Chapter 10 Files and Exceptions
Introduction
· In this chapter you’ll learn:
· To work with files so your programs can quickly analyze lots of data.
· To handle errors so your programs don’t crash when they encounter unexpected situations.
· You’ll learn about exceptions, which are special objects Python creates to manage errors that arise while a program is running. You’ll also learn about the json module, which allows you to save user data so it isn’t lost when your program stops running.
Reading from a File
· An incredible amount of data is available in text files. Text files can contain weather data, traffic data, socioeconomic data, literary works, and more.
· Reading from a file is particularly useful in data analysis applications, but it’s also applicable to any situation in which you want to analyze or modify information stored in a file.
· When you want to work with the information in a text file, the first step is to read the file into memory. You can read the entire contents of a file, or you can work through the file one line at a time.

Reading an Entire File
· To begin, we need a file with a few lines of text in it. Let’s start with a file that contains pi to 30 decimal places, with 10 decimal places per line:

[image:]
· To try the following examples yourself, you can enter these lines in an editor and save the file as pi_digits.txt, or you can download the file from the book’s resources through https://nostarch.com/pythoncrashcourse2e/ .
· a program that opens this file, reads it, and prints the contents of the file to the screen:
[image:]
· The first line of this program has a lot going on:
· To do any work with a file, even just printing its contents, you first need to open the file to access it. The open() function needs one argument: the name of the file you want to open.
· Python looks for this file in the directory where the program that’s currently being executed is stored. In this example, file_reader.py is currently running, so Python looks for pi_digits.txt in the directory where file_reader.py is stored.
· The open() function returns an object representing the file. Here, open('pi_digits.txt') returns an object representing pi_digits.txt.
· Python assigns this object to file_object, which we’ll work with later in the program.
· The keyword with closes the file once access to it is no longer needed.
· Notice how we call open() in this program but not close(). You could open and close the file by calling open() and close(), but if a bug in your program prevents the close() method from being executed, the file may never close.
· Improperly closed files can cause data to be lost or corrupted.
· If you call close() too early in your program, you’ll find yourself trying to work with a closed file (a file you can’t access), which leads to more errors.
· All you have to do is open the file and work with it as desired, trusting that Python will close it automatically when the with block finishes execution.
· Once we have a file object representing pi_digits.txt, we use the read() method in the second line of our program to read the entire contents of the file and store it as one long string in contents. When we print the value of contents, we get the entire text file back:
[image:]
· The only difference between this output and the original file is the extra blank line at the end of the output.
· The blank line appears because read() returns an empty string when it reaches the end of the file; this empty string shows up as a blank line.
· If you want to remove the extra blank line, you can use rstrip() in the call to print():
[image:]

File Paths
· When you pass a simple filename like pi_digits.txt to the open() function, Python looks in the directory where the file that’s currently being executed (that is, your .py program file) is stored.
· Sometimes, depending on how you organize your work, the file you want to open won’t be in the same directory as your program file.
· For example, you might store your program files in a folder called python_work; inside python_work, you might have another folder called text_files to distinguish your program files from the text files they’re manipulating.
· To get Python to open files from a directory other than the one where your program file is stored, you need to provide a file path, which tells Python to look in a specific location on your system. Because text_files is inside python_work, you could use a relative file path to open a file from text_files.
· For example, you’d write:	
[image:]
· This line tells Python to look for the desired .txt file in the folder text_files and assumes that text_files is located inside python_work (which it is).
Note: Windows systems use a backslash (\) instead of a forward slash (/) when displaying file paths, but you can still use forward slashes in your code.

· You can also tell Python exactly where the file is on your computer regardless of where the program that’s being executed is stored. This is called an absolute file path.
· Absolute paths are usually longer than relative paths, so it’s helpful to assign them to a variable and then pass that variable to open():
[image:]
Note: If you try to use backslashes in a file path, you’ll get an error because the backslash is used to escape characters in strings. For example, in the path "C:\path\to\file.txt", the sequence \t is interpreted as a tab. If you need to use backslashes, you can escape each one in the path, like this: "C:\\path\\to\\file.txt".

Reading Line by Line
When you’re reading a file, you’ll often want to examine each line of the file. You might be looking for certain information in the file, or you might want to modify the text in the file in some way.
[image:]

[image:]

[image:]

Making a List of Lines from a File
· When you use with, the file object returned by open() is only available inside the with block that contains it.
· If you want to retain access to a file’s contents outside the with block, you can store the file’s lines in a list inside the block and then work with that list.
· readlines() method takes each line from the file and stores it in a list.
[image:]

Working with a File’s Contents
After you’ve read a file into memory, you can do whatever you want with that data, so let’s briefly explore the digits of pi.
[image:]

[image:]

[image:]

[image:]

Note: When Python reads from a text file, it interprets all text in the file as a string. If you read in a number and want to work with that value in a numerical context, you’ll have to convert it to an integer using the int() function or convert it to a float using the float() function.

Large Files: One Million Digits
· So far we’ve focused on analyzing a text file that contains only three lines, but the code in these examples would work just as well on much larger files. If we start with a text file that contains pi to 1,000,000 decimal places instead of just 30, we can create a single string containing all these digits.
· We’ll also print just the first 50 decimal places, so we don’t have to watch a million digits scroll by in the terminal.
[image:]
[image:]
[image:]
Note: To run this program (and many of the examples that follow), you’ll need to download the resources available at https://nostarch.com/pythoncrashcourse2e/ .

Is Your Birthday Contained in Pi?
Let’s use the program we just wrote to find out if someone’s birthday appears anywhere in the first million digits of pi.
[image:]

[image:]
[image:]

Writing to a File
· Writing to an Empty File To write text to a file, you need to call open() with a second argument telling Python that you want to write to the file.
[image:]
· 'w', tells Python that we want to open the file in write mode. You can open a file in read mode ('r'), write mode ('w'), append mode ('a'), or a mode that allows you to read and write to the file ('r+').
· If you omit the mode argument, Python opens the file in read-only mode by default.
· The open() function automatically creates the file you’re writing to if it doesn’t already exist. However, be careful opening a file in write mode ('w') because if the file does exist, Python will erase the contents of the file before returning the file object.
Note: Python can only write strings to a text file. If you want to store numerical data in a text file, you’ll have to convert the data to string format first using the str() function.

