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PREFACE

A‘th“ugh “n‘y recent‘y th“ught “f as an e’erging ie‘d “f study, c“’”utati“na‘ sci-
ence has now become a fundamental and integrated aspect of almost every type of 
scientiic research. With“ut questi“n, the ”“wer “f “ur c“’”uters and c“’”utati“na‘ 
tools has advanced rapidly, but the complexity of the problems we face and the ques-
tions we ask may seem to be more than a match. The astounding volume of data 
generated in our pursuit to understand ourselves and our surroundings demands all 
the computational power we can muster. Without scientists who can appreciate and 
manage this power, we will not be able to apply our computational capabilities to 
their best advantage. We need scientists who are able to see things from a variety of 
perspectives and who can talk with those from other disciplines. In fact, boundaries 
between disci”‘ines are ‘ess deined than traditi“na‘‘y th“ught, and ’any “f the ’“st 
i’”“rtant scientiic questi“ns are at cr“ssr“ads “f vari“us disci”‘ines. F“r the f“re-
seeable future, it is essential to have scientists who can work at those intersections. 

At our institution, we have used this text for our course, Modeling and Simulation 
for the Sciences, which is one of the required courses in an Emphasis in Computa-
ti“na‘ Science ”r“gra’. Estab‘ished at W“ff“rd in 1998, this ”r“gra’ requires f“ur 
c“urses besides M“de‘ing and Si’u‘ati“n Ca‘cu‘us I, Pr“gra’’ing and Pr“b‘e’-
Solving, Data Structures, and one of the following: Data and Visualization, High-
Perf“r’ance C“’”uting, “r Bi“inf“r’atics. Additi“na‘‘y, t“ qua‘ify f“r the E’”ha-
sis, students must major in a science, mathematics, or computer science with a 
bachelor of science and complete an internship that employs computational meth-
ods. We designed the program and the text to be a launching pad for computationally 
literate scientists who will fearlessly work in interdisciplinary efforts to solve scien-
tiic ”r“b‘e’s.

As with the irst editi“n, Introduction to Computational Science: Modeling and 

Simulation for the Sciences (2nd ed.) is designed to help the student to comprehend 
and exploit essential concepts of computational science, the modeling process, com-
”uter si’u‘ati“ns, and scientiic a””‘icati“ns. M“de‘ing and si’u‘ati“n are n“w cru-
cial to the exploration of complex systems. These techniques enable scientists to 
conduct large numbers of experiments more quickly and cheaply than at the bench 
and to select promising research paths for their laboratories. Insights and discoveries 
made through modeling augment our understanding and can promote novel experi-
mental approaches. 

The irst edition considered three major approaches to computational science 
problems: system dynamics models, empirical modeling, and cellular automa-
ton simulations. The second edition includes two additional computational ap-
proaches: agent-based simulations and modeling with matrices.

System dynamics models afford global views of major systems that change with 
time. For example, such a model could include changes over time in the numbers of 
predator (e.g., wolf spider) and prey species (e.g., cricket). For system dynamics 
modeling, as with all approaches, the text employs a nonspeciic tool, or generic, 
approach t“ ’“de‘ such dyna’ic syste’s, students using the text can e’”‘“y any 



xxiv Preface

one of several tools, such as STELLA®, Vensim®, Personal Learning Edition (PLE) 
(free for personal and educational use), Berkeley Madonna®, NetLogo (free), Python 

(free), and R (free). With many of these tools, the student can create visual represen-
tations of models, develop relationships, run simulations, and generate graphical 
results.

Unlike system dynamics, cellular automaton simulations present local views of 
individuals affecting individuals. Such a world is represented as a rectangular grid of 
cells, with each cell having a state that can change with time according to set rules. 
For example, the state of one cell could represent the presence of a cricket and the 
state of an adjacent cell could correspond to a wolf spider. One rule could be that, 
when adjacent, a spider captures a cricket with a probability of 25%. Thus, on the 
average at the next time step, a 25% chance exists that a particular cricket next to a 
spider will not chirp again. The text employs a generic approach for cellular automa-
t“n si’u‘ati“ns and scientiic visua‘izati“ns “f the resu‘ts, s“ that students can e’-
ploy any one of a variety of computational tools, such as Maple®, Mathematica®, 
MATLAB®, Python, and R.

Agent-based simulations are similar to cellular automaton simulations. Agents, 
such as spiders and crickets, often reside on a grid. Each autonomous, decision-
making agent has a state represented by a set of state variables and behaviors that 
control its actions. Moreover, at each time step, the simulation sweeps through all 
the agents, each u”dating its state based “n its ‘“cati“n and what is nearby. By c“n-
trast, a cellular automaton simulation updates the states of all the cells in a grid at 
each time step. With both cellular automaton and agent-based simulations, individ-
ual actions and local interactions can help us to access their effects on the whole 
syste’. B“th si’u‘ati“n techniques can be effective in ’“de‘ing dyna’ic, s”atia‘‘y 
c“’”‘ex situati“ns. With a generic a””r“ach in the text, tut“ria‘s and i‘es ass“ciated 
with the modules are available on the text’s website for various agent-based tools, 
such as AgentSheets and NetLogo.

Simulating with agents or a cellular automaton or modeling with system dynam-
ics, we seek to develop a computational representation that explains a situation. On 
the other hand, with an empirical model, data, such as the prevalence of crickets in 
an area over several years, are our only source of information about the system. We 
ind a functi“n that ca”tures the trend “f the data and use this ’athe’atica‘ ’“de‘ t“ 
make predictions. The same computational tools employed in cellular automaton 
simulations can be used for empirical models and modeling with matrices. 

Matrix models incorporate certain probabilities and averages, such as the proba-
bility that a cricket exhibits a certain behavior at the next time step or the probability 
that it matures to the next life cycle stage and its average number of offspring. Using 
matrix models, we can make long-term predictions about system behaviors and pop-
ulations. Moreover, we can use matrices to represent contact networks that track the 
simulated behavior of individuals in a variety of situations from the spread of a dis-
ease to the strength of social connections. 

Modules presented in Chapter 13 on modeling with matrices include sections that 
discuss the utility of high-performance computing (HPC) in computational sci-
ence. Moreover, Chapter 12 provides an introduction to some of the hardware and 
algorithms for HPC, which is becoming increasingly important with the advent of 
“big data” and massive computational problems. The text’s website includes addi-
tional related material and programs in C and MPI.
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Tut“ria‘s, ”ac—age-s”eciic Quic— Review Questi“ns with answers, and i‘es t“ 
accompany the text material are available from the text’s website in various sys-
tem dynamics tools (including STELLA®, Vensim®, Berkeley Madonna®, NetLogo, 
Python, and R), in several computational tools (including Maple®, Mathematica®, 
MATLAB®, Python, and R) and in assorted agent-based tools (including Agent-

Sheets and NetLogo). Typically, an instructor selects one system dynamics tool, one 
computational tool, and one agent-based tool, depending on the types of models cov-
ered, for class use during the term. The variety of tools and examples of their use 
employed in this text provides an instructor with many options. Note that at least 
one tool from each type is available as open source.

Text Prerequisites

Prerequisites for Introduction to Computational Science are minimal. The text does 
not require computer-programming experience. Although the concept of rate of 
change, “r derivative, fr“’ a irst c“urse in ca‘cu‘us is used thr“ugh“ut the text, the 
necessary background is contained in Module 2.2, “Unconstrained Growth and 
Decay.” Otherwise, students do not need to know how to take derivatives in order to 
understand the material or develop the models. For those who would like additional 
discussions of the material, two modules on fundamental calculus concepts, “Rate of 
Change” and “Fundamental Concepts of Integral Calculus,” are available on the 
text’s website. 

Learning Features

While the interdisciplinary nature of computational science is distinctive, it is also 
challenging, particularly for students with limited experience in computer science, 
mathematics, and various areas of the sciences. To mitigate this challenge, the text 
provides the background that is necessary for the student to understand the material, 
w“r— the ”r“b‘e’s/”r“–ects, and c“nident‘y succeed in the c“urse. Each ’“du‘e in-
v“‘ving a scientiic a””‘icati“n covers the prerequisite science without over-
whelming the reader with excessive detail. Furthermore, the text provides a wide 
variety of application areas for examples, exercises, and projects, including as-
tr“n“’y, bi“‘“gy, che’istry, ec“n“’ics, engineering, envir“n’enta‘ science, i-
nance, geology, medicine, physics, psychology, and the social sciences. 

Introduction to Computational Science has chapters that consist of several mod-
ules each. The text’s website contains two tutorials on system dynamics tools, 
seven tutorials on computational tools, and two tutorials on agent-based tools. 
The text presents the tutorials in a just-in-time fashion, covering the requisite in-
formation for the subsequent material. 

Module 1.2 introduces the modeling process, and the text consistently uses the 
”r“cess t“ guide the user thr“ugh nu’er“us scientiic exa’”‘es. F“r instance, after 
c“vering the ”rerequisite scientiic bac—gr“und, M“du‘e 4.4 deve‘“”s a ’“de‘ “f 
malaria by following the modeling process in a step-by-step fashion. Also, Module 
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9.2 intr“duces the development of computer simulations along with their utilities 
in the sciences. Thus, the text is structured to help students to learn how modelers 
model and to develop their own modeling skills.

The text presents material in a clear manner with generous use of examples and 
igures. M“st secti“ns “f a ’“du‘e end with Quick Review Questions that provide 
an assessment of the student’s comprehension of the material, and the text includes 
more than 230 such questions, averaging about three parts each. Answers, often 
with explanations, at the end of the module give immediate feedback and reinforce-
ment to the student. In the case of system dynamics, computational, or agent-based 
tool-dependent questions, the questions and answers are on the text’s website in PDF 
i‘es f“r a variety “f t““‘s, as a””r“”riate.

To further aid in understanding the material, most modules include a number of 
exercises (ab“ut 275 in the text) that c“rre‘ate direct‘y t“ the ’ateria‘ and that the 
student is to complete for the most part with pencil and paper and occasionally with 
a computer. Answers to selected problems, whose exercise numbers are in color, ap-
pear in an appendix. 

A subsequent “Projects” section provides numerous project assignments for stu-
dents to develop individually or in teams. The text contains approximately 650 proj-
ects. While a module, such as “Modeling Malaria,” might develop one model for an 
a””‘icati“n area, the ”r“–ects secti“n suggests ’any “ther reine’ents, a””r“aches, 
and applications. The ability to work well with an interdisciplinary team is important 
for a computational scientist. Chapters 7 and 14 provide modules of additional, 
substantial projects fr“’ a variety “f scientiic areas that are ”articu‘ar‘y a””r“”ri-
ate for teams of students. These modules indicate prerequisite text material, and the 
”r“–ects secti“ns “f ear‘ier ’“du‘es refer t“ a””r“”riate ”r“–ects fr“’ Cha”ters 7 and 
14 that the instructor can assign at that point in the term.

A “References” section occurs at the end of most modules. It provides a list of 
hyperlinks, books, and articles for further study. 

A glossary “f scientiic, ’“de‘ing, and si’u‘ati“n ter’s is ”r“vided f“r quic— 
reference. The text’s website provides links to downloadable tutorials, models, 
PDF iles, and datasets for various tool-dependent quick review questions and an-
swers, examples, and projects. 

Using the Material

Because the area is e’erging, a variety “f de”art’ents “ffer intr“duct“ry c“’”uta-
tional science courses, and instructors approach the material in diverse ways. The 
irst editi“n has been used at vari“us ‘eve‘s (undergraduate, graduate, and high 
school) and in different types of courses. The second edition provides two additional 
modeling approaches, agent-based and matrix modeling, and more than enough ma-
terial so that an instructor can select one or more of the methodologies. Thus, Intro-

duction to Computational Science provides several pathways through the mate-
rial. For example, one could choose to start a course in any of a variety of 
”‘aces with an “verview “f the ’“de‘ing ”r“cess (Cha”ter 1) and syste’ dyna’ics 
’“de‘ing (Cha”ters 2 4); Cha”ter 8, Data-Driven M“de‘s ; Cha”ter 9, M“nte 
Car‘“ Si’u‘ati“ns ; Cha”ter 11, Agent-Based M“de‘ing ; “r Cha”ter 13, Matrix 
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Models.” Moreover, Chapter 5, “Computational Error,” can be covered or not cov-
ered any time during the course. The same options are true for Chapter 6, “Simula-
tion Techniques,” after consideration of Module 2.2. For those who wish to cover 
Chapter 13 before (or instead of) cellular automaton simulations, a tutorial for vari-
ous computational tools, primarily covering matrix operations, is available on the 
text’s website. One possible course outline is described shortly, and the website 
gives alternative syllabi and a prerequisite structure for the modules. Moreover, the 
text ”r“vides an abundance “f disci”‘ine-s”eciic a””‘icati“ns, s“ that the text is suit-
able either for an introductory course generally in computational science or, with 
appropriate selection of applications, speciically in computational applications 
for biology. 

The text begins with an introduction to computational science and the modeling 
process. Chapter 2 commences with a discussion of system dynamics and models 
where the rate of change of a quantity is proportional to that quantity. Two tutorials 
available in a choice of several tools lead the student step by step through the process 
of implementing a model with the software. “Unconstrained Growth and Decay” 
discusses models that exhibit exponential growth or decay and introduces concepts 
of time-driven simulations. The module also develops the analytical solution to un-
constrained growth and decay problems for students who have had integral calculus 
and for those who have not. The module “Constrained Growth” considers situations 
in which the quantity under change, such as a population, has a maximum value, or 
carrying capacity. In this context, we introduce the concepts of equilibrium and sta-
bility. The module “Drug Dosage,” which includes geometric series, provides other 
examples where rate is proportional to amount.

For those interested in physics models, Chapter 3, “Force and Motion,” provides 
modules on falling and skydiving, bungee jumping (springs), pendulum clocks, and 
rocket motion. However, the instructor can choose to skip this chapter or to assign its 
modules and projects for work outside of class.

Numerous system dynamics models involve interactions, such as with population 
dynamics or chemical reactions. Chapter 4 considers such models with discussions 
of competition, predator-prey models, spread of SARS, modeling malaria, and en-
zyme kinetics. 

With computational estimates, the modeler should always be aware of sources of 
computational error. Thus, after a beginning tutorial on a tool we can use for compu-
tation, empirical models, and cellular automaton simulations (tutorial versions on 
the text’s website), Chapter 5, “Computational Error,” contains a module “Errors.” 
H“wever, an instruct“r can de‘ay c“verage “f the irst tw“ c“’”utati“na‘ t““‘ tut“ri-
als until considering material from Chapters 8–10.

