data sets you might want to
explore, and web applications you’d like to create.

Dr. Alsayed - Energy Modeling & Simulation

Chapter 6: Dictionaries

Dr. Alsayed - Energy Modeling & Simulation

Introduction

• Understanding dictionaries allows you to model a variety of real-world objects
more accurately. You’ll be able to create a dictionary representing a person and
then store as much information as you want about that person. You can store
their name, age, location, profession, and any other aspect of a person you can
describe.

• A Simple Dictionary

Dr. Alsayed - Energy Modeling & Simulation

Working with Dictionaries

• A dictionary in Python is a collection of key-value pairs. Each key is
connected to a value, and you can use a key to access the value
associated with that key.

• In Python, a dictionary is wrapped in braces, {}.

• A key-value pair is a set of values associated with each other.

• When you provide a key, Python returns the value associated with
that key. Every key is connected to its value by a colon, and individual
key-value pairs are separated by commas.

• You can store as many key-value pairs as you want in a dictionary.

Dr. Alsayed - Energy Modeling & Simulation

Accessing Values in a Dictionary

• To get the value associated with a key, give the name of the dictionary
and then place the key inside a set of square brackets [].

Dr. Alsayed - Energy Modeling & Simulation

Adding New Key-Value Pairs

• Dictionaries are dynamic structures, and you can add new key-value
pairs to a dictionary at any time.

Dr. Alsayed - Energy Modeling & Simulation

Starting with an Empty Dictionary

• It’s sometimes convenient, or even necessary, to start with an empty
dictionary and then add each new item to it.

Dr. Alsayed - Energy Modeling & Simulation

Modifying Values in a Dictionary

• To modify a value in a dictionary, give the name of the dictionary with
the key in square brackets and then the new value you want
associated with that key.

Dr. Alsayed - Energy Modeling & Simulation

Modifying Values in a Dictionary
• For a more interesting example, let’s track the position of an alien that can move at

different speeds.

Dr. Alsayed - Energy Modeling & Simulation

Removing Key-Value Pairs

• When you no longer need a piece of information that’s stored in a
dictionary, you can use the del statement to completely remove a key-value
pair.

• Note: Be aware that the deleted key-value pair is removed permanently.

Dr. Alsayed - Energy Modeling & Simulation

A Dictionary of Similar Objects

• You can also use a dictionary to store one kind of information about many objects.

• When you know you’ll need more than one line to define a dictionary, press enter after
the opening brace. Then indent the next line one.

• Once you’ve finished defining the dictionary, add a closing brace on a new line after the
last key-value pair and indent it one level so it aligns with the keys in the dictionary.

• It’s good practice to include a comma after the last key-value pair as well, so you’re ready
to add a new key-value pair on the next line.

Dr. Alsayed - Energy Modeling & Simulation

A Dictionary of Similar Objects

Dr. Alsayed - Energy Modeling & Simulation

Using get() to Access Values

• Using keys in square brackets to retrieve the value you’re interested in
from a dictionary might cause one potential problem: if the key you
ask for doesn’t exist, you’ll get an error.

Dr. Alsayed - Energy Modeling & Simulation

Using get() to Access Values

• The get() method requires a key as a first argument. As a second optional argument, you
can pass the value to be returned if the key doesn’t exist.

• If the key 'points' exists in the dictionary, you’ll get the corresponding value. If it doesn’t,
you get the default value. In this case, points doesn’t exist, and we get a clean message
instead of an error

Dr. Alsayed - Energy Modeling & Simulation

Using get() to Access Values

• Note:

• If you leave out the second argument in the call to get() and the key
doesn’t exist, Python will return the value None. The special value
None means “no value exists.” This is not an error: it’s a special value
meant to indicate the absence of a value.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 6-1. Person: Use a dictionary to store information about a person you
know. Store their first name, last name, age, and the city in which
they live. You should have keys such as first_name, last_name, age,
and city. Print each piece of information stored in your dictionary.

• 6-2. Favorite Numbers: Use a dictionary to store people’s favorite
numbers. Think of five names, and use them as keys in your
dictionary. Think of a favorite number for each person, and store each
as a value in your dictionary. Print each person’s name and their
favorite number. For even more fun, poll a few friends and get some
actual data for your program.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 6-3. Glossary: A Python dictionary can be used to model an actual
dictionary. However, to avoid confusion, let’s call it a glossary.
• Think of five programming words you’ve learned about in the previous

chapters. Use these words as the keys in your glossary, and store their
meanings as values.

• Print each word and its meaning as neatly formatted output. You might print
the word followed by a colon and then its meaning, or print the word on one
line and then print its meaning indented on a second line. Use the newline
character (\n) to insert a blank line between each word-meaning pair in your
output.

Dr. Alsayed - Energy Modeling & Simulation

Looping Through a Dictionary

• Looping Through All Key-Value Pairs

Dr. Alsayed - Energy Modeling & Simulation

Looping Through a Dictionary

• Looping Through All Key-Value Pairs – continued

Dr. Alsayed - Energy Modeling & Simulation

Looping Through a Dictionary

• Looping Through All the Keys in a Dictionary
• The keys() method is useful when you don’t need to work with all of the

values in a dictionary.

Dr. Alsayed - Energy Modeling & Simulation

Looping Through a Dictionary

• Looping Through All the Keys in a Dictionary – continued
• Looping through the keys is actually the default behavior when looping

through a dictionary, so this code would have exactly the same output if you
wrote . . .

• Rather than

• You can choose to use the keys() method explicitly if it makes your code easier
to read, or you can omit it if you wish.

Dr. Alsayed - Energy Modeling & Simulation

Looping Through a Dictionary

• Looping Through All the Keys in a Dictionary – continued
• You can access the value associated with any key you care about inside the

loop by using the current key.

Dr. Alsayed - Energy Modeling & Simulation

Looping Through a Dictionary

• Looping Through All the Keys in a Dictionary – continued

Dr. Alsayed - Energy Modeling & Simulation

Looping Through a Dictionary

• Looping Through All the Keys in a Dictionary – continued
• You can also use the keys() method to find out if a particular person was

polled. This time, let’s find out if Erin took the poll.

Dr. Alsayed - Energy Modeling & Simulation

Looping Through a Dictionary

• Looping Through a Dictionary’s Keys in a Particular Order
• One way to do this is to sort the keys as they’re returned in the for loop. You

can use the sorted() function to get a copy of the keys in order.

Dr. Alsayed - Energy Modeling & Simulation

Looping Through a Dictionary

• Looping Through All Values in a Dictionary
• If you are primarily interested in the values that a dictionary contains, you can

use the values() method to return a list of values without any keys.

Dr. Alsayed - Energy Modeling & Simulation

Looping Through a Dictionary

• Looping Through All Values in a Dictionary – continued

• This approach pulls all the values from the dictionary without checking for repeats.
That might work fine with a small number of values, but in a poll with a large number
of respondents, this would result in a very repetitive list. To see each language
chosen without repetition, we can use a set. A set is a collection in which each item
must be unique.

Dr. Alsayed - Energy Modeling & Simulation

Looping Through a Dictionary

• Looping Through All Values in a Dictionary – continued
• Note:

• You can build a set directly using braces and separating the elements with commas:

• It’s easy to mistake sets for dictionaries because they’re both wrapped in braces. When
you see braces but no key-value pairs, you’re probably looking at a set. Unlike lists and
dictionaries, sets do not retain items in any specific order

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 6-4. Glossary 2: Now that you know how to loop through a dictionary,
clean up the code from Exercise 6-3 (page 99) by replacing your series of
print() calls with a loop that runs through the dictionary’s keys and values.
When you’re sure that your loop works, add five more Python terms to
your glossary. When you run your program again, these new words and
meanings should automatically be included in the output.