Writing Multiple Lines
The write() function doesn’t add any newlines to the text you write. So if you write more than one line without including newline characters, your file may not look the way you want it to:
[image:]
[image:]
[image:]
[image:]
Appending to a File
If you want to add content to a file instead of writing over existing content, you can open the file in append mode.
[image:]
[image:]
[image:]

Exceptions
· Python uses special objects called exceptions to manage errors that arise during a program’s execution.
· Whenever an error occurs that makes Python unsure what to do next, it creates an exception object.
· If you write code that handles the exception, the program will continue running.
· Exceptions are handled with try-except blocks. A try-except block asks Python to do something, but it also tells Python what to do if an exception is raised. When you use try-except blocks, your programs will continue running even if things start to go wrong.
Handling the ZeroDivisionError Exception
Let’s look at a simple error that causes Python to raise an exception. You probably know that it’s impossible to divide a number by zero, but let’s ask Python to do it anyway:
[image:]
[image:]
Using try-except Blocks
· When you think an error may occur, you can write a try-except block to handle the exception that might be raised.
· You tell Python to try running some code, and you tell it what to do if the code results in a particular kind of exception. H
· Here’s what a try-except block for handling the ZeroDivisionError exception looks like:
[image:]
[image:]
Using Exceptions to Prevent Crashes
· Handling errors correctly is especially important when the program has more work to do after the error occurs.
· This happens often in programs that prompt users for input. If the program responds to invalid input appropriately, it can prompt for more valid input instead of crashing.
· Let’s create a simple calculator that does only division:
[image:]
· This program does nothing to handle errors, so asking it to divide by zero causes it to crash:
[image:]
The else Block
We can make this program more error resistant by wrapping the line that might produce errors in a try-except block.
[image:]
[image:]
[image:]
Handling the FileNotFoundError Exception
· One common issue when working with files is handling missing files.
· The file you’re looking for might be in a different location, the filename may be misspelled, or the file may not exist at all.
· Let’s try to read a file that doesn’t exist. The following program tries to read in the contents of Alice in Wonderland, but I haven’t saved the file alice.txt in the same directory.
[image:]
[image:]

[image:]
[image:]

Analyzing Text
· You can analyze text files containing entire books.
· Many classic works of literature are available as simple text files because they are in the public domain.
· The texts used in this section come from Project Gutenberg (http://gutenberg .org/).
· Project Gutenberg maintains a collection of literary works that are available in the public domain, and it’s a great resource if you’re interested in working with literary texts in your programming projects.
· Let’s pull in the text of Alice in Wonderland and try to count the number of words in the text.
· We’ll use the string method split(), which can build a list of words from a string. Here’s what split() does with a string containing just the title "Alice in Wonderland":
[image:]
· The split() method separates a string into parts wherever it finds a space and stores all the parts of the string in a list.
· The result is a list of words from the string, although some punctuation may also appear with some of the words.
· To count the number of words in Alice in Wonderland, we’ll use split() on the entire text.
· Then we’ll count the items in the list to get a rough idea of the number of words in the text:
[image:]
[image:]
[image:]

Working with Multiple Files
Let’s add more books to analyze.
But before we do, let’s move the bulk of this program to a function called count_words().
[image:]
[image:]
[image:]
Failing Silently
· In the previous example, we informed our users that one of the files was unavailable.
· But you don’t need to report every exception you catch.
· Sometimes you’ll want the program to fail silently when an exception occurs and continue on as if nothing happened.
· Python has a pass statement that tells it to do nothing in a block:
[image:]
[image:]
Deciding Which Errors to Report
· How do you know when to report an error to your users and when to fail silently?
· If users know which texts are supposed to be analyzed, they might appreciate a message informing them why some texts were not analyzed.
· If users expect to see some results but don’t know which books are supposed to be analyzed, they might not need to know that some texts were unavailable.
· Giving users information they aren’t looking for can decrease the usability of your program.
· Well-written, properly tested code is not very prone to internal errors, such as syntax or logical errors. But every time your program depends on something external, such as user input, the existence of a file, or the availability of a network connection, there is a possibility of an exception being raised.
· A little experience will help you know where to include exception handling blocks in your program and how much to report to users about errors that arise.
Try It Yourself
10-6. Addition: One common problem when prompting for numerical input occurs when people provide text instead of numbers. When you try to convert the input to an int, you’ll get a ValueError. Write a program that prompts for two numbers. Add them together and print the result. Catch the ValueError if either input value is not a number, and print a friendly error message. Test your program by entering two numbers and then by entering some text instead of a number.
10-7. Addition Calculator: Wrap your code from Exercise 10-6 in a while loop so the user can continue entering numbers even if they make a mistake and enter text instead of a number.
10-8. Cats and Dogs: Make two files, cats.txt and dogs.txt. Store at least three names of cats in the first file and three names of dogs in the second file. Write a program that tries to read these files and print the contents of the file to the screen. Wrap your code in a try-except block to catch the FileNotFound error, and print a friendly message if a file is missing. Move one of the files to a different location on your system, and make sure the code in the except block executes properly.
10-9. Silent Cats and Dogs: Modify your except block in Exercise 10-8 to fail silently if either file is missing.
10-10. Common Words: Visit Project Gutenberg (https://gutenberg.org/) and find a few texts you’d like to analyze. Download the text files for these works, or copy the raw text from your browser into a text file on your computer. You can use the count() method to find out how many times a word or phrase appears in a string. For example, the following code counts the number of times 'row' appears in a string:
[image:]
Notice that converting the string to lowercase using lower() catches all appearances of the word you’re looking for, regardless of how it’s formatted.
Write a program that reads the files you found at Project Gutenberg and determines how many times the word 'the' appears in each text. This will be an approximation because it will also count words such as 'then' and 'there'. Try counting 'the ', with a space in the string, and see how much lower your count is.

Storing Data
· Many of your programs will ask users to input certain kinds of information.
· You might allow users to store preferences in a game or provide data for a visualization.
· Whatever the focus of your program is, you’ll store the information users provide in data structures such as lists and dictionaries.
· When users close a program, you’ll almost always want to save the information they entered. A simple way to do this involves storing your data using the json module.
· The json module allows you to dump simple Python data structures into a file and load the data from that file the next time the program runs.
· You can also use json to share data between different Python programs.
· Even better, the JSON data format is not specific to Python, so you can share data you store in the JSON format with people who work in many other programming languages. It’s a useful and portable format, and it’s easy to learn.
Note: The JSON (JavaScript Object Notation) format was originally developed for JavaScript. However, it has since become a common format used by many languages, including Python.

Using json.dump() and json.load()
· Let’s write a short program that stores a set of numbers and another program that reads these numbers back into memory.
· The json.dump() function takes two arguments: a piece of data to store and a file object it can use to store the data. Here’s how you can use json.dump() to store a list of numbers:
[image:]
[image:]
Now we’ll write a program that uses json.load() to read the list back into memory:
[image:]
[image:]

Saving and Reading User-Generated Data
· Saving data with json is useful when you’re working with user-generated data, because if you don’t store your user’s information somehow, you’ll lose it when the program stops running.
· Let’s look at an example where we prompt the user for their name the first time they run a program and then remember their name when they run the program again.
[image:]
[image:]
· Now let’s write a new program that greets a user whose name has already been stored:
[image:]
[image:]
· We need to combine these two programs into one file.
[image:]
[image:]
[image:]
Refactoring
· Often, you’ll come to a point where your code will work, but you’ll recognize that you could improve the code by breaking it up into a series of functions that have specific jobs. This process is called refactoring.
· Refactoring makes your code cleaner, easier to understand, and easier to extend.
[image:]
· The function greet_user() is doing more than just greeting the user—it’s also retrieving a stored username if one exists and prompting for a new username if one doesn’t exist.
· Let’s refactor greet_user() so it’s not doing so many different tasks.
[image:]
[image:]
· We should factor one more block of code out of greet_user(). If the username doesn’t exist, we should move the code that prompts for a new username to a function dedicated to that purpose:
[bookmark: _GoBack][image:]
[image:]
image4.png
0165 (6248) “meleejed@Rsh X @ Pytron Cresh Course - A Hands X |ef8 v - ke

C @ File | CyUsers/chem _dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming... @ 12 ¢ *» 00
= Python Crash Course - A Hands-On, Project-Based Introduction to Pro... 224 /548

path "text_files/filename.txt' won’t work because Python will only look
for that location inside python_work. You’ll need to write out a full path to
clarify where you want Python to look.