After a second computational tool tutorial from the text’s website, Chapter 6 cov-
ers three simulation techniques: Euler’s, Runge-Kutta 2 (Euler’s Predictor-Correc-
tor), and Runge-Kutta 4. One or more of these techniques can be covered at any time 
after Chapter 2’s module “Unconstrained Growth and Decay.” For example, the in-
structor may choose to discuss Euler’s Method immediately after that module and 
delay consideration of the other two techniques until later in the term.

Cha”ter 7 ”r“vides “””“rtunities f“r students t“ ‘earn syste’ dyna’ics ’“de‘ing 
by completing additional extensive projects. Unlike earlier chapters, the modules of 
this cha”ter d“ n“t inc‘ude exa’”‘es. Instead, each ’“du‘e c“ntains suficient bac—-
gr“und in a scientiic a””‘icati“n area f“r students t“ deve‘“” their “wn syste’ dy-
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namics models, as suggested by project descriptions. Each module lists the prerequi-
site ’ateria‘ s“ that students can d“ Cha”ter 7 s ”r“–ects at any ti’e after c“vering 
the earlier material. These projects and some of the more extensive projects in previ-
ous chapters provide excellent opportunities for teamwork. The chapter includes the 
following topics: radioactive chains, blood cell populations, scuba diving, carbon 
cycle, global warming, growth of a garden, cardiovascular system, electrical circuits, 
transmission of nerve impulses, antibiotic resistance, carbohydrate metabolism, mer-
cury ”“‘‘uti“n, ec“n“’ics “f c“’’ercia‘ ishing, bi“che’ica‘ ”athways, and c“‘“n 
cancer.

Chapter 8 shifts away from system dynamics modeling. After a third tutorial on a 
computational tool, an optional tutorial covers functions that often appear in model-
ing. With this background, empirical models, which are based only on data and are 
used to predict and not to explain a system, are considered. 

M“nte Car‘“ si’u‘ati“ns “f Cha”ter 9 f“r’ the basis f“r ’“du‘es in this and the 
next chapter. After an appropriate tutorial, the chapter considers simulation develop-
ment and area estimation using this technique. An instructor interested in doing so 
can also cover how to generate random numbers in other probability distributions for 
computer simulations and details of the multiplicative linear congruential method to 
generate uniformly distributed random numbers. After an additional computational 
tutorial, the chapter concludes with the random walk method that occurs in numer-
ous computer simulations.

Chapter 10 considers many applications of cellular automata. A computational 
tool tutorial leads into a module involving applications, such as spreading heat 
through an iron bar, as well as fundamental concepts, such as periodic boundary con-
ditions. An instructor can choose to cover one or more additional in-depth cellular 
aut“’at“n si’u‘ati“ns “n s”reading “f ire, ’“ve’ent “f ants, “r gr“wth “f bi“i‘’s. 

On the text’s website, two tutorials in various tools are associated with Chapter 
11 “n agent-based ’“de‘ing. After the irst tut“ria‘, the student can c“nsider the 
spread of disease in beef cattle as the animals reside on and travel to various loca-
ti“ns. M“ve’ent “f an invasive s”ecies, the cane t“ad, fr“’ “ne artiicia‘ watering 
point to another and attempts to contain their spread can be modeled in a subsequent 
module after completing a second tutorial.

Some modeling and simulation projects require massive computational power be-
yond the capabilities of present-day sequential computers. Thus, Chapter 12 pro-
vides an introduction to high-performance computing (HPC). The chapter covers the 
basic c“nce”ts and hardware c“nigurati“ns “f HPC as we‘‘ as s“’e ”ara‘‘e‘-”r“-
cessing algorithms. With this background, the student can gain an appreciation of 
some of HPC’s potential and challenges.

The utility of HPC is discussed in several sections of the following chapter, “Ma-
trix Models.” After a computational tool tutorial involving matrix operations, Mod-
ule 13.2 covers various vector and matrix operations in the context of population 
applications. An instructor can then cover one or several applications in any order. 
When we can divide the life of an organism into ages/stages, Module 13.3 shows 
how we can often employ age-structured/stage-structured models to determine in-
trinsic growth rates (eigenvalues), stable distributions, threats of extinction, and how 
sensitive the long-term population growth rates and predicted times of extinction are 
to small changes in parameters. Covering the necessary background in probability 



Preface xxix

theory, Module 13.4 develops a Markov chain model, which employs the probability 
of passing from one state to another and can solve a large variety of problems from 
predicting the behavior of animals to examining forest succession to locating genes 
in DNA. The last module covers individual-based (or network-based) epidemiology 
simulations that track the simulated behavior of individuals. Such a model involves a 
contact network, and the module covers the basics of graph theory, implementation 
of graphs with matrices, and characteristics of social networks.

As with Cha”ter 7, Cha”ter 14 ”r“vides “””“rtunities f“r students, ”erha”s in 
teams, to enhance their computational science problem-solving abilities through 
completion of additional extensive projects that they can do at any time after cover-
ing ”rerequisite ’ateria‘. The ’“du‘es d“ n“t have exa’”‘es but d“ have suficient 
scientiic bac—gr“und f“r the ”r“–ects. The a””‘icati“ns “f c“’”utati“na‘ science 
empirical models, random walks, cellular automaton simulations, agent-based simu-
lations, and modeling with matrices in Chapter 14 include the following: polymers, 
s“‘idiicati“n, f“raging, ”it vi”ers and heat diffusi“n, ’ushr““’ fairy rings, s”read 
“f disease, HIV in the b“dy, ”redat“r-”rey re‘ati“nshi”s, c‘“uds, ish sch““‘ing, in-
vasive plants, numerous cellular automaton simulations originally considered with 
agent-based models, and vice versa, bioinformatics, and social science networks.

A Possible Course Outline

As with most courses, an instructor is likely to vary material coverage from term to 
term. Alterative approaches are on the text’s website. With project assignments en-
compassing one to two weeks, the following is a possible schedule covering system 
dynamics and empirical modeling and cellular automaton simulations:

Week 1: Chapter 1, 2.1 (System Dynamics Tutorial 1) in a lab if possible, start 
2.2 (project assignments from module)

Week 2: 2.2, 2.3, assign 2.4 (System Dynamics Tutorial 2)
Wee— 3: 2.5; ”r“–ect assign’ents fr“’ 2.5 “r Cha”ter 3 and 7.1 7.6; 4.1, 4.2
Wee— 4: 4.3, ”r“–ect w“r— in ‘ab if ”“ssib‘e, ”r“–ect assign’ents fr“’ 7.7 7.15
Week 5: 5.2 (exercises assigned to be graded), 6.2, 6.3
Wee— 6: In ‘ab if ”“ssib‘e ”r“–ect w“r—, 5.1 (C“’”utati“na‘ T““‘ Tut“ria‘ 1), 

and 6.2 (Computational Tool Tutorial 2)
Wee— 7: Pr“–ect ”resentati“ns, ’idter’
Week 8: Assign 8.1 (Computational Tool Tutorial 3), 8.3 (project assignments 

from module), review assignment on Computational Tool Tutorials 1–3
Wee— 9: Assign 9.1 and 9.5 (C“’”utati“na‘ T““‘ Tut“ria‘s 4 and 5), 9.2, 9.6, 

project assignments from 14.1 and 14.2
Week 10: Work on projects, assign 10.1 (Computational Tool Tutorial 6)
Week 11: 10.2, 10.3, project assignments from 14.3–14.12
Week 12: 10.3, work on projects
Week 13: 12.1, 12.2
Week 14: Project work and presentations
Week 15: Final exam
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Students have found it helpful to have short quizzes taken directly from the Quick 
Review Questions. Other graded assignments include tutorials, selected exercises, 
”r“–ects, a ’idter’, and a ina‘ exa’.

Supplementary Materials

Instructors and students can link to the text’s website through the Princeton Univer-
sity Press’ website (http://pup.princeton.edu/) or Wofford College’s Computa-
tional Science website (http://www.wofford.edu/ecs/). The following resources 
are available on the text’s site: 

• Two system dynamics tool tutorials in several tools, such as STELLA, Vensim 
PLE, Berkeley Madonna, Python, and R

• Seven computational toolbox tutorials in several tools, such as Maple®, Math-

ematica®, MATLAB®, Python, and R
• F“r a variety “f t““‘s, PDF i‘es that c“ntain syste’-de”endent Quic— Review 

Questions and answers
• In a variety “f t““‘s, i‘es that c“ntain ’“de‘s, as indicated in the D“wn‘“ad  

sections of modules
• Datasets
• References with links to other websites

The text’s website also has an online Instructor’s Manual, which contains the 
following material:

• Solutions to all exercises in the text
• Solutions to the two system dynamics tool tutorials using several tools, such 

as STELLA®, Vensim PLE®, Berkeley Madonna®, NetLogo, Python, and R
• Solutions to the seven computational toolbox tutorials and a function tutorial 

using several tools, such as Maple®, Mathematica®, MATLAB®, Python, and 
R

• Solutions to the two agent-based tool tutorials using several tools, such as 
NetLogo and AgentSheets

• Test problems with answers
• Model solutions and suggested approaches for selected projects
• PowerPoint i‘es “f —ey igures and a‘g“rith’s
• Suggested pathways through the material
• Prerequisite structure of the modules

Instructors who adopt the text may obtain a password from Princeton University 
Press to access the online Instructor’s Manual.
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OVERVIEW





MODULE 1.1

Overview of Computational Science

Scientiic rev“‘uti“ns are th“se n“n-cu’u‘ative deve‘“”’enta‘ e”is“des 
in which in an older paradigm is replaced in whole or in part by an 

incompatible new one.”

Th“’as Kuhn, The Structure “f Scientiic Rev“‘uti“ns

N“r’a‘‘y, the scientiic rev“‘uti“n  refers t“ the disc“veries “f the sixteenth and 
seventeenth centuries in Europe, which changed the western view of the natural 
world. This revolution began with the sun-centered universe of Copernicus and con-
tinued until Newton proposed universal gravitation and laws of motion. Nature was 
the object of much interest, and the exploration of the New World with all its discov-
eries continued to feed the desire to understand nature. 

During the twentieth century, according to the eminent string-theory physicist 
Michi“ Ka—u, there were three scientiic rev“‘uti“ns the quantu’ rev“‘uti“n, the 
bi“’“‘ecu‘ar rev“‘uti“n, and the c“’”uter rev“‘uti“n (Ka—u 1998). Few can d“ubt 
the ra”idity with which recent scientiic advances have been ’ade with each new 
discovery or insight changing our view of our planet, its inhabitants, and often the 
universe. The accomplishments of that century augurs very well for the current one.

Ear‘y in the twenty-irst century, Micr“s“ft Research c“nvened a w“r—sh“” “f 
international authorities to devise a “vision and roadmap of the evolution, challenges 
and ”“tentia‘ “f c“’”uter science and c“’”uting in scientiic research during the 
next ifteen years.  The “utc“’e was T“wards 2020 Science.  What they ”redicted 
’ar—s the beginnings “f a new scientiic rev“‘uti“n, where c“’”utati“n wi‘‘ bec“’e 
’“re than an ad–unct su””“rter “f scientiic research. C“’”utati“na‘ ”rinci”‘es and 
tools will become integrated into science, changing the fundamental way that sci-
ence is practiced. Computational science in both theoretical and experimental sci-
ences wi‘‘ great‘y aug’ent the rates “f scientiic advances that wi‘‘ beneit the ”‘anet 
and our species (Microsoft Research 2006). For example, the results of the human 
genome project, which depended upon large-scale computational science, have en-
couraged a myriad of new research and development in government, university, and 
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c“’’ercia‘ ‘ab“rat“ries. One signiicant “utc“’e fr“’ these ”r“–ects wi‘‘ be a far 
better understanding of molecular mechanisms that underlie human diseases and 
their more effective treatments.

In 2005, the President’s Information Technology Advisory Committee released 
the report “Computational Science: Ensuring America’s Competiveness” (Report to 
the President 2005). They concluded that computational science and high-perfor-
mance computing could be integral to innovations in all of the sciences (biological/
biomedical, physical, and social), engineering, industry, and defense. Advances in 
computation allow us to acquire and analyze enormous streams of data, making it 
possible to consider and solve problems heretofore unapproachable. Computational 
science also allows us to build models, visualize phenomena, and conduct experi-
’ents dificu‘t “r i’”“ssib‘e in the ‘ab“rat“ry. We can n“w exa’ine interacti“ns in 
systems that involve more than one discipline, encouraging us to collaborate with 
s”ecia‘ists in “ther ie‘ds. Such c“‘‘ab“rati“n sh“u‘d ‘ead t“ s“‘uti“ns that are crea-
tive, synergistic, sustainable, and economically favorable.

C“’”utati“na‘ science, the fast-gr“wing interdisci”‘inary ie‘d that is at the inter-
section of the sciences, computer science, and mathematics, will require scientists 
who are appropriately trained. The experts who produced “Towards 2020 Science” 
predicted that future scientists who are not computationally and mathematically lit-
erate will be unable to do science. Chemistry professor Robert Harrison, director of 
the Joint Institute for Computational Sciences at the University of Tennessee, states 
in the JICS Mission webpage, “To translate even the most elementary theories into 
useful tools for physical chemistry discovery, you have to do large-scale computa-
tion.”  He states further, “If you look at students coming into our graduate program 
from the undergraduate world, those that haven’t already had some exposure to com-
putation, such as thinking algorithmically, solving problems on the computer, and 
the little bits of applied math that you need to understand all of that, . . . have lost a 
year “r tw“ “f ”r“ductivity at the graduate ‘eve‘. But it s n“t “n‘y the undergraduate 
students coming into graduate school that have this issue; it’s also our undergrads 
going off into the larger world. Industry and many other aspects of the commercial 
world use simulation and computation in diverse ways” (JICS).

C“’”utati“na‘ science, which c“’bines c“’”uter si’u‘ati“n, scientiic visua‘i-
zation, mathematical modeling, computer programming, data structures, network-
ing, database design, symbolic computation, and high-performance computing, can 
transform practices in a diverse range of disciplines. Its computer models and simu-
lations offer valuable approaches to problems in many areas, as the following exam-
ples indicate.