• 6-5. Rivers: Make a dictionary containing three major rivers and the
country each river runs through. One key-value pair might be 'nile': 'egypt'.
• Use a loop to print a sentence about each river, such as The Nile runs through Egypt.
• Use a loop to print the name of each river included in the dictionary.
• Use a loop to print the name of each country included in the dictionary.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 6-6. Polling: Use the code in favorite_languages.py (page 97).
• Make a list of people who should take the favorite languages poll. Include

some names that are already in the dictionary and some that are not.

• Loop through the list of people who should take the poll. If they have already
taken the poll, print a message thanking them for responding. If they have not
yet taken the poll, print a message inviting them to take the poll.

Dr. Alsayed - Energy Modeling & Simulation

Nesting

• Sometimes you’ll want to store multiple dictionaries in a list, or a list
of items as a value in a dictionary. This is called nesting. You can nest
dictionaries inside a list, a list of items inside a dictionary, or even a
dictionary inside another dictionary.

Dr. Alsayed - Energy Modeling & Simulation

Nesting

• A List of Dictionaries

Dr. Alsayed - Energy Modeling & Simulation

Nesting

• A List of Dictionaries – continued
• A more realistic example would involve more than three aliens with code that

automatically generates each alien. In the following example we use range()
to create a fleet of 30 aliens.

Dr. Alsayed - Energy Modeling & Simulation

Nesting

• A List of Dictionaries – continued

Dr. Alsayed - Energy Modeling & Simulation

Nesting

• A List of Dictionaries – continued

Dr. Alsayed - Energy Modeling & Simulation

Nesting

• A List of Dictionaries – continued

Dr. Alsayed - Energy Modeling & Simulation

Nesting

• A List in a Dictionary
• Rather than putting a dictionary inside a list, it’s sometimes useful to put a list

inside a dictionary.

Dr. Alsayed - Energy Modeling & Simulation

Nesting

• A List in a Dictionary – continued

Dr. Alsayed - Energy Modeling & Simulation

Nesting

• A List in a Dictionary – continued

• You can nest a list inside a dictionary any time you want more than one value to be
associated with a single key in a dictionary.

Dr. Alsayed - Energy Modeling & Simulation

Nesting

• A List in a Dictionary – continued

Dr. Alsayed - Energy Modeling & Simulation

Nesting

• Note:

• You should not nest lists and dictionaries too deeply. If you’re nesting
items much deeper than what you see in the preceding examples or
you’re working with someone else’s code with significant levels of
nesting, most likely a simpler way to solve the problem exists.

Dr. Alsayed - Energy Modeling & Simulation

Nesting

• A Dictionary in a Dictionary
• You can nest a dictionary inside another dictionary, but your code can get

complicated quickly when you do.

• For example, if you have several users for a website, each with a unique
username, you can use the usernames as the keys in a dictionary. You can
then store information about each user by using a dictionary as the value
associated with their username.

Dr. Alsayed - Energy Modeling & Simulation

Nesting

• A Dictionary in a Dictionary – continued

Dr. Alsayed - Energy Modeling & Simulation

Nesting

• A Dictionary in a Dictionary – continued

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 6-7. People: Start with the program you wrote for Exercise 6-1 (page 99). Make
two new dictionaries representing different people, and store all three
dictionaries in a list called people. Loop through your list of people. As you loop
through the list, print everything you know about each person.

• 6-8. Pets: Make several dictionaries, where each dictionary represents a different
pet. In each dictionary, include the kind of animal and the owner’s name. Store
these dictionaries in a list called pets. Next, loop through your list and as you do,
print everything you know about each pet.

• 6-9. Favorite Places: Make a dictionary called favorite_places. Think of three
names to use as keys in the dictionary, and store one to three favorite places for
each person. To make this exercise a bit more interesting, ask some friends to
name a few of their favorite places. Loop through the dictionary, and print each
person’s name and their favorite places.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 6-10. Favorite Numbers: Modify your program from Exercise 6-2 (page 99) so
each person can have more than one favorite number. Then print each
person’s name along with their favorite numbers.

• 6-11. Cities: Make a dictionary called cities. Use the names of three cities as
keys in your dictionary. Create a dictionary of information about each city
and include the country that the city is in, its approximate population, and
one fact about that city. The keys for each city’s dictionary should be
something like country, population, and fact. Print the name of each city and
all of the information you have stored about it.

• 6-12. Extensions: We’re now working with examples that are complex
enough that they can be extended in any number of ways. Use one of the
example programs from this chapter, and extend it by adding new keys and
values, changing the context of the program or improving the formatting of
the output.

Dr. Alsayed - Energy Modeling & Simulation

Chapter 7: User Input and
while Loops

Dr. Alsayed - Energy Modeling & Simulation

Introduction

• Most programs are written to solve an end user’s problem. To do so,
you usually need to get some information from the user.

• To do this, you’ll use the input() function.

Dr. Alsayed - Energy Modeling & Simulation

How the input() Function Works

• The input() function pauses your program and waits for the user to enter
some text. Once Python receives the user’s input, it assigns that input to a
variable to make it convenient for you to work with.

• Try this:

• Note: Sublime Text and many other editors don’t run programs that
prompt the user for input. You can use these editors to write programs that
prompt for input, but you’ll need to run these programs from a terminal.
See “Running Python Programs from a Terminal” on page 12.

Dr. Alsayed - Energy Modeling & Simulation

How the input() Function Works

• Writing Clear Prompts
• Each time you use the input() function, you should include a clear, easy-to

follow prompt that tells the user exactly what kind of information you’re
looking for.

Dr. Alsayed - Energy Modeling & Simulation

How the input() Function Works

• Writing Clear Prompts – continued
• Sometimes you’ll want to write a prompt that’s longer than one line. For

example, you might want to tell the user why you’re asking for certain input.
You can assign your prompt to a variable and pass that variable to the input()
function. This allows you to build your prompt over several lines, then write a
clean input() statement.

Dr. Alsayed - Energy Modeling & Simulation

How the input() Function Works

• Using int() to Accept Numerical Input
• When you use the input() function, Python interprets everything the user

enters as a string.

Dr. Alsayed - Energy Modeling & Simulation

How the input() Function Works

• Using int() to Accept Numerical Input – continued
• We can resolve this issue by using the int() function, which tells Python to

treat the input as a numerical value.

Dr. Alsayed - Energy Modeling & Simulation

How the input() Function Works

• The Modulo Operator
• A useful tool for working with numerical information is the modulo operator

(%), which divides one number by another number and returns the
remainder.

Dr. Alsayed - Energy Modeling & Simulation

How the input() Function Works

• The Modulo Operator – continued
• When one number is divisible by another number, the remainder is 0, so the

modulo operator always returns 0. You can use this fact to determine if a
number is even or odd.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 7-1. Rental Car: Write a program that asks the user what kind of rental
car they would like. Print a message about that car, such as “Let me
see if I can find you a Subaru.”

• 7-2. Restaurant Seating: Write a program that asks the user how many
people are in their dinner group. If the answer is more than eight,
print a message saying they’ll have to wait for a table. Otherwise,
report that their table is ready.

• 7-3. Multiples of Ten: Ask the user for a number, and then report
whether the number is a multiple of 10 or not.

Dr. Alsayed - Energy Modeling & Simulation

Introducing while Loops

• The for loop takes a collection of items and executes a block of code
once for each item in the collection. In contrast, the while loop runs
as long as, or while, a certain condition is true.

Dr. Alsayed - Energy Modeling & Simulation

Introducing while Loops

• The while Loop in Action
• You can use a while loop to count up through a series of numbers. For

example, the following while loop counts from 1 to 5.