Absolute paths are usually longer than relative paths, so it’s helpful to
assign them to a variable and then pass that variable to open():

file_path = '/home/ehmatthes/other_files/text_files/filename.txt'
with open(file_path) as file_object:

Using absolute paths, you can read files from any location on your sys-
tem. For now it’s easiest to store files in the same directory as your program
files or in a folder such as text_files within the directory that stores your pro-
gram files.

If you try to use backslashes in a file path, youw'll get an error because the backslash is
used to escape characters in strings. For example, in the path "C: \path\to\file.txt",
the sequence \t is interpreted as a tab. If you need to use backslashes, you can escape
each one in the path, like this: "C:\\path\\to\\file.txt".

et @

image5.png
S0 B0 (6248) “malzayed@naigh k)| @ Python Crash Course - AHands X a8
C @ File | C:/Users/chem_dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20introduction%20to%20Programming... @
= Python Crash Course - A Hands-On, Project-Based Introduction to Pro... 225 /548

file one at a time:

file_reader.py @ filename = 'pi_digits.txt'

® with open(filename) as file_object:
(-] for line in file object:
print(line)

At @ we assign the name of the file we’re reading from to the variable
filename. This is a common convention when working with files. Because
the variable filename doesn’t represent the actual file—it’s just a string tell-
ing Python where to find the file—you can easily swap out 'pi_digits.txt'
for the name of another file you want to work with. After we call open(),
an object representing the file and its contents is assigned to the variable
file_object ®. We again use the with syntax to let Python open and close
the file properly. To examine the file’s contents, we work through each line
in the file by looping over the file object ©.

When we print each line, we find even more blank lines:

3.1415926535

8979323846

o7 b W @ o

image6.png
90 IRbox (6246) “malsayed@naishi x| @ Python Crash Course - A Hands- X (o8

C @ File | C:/Users/chem_dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20introduction%20to%20Programming... @

Python Crash Course - A Hands-On, Project-Based Introduction to Pro... 225 /548

When we print each line, we find even more blank lines:

3.1415926535
8979323846

2643383279

These blank lines appear because an invisible newline character is at
the end of each line in the text file. The print function adds its own new-
line each time we call it, so we end up with two newline characters at the
end of each line: one from the file and one from print(). Using rstrip()
on each line in the print() call eliminates these extra blank lines:

filename = 'pi_digits.t

th open(filename) as file_object:
for line in file_object:
print(line.rstrip())

0T PR W ®

image7.png
0165 (6248) “meleejed@Rsh X @ Pytron Cresh Course - A Hands X |ef8 v - ke

C @ File | C:/Users/chem_dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming.

= Python Crash Course - A Hands-On, Project-Based Introduction to Pro... 226 /548 — 5%+ (RS} 3

block and then work with that list. You can process parts of the file immedi-
ately and postpone some processing for later in the program.

The following example stores the lines of pi_digits.txt in a list inside the
with block and then prints the lines outside the with block:

filename = digits.txt

with open(filename) as file_object:
lines = file_object.readlines()

for line in lines:
print(line.rstrip())

At @ the readlines() method takes each line from the file and stores it
in a list. This list is then assigned to lines, which we can continue to work

with after the with block ends. At @ we use a simple for loop to print each
line from lines. Because each item in lines corresponds to each line in the
file, the output matches the contents of the file exactly.

Working with a File’s Contents

After you've read a file into memory, you can do whatever you want with
that data, so let’s briefly explore the digits of pi. First, we’ll attempt to build

al s x of & W [Ic

image8.png
90 IRbox (6246) “malsayed@naishi x| @ Python Crash Course - A Hands- X (o8

C @ File | C:/Users/chem_dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20introduction%20to%20Programming... @

Python Crash Course - A Hands-On, Project-Based Introduction to Pro... 226 /548

file, the output matches the contents of the file exactly.

Working with a File’s Contents

After you've read a file into memory, you can do whatever you want with
that data, so let’s briefly explore the digits of pi. First, we’ll attempt to build
asingle string containing all the digits in the file with no whitespace in it:

pi_string.py filename = 'pi_digits.

ct:
s0)

with open(filename) as file_obj
lines = file_object.readlin

© pi_string = "'
® for line in lines:
pi_string += line.rstrip()

© print(pi_string)
print(len(pi_string))

7
sy

image9.png
90 IRbox (6246) “malsayed@naishi x| @ Python Crash Course - A Hands- X (o8 v -

C @ File | CyUsers/chem _dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming... @ 12 ¢ *» 00
= Python Crash Course - A Hands-On, Project-Based Introduction to Pro... 227 /548

hold the digits of pi. We then create a loop that adds each line of digits to
pi_string and removes the newline character from each line ®. At © we
print this string and also show how long the string is:

3.1415926535 8979323846 2643383279
36

The variable pi_string contains the whitespace that was on the left
side of the digits in each line, but we can get rid of that by using strip()
instead of rstrip():

snip
for line in lines:
pi_string += line.strip()

print(pi_string)
print(len(pi_string))

Now we have a string containing pi to 30 decimal places. The string

is 82 characters long because it also includes the leading 3 and a decimal
point:

416PM
4777202

)) ENG

image10.png
90 IRbox (6246) “malsayed@naishi x| @ Python Crash Course - A Hands- X (o8 v -

C @ File | CyUsers/chem _dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming... @ 12 ¢ *» 00

= Python Crash Course - A Hands-On, Project-Based Introduction to Pro... 227 /543

for line in lines:
pi_string += line.strip()

print(pi_string)
print(len(pi_string))

Now we have a string containing pi to 30 decimal places. The string
is 82 characters long because it also includes the leading 3 and a decimal
point:

3.141592653589793238462643383279
32

When Python reads from a text file, it interprets all text in the file as a string. If you
read in a number and want to work with that value in a numerical context, you'll
have to convert it to an integer using the int() function or convert it to a float using
the float () function.