1. Scientists at Los Alamos National Laboratory and the University of Minnesota 
wrote, “Mathematical modeling has impacted our understanding of HIV pathogene-
sis. Bef“re ’“de‘ing was br“ught t“ bear in a seri“us ’anner, AIDS was th“ught t“ 
be a slow disease in which treatment could be delayed until symptoms appeared, and 
patients were not monitored very aggressively. In the large, multicenter AIDS cohort 
studies aimed at monitoring the natural history of the disease, blood typically was 
drawn every six months. There was a poor understanding of the biological processes 
that were responsible for the observed levels of virus in the blood and the rapidity at 
which the virus became drug resistant. Modeling, coupled with advances in technol-
ogy, has changed all of this.” Dynamic modeling has not only revealed important 



Overview 5

features of HIV pathogenesis but has advanced the drug treatment regime for AIDS 
”atients (Pere‘s“n and Ne‘s“n 1999). Since then, Pere‘s“n and “ther researchers 
have applied modeling to enhance our understanding of the hepatitis C virus, which 
causes widespread infections and is the primary cause of liver cancer in the United 
States. Such models have already revealed much about the pathogenesis of the virus, 
the effectiveness of treatments (interferon/ribavirin and direct antiviral agents), and 
the inluence “f genetic variants in the —inetics “f the virus (Dahari et a‘. 2011).

2. Fr“’ the 1960s, nu’erica‘ weather ”redicti“n has rev“‘uti“nized f“recasting. 
“Since then, forecasting has improved side by side with the evolution of computing 
technology, and advances in computing continue to drive better forecasting as 
weather researchers develop improved numerical models” (Pittsburgh Supercomput-
ing Center 2001). A Weather Research and Forecasting (WRF) Model was released 
in 2000. The latest version of this model utilizes “multiple dynamical cores, a 3- 
dimensional variational data assimilation system, and a software architecture allow-
ing for computational parallelism and system extensibility.” This sophisticated, mes-
oscale [horizontal scale of 2 to 2000 kilometers (km)] numerical weather-prediction 
system is useful for forecasting and research. An array of partners, including the 
National Center for Atmospheric Research (NCAR), the National Oceanic and At-
mospheric Administration (NOAA), other governmental and military organizations, 
universities, plus some international groups, continuously revise the WRF model. 
With this eficient, ada”tab‘e ’“de‘ f“r f“recasting, researchers can c“nduct si’u‘a-
ti“ns using rea‘ data “r idea‘ized designs. In 2007, a s”ecia‘ized versi“n “f WRF was 
initiated for forecasting and research on hurricanes (WRF).

3. A multidisciplinary team at the University of Tennessee’s Institute for Envi-
ronmental Modeling is using computational ecology to study complex options for 
ecological management of the Everglades. Louis Gross, Director of the Institute, 
says that “computational technology, coupled with mathematics and ecology, will 
play an ever-increasing role in generating vital information society needs to make 
tough decisions about its surroundings” (Lymn 2003). South Florida has a well-
—n“wn hist“ry “f disru”ti“ns t“ n“r’a‘ water l“w. The UT gr“u” has deve‘“”ed a 
parallelized landscape population model (ALFISH) to integrate with other models in 
a multiscale ecological multimodel (Across-Trophic Level System Simulation, 
ATLSS). ALFISH is used t“ ’“de‘ the effects “n freshwater ish (”‘an—tiv“r“us and 
”iscivir“us) “f different water-’anage’ent ”‘ans. These ish ”“”u‘ati“ns re”resent 
f““d res“urces f“r wading birds, and researchers can ‘in— the ish ’“de‘ with wading 
bird models to help sustain the higher-level multimodel (Wang et al. 2006).

4. Application of computer modeling has fueled the debate in another, rather un-
ex”ected area ‘inguistics. The “rigin “f the Ind“-Eur“”ean fa’i‘y “f ‘anguages is 
rather h“t‘y debated between ”r“”“nents “f tw“ hy”“theses Eurasian ste””es, 
6000 years (yr) ag“ versus Anat“‘ia (’“st‘y in ”resent-day Tur—ey), 8000 t“ 9500 yr 
ago. This family of languages has given rise to more than 400 modern languages, 
spoken by about three billion people. Recently, Quentin Atkinson and colleagues 
utilized evolutionary models, often employed to ascertain the origin of viruses that 
‘ead t“ e”ide’ics, t“ ana‘yze this ”r“b‘e’. Based “n c“’’“n v“cabu‘ary w“rds 
from various languages in the family, the model supports Anatolian origin, as agri-
cultural techniques were broadcast. Although certainly not resolving the argument, 
the resu‘ts have given ex”erts in this ie‘d s“’ething t“ c“nsider carefu‘‘y. (B“uc—-
aert et al. 2012)
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Projects

1. Investigate three applications of computational science involving different 
scientiic areas and write at ‘east a ”aragra”h “n each. List references.

2. Investigate an application of computational science and write a three-page, 
typed, double-spaced paper on the topic. List references.
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The Modeling Process

Introduction

The process of making and testing hypotheses about models and then revising designs 
or theories has its foundation in the experimental sciences. Similarly, computational 
scientists use modeling to analyze complex, real-world problems in order to predict 
what might happen with some course of action. For instance, Professor Muneo Hori 
and colleagues from the Earthquake Research Institute, the University of Tokyo, 
Japan, use high-performance computation with sophisticated models to simulate 
earthquakes, making quantitative predictions of infrastructural damages, response, 
and recovery to help minimize damage, death, and injury (Lalith and Hori 2012). Pro-
fessor Liming Liang, statistical geneticist at Harvard School of Public Health, uses 
computational and statistical tools to better understand the genetic variation in com-
plex human diseases, such as dyslipidemia, cancer, and type 2 diabetes (Liang). Cog-
nitive scientists, such as Professor Ken Koedinger at the Human-Computer Interac-
tion Institute, Carnegie-Mellon University, develop computer models of student 
reasoning and learning to aid in the design educational software and to guide teaching 
”ractices (K“edinger). B“th civi‘ian and ’i‘itary “rganizati“ns c“’’“n‘y e’”‘“y 
drones (unmanned aerial vehicles, UAVs). Whether to monitor air quality or super-
vise combat forces, this technology is becoming more and more important, but the 
operation of the drones is quite complex. While a postdoctoral fellow at MIT, Dr. 
Luca Bertucce‘‘i w“r—ed with a tea’ using ’“de‘s t“ deve‘“” new decisi“n su””“rt 
syste’s, enab‘ing the “”erat“rs “f these craft t“ ’a—e better decisi“ns (Bertucce‘‘i). 
Arboviruses are arthropod-borne viruses that cause diseases, such as West Nile en-
cephalitis, dengue fever, and yellow fever. A mathematical modeling team at the Uni-
versidad Nacional Autónoma de México has been modeling the dynamics of such in-
fections. A better understanding of these viruses will improve outbreak predictions, 
interventions, and responses (Vargus and Cruz-Pacheco 2010). 

Deinition  Modeling is the application of methods to analyze complex, 
real-world problems in order to make predictions about what 
might happen with various actions.
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Model Classiications

Severa‘ c‘assiicati“n categ“ries f“r ’“de‘s exist. A syste’ we are ’“de‘ing exhib-
its probabilistic, or stochastic, behavior if it appears that an element of chance ex-
ists. For example, the path of a hurricane is probabilistic. In contrast, a behavior can 
be deterministic, such as the position of a falling object in a vacuum. Similarly, 
models can be deterministic or probabilistic. A probabilistic, or stochastic, model 
exhibits random effects, while a deterministic model does not. The results of a de-
terministic model depend on the initial conditions; and in the case of computer im-
plementation with particular input, the output is the same for each program execu-
ti“n. As we see in M“du‘e 9.2, Si’u‘ati“ns,  and “ther ’“du‘es, we can have a 
probabilistic model for a deterministic situation, such as a model that uses random 
numbers to estimate the area under a curve.

We can also classify models as static or dynamic. In a static model, we do not 
consider time, so that the model is comparable to a snapshot or a map. For example, 
a model of the weight of a salamander as being proportional to the cube of its length 
has variab‘es f“r weight and ‘ength but n“t f“r ti’e. By c“ntrast, in a dynamic 
model, time changes, so that such a model is comparable to an animated cartoon or 
a movie. For example, the number of salamanders in an area undergoing develop-
ment changes with time; hence, a model of such a population is dynamic. Many of 
the models we consider in this text are dynamic and employ a static component as 
part of the dynamic model.

When time changes continuously and smoothly, the model is continuous. If time 
changes in incremental steps, the model is discrete. A discrete model is analogous to 
a movie. A sequence of frames moves so quickly that the viewer perceives motion. 
However, in a live play, the action is continuous.  Just as a discrete sequence of 
movie frames represents the continuous motion of actors, we often develop discrete 
computer models of continuous situations. 

Deinitions  A system exhibits probabilistic, or stochastic, behavior if an 
element of chance exists. Otherwise, the system exhibits deter-
ministic behavior. A probabilistic, or stochastic, model exhib-
its random effects, while a deterministic model does not.

Deinitions  A static model does not consider time, while a dynamic model 
changes with time.

 Deinitions  In a continuous model, time changes continuously, while in a 
discrete model, time changes in incremental steps. 
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Steps of the Modeling Process

The ’“de‘ing ”r“cess is cyc‘ic and c‘“se‘y ”ara‘‘e‘s the scientiic ’eth“d and the 
software life cycle for the development of a major software project. The process is 
cyclic because at any step we might return to an earlier stage to make revisions and 
continue the process from that point. 

The steps of the modeling process are as follows:

1. Analyze the problem.
 We ’ust irst study the situati“n suficient‘y t“ identify the ”r“b‘e’ ”re-

cisely and understand its fundamental questions clearly. At this stage, we 
deter’ine the ”r“b‘e’ s “b–ective and decide “n the ”r“b‘e’ s c‘assiica-
tion, such as deterministic or stochastic. Only with a clear, precise problem 
identiicati“n can we trans‘ate the ”r“b‘e’ int“ ’athe’atica‘ sy’b“‘s and 
develop and solve the model.

2. Formulate a model.
 In this stage, we design the model, forming an abstraction of the system we 

are modeling. Some of the tasks of this step are as follows:
a. Gather data.
  We collect relevant data to gain information about the system’s behavior.
b. Make simplifying assumptions and document them.
  In formulating a model, we should attempt to be as simple as reasona-

bly possible. Thus, we frequently decide to simplify some of the fac-
tors and to ignore other factors that do not seem as important. Most 
problems are entirely too complex to consider every detail, and doing 
so would only make the model impossible to solve or to run in a rea-
sonable amount of time on a computer. Moreover, factors often exist 
that d“ n“t a””reciab‘y affect “utc“’es. Besides si’”‘ifying fact“rs, 
we may decide to return to Step 1 to restrict further the problem under 
investigation.

c. Determine variables and units.
  We must determine and name the variables. An independent variable 

is the variable on which others depend. In many applications, time is an 
independent variable. The model will try to explain the dependent var-
iables. For example, in simulating the trajectory of a ball, time is an 
independent variable; and the height and the horizontal distance from 
the initial position are dependent variables whose values depend on the 
time. To simplify the model, we may decide to neglect some variables 
(such as air resistance), treat certain variables as constants, or aggregate 
several variables into one. While deciding on the variables, we must 
also establish their units, such as days as the unit for time.

d. Establish relationships among variables and submodels.
   If possible, we should draw a diagram of the model, breaking it into 

submodels and indicating relationships among variables. To simplify 
the model, we may assume that some of the relationships are simpler 
than they really are. For example, we might assume that two variables 
are related in a linear manner instead of in a more complex way.

e. Determine equations and functions.
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  While establishing relationships between variables, we determine equa-
tions and functions for these variables. For example, we might decide that 
two variables are proportional to each other, or we might establish that a 
—n“wn scientiic f“r’u‘a “r equati“n a””‘ies t“ the ’“de‘. Many c“’”u-
tational science models involve differential equations, or equations in-
volving a derivative.

3. Solve the model.
  This stage implements the model. It is important not to jump to this step be-

fore thoroughly understanding the problem and designing the model. Other-
wise, we might waste much time, which can be most frustrating. Some of the 
techniques and tools that the solution might employ are algebra, calculus, 
graphs, computer programs, and computer packages. Our solution might pro-
duce an exact answer or might simulate the situation. If the model is too 
complex to solve, we must return to Step 2 to make additional simplifying 
assumptions or to Step 1 to reformulate the problem. 

4. Verify and interpret the model’s solution.
 Once we have a solution, we should carefully examine the results to make 

sure that they ’a—e sense (veriicati“n) and that the s“‘uti“n s“‘ves the “ri-
ginal problem (validation) and is usable. The process of veriication de-
termines if the solution works correctly, while the process of validation  
estab‘ishes whether the syste’ satisies the ”r“b‘e’ s require’ents. Thus, 
veriicati“n c“ncerns s“‘ving the ”r“b‘e’ right,  and va‘idati“n c“ncerns 
“solving the right problem.” Testing the solution to see if predictions agree 
with rea‘ data is i’”“rtant f“r veriicati“n. We ’ust be carefu‘ t“ a””‘y “ur 
model only in the appropriate ranges for the independent data. For example, 
our model might be accurate for time periods of a few days but grossly inac-
curate when applied to time periods of several years. We should analyze the 
model’s solution to determine its implications. If the model solution shows 
weaknesses, we should return to Step 1 or 2 to determine if it is feasible to 
reine the ’“de‘. If s“, we cyc‘e bac— thr“ugh the ”r“cess. Hence, the cyc‘ic 
modeling process is a trade-off between simpliication and reinement. For 
reine’ent, we ’ay need t“ extend the sc“”e “f the ”r“b‘e’ in Ste” 1. In 
Ste” 2, whi‘e reining, we “ften need t“ rec“nsider “ur si’”‘ifying assu’”-
tions, include more variables, assume more complex relationships among the 
variables and submodels, and use more sophisticated techniques. 

5. Report on the model.
 Re”“rting “n a ’“de‘ is i’”“rtant f“r its uti‘ity. Perha”s the scientiic re”“rt 

will be written for colleagues at a laboratory or will be presented at a scien-
tiic c“nference. A re”“rt c“ntains the f“‘‘“wing c“’”“nents, which ”ara‘‘e‘ 
the steps of the modeling process:

a. Analysis of the problem 
  Usually, assuming that the audience is intelligent but not aware of the 

situation, we need to describe the circumstances in which the problem 
arises. Then, we must clearly explain the problem and the objectives of 
the study.

b. Model design
  The amount of detail with which we explain the model depends on the 

situation. In a comprehensive technical report, we can incorporate 
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much more detail than in a conference talk. In either case, we should 
state the simplifying assumptions and the rationale for employing them. 
Clearly labeled diagrams of the relationships among variables and sub-
models are usually very helpful in understanding the model.

c. Model solution
  In this section, we describe the techniques for solving the problem and 

the solution. We should give as much detail as necessary for the audi-
ence to understand the material without becoming mired in technical 
minutia. For a written report, appendices may contain more detail, such 
as source code of programs and additional information about the solu-
tions of equations.

d. Results and conclusions
  Our report should include results, interpretations, implications, recom-

mendations, and conclusions of the model’s solution. Usually, we pre-
sent s“’e “f the data and resu‘ts in tab‘es “r gra”hs. Such igures sh“u‘d 
contain titles, sources, and labels for columns and axes. We may also 
include suggestions for future work.