Dr. Alsayed - Energy Modeling & Simulation

Introducing while Loops

• Letting the User Choose When to Quit
• We can make the parrot.py program run as long as the user wants by putting

most of the program inside a while loop. We’ll define a quit value and then
keep the program running as long as the user has not entered the quit value.

Dr. Alsayed - Energy Modeling & Simulation

Introducing while Loops

• Letting the User Choose When to Quit – continued

Dr. Alsayed - Energy Modeling & Simulation

Introducing while Loops

• Letting the User Choose When to Quit – continued
• The previous program works well, except that it prints the word 'quit' as if it

were an actual message. A simple if test fixes this.

Dr. Alsayed - Energy Modeling & Simulation

Introducing while Loops

• Letting the User Choose When to Quit – continued

Dr. Alsayed - Energy Modeling & Simulation

Introducing while Loops

• Using a Flag
• For a program that should run only as long as many conditions are true, you

can define one variable that determines whether or not the entire program is
active. This variable, called a flag, acts as a signal to the program.

• We can write our programs so they run while the flag is set to True and stop
running when any of several events sets the value of the flag to False. As a
result, our overall while statement needs to check only one condition:
whether or not the flag is currently True. Then, all our other tests (to see if an
event has occurred that should set the flag to False) can be neatly organized
in the rest of the program.

Dr. Alsayed - Energy Modeling & Simulation

Introducing while Loops

• Using a Flag – continued

• This program has the same output as the previous example where we placed the conditional test directly in the
while statement. But now that we have a flag to indicate whether the overall program is in an active state, it
would be easy to add more tests (such as elif statements) for events that should cause active to become False.
This is useful in complicated programs like games in which there may be many events that should each make
the program stop running.

Dr. Alsayed - Energy Modeling & Simulation

Introducing while Loops

• Using break to Exit a Loop
• To exit a while loop immediately without running any remaining code in the

loop, regardless of the results of any conditional test, use the break
statement.

• The break statement directs the flow of your program; you can use it to
control which lines of code are executed and which aren’t, so the program
only executes code that you want it to, when you want it to.

Dr. Alsayed - Energy Modeling & Simulation

Introducing while Loops

• Using break to Exit a Loop – continued

• Note: You can use the break statement in any of Python’s loops. For
example, you could use break to quit a for loop that’s working
through a list or a dictionary.

Dr. Alsayed - Energy Modeling & Simulation

Introducing while Loops

• Using continue in a Loop
• Rather than breaking out of a loop entirely without executing the rest of its

code, you can use the continue statement to return to the beginning of the
loop based on the result of a conditional test.

Dr. Alsayed - Energy Modeling & Simulation

Introducing while Loops

• Avoiding Infinite Loops
• Every while loop needs a way to stop running so it won’t continue to run

forever. For example, this counting loop should count from 1 to 5.

Dr. Alsayed - Energy Modeling & Simulation

Introducing while Loops

• Avoiding Infinite Loops
• Every programmer accidentally writes an infinite while loop from time to time,

especially when a program’s loops have subtle exit conditions. If your program
gets stuck in an infinite loop, press ctrl-C or just close the terminal window
displaying your program’s output.

• To avoid writing infinite loops, test every while loop and make sure the loop
stops when you expect it to.

• Note:
• Sublime Text and some other editors have an embedded output window. This can make it

difficult to stop an infinite loop, and you might have to close the editor to end the loop.
Try clicking in the output area of the editor before pressing ctrl-C, and you should be able
to cancel an infinite loop.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 7-4. Pizza Toppings: Write a loop that prompts the user to enter a
series of pizza toppings until they enter a 'quit' value. As they enter
each topping, print a message saying you’ll add that topping to their
pizza.

• 7-5. Movie Tickets: A movie theater charges different ticket prices
depending on a person’s age. If a person is under the age of 3, the
ticket is free; if they are between 3 and 12, the ticket is $10; and if
they are over age 12, the ticket is $15. Write a loop in which you ask
users their age, and then tell them the cost of their movie ticket.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 7-6. Three Exits: Write different versions of either Exercise 7-4 or
Exercise 7-5 that do each of the following at least once:
• Use a conditional test in the while statement to stop the loop.

• Use an active variable to control how long the loop runs.

• Use a break statement to exit the loop when the user enters a 'quit' value.

• 7-7. Infinity: Write a loop that never ends, and run it. (To end the loop,
press ctrl-C or close the window displaying the output.)

Dr. Alsayed - Energy Modeling & Simulation

Using a while Loop with Lists and Dictionaries

• A for loop is effective for looping through a list, but you shouldn’t
modify a list inside a for loop because Python will have trouble keeping
track of the items in the list.

• To modify a list as you work through it, use a while loop. Using while
loops with lists and dictionaries allows you to collect, store, and
organize lots of input to examine and report on later.

Dr. Alsayed - Energy Modeling & Simulation

Using a while Loop with Lists and Dictionaries

• Moving Items from One List to Another
• Consider a list of newly registered but unverified users of a website. After we

verify these users, how can we move them to a separate list of confirmed
users?

• One way would be to use a while loop to pull users from the list of
unconfirmed users as we verify them and then add them to a separate list of
confirmed users.

Dr. Alsayed - Energy Modeling & Simulation

Using a while Loop with Lists and Dictionaries

• Moving Items from One List to Another – continued

Dr. Alsayed - Energy Modeling & Simulation

Using a while Loop with Lists and Dictionaries

• Moving Items from One List to Another – continued

Dr. Alsayed - Energy Modeling & Simulation

Using a while Loop with Lists and Dictionaries

• Removing All Instances of Specific Values from a List
• In Chapter 3 we used remove() to remove a specific value from a list. The

remove() function worked because the value we were interested in appeared
only once in the list. But what if you want to remove all instances of a value
from a list?

Dr. Alsayed - Energy Modeling & Simulation

Using a while Loop with Lists and Dictionaries

• Filling a Dictionary
with User Input
• You can prompt for as

much input as you
need in each pass
through a while loop.

Dr. Alsayed - Energy Modeling & Simulation

Using a while Loop with Lists and Dictionaries

• Filling a Dictionary with User Input – continued

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 7-8. Deli: Make a list called sandwich_orders and fill it with the names of various
sandwiches. Then make an empty list called finished_sandwiches. Loop through
the list of sandwich orders and print a message for each order, such as I made your
tuna sandwich. As each sandwich is made, move it to the list of finished
sandwiches. After all the sandwiches have been made, print a message listing each
sandwich that was made.

• 7-9. No Pastrami: Using the list sandwich_orders from Exercise 7-8, make sure the
sandwich 'pastrami' appears in the list at least three times. Add code near the
beginning of your program to print a message saying the deli has run out of
pastrami, and then use a while loop to remove all occurrences of 'pastrami' from
sandwich_orders. Make sure no pastrami sandwiches end up in
finished_sandwiches.

• 7-10. Dream Vacation: Write a program that polls users about their dream
vacation. Write a prompt similar to If you could visit one place in the world, where
would you go? Include a block of code that prints the results of the poll.

Dr. Alsayed - Energy Modeling & Simulation

Chapter 8: Functions

Dr. Alsayed - Energy Modeling & Simulation

Introduction

• If you need to perform that task multiple times throughout your
program, you don’t need to type all the code for the same task again
and again; you just call the function dedicated to handling that task,
and the call tells Python to run the code inside the function.

• You’ll learn to store functions in separate files called modules to help
organize your main program files.

Dr. Alsayed - Energy Modeling & Simulation

Defining a Function

• In this case, the name of the function is greet_user(), and it needs no information to do its job, so
its parentheses are empty.