Large Files: One Million Digits

So far we’ve focused on analyzing a text file that contains only three lines,

a X JI‘J_ Wil = P o ST

image11.png
0165 (6248) “meleejed@Rsh X @ Pytron Cresh Course - A Hands X |ef8 v - ke

C @ File | CyUsers/chem _dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming... @ 12 ¢ *» 00

Python Crash Course - A Hands-On, Project-Based Introduction to Pro... 227 /548

J 8
files. If we start with a text file that contains pi to 1,000,000 decimal places
instead of just 30, we can create a single string containing all these digits.
We don’t need to change our program at all except to pass it a different file.
We'll also print just the first 50 decimal places, so we don’t have to watch a
million digits scroll by in the terminal:

pi_string.py filename = 'pi_million_digits.txt'

with open(filename) as file_object:
lines = file_object.readlines()

Files and Exceptions 189

image12.png
0165 (6248) “meleejed@Rsh X @ Pytron Cresh Course - A Hands X |ef8 v - ke

C @ File | CyUsers/chem _dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming... @ 12 ¢ *» 00

= Python Crash Course - A Hands-On, Project-Based Introduction to Pro... 228 /543

pi_string = "'
for line in lines:

pi_string += line.strip()

print(f"{pi_string[:52]}...")
print(len(pi_string))

The output shows that we do indeed have a string containing pi to
1,000,000 decimal places:

3.14159265358979323846264338327950288419716939937510. . .
1000002

Python has no inherent limit to how much data you can work with; you
can work with as much data as your system’s memory can handle.

To run this program (and many of the examples that follow), yow'll need to download
the resources available at https://nostarch.com/pythoncrashcourse2e/.

PRt ®

image13.png
90 IRbox (6246) “malsayed@naishi x| @ Python Crash Course - A Hands- X (o8 v

C @ File | CyUsers/chem _dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming... @ 12 ¢ *» 00

Python Crash Course - A Hands-On, Project-Based Introduction to Pro... 228 /548

appears anywhere 1n pi_string:

snip
for line in lines:
pi_string += line.strip()

© birthday = input("Enter your birthday, in the form mmddyy: ")
® if birthday in pi_string:
print("Your birthday appears in the first million digits of pil!")
else:
print("Your birthday does not appear in the first million digits of pi.")

At @ we prompt for the user’s birthday, and then at @ we check if that
string is in pi_string. Let’s try it:

Enter your birthdate, in the form mmddyy: 120372
Your birthday appears in the first million digits of pi!

My birthday does appear in the digits of pi! Once you've read from a
file, you can analyze its contents in just about any way you can imagine.

R wil'G

image14.png
S b0 (6,248) “malsayed@naghiXl| @ Python Crash Course - A Hands- X |Wefe v

C @ File | CyUsers/chem_dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming... @ 12 ¢ *» 00

= Python Crash Course - A Hands-On, Project-Based Introduction to Pro... 229 /548

TRY IT YOURSELF

10-1. Learning Python: Open a blank file in your text editor and write a few
lines summarizing what you've learned about Python so far. Start each line
with the phrase In Python you can. . . . Save the file as learning_python.ixt in
the same directory as your exercises from this chapter. Write a program that
reads the file and prints what you wrote three times. Print the contents once by
reading in the entire file, once by looping over the file object, and once by stor-
ing the lines in a list and then working with them outside the with block.

10-2. Learning C: You can use the replace() method fo replace any word in a
string with a different word. Here's a quick example showing how to replace
*dog" with 'cat’ in a sentence:

>>> message = "I really like dogs."
>>> message.replace('dog’, 'cat')
I really like cats.’

Read in each line from the file you just created, learning_python.ixt, and
replace the word Python with the name of another language, such as C. Print
each modified line to the screen.

et @

image15.png
90 IRbox (6246) “malsayed@naishi x| @ Python Crash Course - A Hands- X (o8 v

C @ File | CyUsers/chem _dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming... @ 12 ¢ *» 00

Python Crash Course - A Hands-On, Project-Based Introduction to Pro.. 229 /548 — 150% + (RS} b4

Python that you want to write to the file; To see how this works, let’s write a
simple message and store it in a file instead of printing it to the screen:

write
_message.py

filename = 'programming. txt'

© with open(filenane, 'w') as file object:
@ file object.urite("I love programming.")

The call to open() in this example has two arguments ®. The first argu-
ment is still the name of the file we want to open. The second argument, 'w',
tells Python that we want to open the file in write mode. You can open a file

bl

Files and Exceptions

in read mode ('), write mode ("w'), append mode (*a'), or a mode that allows
you to read and write to the file ('r+'). If you omit the mode argument,
Python opens the file in read-only mode by default.

The open() function automatically creates the file you're writing to if
it doesn’t already exist. However, be careful opening a file in write mode

T x o7 eR w0

image16.png
0 Inbox (6248) - malsayed@najeh XN @ Python Crash Course - A Hands- X | v

C @ File | CyUsers/chem _dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming... @ 12 ¢ *» 00

Python Crash Course - A Hands-On, Project-Based Introduction to Pro... 230 /548

file may not look the way you want it to:

i

ct.write("I love programmi)
file_object.write("I love creating new games.")

If you open programming.txt, you'll see the two lines squished together:

I love programming.I love creating new games.

Including newlines in your calls to write() makes each string appear on
its own line:

, 'w') as file_object:
file_object.write("I love programming.\n")
file_object.write("I love creating new games.\n")

The output now appears on separate lines:

I love programming.
I love creating new games.

et @

image17.png
90 IRbox (6246) “malsayed@naishi x| @ Python Crash Course - A Hands- X (o8 v

C @ File | CyUsers/chem _dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming... @ 12 ¢ *» 00

Python Crash Course - A Hands-On, Project-Based Introduction to Pro... 231 /548

Syou be added 3 0
doesn’t exist yet, Python will create an empty file for you.

Let’'s modify write_message.py by adding some new reasons we love pro-
gramming to the existing file programming.txt:

write a ' programming. txt'
_message.py
with open(filenane, 'a') as file object:
file_object.urite("I also love finding meaning in large datasets.\n")
file object.write("I love creating apps that can run in a browser.\n")

At @ we use the 'a' argument to open the file for appending rather
than writing over the existing file. At ® we write two new lines, which are
added to programming.txt:

programming.txt
e ir tes.
also love finding meaning in large datasets.
love creating apps that can run in a browser.

We end up with the original contents of the file, followed by the new
content we just added.

TRY IT YOURSELF

wil'G

image18.png
S b0 (6,248) “malsayed@naghiXl| @ Python Crash Course - A Hands- X |Wefe
C @ File | C:/Users/chem_dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming.
= Python Crash Course - A Hands-On, Project-Based Introduction to Pro... 231 /548

We end up with the original contents of the file, followed by the new
content we just added.

TRY IT YOURSELF

10-3. Guest: Write a program that prompts the user for their name. When they
respond, write their name to a file called guest.ixt.

10-4. Guest Book: Write a while loop that prompts users for their name. When
they enter their name, print a greefing to the screen and add a line recording
their visit in a file called guest_book.txt. Make sure each entry appears on a
new line in the file.

10-5. Programming Poll: Write a while loop that asks people why they like

programming. Each time someone enters a reason, add their reason fo a file

that stores all the responses.

Files and Excepiions

image19.png
4 Inbox (6249) - malsayed@najeh X

@ Python Crash Course - A Hands- x|l

C @ File | C:/Users/chem_dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming.