6. Maintain the model.
 As the model’s solution is used, it may be necessary or desirable to make 

corrections, improvements, or enhancements. In this case, the modeler again 
cycles through the modeling process to develop a revised solution.

Although we described the modeling process as a sequence or series of steps, we 
may be developing two or more steps simultaneously. For example, it is advisable to 
be compiling the report from the beginning. Otherwise, we can forget to mention 
signiicant ”“ints, such as reas“ns f“r ’a—ing certain si’”‘ifying assu’”ti“ns “r f“r 
needing ”articu‘ar reine’ents. M“re“ver, within ’“de‘ing tea’s, individua‘s “r 
groups frequently work on different submodels simultaneously. Having completed a 
submodule, a team member might be verifying the submodule while others are still 
working on solving theirs.

The ’“de‘ing ”r“cess is a creative, scientiic endeav“r. As such, a ”r“b‘e’ we 
are modeling usually does not have one correct answer. The problems are complex, 
and many models provide good, although different, solutions. Thus, modeling is a 
challenging, open-ended, and exciting venture.

Exercises

1. C“’”are and c“ntrast the ’“de‘ing ”r“cess with the scientiic ’eth“d: Ma—e 
observations; formulate a hypothesis; develop a testing method for the hy-
pothesis; collect data for the test; using the data, test the hypothesis; accept or 
reject the hypothesis.

 Deinitions  The process of veriication determines if the solution works 
correctly, while the process of validation establishes if the sys-
te’ satisies the ”r“b‘e’ s require’ents. 
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2. Compare and contrast the modeling process with the software life cycle: 
analysis, design, implementation, testing, documentation, maintenance.
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SYSTEM DYNAMICS PROBLEMS WITH RATE 
PROPORTIONAL TO AMOUNT





MODULE 2.1

System Dynamics Tool—Tutorial 1

Download

From the textbook’s website, download Tutorial 1 in PDF format for your system 
dynamics tool. We recommend that you work through the tutorial and answer all 
Quick Review Questions using the corresponding software.

Introduction

Dynamic systems, which change with time, are usually very complex, having many 
components, with involved relationships. Two examples are systems involving com-
petition among different species for limited resources and the kinetics of enzymatic 
reactions. 

With a system dynamics tool, we can model complex systems using diagrams and 
equati“ns. Thus, such a t““‘ he‘”s us ”erf“r’ Ste” 2 “f the ’“de‘ing ”r“cess f“r-
’u‘ate a ’“de‘ by he‘”ing us d“cu’ent “ur si’”‘ifying assu’”ti“ns, variab‘es, 
and units; establish relationships among variables and submodels; and record equa-
ti“ns and functi“ns. Then, a syste’ dyna’ics t““‘ can he‘” us s“‘ve the ’“de‘
Ste” 3 “f the ’“de‘ing ”r“cess by ”erf“r’ing si’u‘ati“ns using the ’“de‘ and 
generating tables and graphs of the results. We use this output to perform Step 4 of 
the ’“de‘ing ”r“cess verify and inter”ret the ’“de‘ s s“‘uti“n. Often such exa’i-
nation leads us to change a model. With its graphical view and built-in functions, a 
system dynamics tool facilitates cycling back to an earlier step of the modeling pro-
cess t“ si’”‘ify “r reine a ’“de‘. Once we have veriied and va‘idated a ’“de‘, the 
tool’s diagrams and equations from the design and the results from the simulation 
should be part of our report, which we do in Step 5 of the modeling process. The tool 
can even help us as we maintain the model (Step 6) by making corrections, improve-
ments, or enhancements.
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This irst tut“ria‘ is avai‘ab‘e f“r d“wn‘“ad fr“’ the textb““— s website f“r sev-
eral different system dynamics tools. Tutorial 1 in your system of choice prepares 
you to perform basic modeling with such a tool, including the following:

• Diagramming a model
• Entering equations and values
• Running a simulation
• Constructing graphs 
• Producing tables

The module gives examples and Quick Review Questions for you to complete and 
execute with your desired tool. 



MODULE 2.2

Unconstrained Growth and Decay

Introduction

Many situations exist where the rate at which an amount is changing is proportional 
to the amount present. Such might be the case for a population of people, deer, or 
bacteria, for example. When money is compounded continuously, the rate of change 
of the amount is also proportional to the amount present. For a radioactive element, 
the amount of radioactivity decays at a rate proportional to the amount present. Simi-
larly, the concentration of a chemical pollutant decays at a rate proportional to the 
concentration of pollutant present.

Rate of Change

We deal with rate of change every time we drive a car. Suppose our position (y) is a 
function (s) of time (t), so we write y = s(t). Suppose also that we start driving on a 
straight road at time t = 0 hours (h) at position marker s(0) = 10 miles (mi; about 
16.1 km), and at time t = 2 h we are at position s(2) = 116 ’i (ab“ut 186.7 —’). Our 
average velocity, or average rate of change of position with respect to time, is the 
change in position (∆s) over the change in time (∆ t) and incorporates average 
speed as well as direction by its sign:

average velocity =
∆
∆
s

t
 = 
116 106

53
 mi 10 mi

2 h 0 h

 mi

2 h
 mi/h

−
−

= =

or 

average velocity =
∆
∆
s

t

 = 186 7 170 6
85 3

. .
.

 km 16.1 km

2 h 0 h

 km

2 h
 km/h

−
−

= =  

We probably are not driving at a constant rate of 53 mi/h (85.3 km/h), but sometimes 
we are moving faster and other times, slower. To obtain a more accurate measure of 
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our velocity at time t = 1 h, we can use a smaller interval. For instance, at time t = 1 
h, our position might be at marker s(1) = 51.2 mi, while a short time before at t = 0.98 
h, our position was s(0.98) = 50.0 ’i. As the f“‘‘“wing ca‘cu‘ati“n sh“ws, “ver this 
interval of 0.02 h (1.2 min), our average velocity is faster, 60 mi/h:

average velocity = 
∆
∆
s

t

 = 
51 2 1 2

60
. . mi 50 mi

1.00 h 0.98 h

 mi

0.02 h
 mi/h

−
−

= =

“r ab“ut 96.6 —’/h. 

Quick Review Question 1

Suppose on a windless day someone standing on a bridge holds a ball over the side 
and tosses the ball straight up into the air. After reaching its highest point, the ball 
falls, eventually landing in the water. The ball’s height in meters (m) above the water 
(y) is a function (s) of time (t) in seconds (s), or y = s(t). 

a. Determine the average velocity with units of the ball from t = 1 s to t = 2 s if 
s(1) = 21.1 m and s(2) = 21.4 m.

b. Determine the average velocity with units of the ball from t = 1 s to t = 3 s if 
s(1) = 21.1 m and s(3) = 11.9 ’.

c. Using the n“tati“n “f the deiniti“n “f average ve‘“city, f“r Part b deter’ine 
the following, including units: b, s(b), ∆t, b  ∆t, s(b  ∆t), ∆s.

By ’a—ing the interva‘ s’a‘‘er and s’a‘‘er ar“und the ti’e t = 1 h, the average 
velocity calculation approaches our precise velocity at t = 1 h, or our instantaneous 
rate of change of position with respect to time, which is our odometer’s reading. 
This instantaneous rate of change of s with respect to t is the derivative of s with 

respect to t, written as sʹ(t), or 
dy

dt
, or dy/dt; and sʹ(1), or 

ds

dt t=1

, indicates the deriva-
tive at time t = 1 h.

Deinition  Suppose s(t) is the position of an object at time t, where 
a  t  b. Then the change in time, ∆t, is ∆t = b – a; and the 
change in position, ∆s, is ∆s = s(b) – s(a). Moreover, the aver-
age velocity, or the average rate of change of s with respect to 
t, of the object from time a = b  ∆t to time b is

average velocity
change in position

change in time
= =

∆
∆
s

t

(
=
s

t

s b)) ( )−
−

=
− −s a

b a

s b s b t

t

( ) ( )∆
∆
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A function, such as y = s(t), can represent many things other than position. More-
over, we are not restricted to using symbols, such as s. For example, Q(t) might 
represent a quantity (mass) of radioactive carbon-14 at time t, and the instantaneous 
rate of change of Q with respect to t, Qʹ(t) = dQ/dt, is the instantaneous rate of decay. 
As another example, P(t) might symbolize a population at time t, so that Pʹ(t) = dP/

dt, is the rate of change of the population with respect to t.

Differential Equation

Continuing with the population example, suppose we have a population in which no 
individuals arrive or depart; the only change in the population comes from births and 
deaths. No constraints, such as competition for food or a predator, exist on growth of 
the population. When no limiting factor exists, we have the Malthusian model for 
unconstrained population growth, where the rate of change of the population is di-
rectly proportional (∝) to the number of individuals in the population. If P repre-
sents the population and t represents time, then we have the following proportion:

dP

dt
P∝

For a positive growth rate, the larger the population, the greater the change in the 
population. With the same positive growth rate in two cities, say New York City and 
Spartanburg, S.C., the population of the larger New York City increases more in 
magnitude in a year than that of Spartanburg. In a later section of this module, “Un-
constrained Decay,” we consider a situation in which the rate is negative.

We write the preceding proportion in equation form as follows:

dP

dt
rP=

The constant r is the growth rate, or instantaneous growth rate, or continuous 
growth rate, while dP/dt is the rate of change of the population.

Deinition  The instantaneous velocity, or the instantaneous rate of 
change of s with respect to t, at t = b is the number the average 

velocity, s b s b t

t

( ) ( )− − ∆
∆

, a””r“aches as ∆t comes closer and 

closer to 0 (provided the ratio approaches a number). In this case, 
the derivative of y = s(t) with respect to t at t = b, written sʹ(b) 

or 
dy

dt t b=

, is the instantaneous velocity at t = b. In general, the 

derivative of y = s(t) with respect to t is written as sʹ(t), or 
dy

dt
, 

or dy/dt.
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In Syste’ Dyna’ics T““‘ Tut“ria‘ 1  (M“du‘e 2.1), we started with a bacte-
rial population of size 100, an instantaneous growth rate of 10% = 0.10, and time 
measured in hours. Thus, we had

dP

dt
P= 0 10.

with P0 = 100. The equation 
dP

dt
P= 0 10.  with the initial condition P0 = 100 is a 

differential equation because it contains a derivative. A solution to this differential 
equation is a function, P(t), whose derivative is 0.10P(t), with P(0) = 100. We begin 
by reconsidering this example from Tutorial 1 for reinforcement and a more in-depth 
examination of the concepts. 

Difference Equation

Each diagram in Figure 2.2.1, developed with a choice of modeling tools and with 
the generic format employed by the text, depicts the situation with population indi-
cating P, growth_rate representing r, and growth meaning dP/dt. A stock (box vari-
able, or reservoir), such as population, accu’u‘ates with ti’e. By c“ntrast, a con-
verter (variable-auxiliary/constant, or formula), such as growth_rate, does not 
accumulate but stores an equation or a constant. The growth is the additional number 
of organisms that join the population. Thus, a low (rate), such as growth, is an ac-
tivity that changes the ’agnitude “f a st“c— and re”resents a derivative. Because 
both population and growth rate are necessary to determine the growth, we have ar-
rows (connectors, or arcs) fr“’ these quantities t“ the l“w indicat“r. 

For a simulation with a system dynamics tool or a program we write, we consider 
time advancing in small, incremental steps. For time, t, and ‘ength “f a ti’e ste”, ∆t, 
the previous time is t  ∆t. Thus, if t is 7.75 s and ∆t is 0.25 s, the previous time is 
7.50 s. A syste’ dyna’ics t““‘ ’ight ca‘‘ the change in ti’e dt, DT, or something 
e‘se instead “f ∆t. As some tools do to avoid confusion, we replace each blank in a 
diagram component name with an underscore when using the name in equations and 
discussions. For example, we employ growth rate in the diagrams of Figure 2.2.1 
and the corresponding growth_rate in the following discussion.  Regardless of the 
notation, with initial population = 100, growth_rate = 0.1, and growth = growth_

rate * population, as in Figure 2.2.1, a system dynamics tool generates an equation 
similar to the following, where population(t) is the population at time t and 
population(t  ∆t) is the population at time t  ∆t:

population(t) = population(t  ∆t) + (growth) * ∆t

Deinitions  A differential equation is an equation that contains one or 
more derivatives. An initial condition is the value of the depend-
ent variable when the independent variable is zero. A solution to 
a differentia‘ equati“n is a functi“n that satisies the equati“n and 
initial condition(s).
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This equation, called a inite difference equation, indicates that the population at 
one time step is the population at the previous time step plus the change in popula-
tion over that time interval:

(new population) = (old population) + (change in population)

or

population(t) = population(t  ∆t) + ∆population

where ∆population is a notation for the change in population. We approximate the 
change in the ”“”u‘ati“n “ver “ne ti’e ste”, ∆population or (growth) * ∆t, as the 
inite difference of the populations at one time step and at the previous time step, 
 population(t) – population(t  ∆t). Thus, solving for growth, we have an approxima-
tion of the derivative dP/dt as follows:

growth = 
∆

∆
∆

∆
population

t

population t population t t

t
=

− −( ) ( )

C“’”uter ”r“gra’s and syste’ dyna’ics t““‘s e’”‘“y such inite difference equa-
tions to solve differential equations.

population

growth

growth rate

population

growth

growth rate growth rate

growth
population

a b

c d

growth

growth rate

population

•

Figure 2.2.1 Diagrams of population models where growth rate is proportional to popula-
tion: (a) Berkeley Madonna®  (b) STELLA® (c) Vensim PLE® (d) Text’s format
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Quick Review Question 2

Consider the differential equation dQ/dt = – 0.0004Q, with Q0 = 200. 

a. Using de‘ta n“tati“n, give a inite difference equati“n c“rres”“nding t“ the 
differential equation.

b. At time t = 9.0 s, give the ti’e at the ”revi“us ti’e ste”, where ∆t = 0.5 s.
c. If Q(t  ∆t) = 199.32 and Q(t) = 199.28, give ∆Q.