• Any indented lines that follow def greet_user(): make up the body of the function.

• The text at line 2 is a comment called a docstring, which describes what the function does.

• Docstrings are enclosed in triple quotes, which Python looks for when it generates documentation
for the functions in your programs.

• To call a function, you write the name of the function, followed by any necessary information in
parentheses. Because no information is needed here, calling our function is as simple as entering
greet_user().

Dr. Alsayed - Energy Modeling & Simulation

Passing Information to a Function

Dr. Alsayed - Energy Modeling & Simulation

Arguments and Parameters

• The variable username in the definition of greet_user() is an example of a

• parameter, a piece of information the function needs to do its job.

• The value 'jesse' in greet_user('jesse') is an example of an argument.

• An argument is a piece of information that’s passed from a function call to
a function.

• In this case the argument 'jesse' was passed to the function greet_user(),
and the value was assigned to the parameter username.

• Note: People sometimes speak of arguments and parameters
interchangeably. Don’t be surprised if you see the variables in a function
definition referred to as arguments or the variables in a function call
referred to as parameters.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 8-1. Message: Write a function called display_message() that prints
one sentence telling everyone what you are learning about in this
chapter. Call the function, and make sure the message displays
correctly.

• 8-2. Favorite Book: Write a function called favorite_book() that
accepts one parameter, title. The function should print a message,
such as One of my favorite books is Alice in Wonderland. Call the
function, making sure to include a book title as an argument in the
function call.

Dr. Alsayed - Energy Modeling & Simulation

Passing Arguments

• Because a function definition can have multiple parameters, a
function call may need multiple arguments.

• You can pass arguments to your functions in a number of ways;
positional arguments, keyword arguments, and lists and dictionaries
of values.

Dr. Alsayed - Energy Modeling & Simulation

Passing Arguments

• Positional Arguments
• When you call a function, Python must match each argument in the function

call with a parameter in the function definition.

• The simplest way to do this is based on the order of the arguments provided.

Dr. Alsayed - Energy Modeling & Simulation

Passing Arguments

• Multiple Function Calls
• You can call a function as many times as needed.

Dr. Alsayed - Energy Modeling & Simulation

Passing Arguments

• Order Matters in Positional Arguments
• You can get unexpected results if you mix up the order of the arguments in a

function call when using positional arguments.

Dr. Alsayed - Energy Modeling & Simulation

Passing Arguments

• Keyword Arguments
• A keyword argument is a name-value pair that you pass to a function.

• You directly associate the name and the value within the argument, so when
you pass the argument to the function, there’s no confusion.

• Note: When you use keyword arguments, be sure to use the exact
names of the parameters in the function’s definition.

Dr. Alsayed - Energy Modeling & Simulation

Passing Arguments

• Default Values
• When writing a function, you can define a default value for each parameter.

• If an argument for a parameter is provided in the function call, Python uses
the argument value. If not, it uses the parameter’s default value.

• So when you define a default value for a parameter, you can exclude the
corresponding argument you’d usually write in the function call.

• For example, if you notice that most of the calls to describe_pet() are being
used to describe dogs, you can set the default value of animal_type to 'dog'.
Now anyone calling describe_pet() for a dog can omit that information.

Dr. Alsayed - Energy Modeling & Simulation

Passing Arguments

• Default Values – continued

• Note: When you use default values, any parameter with a default value needs to
be listed after all the parameters that don’t have default values. This allows
Python to continue interpreting positional arguments correctly.

Dr. Alsayed - Energy Modeling & Simulation

Passing Arguments

• Equivalent Function Calls
• Because positional arguments, keyword arguments, and default values can all

be used together, often you’ll have several equivalent ways to call a function.

Dr. Alsayed - Energy Modeling & Simulation

Passing Arguments

• Note: It doesn’t really matter which calling style you use. As long as
your function calls produce the output you want, just use the style
you find easiest to understand.

Dr. Alsayed - Energy Modeling & Simulation

Passing Arguments

• Avoiding Argument Errors
• When you start to use functions, don’t be surprised if you encounter errors

about unmatched arguments. Unmatched arguments occur when you provide
fewer or more arguments than a function needs to do its work.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 8-3. T-Shirt: Write a function called make_shirt() that accepts a size and the
text of a message that should be printed on the shirt. The function should
print a sentence summarizing the size of the shirt and the message printed
on it. Call the function once using positional arguments to make a shirt.
Call the function a second time using keyword arguments.

• 8-4. Large Shirts: Modify the make_shirt() function so that shirts are large
by default with a message that reads I love Python. Make a large shirt and a
medium shirt with the default message, and a shirt of any size with a
different message.

• 8-5. Cities: Write a function called describe_city() that accepts the name of
a city and its country. The function should print a simple sentence, such as
Reykjavik is in Iceland. Give the parameter for the country a default value.
Call your function for three different cities, at least one of which is not in
the default country.

Dr. Alsayed - Energy Modeling & Simulation

Return Values

• A function doesn’t always have to display its output directly. Instead, it
can process some data and then return a value or set of values. The
value the function returns is called a return value.

• Returning a Simple Value

Dr. Alsayed - Energy Modeling & Simulation

Return Values

• Making an Argument Optional
• Sometimes it makes sense to make an argument optional so that people using

the function can choose to provide extra information only if they want to. You
can use default values to make an argument optional.

Dr. Alsayed - Energy Modeling & Simulation

Return Values

Dr. Alsayed - Energy Modeling & Simulation

Return Values

• Returning a Dictionary
• A function can return any kind of value you need it to, including more

complicated data structures like lists and dictionaries.

Dr. Alsayed - Energy Modeling & Simulation

Return Values

• Returning a Dictionary – continued
• You can easily extend this function to accept optional values like a middle

name, an age, an occupation, or any other information you want to store
about a person.

Dr. Alsayed - Energy Modeling & Simulation

Return Values

• Using a Function with a while Loop

Dr. Alsayed - Energy Modeling & Simulation

Return Values

• Using a Function with a while Loop – continued
• For previous example, we use a simple version of get_formatted_name() that

doesn’t involve middle names.

• The while loop asks the user to enter their name, and we prompt for their first
and last name separately.

• But there’s one problem with this while loop: We haven’t defined a quit
condition. Where do you put a quit condition when you ask for a series of
inputs?

• We want the user to be able to quit as easily as possible, so each prompt
should offer a way to quit.

Dr. Alsayed - Energy Modeling & Simulation

Return Values

• Using a Function with a while Loop – continued

Dr. Alsayed - Energy Modeling & Simulation

Return Values

• Using a Function with a while Loop – continued

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 8-6. City Names: Write a function called city_country() that takes in the
name of a city and its country. The function should return a string
formatted like this:

"Santiago, Chile"

• Call your function with at least three city-country pairs, and print the
values that are returned.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 8-7. Album: Write a function called make_album() that builds a
dictionary describing a music album. The function should take in an
artist name and an album title, and it should return a dictionary
containing these two pieces of information. Use the function to make
three dictionaries representing different albums. Print each return
value to show that the dictionaries are storing the album information
correctly.

• Use None to add an optional parameter to make_album() that allows
you to store the number of songs on an album. If the calling line
includes a value for the number of songs, add that value to the
album’s dictionary. Make at least one new function call that includes
the number of songs on an album.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 8-8. User Albums: Start with your program from Exercise 8-7. Write a
while loop that allows users to enter an album’s artist and title. Once
you have that information, call make_album() with the user’s input
and print the dictionary that’s created. Be sure to include a quit value
in the while loop.

Dr. Alsayed - Energy Modeling & Simulation

Passing a List

• You’ll often find it useful to pass a list to a function, whether it’s a list of names, numbers,
or more complex objects, such as dictionaries. When you pass a list to a function, the
function gets direct access to the contents of the list.