Python Crash Course - A Hands-On, Project-Based Introduction to Pro...

division
_calculatorpy

Handling the ZeroDivisionError Exception

Let’s look at a simple error that causes Python to raise an exception. You
probably know that it's impossible to divide a number by zero, but let’s ask
Python to do it anyway:

print(5/0)

Of course Python can’t do this, so we get a traceback:

Traceback (most recent call last):
File "division_calculator.py", line 1, in <module>
print (5/0)
ZeroDivisionError: division by zero

The error reported at @ in the traceback, ZeroDivisionError, is an excep-
tion object. Python creates this kind of object in response to a situation
where it can’t do what we ask it to. When this happens, Python stops the
program and tells us the kind of exception that was raised. We can use this
information to modify our program. We'll tell Python what to do when this
kind of exception occurs; that way, if it happens again, we're prepared.

Using try-except Blocks

When you think an error may occur, you can write a try-except block to
handle the exception that might be raised. You tell Python to try running

et @

image20.png
90 IRbox (6249) “malsayed@naishi x| @ Python Crash Course - A Hands- X [ef8 v -

C @ File | CyUsers/chem _dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming... @ 12 ¢ *» 00

except ZeroDivisionError:
print("You can't divide by zero!")

194 Choper 10

We put print(5/0), the line that caused the error, inside a try block. If
the code in a try block works, Python skips over the except block. If the code
in the try block causes an error, Python looks for an except block whose
error matches the one that was raised and runs the code in that block.

In this example, the code in the try block produces a Zerobivision€rror,
5o Python looks for an except block telling it how to respond. Python then
runs the code in that block, and the user sees a friendly error message
instead of a traceback:

You can't divide by zero!

1f mare cade follgwed th

ot @ e

image21.png
90 IRbox (6249) “malsayed@naishi x| @ Python Crash Course - A Hands- X [ef8

C @ File | C:/Users/chem_dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming.

Python Crash Course - A Hands-On, Project-Based Introduction to Pro... 233

division
_calculatorpy

Using Exceptions o Prevent Crashes

Handling errors correctly is especially important when the program has
more work to do after the error occurs. This happens often in programs
that prompt users for input. If the program responds to invalid input appro-
priately, it can prompt for more valid input instead of crashing.

Let’s create a simple calculator that does only division:

print("Give me two numbers, and I'l1 divide them.")
print("Enter 'q' to quit.")

while True:
first_nunber = input("\nFirst number:
if first_nunber == 'q':
break
second_nunber = input("Second number: ")
if second_number == 'q':
break
answer = int(first_number) / int(second number)
print (answer)

This program prompts the user to input a first_nunber @ and, if the
user does not enter ¢ to quit, a second_nunber @. We then divide these two
numbers to get an answer ©. This program does nothing to handle errors,
so asking it to divide by zero causes it to crash:

Give me two numbers, and I'll divide them.

et @

image22.png
0 7655 (6240) “ElsSjed@nash X @ Python Cresh Course - A Hands X |ef8 v - ke

C @ File | CyUsers/chem _dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming... @ 12 ¢ *» 00

Python Crash Course - A Hands-On, Project-Based Introduction to Pro... — 150% + (B}

user does not enter ¢ to quit, a second_nunber ®@. We then divide these two
numbers to get an answer ©. This program does nothing to handle errors,
50 asking it to divide by zero causes it to crash:

Give me two numbers, and I'11 divide them.
Enter 'q' to quit.

First number: 5
Second number: 0
Traceback (most recent call last
File "division_calculator.py”, line 9, in <module>
answer = int(first_number) / int(second_number)
ZeroDivisionError: division by zero

Files and Exceplions

It’s bad that the program crashed, but it’s also not a good idea to let
users see tracebacks. Nontechnical users will be confused by them, and in

a malicious setting, attackers will learn more than you want them to know
P s

525PM

5 477/2022

image23.png
90 IRbox (6249) “malsayed@naishi x| @ Python Crash Course - A Hands- X [ef8 v

C @ File | CyUsers/chem _dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming... @ 12 ¢ *» 00

Python Crash Course - A Hands-On, Project-Based Introduction to Pro... 234 /548

block executing successfully goes in the else block:

int(second_number)
except ZeroDivisionError
print("You can't divide by o!")
else:
print(answer)

We ask Python to try to complete the division operation in a try
block @, which includes only the code that might cause an error. Any
code that depends on the try block succeeding is added to the else block.
In this case if the division operation is successful, we use the else block to
print the result ©.

The except block tells Python how to respond when a ZeroDivisionError
arises @. If the try block doesn’t succeed because of a division by zero
error, we print a friendly message telling the user how to avoid this
kind of error. The program continues to run, and the user never sees
a traceback:

Give me two numbers, and I'll divide them.

et @

image24.png
S0 150 (6249) Smalsayed@naighiXl| @ Python Crash Course - A Hands- X [WEf8 - o B

C @ File | C:/Users/chem_dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20introduction%20to%20Programming... @

5
X
»
o

e

Python Crash Course - A Hands-On, Project-Based Introduction to Pro... 234 /548

Give me two numbers, and I'11 divide them.
Enter 'q' to quit.

First number: 5
Second number: 0
You can't divide by o!

196 Choprer 10

First number: 5
Second number: 2
2.5

First nunber: q

Sl ! s I Y

4777202

image25.png
4 Inbox (6249) - malsayed@najeh X

@ Python Crash Course - A Hands- x|l

C @ File | C:/Users/chem_dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming.

Python Crash Course - A Hands-On, Project-Based Introduction to Pro... 235 /548

alice.py

to read in the contents of Alice in Wonderland, but 1 haven’t saved the file
alice.txt in the same directory as alice.py:

filename = 'alice.txt'

with open(filename, encoding="utf-8') as f:
contents = f.read()

There are two changes here. One is the use of the variable f to repre-
sent the file object, which is a common convention. The second is the use of
the encoding argument. This argument is needed when your system’s default
encoding doesn’t match the encoding of the file that’s being read.

Python can't read from a missing file, so it raises an exception:

Traceback (most recent call last):
File "alice.py", line 3, in <module>
with open(filenane, encoding='utf-8') as f:
FileNotFoundError: [Errno 2] No such file or directory: 'alice.txt’

The last line of the traceback reports a FileNotFoundError: this is the
exception Python creates when it can’t find the file it's trying to open.

wil'G

image26.png
90 IRbox (6249) “malsayed@naishi x| @ Python Crash Course - A Hands- X [ef8 v

C @ File | CyUsers/chem _dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming... @ 12 ¢ *» 00

Python Crash Course - A Hands-On, Project-Based Introduction to Pro... 236 /548

In this example, the open() function produces the error, so to handle it, the
try block will begin with the line that contains open():

‘alice.txt'

open(file
contents = f.read()
except FileNotFoundError:
print(f"Sorry, the file {filename} does not exist.")

In this example, the code in the try block produces a FileNotFoundError,
so Python looks for an except block that matches that error. Python then
runs the code in that block, and the result is a friendly error message
instead of a traceback:

Sorry, the file alice.txt does not exist.

The program has nothing more to do if the file doesn’t exist, so the
error-handling code doesn’t add much to this program. Let’s build on d

) ; i ; re worki Ergish Unicd Stotes)
example and sce how exception handling can help when you're working g Urisd st
with more than one file.