The growth is the growth_rate (r previously) times the current population (P pre-
viously). For example, we can show that the population at time t = 0.025 h is ap-
proximately population(0.025) = 100.250250 bacteria, so that growth is about 
growth_rate * population(0.025) = 0.1 * 100.250250 = 10.025025 bacteria per hour 
at that instant. F“r ∆t = 0.005 h, the change in the population of bacteria to the next 
time step, 0.025 + 0.005 = 0.030 h, is approximately growth * ∆t = 10.025025 * 
0.005 = 0.050125 bacteria1. We calculate the population at time 0.030 h as follows:

population(0.030) = population(0.025) + (growth at ti’e 0.025 h) * ∆t

 = 100.250250 + 10.025025 * 0.005
 = 100.250250 + 0.050125
 = 100.300375

Thus, we compute the value at the line t = 0.030 h of Table 2.2.1 using the previous line.

Quick Review Question 3

Evaluate population(0.045), the population at the next time interval after the end of 
Table 2.2.1, to six decimal places. 

1 Computations in this model use Euler's Method for estimating values of a function. In Chapter 6, we examine 

this and two other techniques for numeric integration.

Table 2.2.1 
Table of Estimated Populations, Where the Initial Population is 100, the Continuous Growth 
Rate is 10% per Hour, and the Time Step is 0.005 h

t population(t) = population(t − ∆t) + (growth) * ∆t

0.000 100.000000
0.005 100.050000 = 100.000000 + 10.000000 * 0.005
0.010 100.100025 = 100.050000 + 10.005000 * 0.005
0.015 100.150075 = 100.100025 + 10.010003 * 0.005
0.020 100.200150 = 100.150075 + 10.015008 * 0.005
0.025 100.250250 = 100.200150 + 10.020015 * 0.005
0.030 100.300375 = 100.250250 + 10.025025 * 0.005
0.035 100.350525 = 100.300375 + 10.030038 * 0.005
0.040 100.400701 = 100.350525 + 10.035053 * 0.005

Deinition  A inite difference equation is of the following form:

 (new value) = (old value) + (change in value)

Such an equation is a discrete approximation to a differential equation.
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Table 2.2.2 
Table of Estimated Growths and Populations, Reported on the Hour, 
Where the Initial Population is 100, the Growth Rate is 10%, and the 
Time Step is 0.005 h

t (h) growth population

 0.000 10.00 100.00
 1.000 11.05 110.51
 2.000 12.21 122.13
 3.000 13.50 134.98
 4.000 14.92 149.17
 5.000 16.49 164.85
 6.000 18.22 182.18
 7.000 20.13 201.34
 8.000 22.25 222.51
 9.000 24.59 245.90
10.000 27.18 271.76
11.000 30.03 300.33
12.000 33.19 331.91
13.000 36.68 366.81
14.000 40.54 405.38
15.000 44.80 448.00
16.000 49.51 495.11
17.000 54.72 547.16
18.000 60.47 604.69
19.000 66.83 668.27
20.000  738.54

Because “f c“’”“unding, the nu’ber “f bacteria at t = 1 h is slightly more than 
10% of 100, namely, 110.51. Table 2.2.2 lists the growth and the population on the 
hour for 20 h, and Figure 2.2.2 graphs the population versus time. The model states 
and the tab‘e and igure i‘‘ustrate that as the ”“”u‘ati“n increases, the gr“wth d“es, t““.

The model gives an estimate of the population at various times. If the model is 
analytically correct, a simulation estimates the values for growth and population. 
Until computer round-off error (discussed in Module 5.2) causes the step size to be 
zero, it is usually the case that the smaller the step size, the more accurate will be the 
resu‘ts. (In Exercise 9, we ex”‘“re a situati“n where the s’a‘‘er ste” size d“es n“t 
”r“duce better resu‘ts.) Because the additi“na‘ c“’”utati“ns resu‘ting fr“’ a 
s’a‘‘er ste” size cause the si’u‘ati“n t“ run ‘“nger, we “ften use a ‘arger ∆t during 
deve‘“”’ent and switch t“ a s’a‘‘er ∆t for more accurate results when the project 
is close to completion.

Rule of Thumb  Although the simulation takes longer because of more 
computation, it is usually more accurate to use a small step size 
(∆t), say, 0.01 or less.
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Simulation Program

In deve‘“”ing a si’u‘ati“n ”r“gra’, we use state’ents si’i‘ar t“ the ”receding i-
nite difference equations. We initialize constants, such as growthRate, population, 
∆t, and the length of time the simulation is to run (simulationLength), and we update 
the population repeatedly in a loop. The calculation for the total number of iterations 
(numIterations) of this loop is simulationLength/∆t. For example, if the simulation 
‘ength is 10 h and ∆t is 0.25 h, then the number of loop iterations is numItera-

tions = 10/0.25 = 40. We have a loop index (i) go from 1 through numIterations. In-
side the loop, we calculate time t as the product of i and ∆t. F“r exa’”‘e, if ∆t is 0.25 
h, during the irst iterati“n, the index i bec“’es 1 and the ti’e is 1 * ∆t = 0.25 h. On 
loop iteration i = 8, the ti’e gets the va‘ue 8 * ∆t = 8 * 0.25 h = 4.00 h. 

Algorithm 1 contains pseudocode, or a structured English outline of the design, 
for generating and displaying the time, growth, and population at each time step. In 
the algorithm, a left-facing arrow (←) indicates assignment of the value of the ex-
pression on the right to the variable on the left. For example, numIterations ← 
simulationLength/∆t represents an assignment statement in which numIterations 
gets the value of simulationLength/∆t.

Algorithm 1  Algorithm for simulation of unconstrained growth

initialize simulationLength

initialize population

initialize growthRate

initia‘ize ‘ength “f ti’e ste” ∆t 
numIterations ← simulationLength/∆t

for i going from 1 through numIterations do the following:
growth ← growthRate * population

population ← population + growth * ∆t

t ← i * ∆t

display t, growth, and population

5 10 15 20
t

100

200
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400
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population

Figure 2.2.2 Graph of population versus time (hours) for the data in Table 2.2.2
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If we do not need to display growth (derivative) at each step and the length of a 
ste” (∆t) is constant throughout the simulation, we can calculate the constant growth 
rate per step (growthRatePerStep) before the loop, as follows:

growthRatePerStep ← growthRate * ∆t

Within the loop, we do not compute growth but estimate population as follows:

population ← population + growthRatePerStep * population

Thus, within the loop, we have two assignments instead of three and two multiplica-
tions instead of three, saving time in a lengthy simulation. The revised algorithm 
appears as Algorithm 2.

Analytical Solution: Introduction

We can solve the preceding model analytically for unconstrained growth, which is 

the differential equation 
dP

dt
P= 0 10.  with initial condition P0 = 100, as follows:

P = 100 e0.10t

The next three secti“ns deve‘“” the ana‘ytica‘ s“‘uti“n. The irst secti“n starts the 
ex”‘anati“n using indeinite integra‘s, whi‘e the sec“nd secti“n begins the discussi“n 
using derivatives without using integrals. Thus, you may select the section that 
matches your calculus background. The third section completes the development of 
the analytical solution for both tracks. Those without calculus background may go 
immediately to the section “Completion of the Analytical Solution.”

When it is possible to solve a problem analytically, we should usually do so. We 
have employed simulation of unconstrained growth with a system dynamic tool as 
an introduction to fundamental concepts and as a building block to more complex 
problems for which no analytical solutions exist.

Algorithm 2  Alternative algorithm to Algorithm 1 for simulation of uncon-
strained growth that does not display growth

initialize simulationLength

initialize population

initialize growthRate

initia‘ize ∆t

growthRatePerStep ← growthRate * ∆t
numIterations ← simulationLength/∆t

for i going from 1 through numIterations do the following:
population ← population + growthRatePerStep * population

t ← i * ∆t
display t and population
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Analytical Solution: Explanation with Indeinite  
Integrals (Optional)

We can solve the differential equation 
dP

dt
P= 0 10.  using a technique called separa-

tion of variables. First, we move all terms involving P to one side of the equation 
and all those involving t to the other. Leaving 0.10 on the right, we have the 
following:

1
0 10

P
dP dt= .

Then, we integrate both sides of the equation, as follows:

1
0 10

P
dP dt∫ = ∫ .

 

ln |P| = 0.10t + C for an arbitrary constant C

We solve for |P| by taking the exponential function of both sides and using the fact 
that the exponential and natural logarithmic functions are inverses of each other.

e e

P e e A e

P t C

t C t

ln| | .

. .

=

= =

+0 10

0 10 0 10
 

where A = eC. Solving for P, we have

P = (±A)e0.10t 

or

P = ke0.10t 

where k = (±A) is a constant.

Analytical Solution: Explanation with Derivatives (Optional)

We can solve the differential equation 
dP

dt
P= 0 10.  for P ana‘ytica‘‘y by inding a 

function whose derivative is 0.10 times the function itself. The only functions that 
are their own derivative are exponential functions of the following form:

f(t) = ket,  where k is a constant

For example, the derivative of 5et is 5et. To obtain a factor of 0.10 through use of the 
chain rule, we have the general solution

P = ke0.10t
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For example, if P = 5e0.10t, we have

dP

dt

d e

dt

d e

dt
e e

t t

t t= = = =
( ) ( )

( . ) . ( )
. .

. .5
5 5 0 10 0 10 5

0 10 0 10
0 10 0 10 == 0 10. P

Completion of the Analytical Solution

Thus, the general solution to 
dP

dt
P= 0 10.  is P = ke0.10t for a constant k. Using the 

initial condition that P0 = 100, we can determine a particular value of k and, thus, a 
particular solution of the form P = ke0.10t. Substituting 0 for t and 100 for P, we have 
the following:

100 = ke0.10(0) = ke0 = k(1) = k

The constant is the initial population. For this example, 

P = 100e0.10t

Figure 2.2.3 displays the dramatic increase in the bacterial population as time advances.

In general, the solution to

dP

dt
rP=  with initial population P0

is

P = P0e
rt

10 20 30 40 50
Time

Bacteria

5000

10000

15000

Figure 2.2.3 Bacteria‘ ”“”u‘ati“n with a c“ntinu“us gr“wth rate “f 10% ”er h“ur and an 
initial population of 100 bacteria
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Quick Review Question 4

Give the solution of the differential equation 

dP

dt
P= 0 03. , where P0 = 57

The simulated values for the bacterial population are slightly less than those the 
model P = 100e0.10t determines. For example, after 20 h, a simulation may display, to 
tw“ deci’a‘ ”‘aces, a ”“”u‘ati“n “f 738.54. H“wever, 100e0.10(20), expressed to two 
deci’a‘ ”‘aces, is 738.91. The si’u‘ati“n c“’”“unds the ”“”u‘ati“n every ste”, and, 
in this case, the ste” size is ∆t = 0.005 h. The analytic model compounds the popula-
tion continuously; that is, as the step size goes to zero and the number of steps goes 
t“ ininity a””r“aches, the si’u‘ated va‘ues a””r“ach the ana‘ytic s“‘uti“n.

B“th the ana‘ytic ’“de‘ and si’u‘ati“n ”r“duce va‘id esti’ates “f the ”“”u‘ati“n 
of bacteria. After 20 h, the number of bacteria will be an integer, not a decimal num-
ber, such as 738.54 “r 738.91. M“re“ver, the ”“”u‘ati“n ”r“bab‘y d“es n“t gr“w in 
an idea‘ fashi“n with a 10%-”er-h“ur gr“wth rate at every instant. B“th the ana‘ytic 
model and the simulation produce estimates of the population at various times.

Further Reinement

We can reine the ’“de‘ further by having se”arate ”ara’eters f“r birth rate and 
death rate instead of the combined growth rate. Thus,

growth_rate = birth_rate – death_rate

Unconstrained Decay

The rate of change of the mass of a radioactive substance is proportional to the mass 
of the substance, and the constant of proportionality is negative. Thus, the mass de-
cays with time. For example, the constant of proportionality for radioactive car-
b“n-14 is a””r“xi’ate‘y 0.000120968. The c“ntinu“us decay rate is ab“ut 
0.0120968% ”er year, and the differentia‘ equati“n is as f“‘‘“ws, where Q is the 
quantity (mass) of carbon-14: 

dQ

dt
Q= −0.000120968

As indicated in the section “Completion of the Analytical Solution,” the analytical 
solution to this equation is

Q = Q0e
-0.000120968t

After 10,000 yr, “n‘y ab“ut 29.8% “f the “rigina‘ quantity “f carb“n-14 re’ains, as 
the following shows:

Q = Q0e
-0.000120968(10,000) = 0.298292Q0
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Figure 2.2.4 displays the decay of carbon-14 with time.
Carbon dating uses the amount of carbon-14 in an object to estimate the age of 

an object. All living organisms accumulate small quantities of carbon-14, but accu-
mulation stops when the organism dies. For example, we can compare the proportion 
of carbon-14 in living bone to that in the bone of a mummy and estimate the age of 
the mummy using the model.

Example 1

Suppose the proportion of carbon-14 in a mummy is only about 20% of that in a liv-
ing human. To estimate the age of the mummy, we use the preceding model with the 
information that Q = 0.20Q0. Substituting into the analytical model, we have

0.20Q0 = Q0e
-0.000120968t

After canceling Q0, we solve for t by taking the natural logarithm of both sides of the 
equati“n. Because the natura‘ ‘“garith’ and the ex”“nentia‘ functi“ns are inverses 
of each other, we have the following:

ln(0.20) = ln( e
-0.000120968t) = 0.000120968t

t = ‘n(0.20)/( 0.000120968) ≈ 13,305 yr

We often express the rate of decay in terms of the half-life of the radioactive sub-
stance. The half-life is the period of time that it takes for the substance to decay to 
half of its original amount. Figure 2.2.5 illustrates that the half-life of radioactive 
carb“n-14 is ab“ut 5730 yr. We can deter’ine this va‘ue ana‘ytica‘‘y as we did in 
Example 1 using 50% instead of 20%; Q = 0.50Q0.

5730 20000 40000
t

Fraction of Q 0

0.25

0.50

0.75

1.00

Figure 2.2.4 Exponential decay of radioactive carbon-14 as a fraction of the initial quantity 
Q0, with time (t) in years
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Quick Review Question 5

Radiu’-226 has a c“ntinu“us decay rate “f ab“ut 0.0427869% ”er year. Deter’ine 
its half-life in whole years.