Dr. Alsayed - Energy Modeling & Simulation

Passing a List

• Modifying a List in a Function
• When you pass a list to a function, the function can modify the list. Any

changes made to the list inside the function’s body are permanent, allowing
you to work efficiently even when you’re dealing with large amounts of data.

Dr. Alsayed - Energy Modeling & Simulation

Passing a List

• Modifying a List in a Function – continued

• We can reorganize this code by writing two functions, each of which does one
specific job. Most of the code won’t change; we’re just making it more
carefully structured.

Dr. Alsayed - Energy Modeling & Simulation

Passing a List

• Modifying a List in a Function – continued

Dr. Alsayed - Energy Modeling & Simulation

Passing a List

• Modifying a List in a Function – continued
• This program has the same output as the version without functions, but the

code is much more organized. The code that does most of the work has been
moved to two separate functions, which makes the main part of the program
easier to understand.

Dr. Alsayed - Energy Modeling & Simulation

Passing a List

• Preventing a Function from Modifying a List
• Sometimes you’ll want to prevent a function from modifying a list.

• For example, say that you start with a list of unprinted designs and write a function
to move them to a list of completed models, as in the previous example.

• You may decide that even though you’ve printed all the designs, you want to keep
the original list of unprinted designs for your records.

• But because you moved all the design names out of unprinted_designs, the list is
now empty, and the empty list is the only version you have; the original is gone.

• In this case, you can address this issue by passing the function a copy of the list, not
the original.

• Any changes the function makes to the list will affect only the copy, leaving the
original list intact.

Dr. Alsayed - Energy Modeling & Simulation

Passing a List

• Preventing a Function from Modifying a List – continued
• You can send a copy of a list to a function like this:

• The slice notation [:] makes a copy of the list to send to the function.

• If we didn’t want to empty the list of unprinted designs in printing_models.py,
we could call print_models() like this:

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 8-9. Messages: Make a list containing a series of short text messages. Pass
the list to a function called show_messages(), which prints each text
message.

• 8-10. Sending Messages: Start with a copy of your program from Exercise 8-
9. Write a function called send_messages() that prints each text message
and moves each message to a new list called sent_messages as it’s printed.
After calling the function, print both of your lists to make sure the messages
were moved correctly.

• 8-11. Archived Messages: Start with your work from Exercise 8-10. Call the
function send_messages() with a copy of the list of messages. After calling
the function, print both of your lists to show that the original list has
retained its messages.

Dr. Alsayed - Energy Modeling & Simulation

Passing an Arbitrary Number of Arguments

• Sometimes you won’t know ahead of time how many arguments a
function needs to accept. Fortunately, Python allows a function to
collect an arbitrary number of arguments from the calling statement.

• For example, consider a function that builds a pizza. It needs to
accept a number of toppings, but you can’t know ahead of time how
many toppings a person will want.

Dr. Alsayed - Energy Modeling & Simulation

Passing an Arbitrary Number of Arguments

Dr. Alsayed - Energy Modeling & Simulation

Passing an Arbitrary Number of Arguments

Dr. Alsayed - Energy Modeling & Simulation

Passing an Arbitrary Number of Arguments

• Mixing Positional and Arbitrary Arguments
• If you want a function to accept several different kinds of arguments, the

parameter that accepts an arbitrary number of arguments must be placed last
in the function definition. Python matches positional and keyword arguments
first and then collects any remaining arguments in the final parameter.

Dr. Alsayed - Energy Modeling & Simulation

Passing an Arbitrary Number of Arguments

• Using Arbitrary Keyword Arguments
• Sometimes you’ll want to accept an arbitrary number of arguments, but you

won’t know ahead of time what kind of information will be passed to the
function. In this case, you can write functions that accept as many key-value
pairs as the calling statement provides.

Dr. Alsayed - Energy Modeling & Simulation

Passing an Arbitrary Number of Arguments

• Using Arbitrary Keyword Arguments – continued
• The definition of build_profile() expects a first and last name, and then it

allows the user to pass in as many name-value pairs as they want.

• The double asterisks before the parameter **user_info cause Python to
create an empty dictionary called user_info and pack whatever name-value
pairs it receives into this dictionary.

• Within the function, you can access the key-value pairs in user_info just as
you would for any dictionary.

Dr. Alsayed - Energy Modeling & Simulation

Passing an Arbitrary Number of Arguments

• Using Arbitrary Keyword Arguments – continued
• Note: You’ll often see the generic parameter name *args, which collects

arbitrary positional arguments like this.

• Note: You’ll often see the parameter name **kwargs used to collect non-
specific keyword arguments.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 8-12. Sandwiches: Write a function that accepts a list of items a person
wants on a sandwich. The function should have one parameter that
collects as many items as the function call provides, and it should print
a summary of the sandwich that’s being ordered. Call the function
three times, using a different number of arguments each time.

• 8-13. User Profile: Start with a copy of user_profile.py from page 149.
Build a profile of yourself by calling build_profile(), using your first and
last names and three other key-value pairs that describe you.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 8-14. Cars: Write a function that stores information about a car in a
dictionary. The function should always receive a manufacturer and a
model name. It should then accept an arbitrary number of keyword
arguments. Call the function with the required information and two
other name-value pairs, such as a color or an optional feature. Your
function should work for a call like this one:

car = make_car('subaru', 'outback', color='blue', tow_package=True)

• Print the dictionary that’s returned to make sure all the information
was stored correctly.

Dr. Alsayed - Energy Modeling & Simulation

Storing Your Functions in Modules

• One advantage of functions is the way they separate blocks of code from
your main program.

• By using descriptive names for your functions, your main program will be
much easier to follow.

• You can go a step further by storing your functions in a separate file called a
module and then importing that module into your main program.

• An import statement tells Python to make the code in a module available in
the currently running program file.

• When you store your functions in separate files, you can share those files
with other programmers without having to share your entire program.

• Knowing how to import functions also allows you to use libraries of
functions that other programmers have written.

Dr. Alsayed - Energy Modeling & Simulation

Storing Your Functions in Modules

• Importing an Entire Module
• To start importing functions, we first need to create a module. A module is a

file ending in .py that contains the code you want to import into your
Functions program.

• Let’s make a module that contains the function make_pizza().

• To make this module, we’ll remove everything from the file pizza.py except
the function make_pizza().

Dr. Alsayed - Energy Modeling & Simulation

Storing Your Functions in Modules

• Importing an Entire Module – continued

• When Python reads this file, the line import pizza tells Python to open the file
pizza.py and copy all the functions from it into this program. You don’t actually
see code being copied between files because Python copies the code behind
the scenes just before the program runs. All you need to know is that any
function defined in pizza.py will now be available in making_pizzas.py.

Dr. Alsayed - Energy Modeling & Simulation

Storing Your Functions in Modules

• Importing an Entire Module – continued

Dr. Alsayed - Energy Modeling & Simulation

Storing Your Functions in Modules

• Importing an Entire Module – continued
• This first approach to importing, in which you simply write import followed by

the name of the module, makes every function from the module available in
your program. If you use this kind of import statement to import an entire
module named module_name.py, each function in the module is available
through the following syntax:

Dr. Alsayed - Energy Modeling & Simulation

Storing Your Functions in Modules

• Importing Specific Functions
• You can also import a specific function from a module.

Dr. Alsayed - Energy Modeling & Simulation

Storing Your Functions in Modules

• Importing Specific Functions – continued
• With previous syntax, you don’t need to use the dot notation when you call a

function. Because we’ve explicitly imported the function make_pizza() in the
import statement, we can call it by name when we use the function.