545PM.
4777202

~
') [ENG|

image27.png
90 IRbox (6249) “malsayed@naishi x| @ Python Crash Course - A Hands- X [ef8

C @ File | CyUsers/chem _dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming... @ 12 ¢ *» 00

Python Crash Course - A Hands-On, Project-Based Introduction to Pro... 236 /548

list of words from a string. Here’s what split() does with a string containing
just the title "Alice in Wonderland":

>>> title = "Alice in Wonderland"
>>> title.split()
['Alice’, 'in', 'Wonderland']

The split() method separates a string into parts wherever it finds a
space and stores all the parts of the string in a list. The result is a list of
words from the string, although some punctuation may also appear with
some of the words. To count the number of words in Alice in Wonderland,
we’ll use split() on the entire text. Then we’ll count the items in the list to

get a rough idea of the number of words in the text:

‘alice.txt'

198 Choper 10

image28.png
90 IRbox (6249) “malsayed@naishi x| @ Python Crash Course - A Hands- X [ef8 v

C @ File | CyUsers/chem _dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming... @ 12 ¢ *» 00

Python Crash Course - A Hands-On, Project-Based Introduction to Pro... 237 /548

get a rough idea of the number of words in the text:

‘alice.txt'

198 Choper 10

1y, the file {filename} does not exist.")

Count the approximate nunber of words in the file.
words = contents. split()

num_words = len(words)

print(f'The file {filename} has about {num words} words.")

I moved the file alice.txt to the correct directory, so the try block will
work this time. At @ we take the string contents, which now contains the

e texi of Al

®

image29.png
90 IRbox (6249) “malsayed@naishi x| @ Python Crash Course - A Hands- X [ef8

C @ File | C:/Users/chem_dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming.

word_count.py
°

Python Crash Course - A Hands-On, Project-Based Introduction to Pro... 237 /548

I moved the file alice.txt to the correct directory, so the try block will
work this time. At @ we take the string contents, which now contains the
entire text of Alice in Wonderland as one long string, and use the split()
method to produce a list of all the words in the book. When we use len() on
this list to examine its length, we get a good approximation of the number
of words in the original string . At ® we print a statement that reports
how many words were found in the file. This code is placed in the else block
because it will work only if the code in the try block was executed success-
fully. The output tells us how many words are in alice.xt:

The file alice.txt has about 29465 words.

The count is a little high because extra information is provided by the
publisher in the text file used here, but it’s a good approximation of the
length of Alice in Wonderland.

Working with Multiple Files

Let’s add more books to analyze. But before we do, let’s move the bulk of
this program to a function called count_words(). By doing so, it will be easier
to run the analysis for multiple books:

def count_words(filename):
"""Count the approximate number of words in a file."""

image30.png
0 7655 (6240) “ElsSjed@nash X @ Python Cresh Course - A Hands X |ef8 v - ke

C @ File | CyUsers/chem _dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming... @ 12 ¢ *» 00

Python Crash Course - A Hands-On, Project-Based Introduction to Pro... 237 /548 — 150% + (RS} b4

Working with Multiple Files

Let’s add more books to analyze. But before we do, let’s move the bulk of
this program to a function called count_words(). By doing so, it will be easier
to run the analysis for multiple books:

word_countpy def count_words(filenane):

"""Count the approximate number of words in a file.

ename} has about {nu

} words.")

filename = 'alice.txt'
count_words (filename)

Most of this code is unchanged. We simply indented it and moved it
into the body of count_words(). It's a good habit to keep comments up to date
when you're modifying a program, so we changed the comment to a doc-

string and reworded it slightly @.

a x ox o o w @

image31.png
0 7655 (6240) “ElsSjed@nash X @ Python Cresh Course - A Hands X |ef8 v - ke

C @ File | CyUsers/chem _dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming... @ 12 ¢ *» 00

Python Crash Course - A Hands-On, Project-Based Introduction to Pro... 238 /548

" counl.py, so we can see

filenames = ['alice.txt', 'siddhartha.txt’, 'moby_dick.txt', 'little women.txt']
for filenane in filenames:
count_words (filenane)

The missing siddhartha.txt file has no effect on the rest of the program’s
execution:

The file alice.txt has about 29465 words.

Sorry, the file siddhartha.txt does not exist.
The file moby_dick.txt has about 215830 words.
The file little_women.txt has about 189079 words.

Using the try-except block in this example provides two significant
advantages. We prevent our users from seeing a traceback, and we let the
program continue analyzing the texts it’s able to find. If we don’t catch
the FileNotFoundError that siddhartha.txt raised, the user would see a full
traceback, and the program would stop running after trying to analyze
Siddhartha. It would never analyze Moby Dick or Little Women.

Failing Silently
et @

image32.png
0 7655 (6240) “ElsSjed@nash X @ Python Cresh Course - A Hands X |ef8 v - ke

C @ File | CyUsers/chem _dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming... @ 12 ¢ *» 00

Python Crash Course - A Hands-On, Project-Based Introduction to Pro... 238 /548

and continue on as 1f nothing - To make a program fail silently, you
write a try block as usual, but you explicitly tell Python to do nothing in the
except block. Python has a pass statement that tells it to do nothing in a block:

name)
t the approxinate number of words in a file.

except FileNotFoundError

', 'moby_dick.txt', 'little wom

200 Choper 10

The only difference between this listing and the previous one is the
pass statement at @. Now when a FileNotFoundError is raised, the code in

X ot oh w @I ; B

image33.png
90 IRbox (6249) “malsayed@naishi x| @ Python Crash Course - A Hands- X [ef8 v

C @ File | C:/Users/chem_dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming.

Python Crash Course - A Hands-On, Project-Based Introduction to Pro... 239 /548

& excep Ing happens. 1s produced,
and there’s no output in response to the error that was raised. Users see

the word counts for each file that exists, but they don’t see any indication
that a file wasn’t found:

The file alice.txt has about 29465 words.
The file moby_dick.txt has about 215830 words.
The file little_women.txt has about 189079 words.

The pass statement also acts as a placeholder. It's a reminder that you're
choosing to do nothing at a specific point in your program’s execution

and that you might want to do something there later. For example, in tk
program we might decide to write any missing filenames to a file called
missing_files.txt. Our users wouldn’t see this file, but we’d be able to read
the file and deal with any missing texts.

Deciding Which Errors to Report

How do you know when to report an error to your users and when to fail
silently? If users know which texts are supposed to be analyzed, they might
appreciate a message informing them why some texts were not analyzed. If
users expect to see some results but don’t know which books are supposed
to be analyzed, they might not need to know that some texts were unavail-
able. Giving users information they aren’t looking for can decrease the
usability of your program. Python’s error-handling structures give you firie-
grained control over how much to share with users when things go wrong;

al s x or & W I

image34.png
S b0 (6,249) “malsayed@nashi X)| @ Python Crash Course - A Hands- X |Wefe v -

C @ File | CyUsers/chem_dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming... @ 12 ¢ *» 00

Python Crash Course - A Hands-On, Project-Based Introduction to Pro... 240 /548

and find a few texts you'd like to analyze. Download the text files for these
works, or copy the raw text from your browser into a text file on your
computer.