Reports for System Dynamics Models

The ifth ste” “f the ’“de‘ing ”r“cess discussed in M“du‘e 1.2 is t“ Re”“rt “n the 
model.” The following summarizes the items that would be included in a report for a 
system dynamics model:

a. Analysis of the problem: We begin by describing the problem, such as to 
model the growth of bacteria in media.

b. Model design: In this section, we should list simplifying assumptions, such 

as those in the section “Differential Equation”; equations, such as 
dP

dt
P= 0 10.   

with P0 = 100; reasoning for choices of constants, such as an instantaneous 
growth rate of 10%; the basic time step, such as hour; and other units. A dia-
gram of the model, such as in Figure 2.2.1, is also appropriate to include. 

c. Model solution: This part should contain the analytical solution or an algo-
rithm, such as Algorithm 1. 

d. Results and conclusions: Part d should include simulation tables, such as 
Table 2.2.2, and graphs, such as Figure 2.2.2. Moreover, the section should 
c“ntain an ex”‘anati“n “f veriicati“n acc“’”‘ished by c“’”aring the resu‘ts 
to real data when available, descriptions of the outcomes of various scenar-

Deinition The half-life is the period of time that it takes for a radioactive 
substance to decay to half of its original amount.

5730 20000 40000
t

Fraction of Q 0

0.25

0.50

0.75

1.00

Figure 2.2.5 The ha‘f-‘ife “f radi“active carb“n-14 indicated as 5730 yr
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ios, a discussion of our conclusions with support from the results, and sug-
gesti“ns f“r ’“de‘ reine’ent.

e. Appendices: Usua‘‘y, a c“”y “f the i‘e created with a syste’ dyna’ics t““‘ 
sh“u‘d be sub’itted with this re”“rt. Besides the ’“de‘, this i‘e sh“u‘d c“n-
tain appropriate documentation, such as a text box with the authors’ names, 
date, module and problem number, and problem description.

Exercises

Answers to marked exercises appear in the appendix “Answers to Selected Exercises.”

1. a.  For an initial population of 100 bacteria and a continuous growth rate of 
10% per hour, determine the number of bacteria at the end of one week.

 b. How long will it take the population to double?
2. a.  Suppose the initial population of a certain animal is 15,000 and its con-

tinuous growth rate is 2% per year. Determine the population at the end of 
20 yr.

 b.  Suppose we are performing a simulation of the population using a step 
size of 0.083 yr. Determine the growth and the population at the end of the 
irst three ti’e ste”s.

3. Adjust the model in Figure 2.2.1 to accommodate birth rate and death rate 
instead of just growth rate.

4. a.  Newton’s Law of Heating and Cooling states that the rate of change of 
the temperature (T) with respect to time (t) of an object is proportional to 
the difference between the temperatures of the object and of its surround-
ings. Su””“se the te’”erature “f the surr“undings is 25 ̊ C. Write the dif-
ferential equation that models Newton’s Law.

 b. Solve this equation for T as a function of time t.
 c.  Su””“se c“‘d water at 6 ̊ C is ”‘aced in a r““’ that has te’”erature 25 ̊ C. 

After 1 h, the te’”erature “f the water is 20 ̊ C. Deter’ine a‘‘ c“nstants in 
the equation for T.

 d. What is the temperature of the water after 15 minutes (min)?
 e. How long will it take for the water to warm to room temperature?
5. a.  Su””“se s“’e“ne, wh“se te’”erature is “rigina‘‘y 37 ̊ C, is ’urdered in a 

r““’ that has c“nstant te’”erature 25 ̊ C. The te’”erature is ’easured as 
28 ̊ C when the b“dy is f“und and at 27 ̊ C 1 h ‘ater. H“w ‘“ng ag“ was the 
murder committed from discovery of the body? See Exercise 4 for New-
ton’s Law of Heating and Cooling.

 b.  Suppose we are performing a simulation using a step size of 0.004 h. 
Using the decay rate from Part a, determine the temperature at the end of 
the irst three ti’e ste”s after disc“very “f the b“dy.

6. a.  What proportion of the original quantity of carbon-14 is left after 30,000 
yr?

 b. If 60% is left, how old is the item?
7. a.  The ha‘f-‘ife “f radi“active str“ntiu’-90 is 29 yr. Give the ’“de‘ f“r the 

quantity present as a function of time.
 b. What ”r“”“rti“n “f str“ntiu’-90 is ”resent after 10 yr?
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 c. After 50 yr?
 d. How long will it take for the quantity to be 15% of the original amount?
8. Su””“se an invest’ent has a””r“xi’ate‘y a c“ntinu“us gr“wth rate “f 9.3%. 

Calculate analytically the value of an initial investment of $500 after 
 a. 10 yr   b. 20 yr   c. 30 yr   d. 40 yr 
 d. How long will it take for the value to double?
 e. How long to quadruple?
9. Suppose the amount of deposited ash, A, in millimeters (mm) is a function of 

time t in days. Suppose the model states that the rate of change of ash with 
respect to time is 4 mm/day and the initial quantity is 3 mm.

 a.  Using a step size of 0.5 days (da), estimate the amount of ash when t = 1 
da.

 b. Repeat Part a using a step size of 0.25 da.
 c. Does the smaller step size change the result?
 d. Solve the model for A.
 e. What kind of function do you obtain?

Projects

F“r additi“na‘ ”r“–ects, see M“du‘e 7.1, Radi“active Chains Never the Sa’e 
Again ; M“du‘e 7.2, Turn“ver and Tur’“i‘—Blood Cell Populations”; Module 

7.3, Dee” Tr“ub‘e Idea‘ Gas Laws and Scuba Diving ; M“du‘e 7.4, What G“es 
Around Comes Around—The Carbon Cycle”; after completion of “System Dynam-

ics T““‘: Tut“ria‘ 2,  M“du‘e 7.9, Trans’issi“n “f Nerve I’”u‘ses: Learning fr“’ 
the Action Potential Heroes”; M“du‘e 7.12 Mercury P“‘‘uti“n—Getting “n Our 
Nerves.  

1. Develop a model for Newton’s Law of Heating and Cooling (see Exercise 4). 
Using this model, answer the questions of Exercises 4 and 5.

2. In 1854, Dr. J“hn Sn“w, the father “f e”ide’i“‘“gy, identiied a ”articu‘ar 
L“nd“n water ”u’” as the ”“int s“urce “f the Br“ad Street ch“‘era e”ide’ic, 
which spread in a radial fashion from the pump. Model such a spread of dis-
ease assuming that the rate of change of the number of cases of cholera is 
proportional to the square root of the number of cases.

3. Develop a model for Exercise 8. 
4. A young professional would like to save enough money to pay cash for a new 

car. Develop a model to determine when such a purchase will be possible. 
Take into account the following issues: The price of a new car is rising due to 
inlati“n. The buyer ”‘ans t“ trade in a car, which is de”reciating. This ”ers“n 
already has some savings and plans to make regular monthly payments. 
Thus, use a ∆t value of 1 mo. Assume appropriate rates and values.

Deve‘“” a s”readsheet f“r each “f Pr“–ects 5 8.

5. Exercise 2
6. Exercise 4
7. Exercise 5
8. Exercise 8
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Answers to Quick Review Questions

1. a. Average velocity from 1 to 2 s = 

s s( ) ( ) . .3 1

3 1

11 9 21 1

2

−
−

=
−

 = 0.3 m/s

 b. Average velocity from 1 to 3 s = 

s s( ) ( ) . .2 1

2 1

21 4 21 1

1

−
−

=
−

 = –4.6 m/s

 c. b = 3 s, s(b) = 11.9 ’, ∆t = 2 s, b  ∆t = 1 s, s(b  ∆t) = 21.1 m, ∆s = 11.9   
21.1 = 9.2 ’

2. a. Q(t) = Q(t  ∆t) + ∆Q, where ∆Q = –0.0004Q(t  ∆t)∆t and Q(0) = 200
 b. t  ∆t = 9.0  0.5 = 8.5 s
 c. ∆Q = 199.28  199.32 = 0.04
3. 100.450901
 growth = 100.400701 * 0.10 = 10.040070
 Thus, population(0.045) = 100.400701 + 10.040070 * 0.005 = 100.450901
4. P = 57e0.03t

5. 1620. Reasoning:

Q = Q0 e
 -0.000427869t 

For Q = 0.50Q0, 0.50Q0 = Q0 e
 -0.000427869t or 0.50 = e -0.000427869t 

‘n(0.50) = 0.000427869t

t = ‘n(0.50)/( 0.000427869) = 1620

Reference

Zill, Dennis G. 2013.  A First Course in Differential Equations with Modeling Ap-
”‘icati“ns, 10th ed. Be‘’“nt, CA. Br““—s-C“‘e Pub‘ishing (Cengage Learning).
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Constrained Growth

Introduction

An animal introduced to a new environment will often reproduce at a very high rate. 
That is what happened when the Eurasian perch, called the ruffe (Gy’n“ce”ha‘us 
cernuus), was introduced to Lake Superior from an ocean-going ship’s ballast. A 
s’a‘‘ ish, usua‘‘y 4 t“ 6 inches (in.) ‘“ng, with shar”, ’enacing s”ines “n its gi‘‘ 
c“vers and d“rsa‘ in, ruffe is a ’ea‘ “f ‘ast res“rt f“r ’“st ”redat“rs. M“re“ver, the 
Eurasian ”erch has ‘itt‘e “r n“ va‘ue as a ishery and is a f“r’idab‘e c“’”etit“r. 
Vying with “ther benthiv“r“us ish (e.g., ye‘‘“w ”erch), they have the advantage “f 
being more adaptable in their dietary choices, including rotifers, microcrustaceans, 
i’’ature insects, ‘arva‘, and s’a‘‘, adu‘t ish. Interesting‘y, they are ”reyed u”“n “n 
by very few s”ecies “f ‘arger ish and then “n‘y if “ther ”rey are scarce. Ruffe n“t 
“n‘y t“‘erate wide ranges “f te’”erature and ”H, they are a‘s“ ”r“‘iic breeders 
(6000 to 200,000 eggs/batch), spawning on a variety of substrates.

Pe“”‘e inv“‘ved in isheries in the Great La—es have every right t“ be a‘ar’ed by 
this intruder. When introduced to Loch Lomond, Scotland, ruffe populations in-
creased ex”“nentia‘‘y and deci’ated the eggs “f ‘“ca‘ sa‘’“n (Ada’s 1998). A‘-
th“ugh there has been n“ estab‘ished causa‘ ass“ciati“n, McLean (1993) f“und that 
”“”u‘ati“ns “f native N“rth A’erican ish ‘i—e ye‘‘“w ”erch, ”erch-tr“ut, and e’er-
ald shiners have all declined since the ruffe were introduced. It is hypothesized that 
ruffe either predate on their competitors eggs or decrease their food resources.

Because births exceed the nu’bers ’aturing and re”r“ducing, a‘‘ ”“”u‘ati“ns, 
theoretically, have the potential for exponential growth. Endemic populations in-
crease ra”id‘y at irst, but they eventua‘‘y enc“unter resistance fr“’ the envir“n-
’ent c“’”etit“rs, ”redat“rs, ‘i’ited res“urces, and disease. Thus, the envir“n-
ment tends to limit the growth of populations, so that they usually increase only to a 
certain level and then do not increase or decrease drastically unless a change in the 
environment occurs. This maximum population size that the environment can sup-
”“rt indeinite‘y is ter’ed the carrying capacity. Many introduced species that be-
come pests, such as the ruffe in the Great Lakes, have a very high reproductive po-
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tential in their new environments because they are very adaptable to habitat and food 
s“urces, they have few “r ‘ess-it c“’”etit“rs, and few t“ n“ ”redat“rs. 

Carrying Capacity

In Module 2.2, “Unconstrained Growth and Decay,” we considered a population 
growing without constraints, such as competition for limited resources. For such a 
population, P, with instantaneous growth rate, r, the rate of change of the population 
has the following differential equation model:

dP

dt
rP=

 

With initial population P0, we saw that the analytical solution is P = P0e
rt. In that 

’“du‘e, we a‘s“ deve‘“”ed the f“‘‘“wing inite difference equati“n f“r the change in 
P from one time to the next, which we used in simulations:

∆P = P(t) – P(t  ∆t)
 = (r P(t  ∆t)) ∆t 

Simulation and analytical solution graphs in Figures 2.2.2 and 2.2.3, respectively, of 
Module 2.2 display the exponential growth of unconstrained growth. 

After developing such a model in Step 2 of the modeling process and solving the 
model (Step 3) as before, we should verify that the solution (Step 4) agrees with real 
data. H“wever, as the intr“ducti“n indicates, n“ c“nined ”“”u‘ati“n can gr“w with-
out bound. Competition for food, shelter, and other resources eventually limits the 
possible growth. For example, suppose a deer refuge can support at most 1000 deer. 
We say that the carrying capacity (M) for the deer in the refuge is 1000. 

Quick Review Question 1

Cyc‘ing bac— t“ Ste” 2 “f the ’“de‘ing ”r“cess, this questi“n begins reine’ent “f 
the population model to accommodate descriptions of population growth from the 
“Introduction” of this module. 

a. Determine any additional variable and its units. 
b. Consider the relationship between the number of individuals (P) and carry-

ing capacity (M) as time (t) increases. List all the statements below that apply 
to the situation where the population is much smaller than the carrying 
capacity.

 A. P appears to grow almost proportionally to t.

Deinition  The carrying capacity for an organism in an area is the maxi-
mum number of organisms that the area can support.
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 B. P appears to grow almost without bound.
 C. P appears to grow faster and faster.
 D. P appears to grow more and more slowly.
 E. P appears to decline faster and faster.
 F. P appears to decline more and more slowly.
 G. P appears to grow almost linearly with slope M.
 H. P is appears to be approaching M asymptotically.
 I. P appears to grow exponentially.
 J. dP/dt appears to be almost proportional to P.
 K. dP/dt appears to be almost zero.
 L. The birth rate is about the same as the death rate.
 M. The birth rate is much greater than the death rate.
 N. The birth rate is much less than the death rate.
c. List all the choices from Part b that apply to the situation where the popula-

tion is close to but less than the carrying capacity.
d. List all the choices from Part b that apply to the situation where the popula-

tion is close to but greater than the carrying capacity.