Dr. Alsayed - Energy Modeling & Simulation

Storing Your Functions in Modules

• Using as to Give a Function an Alias
• If the name of a function you’re importing might conflict with an existing name

in your program or if the function name is long, you can use a short, unique
alias—an alternate name similar to a nickname for the function.

• You’ll give the function this special nickname when you import the function.
Here we give the function make_pizza() an alias, mp(), by importing
make_pizza as mp.

Dr. Alsayed - Energy Modeling & Simulation

Storing Your Functions in Modules

• Using as to Give a Function an Alias – continued

• The general syntax for providing an alias is:

Dr. Alsayed - Energy Modeling & Simulation

Storing Your Functions in Modules

• Using as to Give a Module an Alias
• You can also provide an alias for a module name. Giving a module a short

alias, like p for pizza, allows you to call the module’s functions more quickly.

• Calling p.make_pizza() is more concise than calling pizza.make_pizza():

Dr. Alsayed - Energy Modeling & Simulation

Storing Your Functions in Modules

• Importing All Functions in a Module
• You can tell Python to import every function in a module by using the asterisk

(*) operator:

Dr. Alsayed - Energy Modeling & Simulation

Storing Your Functions in Modules

• Importing All Functions in a Module – continued
• The asterisk in the import statement tells Python to copy every function from

the module pizza into this program file. Because every function is imported,
you can call each function by name without using the dot notation. However,
it’s best not to use this approach when you’re working with larger modules
that you didn’t write: if the module has a function name that matches an
existing name in your project, you can get some unexpected results.

• The best approach is to import the function or functions you want, or import
the entire module and use the dot notation.

Dr. Alsayed - Energy Modeling & Simulation

Styling Functions

• Functions should have descriptive names, and these names should use lowercase
letters and underscores.

• Descriptive names help you and others understand what your code is trying to do.

• Module names should use these conventions as well.

• Every function should have a comment that explains concisely what the function
does.

• This comment should appear immediately after the function definition and use the
docstring format.

• In a well-documented function, other programmers can use the function by
reading only the description in the docstring. They should be able to trust that the
code works as described, and as long as they know the name of the function, the
arguments it needs, and the kind of value it returns, they should be able to use it
in their programs.

Dr. Alsayed - Energy Modeling & Simulation

Styling Functions

• If you specify a default value for a parameter, no spaces should be
used on either side of the equal sign:

• The same convention should be used for keyword arguments in
function calls:

Dr. Alsayed - Energy Modeling & Simulation

Styling Functions

• PEP 8 (https://www.python.org/dev/peps/pep-0008/) recommends
that you limit lines of code to 79 characters so every line is visible in a
reasonably sized editor window.

• If a set of parameters causes a function’s definition to be longer than
79 characters, press enter after the opening parenthesis on the
definition line. On the next line, press tab twice to separate the list of
arguments from the body of the function, which will only be indented
one level.

Dr. Alsayed - Energy Modeling & Simulation

Styling Functions

• Most editors automatically line up any additional lines of parameters to
match the indentation you have established on the first line:

• If your program or module has more than one function, you can separate
each by two blank lines to make it easier to see where one function ends
and the next one begins.

• All import statements should be written at the beginning of a file. The only
exception is if you use comments at the beginning of your file to describe
the overall program.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 8-15. Printing Models: Put the functions for the example
printing_models.py in a separate file called printing_functions.py.
Write an import statement at the top of printing_models.py, and
modify the file to use the imported functions.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 8-16. Imports: Using a program you wrote that has one function in it,
store that function in a separate file. Import the function into your
main program file, and call the function using each of these
approaches:

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 8-17. Styling Functions: Choose any three programs you wrote for
this chapter, and make sure they follow the styling guidelines
described in this section.

Dr. Alsayed - Energy Modeling & Simulation

Chapter 9: Classes

Dr. Alsayed - Energy Modeling & Simulation

INTRODUCTION

• Object-oriented programming is one of the most effective approaches
to writing software. In object-oriented programming you write classes
that represent real-world things and situations, and you create objects
based on these classes. When you write a class, you define the general
behavior that a whole category of objects can have.

• Making an object from a class is called instantiation, and you work
with instances of a class. In this chapter you’ll write classes and create
instances of those classes. You’ll specify the kind of information that
can be stored in instances, and you’ll define actions that can be taken
with these instances.

Dr. Alsayed - Energy Modeling & Simulation

Creating and Using a Class

• You can model almost anything using classes.

• Let’s start by writing a simple class, Dog, that represents a dog—not one
dog in particular, but any dog.

• What do we know about most pet dogs? Well, they all have a name and age.
We also know that most dogs sit and roll over.

• Those two pieces of information (name and age) and those two behaviors
(sit and roll over) will go in our Dog class because they’re common to most
dogs.

• This class will tell Python how to make an object representing a dog. After
our class is written, we’ll use it to make individual instances, each of which
represents one specific dog.

Dr. Alsayed - Energy Modeling & Simulation

Creating and Using a Class

• Creating the Dog Class

Dr. Alsayed - Energy Modeling & Simulation

Creating and Using a Class

• The __init__() Method
• A function that’s part of a class is a method. Everything you learned about

functions applies to methods as well; the only practical difference for now is
the way we’ll call methods.

• The __init__() method at w is a special method that Python runs automatically
whenever we create a new instance based on the Dog class.

• This method has two leading underscores and two trailing underscores, a
convention that helps prevent Python’s default method names from conflicting
with your method names.

• Make sure to use two underscores on each side of __init__(). If you use just
one on each side, the method won’t be called automatically when you use
your class, which can result in errors that are difficult to identify.

Dr. Alsayed - Energy Modeling & Simulation

Creating and Using a Class

• Making an Instance from a Class
• Think of a class as a set of instructions for how to make an instance. The class

Dog is a set of instructions that tells Python how to make individual instances
representing specific dogs.

Dr. Alsayed - Energy Modeling & Simulation

Creating and Using a Class

• Accessing Attributes
• To access the attributes of an instance, you use dot notation.

Dr. Alsayed - Energy Modeling & Simulation

Creating and Using a Class

• Calling Methods
• After we create an instance from the class Dog, we can use dot notation to call

any method defined in Dog.

Dr. Alsayed - Energy Modeling & Simulation

Creating and Using a Class

• Creating Multiple Instances
• You can create as many instances from a class as you need.

Dr. Alsayed - Energy Modeling & Simulation

Creating and Using a Class

• Creating Multiple Instances – continued
• You can make as many instances from one class as you need, as long as you

give each instance a unique variable name or it occupies a unique spot in a list
or dictionary.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 9-1. Restaurant: Make a class called Restaurant. The __init__() method
for Restaurant should store two attributes: a restaurant_name and a
cuisine_type. Make a method called describe_restaurant() that prints
these two pieces of information, and a method called
open_restaurant() that prints a message indicating that the restaurant
is open. Make an instance called restaurant from your class. Print the
two attributes individually, and then call both methods.

• 9-2. Three Restaurants: Start with your class from Exercise 9-1. Create
three different instances from the class, and call describe_restaurant()
for each instance.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 9-3. Users: Make a class called User. Create two attributes called
first_name and last_name, and then create several other attributes
that are typically stored in a user profile. Make a method called
describe_user() that prints a summary of the user’s information. Make
another method called greet_user() that prints a personalized greeting
to the user. Create several instances representing different users, and
call both methods for each user.

Dr. Alsayed - Energy Modeling & Simulation

Working with Classes and Instances

• You can use classes to represent many real-world situations. Once you
write a class, you’ll spend most of your time working with instances
created from that class. One of the first tasks you’ll want to do is
modify the attributes associated with a particular instance.