You can use the count() method to find out how many fimes a word or
phrase appears in a string. For example, the following code counts the number
of fimes 'row' appears in a string:

>>> line = "Row, Tow, Tow your boat"
>>> Line.count("row")

2

>>> Line.lowex().count('on')

3

Notice that converting the siring to lowercase using lower() catches
all appearances of the word you're looking for, regardless of how it's
formatted.

Write a program that reads the files you found at Project Gutenberg and
determines how many times the word 'the' appears in each text. This will be
an approximation because it will also count words such as "then' and 'there'.
Try counting 'the ', with a space in the siring, and see how much lower your
count is.

Storing Data

w2 E a K 0T PR W

image35.png
90 IRbox (6249) “malsayed@naishi x| @ Python Crash Course - A Hands- X [ef8 v -

C @ File | CyUsers/chem _dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming... @ 12 ¢ *» 00

Python Crash Course - A Hands-On, Project-Based Introduction to Pro... 241 /548

json.dump() to store a list of numbers:

number import json
_writer.py
numbers = [2, 3, 5, 7, 11, 13]

filename = 'numbers.json’
with open(filename, ‘w') as f:
json.dump(numbers, f)

We first import the json module and then create a list of numbers to
work with. At @ we choose a filename in which to store the list of numbers.
It’s customary to use the file extension _json to indicate that the data in
the file is stored in the JSON format. Then we open the file in write mode,
which allows json to write the data to the file ®. At ® we use the json.dump()
function to store the list numbers in the file numbers.json.

This program has no output, but let’s open the file numbers.json and
look at it. The data is stored in a format that looks just like Python:

[2, 3,5, 7, 11, 13]

Now we'll write a program that uses json. load() to read the list back into
memory:

number import json
reader.py

w2 E a S

image36.png
90 IRbox (6249) “malsayed@naishi x| @ Python Crash Course - A Hands- X [ef8 v

C @ File | CyUsers/chem _dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming... @ 12 ¢ *» 00

Python Crash Course - A Hands-On, Project-Based Introduction to Pro.. 241 /548 — 150% + (RS} b4

[2, 3,5, 7, 11, 13]

Now we’ll write a program that uses json.load() to read the list back into
memory:

number
_readerpy

import json
© filename - 'numbers.json’
@ with open(filename) as f:
© numbers - json.load(f)

print (nunbers)

203

Fies and Excepiions

At @ we make sure to read from the same file we wrote to. This time
when we open the file, we open it in read mode because Python only needs
to read from the file ®. At © we use the json.load() function to load the

information stored in numbers.json, and we assign it to the variable numbers.
Finally we print the recovered list of numbers and see that it’s the same list

T x o7 R w0

image37.png
90 IRbox (6249) “malsayed@naishi x| @ Python Crash Course - A Hands- X [ef8 v

C @ File | CyUsers/chem _dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming... @ 12 ¢ *» 00

Python Crash Course - A Hands-On, Project-Based Introduction to Pro... 242 /548

Let’s start by storing the user’s name:

remember import json

_me.py
© usernane = input("Hhat is your name? ")

filename = ‘username.json’
with open(filename, 'w') as f:

json.dunp (usernane, f)

print(f'le’ 11 remember you when you come back, {username}!")

At @ we prompt for a username to store. Next, we use json.dump(),
passing it a username and a file object, to store the username in a file ©.

Then we print a message informing the user that we've stored their
information ©:

what is your name? Eric
We'11 remember you when you come back, Eric!

Now let’s write a new program that greets a user whose name has
already been stored:

greet_userpy import json
filenane = 'username.json’

with open(filename) as f:

o7 PR W @ o - e S

image38.png
90 IRbox (6249) “malsayed@naishi x| @ Python Crash Course - A Hands- X [ef8

C @ File | C:/Users/chem_dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming.

Python Crash Course - A Hands-On, Project-Based Introduction to Pro... 242 /548

Now let’s write a new program that greets a user whose name has
already been stored:

greet_userpy import json
filename = 'username.json’
with open(filename) as f:

© username - json.load(f)
@ print(f'Welcome back, {username}!")

Chapier 10

At @ we use json.load() to read the information stored in username.js
and assign it to the variable username. Now that we’ve recovered the user-
name. we can welcome them back @.

o7 8w @

»
o
e

p 1

ENG

614PM
4777202

image39.png
90 IRbox (6249) “malsayed@naishi x| @ Python Crash Course - A Hands- X [ef8 v

jc)
5
X
»
o
e

C @ File | C:/Users/chem_dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming.

Python Crash Course - A Hands-On, Project-Based Introduction to Pro... 243 /548

Welcome back, Eric!

Ve need to combine these two programs into one file. When someone
runs remember_me.py, we want to retrieve their username from memory if
possible; therefore, we’ll start with a try block that attempts to recover the
username. If the file username.json doesn’t exist, we’ll have the except block
prompt for a username and store it in username.json for next time:

remember import json
—me.py
Load the username, if it has been stored previously.
Otherwise, prompt for the username and store it.
filename = 'username.json’
try:
© with open(filename) as f:
) username = json.load(f)
© except FileNotFoundError:
© username = input("What is your name? ")
© with open(filename, 'w') as f:
json.dump(username, f)
print(f"We'1l remember you when you come back, {username}!")

print(f'Welcome back, {username}!")

There’s no new code here; blocks of code from the last two examples
are just combined into one file. At @ we try to open the file username.json.

o™ p% W @ - e S

image40.png
90 IRbox (6249) “malsayed@naishi x| @ Python Crash Course - A Hands- X [ef8

5
X
»
o

e

C @ File | C:/Users/chem_dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20introduction%20to%20Programming... @

Python Crash Course - A Hands-On, Project-Based Introduction to Pro... 243 /548

print(f'Welcome back, {username}!")

There’s no new code here; blocks of code from the last two examples
are just combined into one file. At @ we try to open the file username.json.
If this file exists, we read the username back into memory @ and print a
message welcoming back the user in the else block. If this is the first time
the user runs the program, username.json won't exist and a FileNotFoundError
will occur ©. Python will move on to the except block where we prompt the
user to enter their username @. We then use json.dump() to store the user-
name and print a greeting ©.

Whichever block executes, the result is a username and an appropriate
greeting. If this is the first time the program runs, this is the output

what is your name? Eric
We'1l remember you when you come back, Eric!

Otherwise:

Welcome back, Eric!

This is the output you see if the program was already run at least once.