Revised Model

In the revised model, for an initial population much lower than the carrying capacity, 
we want the population to increase in approximately the same exponential fashion as 
in the earlier unconstrained model. However, as the population size gets closer and 
closer to the carrying capacity, we need to dampen the growth more and more. Near 
the carrying capacity, the number of deaths should be almost equal to the number of 
births, so that the population remains roughly constant. To accomplish this dampen-
ing of growth, we could compute the number of deaths as a changing fraction of the 
number of births, which we model as rP. When the population is very small, we 
want the fraction to be almost zero, indicating that few individuals are dying. When 
the population is close to the carrying capacity, the fraction should be almost 
1 = 100%. For populations larger than the carrying capacity, the fraction should be 
even larger so that the population decreases in size through deaths. Such a fraction 
is P/M. For example, if the population P is 10 and the carrying capacity M is 1000, 
then P/M = 10/1000 = 0.01 = 1%. For a population P = 995 c‘“se t“ the carrying 
capacity, P/M = 995/1000 = 0.995= 99.5%; and f“r the excessive P = 1400, P/M =  
1400/1000 = 1.400 = 140%.

Thus, we can model the instantaneous rate of change of the number of deaths (D) 
as the fraction P/M times the instantaneous rate of change of the number of births (r), 
as the following differential equation indicates:

dD

dt
r
P

M
P= 





The differential equation for the instantaneous rate of change of the population sub-
tracts this value from the instantaneous rate of change of the number of births, as 
follows:
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dP

dt
rP r

P

M
P

births deaths

= − 





( )

��� � �� ��

or

 
dP

dt
r

P

M
P= −





1  (1)

For the discrete simulation, where P(t – 1) is the population estimate at time t – 1, 
the number of deaths from time t – 1 to time t is

∆ ∆D r
P t

M
P t t=

−( )





−( ) =

1
1 1   for 

In general, we approximate the number of deaths from time (t  ∆t) to time t by mul-
ti”‘ying the c“rres”“nding va‘ue by ∆t, as follows:

∆
∆

∆ ∆D r
P t t

M
P t t t=

−( )





−( )

where P(t  ∆t) is the population estimate at (t  ∆t). Thus, the change in population 
from time (t  ∆t) to time t is the difference of the number of births and the number 
of deaths over that period:

∆P = births – deaths

∆ ∆ ∆
∆

∆ ∆P rP t t t r
P t t

M
P t t t= −( )( ) −

−( )
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∆
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 ∆
∆

∆ ∆P k
P t t

M
P t t k r t= −

−( )





−( )1 ,  where =  (2)

Differential equation (1) and difference equation (2) are called logistic equa-
tions. Figure 2.3.1 displays the S-shaped curve characteristic of a logistic equation, 
where the initial population is less than the carrying capacity of 1000. Figure 2.3.2 
shows how the population decreases to the carrying capacity when the initial popula-
tion is 1500. Thus, the model appears to match observations from the “Introduction” 
qualitatively. To verify a particular model, we should estimate parameters, such as 
birth rate, and compare the results of the model to real data.
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Quick Review Question 2

a. Complete the difference equation to model constrained growth of a popula-
tion P with respect to time t over a time step of 0.1 units, given that the popu-
lation at time t  ∆t is p  1000, the carrying ca”acity is 1000, the instanta-
neous rate of change of births is 105%, and the initial population is 20. 

 ∆P = ___(___ ___ _____)(p)(0.1)
b. What is the maximum population?
c. Suppose the population at time t = 5 yr is 600 individuals. What is the popu-

lation, rounded to the nearest integer, at time 5.1 yr?

2 4 6 8 10 12 14
t

200

400

600

800

1000
P

Figure 2.3.1 Graph of logistic equation, where initial population is 20, carrying capacity is 
1000, and instantaneous rate of change of births is 50%, with time (t) in years

2 4 6 8 10 12 14
t

200

400

600

800

1000

1200

1400

1600
P

Figure 2.3.2 Graph of logistic equation, where initial population is 1500, carrying capacity 
is 1000, and instantaneous rate of change of births is 50%, with time (t) in years
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Equilibrium and Stability

The logistic equation with carrying capacity M = 1000 has an interesting property. If 
the initial population is less than 1000, as in Figure 2.3.1, the population increases to 
a limit of 1000. If the initial population is greater than 1000, as in Figure 2.3.2, the 
population decreases to the limit of 1000. Moreover, if the initial population is 1000, 
we see from Equation (1) that P/M = 1000/1000 = 1 and dP/dt = r(1 – 1)P = 0. In 
discrete ter’s, ∆P = 0. A population starting at the carrying capacity remains there. 
We say that M = 1000 is an equilibrium size for the population because the popula-
tion remains steady at that value or P(t) = P(t  ∆t) = 1000 for all t > 0.

Quick Review Question 3

Give another equilibrium size for the logistic differential equation (1) or logistic dif-
ference equation (2).

Even if an initial positive population does not equal the carrying capacity 
M = 1000, eventually, the population size tends to that value. We say that the solution 
P = 1000 to the logistic equation (1) or (2) is stable. By c“ntrast, f“r a ”“sitive carry-
ing capacity, the solution P = 0 is unstable. If the initial population is close to but not 
equal to zero, the population does not tend to that solution over time. For the logistic 
equation, any displacement of the initial population from the carrying capacity exhib-
its the limiting behavior of Figure 2.3.1 or 2.3.2. In general, we say that a solution is 
stable if for a small displacement from the solution, P tends to the solution. 

Exercises

1. Using calculus, solve the following: 
 a. The differential equation (1), 
  

dP

dt
r

P

M
P= −





1

Deinitions An equilibrium solution for a differential equation is a solution 
where the derivative is always zero. An equilibrium solution for a 
difference equation is a solution where the change is always zero. 

Deinition   Suppose that q is an equilibrium solution for a differential equa-
tion dP/dt “r a difference equati“n ∆P. The solution q is stable if 
there is an interval (a, b) containing q, such that if the initial pop-
ulation P(0) is in that interval, then

1. P(t) is inite f“r a‘‘ t > 0;
2. As time, t, becomes larger and larger, P(t) approaches q.

The solution q is unstable if no such interval exists.
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   where the carrying capacity, M, is 1000, P0 = 20, and the instantaneous 
rate of change of the number of births, r, is 50%

 b. The differential equation (1) in general
2. Consider dy/dt = cos(t). 
 a. Give all the equilibrium solutions.
 b. Using ca‘cu‘us, ind a functi“n y(t) that is a solution.
 c. Give the most general function y that is a solution.
3. It has been reported that a mallard must eat 3.2 ounces (oz) of rice each day 

to remain healthy. On the average, an acre of rice in a certain area yields 110 
bushels (bu) per year; and a bushel of rice weighs 45 lb. Assuming that in the 
area 100 acres (ac) of rice are available for mallard consumption and mal-
lards eat only rice, determine the carrying capacity for mallards in the area 
(Reinecke).

4. The Gompertz differential equation, which follows, is one of the best mod-
els for predicting the growth of cancer tumors:

dN

dt
kN

M

N
N N= 





=ln , ( )0
0

 where N is the number of cancer cells and k and M are constants.
 a. As N approaches M, what does dN/dt approach?
 b.  Make the substitution u = ln(M/N) in the Gompertz equation to eliminate 

N and convert the equation to be in terms of u.
 c. Using calculus, solve the transformed differential equation for u.
 d.  Using the relationship between u and N from Part b, convert your answer 

from Part c to be in terms of N. The result is the solution to the Gompertz 
differential equation.

 e.  Using calculus, verify that N(t) = Me

N

M
e
ktln 0





−

 is the solution to the Gom p -
ertz differential equation.

 f. Using the solution in Part e, what does N approach as t g“es t“ ininity?
5. a. Graph y = e-t.
  Match each of the following scenarios to a differential equation that might 

model it.
  A. dP/dt = 0.05P B. dP/dt = 0.05P + e-t

  C. dP/dt = 0.05(1 – e-t)P D. dP/dt = 0.05P – 0.0003P2 – 400
  E. dP/dt = 0.05e-tP F. dP/dt = 0.05P – 0.0003P2

 b.  At irst, a bacteria c“‘“ny a””ears t“ gr“w with“ut b“und; but because “f 
limited nutrients and space, the population eventually approaches a limit.

 c.  Because “f degradati“n “f nutrients, the gr“wth “f a bacteria‘ c“‘“ny be-
comes dampened.

 d.  A bacterial colony has unlimited nutrients and space and grows without 
bound.

 e.  Because “f ad–ust’ent t“ its new setting, a bacteria‘ c“‘“ny gr“ws s‘“w‘y 
at irst bef“re a””earing t“ gr“w with“ut b“und.

 f. Each day, a scientist removes a constant amount from the colony.
6. Write an algorithm for simulation of constrained growth similar to Algo-

rithm 1 for simulation of unconstrained growth in Module 2.2.
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Projects

F“r additi“na‘ ”r“–ects, see M“du‘e 7.4, What G“es Ar“und C“’es Ar“und The 
Carb“n Cyc‘e ; M“du‘e 7.5, A Heated Debate G‘“ba‘ War’ing ; and M“du‘e 
7.6, P‘“tting the Future: H“w Wi‘‘ the Garden Gr“w.

1. Develop a model for constrained growth.
2. Develop a model for the mallard population in Exercise 3. Have a converter 

or variable for the number of acres of rice available for mallard consumption, 
and from this value, have the model compute the carrying capacity. Report 
on the effect of decreasing the number of acres of rice available (Reinecke).

3. In some situations, the carrying capacity itself is dynamic. For example, the 
performance of airplanes had one carrying capacity with piston engines and 
a higher limit with the advent of jet engines. Many think that human popula-
tion growth over a limited period of time follows such a pattern as techno-
logical changes enable more people to live on the available resources. In 
such cases, we might be able to model the carrying capacity itself as a logis-
tic. Suppose M1 is the irst carrying ca”acity, and M1 + M2 is the second. The 
differential equation for the carrying capacity M(t) as a function of time t 
would be as follows:

 
dM t

dt
a M t M

M t M

M

( )
( ( ) )

( )
= − −

−



1

1

2

1  for some constant a > 0

 By using M(t), we have a logistic for the carrying capacity as well as a logis-
tic for the population. Figure 2.3.3 displays population, P(t), in black and 
M(t) in c“‘“r with the irst carrying ca”acity M1 = 20; the second, 
M1 + M2 = 70; and an inlecti“n ”“int f“r M at t = 450. Notice that we get a 
“bilogistic,” or “doubly logistic,” model for P(t).

  Develop a model for the following scenario. First, generate an appropriate 
logistic carrying capacity, M(t). Then, use this dynamic carrying capacity to 
limit the population.

200 400 600 800
t
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70

M

P

Figure 2.3.3 Graphs of functions for carrying capacity, M(t), and population, P(t), with 
time (t) in years
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In a ”“”u‘ati“n study “f Eng‘and fr“’ 1541 t“ 1975, starting with a ”“”u-
lation of about 1 million, early islanders appear to have a carrying capacity of 
around 5 million people. However, beginning about 1800 with the advent of 
the Industrial Revolution, the carrying capacity appears to have increased to 
about 50 million people. The change in the concavity from concave up to 
concave down for this new logistic appears to occur in about 1850 (Meyer 
and Ausube‘ 1999).

4. Refer to Project 3 for a description of a logistic carrying-capacity function. 
Using that information, develop a model for the Japanese population from 
the year 1100 to 2000. With an initial population of 5 million, the island 
population was mainly a feudal society that leveled off to about 35 million. 
The industrial revolution came to Japan in the latter part of the nineteenth 
century, and the ”“”u‘ati“n r“se ra”id‘y “ver a 77-yr ”eri“d, with the inlec-
ti“n ”“int “ccurring ab“ut 1908 (Meyer and Ausube‘ 1999). 

5. Develop a model for the number of trout in a lake initially stocked with 400 
tr“ut. These ish increase at a rate “f 15%, and the ‘a—e has a carrying ca”ac-
ity of 5000 trout. However, vacationers catch trout at a rate of 8%.

6. It has been esti’ated that f“r the Antarctic in wha‘e, r = 0.08, M = 400,000, 
and P0 = 70,000 in 1976. M“de‘ this ”“”u‘ati“n. Then, revise the ’“de‘ t“ 
consider harvesting the whales as a percentage of rM. Give various values 
for this percentage that lead to extinction and other values that lead to in-
creases in the population. Estimate the maximum sustainable yield, or the 
percentage of rM that gives a constant population in the long term (Zill 
2013).

7. Ar’y ants “n a 17-—’2 island forage at a rate of 1500 m2/day, clearing the 
area almost completely of other insects. Once the ants have departed, it takes 
about 150 days for the number of other insects to recover in the area. Assume 
an initial number of 1million army ants and a growth rate of 3.6%, where the 
unit of time is a week. Model the population.

Answers to Quick Review Questions

1. a.  carrying capacity, say M, in units of the population, such as deer or 
bacteria

 b. B. P appears to grow almost without bound.
  C. P appears to grow faster and faster.
  I. P appears to grow exponentially.
  J. dP/dt appears to be almost proportional to P.
  M. The birth rate is much greater than the death rate.
 c. D. P appears to grow more and more slowly.
  H. P is appears to be approaching M asymptotically.
  K. dP/dt appears to be almost zero.
  L. The birth rate is about the same as the death rate.
 d. F. P appears to decline more and more slowly.
  H. P is appears to be approaching M asymptotically.
  K. dP/dt appears to be almost zero.
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  L. The birth rate is about the same as the death rate.
2. a. ∆P = 1.05(1 – p/1000)(p)(0.1)
 b. 1000 individuals
 c.  625 individuals because P + ∆P = 600 + 1.05(1 – 600/1000) 600(0.1) =  

625.2 individuals 
3. 0 because dP/dt = r(1 – P/M)P = r(1 – 0)0 = 0
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MODULE 2.4

System Dynamics Tool: Tutorial 2

Prerequisite: M“du‘e 2.1, Syste’ Dyna’ics T““‘: Tut“ria‘ 1”

Download

From the textbook’s website, download Tutorial 2 in PDF format and the uncon-

strained i‘e f“r y“ur syste’ dyna’ics t““‘. We rec“’’end that y“u w“r— thr“ugh 
the tutorial and answer all Quick Review Questions using the corresponding 
software.

Introduction

This tutorial introduces the following functions and concepts, which subsequent 
modules employ for model formulation and solution using your system dynamics 
tool: 

• Bui‘t-in functi“ns and c“nstants, such as the if-then-else construct, absolute 
value, initial value, exponential function, sine, pulse function, time, time step, 
and π

• Relational and logical operators
• Comparative graphs
• Graphical input
• Conveyors, an optional topic useful for some of the later projects



MODULE 2.5

Drug Dosage

Downloads

The text’s website has OneCompartAspirin and OneCompartDilantin i‘es, which 
contain models for examples in this module, available for download in various sys-
tem dynamics systems.