Dr. Alsayed - Energy Modeling & Simulation

Working with Classes and Instances
• The Car Class

• Let’s write a new class representing a car. Our class will store information
about the kind of car we’re working with, and it will have a method that
summarizes this information.

Dr. Alsayed - Energy Modeling & Simulation

Working with Classes and Instances

• Setting a Default Value for an Attribute
• When an instance is created, attributes can be defined without being passed in

as parameters.

• These attributes can be defined in the __init__() method, where they are
assigned a default value. Let’s add an attribute called odometer_reading that
always starts with a value of 0.

Dr. Alsayed - Energy Modeling & Simulation

Working with Classes and Instances

• Setting a Default Value for an Attribute – continued

Dr. Alsayed - Energy Modeling & Simulation

Working with Classes and Instances

• Modifying Attribute Values
• You can change an attribute’s value in three ways: you can change the value

directly through an instance, set the value through a method, or increment the
value (add a certain amount to it) through a method.

Dr. Alsayed - Energy Modeling & Simulation

Working with Classes and Instances

• Modifying an Attribute’s Value Directly
• The simplest way to modify the value of an attribute is to access the attribute

directly through an instance.

Dr. Alsayed - Energy Modeling & Simulation

Working with Classes and Instances

• Modifying an Attribute’s Value Through a Method
• It can be helpful to have methods that update certain attributes for you.

Instead of accessing the attribute directly, you pass the new value to a method
that handles the updating internally.

Dr. Alsayed - Energy Modeling & Simulation

Working with Classes and Instances

• Modifying an Attribute’s Value Through a Method – continued
• We can extend the method update_odometer() to do additional work every

time the odometer reading is modified. Let’s add a little logic to make sure no
one tries to roll back the odometer reading

Dr. Alsayed - Energy Modeling & Simulation

Working with Classes and Instances

• Incrementing an Attribute’s Value
Through a Method
• Sometimes you’ll want to increment an

attribute’s value by a certain amount
rather than set an entirely new value. Say
we buy a used car and put 100 miles on
it between the time we buy it and the
time we register it.

Dr. Alsayed - Energy Modeling & Simulation

Working with Classes and Instances

• Incrementing an Attribute’s Value Through a Method – continued

• Note: You can use methods like this to control how users of your
program update values such as an odometer reading, but anyone with
access to the program can set the odometer reading to any value by
accessing the attribute directly. Effective security takes extreme
attention to detail in addition to basic checks like those shown here.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 9-4. Number Served: Start with your program from Exercise 9-1 (page
162). Add an attribute called number_served with a default value of 0.
Create an instance called restaurant from this class. Print the number
of customers the restaurant has served, and then change this value
and print it again. Add a method called set_number_served() that lets
you set the number of customers that have been served. Call this
method with a new number and print the value again. Add a method
called increment_number_served() that lets you increment the
number of customers who’ve been served. Call this method with any
number you like that could represent how many customers were
served in, say, a day of business.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 9-5. Login Attempts: Add an attribute called login_attempts to your
User class from Exercise 9-3 (page 162). Write a method called
increment_login _attempts() that increments the value of
login_attempts by 1. Write another method called
reset_login_attempts() that resets the value of login_attempts to 0.
Make an instance of the User class and call
increment_login_attempts() several times. Print the value of
login_attempts to make sure it was incremented properly, and then
call reset_login_attempts(). Print login_attempts again to make sure it
was reset to 0.

Dr. Alsayed - Energy Modeling & Simulation

Inheritance

• You don’t always have to start from scratch when writing a class. If the
class you’re writing is a specialized version of another class you wrote,
you can use inheritance. When one class inherits from another, it takes
on the attributes and methods of the first class. The original class is
called the parent class, and the new class is the child class. The child
class can inherit any or all of the attributes and methods of its parent
class, but it’s also free to define new attributes and methods of its
own.

Dr. Alsayed - Energy Modeling & Simulation

Inheritance

• The __init__() Method for a Child Class
• When you’re writing a new class based on an existing class, you’ll often want to

call the __init__() method from the parent class. This will initialize any
attributes that were defined in the parent __init__() method and make them
available in the child class.

Dr. Alsayed - Energy Modeling & Simulation

Inheritance

• The __init__() Method for a
Child Class - continued

Dr. Alsayed - Energy Modeling & Simulation

Inheritance

• The __init__() Method for a Child Class - continued
• The super() function is a special function that allows you to call a method from

the parent class. This line tells Python to call the __init__() method from Car,
which gives an ElectricCar instance all the attributes defined in that method.
The name super comes from a convention of calling the parent class a
superclass and the child class a subclass

Dr. Alsayed - Energy Modeling & Simulation

Inheritance

• Defining Attributes and
Methods for the Child Class
• Once you have a child class

that inherits from a parent
class, you can add any new
attributes and methods
necessary to differentiate the
child class from the parent
class.

Dr. Alsayed - Energy Modeling & Simulation

Inheritance

• Overriding Methods from the Parent Class
• You can override any method from the parent class that doesn’t fit what you’re

trying to model with the child class.

• To do this, you define a method in the child class with the same name as the
method you want to override in the parent class.

• Python will disregard the parent class method and only pay attention to the
method you define in the child class.

Dr. Alsayed - Energy Modeling & Simulation

Inheritance

• Overriding Methods from the Parent Class – continued

Dr. Alsayed - Energy Modeling & Simulation

Inheritance

• Instances as Attributes
• When modeling something from the real world in code, you may find that

you’re adding more and more detail to a class. You’ll find that you have a
growing list of attributes and methods and that your files are becoming
lengthy.

• In these situations, you might recognize that part of one class can be written as
a separate class. You can break your large class into smaller classes that work
together.

Dr. Alsayed - Energy Modeling & Simulation

Inheritance

• Instances as Attributes –
continued

Dr. Alsayed - Energy Modeling & Simulation

Inheritance

• Instances as Attributes – continued

Dr. Alsayed - Energy Modeling & Simulation

Inheritance

• Modeling Real-World Objects
• As you begin to model more complicated things like electric cars, you’ll wrestle with interesting

questions. Is the range of an electric car a property of the battery or of the car? If we’re only
describing one car, it’s probably fine to maintain the association of the method get_range()
with the Battery class.

• But if we’re describing a manufacturer’s entire line of cars, we probably want to move
get_range() to the ElectricCar class. The get_range() method would still check the battery size
before determining the range, but it would report a range specific to the kind of car it’s
associated with. Alternatively, we could maintain the association of the get_range() method
with the battery but pass it a parameter such as car_model. The get_range() method would
then report a range based on the battery size and car model.

• This brings you to an interesting point in your growth as a programmer. When you wrestle with
questions like these, you’re thinking at a higher logical level rather than a syntax-focused level.
You’re thinking not about Python, but about how to represent the real world in code. When
you reach this point, you’ll realize there are often no right or wrong approaches to modeling
real-world situations.

• Some approaches are more efficient than others, but it takes practice to find the most efficient
representations. If your code is working as you want it to, you’re doing well!

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 9-6. Ice Cream Stand: An ice cream stand is a specific kind of
restaurant. Write a class called IceCreamStand that inherits from the
Restaurant class you wrote in Exercise 9-1 (page 162) or Exercise 9-4
(page 167). Either version of the class will work; just pick the one you
like better. Add an attribute called flavors that stores a list of ice
cream flavors. Write a method that displays these flavors. Create an
instance of IceCreamStand, and call this method.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 9-7. Admin: An administrator is a special kind of user. Write a class
called Admin that inherits from the User class you wrote in Exercise 9-
3 (page 162) or Exercise 9-5 (page 167). Add an attribute, privileges,
that stores a list of strings like "can add post", "can delete post", "can
ban user", and so on. Write a method called show_privileges() that
lists the administrator’s set of privileges. Create an instance of Admin,
and call your method.