S o &7oM
Q ey NG /o022

image41.png
0 7655 (6240) “ElsSjed@nash X @ Python Cresh Course - A Hands X |ef8 v - ke

C @ File | CyUsers/chem _dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming... @ 12 ¢ *» 00

Python Crash Course - A Hands-On, Project-Based Introductionto Pro... 244 /548 | — 150% + (B}

We can refactor remember_me.py by moving the bulk of its logic into one
or more functions. The focus of remember_me.py s on greeting the user, so
let’s move all of our existing code into a function called greet user():

remember inpo
_me.py

def greet_user():

except FileNotF

n you come back, {

greet_user()

Because we're using a function now, we update the comments with a
docstring that reflects how the program currently works @. This file is a
little cleaner, but the function greet_user() is doing more than just greeting
the user—it’s also retrieving a stored username if one exists and prompting
for a new username if one doesn’t exist.

al s x or & W I s we EM

image42.png
0 7655 (6240) “ElsSjed@nash X @ Python Cresh Course - A Hands X |ef8 v - ke

C @ File | CyUsers/chem _dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming... @ 12 ¢ *» 00

Python Crash Course - A Hands-On, Project-Based Introduction to Pro... 244 /548

docstring that reflects how the program currently works @. This file is a
little cleaner, but the function greet_user() is doing more than just greeting
the user—it’s also retrieving a stored username if one exists and prompting
for a new username if one doesn’t exist.

Let’s refactor greet_user() so it’s not doing so many different tasks.
We’ll start by moving the code for retrieving a stored username to a sepa-
rate function:

impo

def get_stored_username():
“""Get stored username if available.’

except FileNotF
return None
else:
return username

206 Choper 10

0" c T e v
. 477/2022

image43.png
0 7655 (6240) “ElsSjed@nash X @ Python Cresh Course - A Hands X |ef8 v - ke

C @ File | CyUsers/chem _dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming... @ 12 ¢ *» 00

Python Crash Course - A Hands-On, Project-Based Introductionto Pro... 245 /548 | — 150% + (B}

def _user():

the user by name.”

username = get_stored_username()
L] if username:
print(f'Nelcome back, {username}!")
else:

n you come back, {username}!")

The new function get_stored_username() has a clear purpose, as stated
in the docstring at @. This function retrieves a stored username and returns
the username if it finds one. If the file username.json doesn’t exist, the func-
tion returns None ®. This is good practice: a function should either return
the value you're expecting, or it should return None. This allows us to per-
form a simple test with the return value of the function. At @ we print a
welcome back message to the user if the attempt to retrieve a username

was successful, and if it doesn’t, we prompt for a new username.
MO S OBTS P .

LG W6 : o

image44.png
0 7655 (6240) “ElsSjed@nash X @ Python Cresh Course - A Hands X |ef8 v - ke

C @ File | CyUsers/chem _dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming... @ 12 ¢ *» 00

Python Crash Course - A Hands-On, Project-Based Introduction to Pro... 245 /548

username doesn’t exist, we should move the code that prompts for a
new username to a function dedicated to that purpose:

import

_usernane()

Get stored username if available

get_new_usernane():
“""Prompt for a new username."""

your name?

return username

username = get_stored_username()

if usernane
print(f"Nelcome back, {username}!

el
usernane = get_new_username()
print(f'We'1l Temember you when you come

2 = e
wilG 0 NG

image45.png
4 Inbox (6249) - malsayed@najoh

@ Python Crash Course - A Hands- x|SR

C @ File | C:/Users/chem_dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming.

TRY IT YOURSELF

10-11. Favorite Number: Write a program that prompts for the user’s favorite
number. Use json.dump() to store this number in a file. Write a separate pro-
gram that reads in this value and prints the message, “I know your favorite

numberl Ifs_____"

10-12. Favorite Number Remembered: Combine the two programs from
Exercise 10-11 into one file. If the number is already stored, report the favorite
number to the user. If not, prompt for the user’s favorite number and store it in @

file. Run the program twice to see that it works.
10-13. Verify User: The final listing for remember_me.py assumes either that the
user has already entered their username or that the program is running for the
first ime. We should modify it in case the current user is not the person who
last used the program.

Before printing a welcome back message in greet_user(), ask the user if
this is the correct username. If it's not, call get_new_username() to get the correct

username.

I‘J—JQ E vag

022

image1.png
0165 (6248) “meleejed@Rsh X @ Pytron Cresh Course - A Hands X |ef8 v - ke

C @ File | CyUsers/chem_dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On,%20Project-Based%20Introduction%20to%20Programming.
= Python Crash Course - A Hands-On, Project-Based Introduction to Pro... 222 /548 — 5%+ (RS} 3

that contains pito 30 decimal places, with 10 decimal places per line:

pi_digits.txt 3.1415926535
8979323846
2643383279

To try the following examples yourself, you can enter these lines in an
editor and save the file as pi_digits.txt, or you can download the file from the
book’s resources through https://nostarch.com/pythoncrashcourse2e/. Save the
file in the same directory where you’ll store this chapter’s programs.

Here’s a program that opens this file, reads it, and prints the contents
of the file to the screen:

file_reader.py ~ with open('pi_digits.txt') as file_object:
contents = file_object.read()

print(contents)

The first line of this program has a lot going on. Let’s start by looking
at the open() function. To do any work with a file, even just printing its con-
tents, you first need to open the file to access it. The open() function needs

one argument: the name of the file you want to open. Python looks for this
file in the directory where the program that’s currently being executed is

image2.png
0165 (6248) “meleejed@Rsh X @ Pytron Cresh Course - A Hands X |ef8 v - ke

C @ File | CyUsers/chem _dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming... @ 12 ¢ *» 00

= Python Crash Course - A Hands-On, Project-Based Introduction to Pro...

the file and store it as one long string in contents. When we print the value
of contents, we get the entire text file back:

3.1415926535
8979323846
2643383279

The only difference between this output and the original file is the
extra blank line at the end of the output. The blank line appears because
read() returns an empty string when it reaches the end of the file; this empty
string shows up as a blank line. If you want to remove the extra blank line,
you can use rstrip() in the call to print():

with open('pi_digits.txt') as file object:
contents = file_object.read()
print(contents.rstrip())

Recall that Python’s rstrip() method removes, or strips, any whitespace
characters from the right side of a string. Now the output matches the con-
tents of the original file exactly:

o7 b W @ o

image3.png
0165 (6248) “meleejed@Rsh X @ Pytron Cresh Course - A Hands X |ef8 v - ke

C @ File | C:/Users/chem_dell/Downloads/Python%20Crash%20Course%20-%20A%20Hands-On %20Project-Based%20Introduction%20to%20Programming.

= Python Crash Course - A Hands-On, Project-Based Introduction to Pro... 224 /548 - %+ [BR) *
location relative to the directory where the currently running program file
is stored. For example, you'd write:

with open('text_files/filename.txt") as file_object:

This line tells Python to look for the desired .txt file in the folder
text_files and assumes that text_files is located inside python_work (which
it is).

Windows systems use a backslash (\) instead of a forward slash (/) when displaying
Sile paths, but you can still use forward slashes in your code.

You can also tell Python exactly where the file is on your computer

regardless of where the program that’s being executed is stored. This
is called an absolute file path. You use an absolute path if a relative path
doesn’t work. For instance, if you've put text_files in some folder other than
python_work—say, a folder called other_files—then just passing open() the
path "text_files/filename.txt' won’t work because Python will only look
for that location inside python_work. You’ll need to write out a full path to
clarify where you want Python to look.

Absolute paths are usually longer than relative paths, so it’s helpful to

al s x or & W I