• 9-8. Privileges: Write a separate Privileges class. The class should have
one attribute, privileges, that stores a list of strings as described in
Exercise 9-7. Move the show_privileges() method to this class. Make a
Privileges instance as an attribute in the Admin class. Create a new
instance of Admin and use your method to show its privileges.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 9-9. Battery Upgrade: Use the final version of electric_car.py from this
section. Add a method to the Battery class called upgrade_battery().
This method should check the battery size and set the capacity to 100
if it isn’t already. Make an electric car with a default battery size, call
get_range() once, and then call get_range() a second time after
upgrading the battery. You should see an increase in the car’s range.

Dr. Alsayed - Energy Modeling & Simulation

Importing Classes

• As you add more functionality to your classes, your files can get long,
even when you use inheritance properly. In keeping with the overall
philosophy of Python, you’ll want to keep your files as uncluttered as
possible. To help, Python lets you store classes in modules and then
import the classes you need into your main program.

Dr. Alsayed - Energy Modeling & Simulation

Importing Classes

• Importing a Single Class
• Let’s create a module containing just the Car class.

Dr. Alsayed - Energy Modeling & Simulation

Importing Classes

• Importing a Single Class – continued

Dr. Alsayed - Energy Modeling & Simulation

Importing Classes

• Importing a Single Class – continued

Dr. Alsayed - Energy Modeling & Simulation

Importing Classes

• Storing Multiple Classes in a
Module
• You can store as many

classes as you need in a
single module, although
each class in a module
should be related somehow.

Dr. Alsayed - Energy Modeling & Simulation

Importing Classes

• Storing Multiple Classes in a Module – continued

Dr. Alsayed - Energy Modeling & Simulation

Importing Classes

• Importing Multiple Classes from a Module
• You can import as many classes as you need into a program file.

Dr. Alsayed - Energy Modeling & Simulation

Importing Classes

• Importing an Entire Module
• You can also import an entire module and then access the classes you need

using dot notation. This approach is simple and results in code that is easy to
read. Because every call that creates an instance of a class includes the module
name, you won’t have naming conflicts with any names used in the current
file.

Dr. Alsayed - Energy Modeling & Simulation

Importing Classes

• Importing All Classes from a Module
• You can import every class from a module using the following syntax:

• This method is not recommended for two reasons.
• First, it’s helpful to be able to read the import statements at the top of a file

and get a clear sense of which classes a program uses. With this approach it’s
unclear which classes you’re using from the module. This approach can also
lead to confusion with names in the file. If you accidentally import a class with
the same name as something else in your program file, you can create errors
that are hard to diagnose.

• If you need to import many classes from a module, you’re better off importing
the entire module and using the module_name.ClassName syntax.

Dr. Alsayed - Energy Modeling & Simulation

Importing Classes

• Importing a Module into a Module
• Sometimes you’ll want to spread out your classes over several modules to keep

any one file from growing too large and avoid storing unrelated classes in the
same module. When you store your classes in several modules, you may find
that a class in one module depends on a class in another module. When this
happens, you can import the required class into the first module.

Dr. Alsayed - Energy Modeling & Simulation

Importing Classes

• Importing a Module into a Module – continued

Dr. Alsayed - Energy Modeling & Simulation

Importing Classes

• Using Aliases
• As you saw in Chapter 8, aliases can be quite helpful when using modules to

organize your projects’ code. You can use aliases when importing classes as
well.

• As an example, consider a program where you want to make a bunch of
electric cars. It might get tedious to type (and read) ElectricCar over and over
again. You can give ElectricCar an alias in the import statement:

Dr. Alsayed - Energy Modeling & Simulation

Importing Classes

• Finding Your Own Workflow
• As you can see, Python gives you many options for how to structure code in a

large project. It’s important to know all these possibilities so you can
determine the best ways to organize your projects as well as understand other
people’s projects. When you’re starting out, keep your code structure simple.

• Try doing everything in one file and moving your classes to separate modules
once everything is working. If you like how modules and files interact, try
storing your classes in modules when you start a project. Find an approach
that lets you write code that works, and go from there.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 9-10. Imported Restaurant: Using your latest Restaurant class, store it in a
module. Make a separate file that imports Restaurant. Make a Restaurant
instance, and call one of Restaurant’s methods to show that the import
statement is working properly.

• 9-11. Imported Admin: Start with your work from Exercise 9-8 (page 173).
Store the classes User, Privileges, and Admin in one module. Create a
separate file, make an Admin instance, and call show_privileges() to show
that everything is working correctly.

• 9-12. Multiple Modules: Store the User class in one module, and store the
Privileges and Admin classes in a separate module. In a separate file, create
an Admin instance and call show_privileges() to show that everything is still
working correctly.

Dr. Alsayed - Energy Modeling & Simulation

The Python Standard Library

• The Python standard library is a set of modules included with every Python
installation.

• Now that you have a basic understanding of how functions and classes
work, you can start to use modules like these that other programmers have
written.

• You can use any function or class in the standard library by including a
simple import statement at the top of your file.

• Let’s look at one module, random, which can be useful in modeling many
real-world situations.

• One interesting function from the random module is randint(). This function
takes two integer arguments and returns a randomly selected integer
between (and including) those numbers.

Dr. Alsayed - Energy Modeling & Simulation

The Python Standard Library

• Here’s how to generate a random number between 1 and 6:

• Another useful function is choice(). This function takes in a list or tuple
and returns a randomly chosen element:

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 9-13. Dice: Make a class Die with one attribute called sides, which has
a default value of 6. Write a method called roll_die() that prints a
random number between 1 and the number of sides the die has. Make
a 6-sided die and roll it 10 times. Make a 10-sided die and a 20-sided
die. Roll each die 10 times.

• 9-14. Lottery: Make a list or tuple containing a series of 10 numbers
and five letters. Randomly select four numbers or letters from the list
and print a message saying that any ticket matching these four
numbers or letters wins a prize.

Dr. Alsayed - Energy Modeling & Simulation

Try It Yourself

• 9-15. Lottery Analysis: You can use a loop to see how hard it might be
to win the kind of lottery you just modeled. Make a list or tuple called
my_ticket. Write a loop that keeps pulling numbers until your ticket
wins. Print a message reporting how many times the loop had to run
to give you a winning ticket.

• 9-16. Python Module of the Week: One excellent resource for exploring
the Python standard library is a site called Python Module of the
Week. Go to https://pymotw.com/ and look at the table of contents.
Find a module that looks interesting to you and read about it, perhaps
starting with the random module.

Dr. Alsayed - Energy Modeling & Simulation

Styling Classes

• Class names should be written in CamelCase. To do this, capitalize the first letter of each
word in the name, and don’t use underscores.

• Instance and module names should be written in lowercase with underscores between
words.

• Every class should have a docstring immediately following the class definition. The
docstring should be a brief description of what the class does, and you should follow the
same formatting conventions you used for writing docstrings in functions.

• Each module should also have a docstring describing what the classes in a module can be
used for. You can use blank lines to organize code, but don’t use them excessively.

• Within a class you can use one blank line between methods, and within a module you can
use two blank lines to separate classes.

• If you need to import a module from the standard library and a module that you wrote,
place the import statement for the standard library module first. Then add a blank line
and the import statement for the module you wrote. In programs with multiple import
statements, this convention makes it easier to see where the different modules used in
the program come from.

Dr. Alsayed - Energy Modeling & Simulation

Chapter 10: Files and
Exceptions

Dr. Alsayed - Energy Modeling & Simulation

Dr. Alsayed - Energy Modeling & Simulation