Introduction

Errors in the dispensing and administration of medications occur frequently. Although 
most do not result in great harm, some do. For instance, a Florida pharmacy dispensed 
10 times the prescribed dose of a blood thinner to a mother of four, which resulted in 
her suffering a cerebral hemorrhage (Patel and Ross 2010). In other tragedies, a 
10-mo-old infant died after receiving a 10-fold overdose of the chemotherapy agent 
Cis”‘atin (Fitzgera‘d and Wi‘s“n 1998), and three nurses were ”r“secuted f“r ad’inis-
tering a 10-fold (fatal) overdose of penicillin to an infant (Ellis and Hartley 2004). 

The Nati“na‘ Qua‘ity F“ru’, a n“n”r“it wh“se ’issi“n inv“‘ves enab‘ing ”ri-
vate- and public-sector stakeholders to work together to craft and implement cross-
cutting solutions to drive continuous quality improvement in the American health-
care system,” has estimated that medication errors account for a conservative 
esti’ate “f $21 bi‘‘i“n in c“sts. This inancia‘ ex”enditure c“rres”“nds t“ seri“us 
preventable medication errors for 3.8 million hospital inpatients and 3.3 million out-
patients per year (NQF 2010). These cases comprise an extraordinary amount of 
human suffering and, in some cases, death. 

How do these errors occur? According to the Institute of Medicine, medication 
err“rs can be c‘assiied as err“rs in

ordering inc“rrect drug “r d“sage;
transcribing inc“rrect frequency “f ad’inistrati“n “r ’issed d“sages;
dispensing inc“rrect drug, d“sage, “r ti’ing;



46 Module 2.5

administering wr“ng d“sage, technique;
monitoring not observing effects of medication. 

Whether these errors result from poor communication of orders, poor product label-
ing, or some other cause, the patients and their families suffer the consequences 
(IOM 2007).

It is not only health-care professionals who make mistakes in drug administra-
tion. On June 28, 2003, an Oklahoma teenager died from an overdose of Tylenol 
(acetaminophen). Suffering from a migraine headache, she took twenty 500-mg cap-
sules, two and one-half times the maximum dosage recommended in 24 h. Appar-
ently, the quantity was enough of the drug to cause liver and kidney failure. Assum-
ing that an over-the-counter analgesic was safe, she apparently did not read the label 
and made a fatal dosage error (Robert 2004). 

There are prescribed dosages for various drugs, but how do we determine what 
the correct/effective dosage is?  There are quite a number of factors that are consid-
ered, including drug absorption, distribution, metabolism, and elimination. These 
factors are components of the quantitative science of pharmacokinetics.

One-Compartment Model of Single Dose

Metabolism of a drug in the human body is a complex system to represent in a 
’“de‘. Thus, in Ste” 2 “f the ’“de‘ing ”r“cess, ”articu‘ar‘y f“r “ur irst atte’”t, we 
should make simplifying assumptions about the drug and the body. A one-compart-
ment model is a si’”‘iied re”resentati“n “f h“w a b“dy ”r“cesses a drug. In this 
model, we consider the body to be one homogeneous compartment, where distribu-
tion is instantaneous, the concentration of the drug in the system (amount of drug/
volume of blood) is proportional to the drug dosage, and the rate of elimination is 
proportional to the amount of drug in the system. The concentration of a drug instead 
of the absolute quantity is important because a quantity that might be appropriate for 
a small child could be ineffective for a large adult. A drug has a minimum effective 
concentration (MEC), which is the least amount of drug that is helpful, and a maxi-
mum therapeutic concentration, or minimum toxic concentration (MTC), which 
is the largest amount that is helpful without having dangerous or intolerable side ef-
fects. The therapeutic range for a drug consists of concentrations between the MEC 
and MTC. A drug’s half-life, or the amount of time for half the drug to be eliminated 
from the system, is useful for modeling as well as patient treatment. Often concen-
trations and half-life are expressed in relationship to the drug in the plasma or blood 
serum. The total amount of blood in an adult’s body is approximately 5 liters (L), 
while the amount of plasma, “r luid that c“ntains the b‘““d ce‘‘s, is ab“ut 3 L. 
B‘““d serum is the c‘ear luid that se”arates fr“’ b‘““d when it c‘“ts, and an adu‘t 
human has about 3 L of blood serum.

We begin by modeling the concentration in the body of aspirin (acetylsalicylic 
acid). For adults and children over the age of 12, the dosage for a headache is one or 
two 325-mg tablets every 4 h as necessary, up to 12 tablets/da. Analgesic effective-
ness occurs at plasma levels of about 150 to 300 micrograms/milliliter (µg/mL), while 
toxicity may occur at plasma concentrations of 350 µg/mL. The plasma half-life of a 
dose from 300 to 650 mg is 3.1 to 3.2 h, with a larger dose having a longer half-life.
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For simplicity, we assume a one-compartment model with the aspirin immedi-
ately available in the plasma. A stock (box variable), aspirin_in_plasma, represents 
the mass of aspirin in the compartment, which is the person’s system, and has an ini-
tial value of the mass of two aspirin, (2)(325 mg)(1000 µg/mg), where 1 milligram 
(mg) is equivalent to 1000 µg. 

The l“w fr“’ aspirin_in_plasma (elimination) is proportional to the amount pre-
sent in the system, aspirin_in_plasma. Thus, the rate of change of the drug leaving 
the system is proportional to the quantity of drug in the system (aspirin_in_plasma, 
or Q in the following equation):

dQ/dt = –KQ

As Module 2.2, “Unconstrained Growth and Decay,” shows, the solution to this dif-
ferential equation is as follows:

Q = Q0e
-Kt

Using this solution, as Exercise 1 shows, the constant of proportionality K given 
earlier and elimination_constant in the system dynamics software model have the 
following relationship to the drug’s half-life (t1/2):

K = –ln(0.5)/t1/2

Pharmaceutical sources widely report a drug’s half-life.

Quick Review Question 1

Determine the elimination constant with units for aspirin, assuming a half-life of 3.2 h.

To compute aspirin’s plasma concentration (plasma_concentration) in a con-
verter (variable), we have another converter for the volume of the system (plasma_

v“‘u’e) with a value of 3000 mL and appropriate connectors and equation. Figure 
2.5.1 contains a one-compartment model for one dose of a drug, where the initial 
value of plasma_concentration is the dosage; and Equation Set 2.5.1 gives the cor-
responding equations and values explicitly entered for the model of aspirin. 

Quick Review Question 2

In terms of the variables in the model of Figure 2.5.1, give the equation for plasma_ 

concentration.

Equation Set 2.5.1

Explicitly entered equations and values for one-compartment model of aspirin:

half_life = 3.2 h
”‘as’a_v“‘u’e = 3000 mL
aspirin_in_plasma(0) = 2 * 325 * 1000 µg
elimination_constant = –ln(0.5)/half_life
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elimination = elimination_constant * aspirin_in_plasma

”‘as’a_c“ncentrati“n = as”irin_in_”‘as’a/”‘as’a_v“‘u’e

Running the simulation for 8 h and plotting plasma_concentration, the resulting 
graph in Figure 2.5.2 indicates that the concentration of the drug in the plasma is ini-
tia‘‘y a””r“xi’ate‘y 217 µg/’L, which is a safe, thera”eutic d“se. Subsequent‘y, the 
concentration decreases exponentially. 

One-Compartment Model of Repeated Doses

As another example, we model the concentration in the body of the drug Dilantin, a 
treatment for epilepsy that the patient takes on a regular basis. Adult dosage is often 
one 100-mg capsule three times daily. The effective serum blood level is 10 to 20 µg/
’L, which ’ay ta—e 7 t“ 10 da t“ achieve. A‘th“ugh individua‘ variati“ns “ccur, 

elimination
aspirin in plasma

plasma volume

plasma concentration

elimination

constant

half life

Figure 2.5.1 One-compartment model of aspirin

2 4 6 8
t

108

217

plasma concentration

Figure 2.5.2 Gra”h “f ”‘as’a_c“ncentrati“n (µg/’L) f“r as”irin versus ti’e, t (h)
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serious side effects can appear at a serum level of 20 µg/mL. The half-life of Dilantin 
ranges fr“’ 7 t“ 42 h but averages 22 h.

For simplicity, we assume a one-compartment model with instantaneous absorp-
tion. A stock (box variable), drug_in_system, represents the mass of Dilantin in the 
c“’”art’ent, which is the ”ers“n s b‘““d seru’. A l“w, ingested, into drug_in_

system is f“r the drug abs“rbed int“ the syste’. Because “f the ”eri“dic nature “f the 
dosage, we employ a pulse function with converters/variables for the dose (dosage), 
time of the initial dose (start), and time interval between doses (interva‘). Presuming 
that only a fraction (absorption_fraction) actually enters the system, we multiply 
this constant (say, 0.12, from experimental evidence) and the pulse value together 
for the equation of entering. We can estimate the value of absorption_fraction by 
plotting actual data of drug concentration versus time and employing techniques of 
curve itting, which M“du‘e 8.3, E’”irica‘ M“de‘s,  discusses.

Quick Review Question 3

Give the equation for entering.

The l“w fr“’ drug_in_system (elimination) is proportional to the amount pre-
sent in the system, drug_in_system. Thus, between doses of a drug, the rate of change 
of the drug leaving the system is proportional to the quantity of drug in the system. 
As for the preceding aspirin example, we use a constant of proportionality (elimina-

tion_constant) of –ln(0.5)/t1/2, where t1/2 is Dilantin’s half-life.
For comparison purposes, we have converters (variables) for MEC, MTC, and the 

concentration of the drug in the system (concentration). To compute the latter, we 
have a converter (variable) for the volume of the blood serum (v“‘u’e) with a pos-
sible value of 3000 mL and appropriate connectors and equation. Figure 2.5.3 con-
tains a one-compartment model, and Equation Set 2.5.2 gives the corresponding ex-
plicitly entered equations and constants for Dilantin. Note that, except for name 

Figure 2.5.3 One-compartment model of Dilantin
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changes, the middle and right side of the diagram agree with those of aspirin in Fig-
ure 2.5.1. The inl“w f“r Figure 2.5.3 ’“de‘s the ’u‘ti”‘e d“ses “f Di‘antin, in c“n-
trast t“ n“ inl“w f“r Figure 2.5.1 because “f the assu’”ti“n that exact‘y “ne d“se “f 
aspirin is immediately available in the plasma.

Equation Set 2.5.2

Explicitly entered equations and constants for one-compartment model of Dilantin:

half_life = 22 h; interva‘ = 8 h; MEC = 10 µg/mL; MTC = 20 µg/mL; start = 0 h; 
v“‘u’e = 3000 mL; dosage = 100 * 1000 µg; absorption_fraction = 0.12

elimination_constant = –ln(0.5)/half_life

drug_in_system(0) = 0
entering = absorption_fraction * (pulse of amount dosage beginning at start 

every interva‘ hours) 
elimination = elimination_constant * drug_in_system

c“ncentrati“n = drug_in_syste’/v“‘u’e

Running the simulation and plotting the various concentrations that occur over 
168 h (7 da), the resu‘ting Figure 2.5.4 indicates that the c“ncentrati“n “f the drug in 
the syste’ between d“ses luctuates. In ‘ess than 2 da, the c“ncentrati“n re’ains 
within the therapeutic range; and after about 5 da, the drug reaches a steady state.

Mathematics of Repeated Doses

Let us show the mathematics of why the drug concentration in the Dilantin example 
tends t“ a ixed va‘ue, in this case ab“ut 12 µg/’L, i’’ediate‘y after a d“se. Su”-
pose that the patient takes a 100-mg tablet every 8 h. In the model, we assumed an 
absorption level of 0.12, so that the effective dosage is Q0 = (0.12)(100) = 12 mg. 
With an elimination rate of –ln(0.5)/22, which is about 0.0315, the amount of drug  

24 48 72 96 120 144 168
t

10

20
concentration

Figure 2.5.4 Graph of concentrations MEC = 10 µg/mL, MTC = 20 µg/mL, and concentra-
tion (µg/mL) versus time (h)
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in the system after 8 h is Q = Q0e
-0.0315(8) ≈ (12)(0.7772) = 9.3264 ’g = 9326.4 µg. 

Thus, at the end “f 8 h, ab“ut 77.72% “f the drug re’ains in the syste’. The ana‘yti-
ca‘ va‘ue (9326.4 µg) f“r the ’ass “f drug in the syste’ is c‘“se t“ the si’u‘ated 
va‘ue (9327.91 µg) “f drug_in_system at time 8.00 h (using a time step of 0.01 h and 
Runge-Kutta 4 numeric integration, which Module 6.4 discusses).  

Suppose Qn is the quantity (in mg) in the system immediately after the nth tablet. 
Thus, assu’ing 77.72% “f the drug re’ains in the syste’ at the end “f an 8-h inter-
val immediately before a dose, we have the following:

Continuing in the same pattern, we determine that the general form of the quantity of 
the drug in the syste’ i’’ediate‘y after the ifth tab‘et is as f“‘‘“ws:

Q5 = 12(0.77724) + 12(0.77723) + 12(0.77722) + 12(0.7772) + 12
 = 12(0.77724) + 12(0.77723) + 12(0.77722) + 12(0.77721) + 12(0.77720)

 = 12(0.77724 + 0.77723 + 0.77722 + 0.77721 + 0.77720)

Similarly, the quantity of the drug immediately after the nth tablet, Qn, follows:

Qn = 12(0.7772n-1 + … + 0.77722 + 0.77721 + 0.77720)

Quick Review Question 4

Su””“se a ”atient ta—es a 200-’g tab‘et “nce a day, and within 24 h, 75% “f the drug 
is eliminated from the body. With Qn being the quantity of the drug in the body after 
the nth dose, determine the following:
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b. Q2 expressed as a sum
c. Q3 expressed as a sum
d. Q4 expressed as a sum
e. Qn expressed as a sum

We would like to determine what happens to the quantity of the drug in the sys-
te’ “ver a ‘“ng ”eri“d “f ti’e. T“ d“ s“, we need a f“r’u‘a f“r the su’ 0.7772n–1 + 
∙ ∙ ∙ + 0.77722 + 0.77721 + 0.77720 for positive integer n. This sum is a inite geo-
metric series, and its general form is as follows:

an–1 + ∙ ∙ ∙ + a2 + a1 + a0 for a ≠ 1 and ”“sitive integer n

As we verify in the next section, this sum is the following ratio:

an–1 + ∙ ∙ ∙ + a2 + a1 + a0 = 
1

1

−( )
−( )
a

a

n

 for a ≠ 1

Thus, for a = 0.7772 and n = 5, we can compute the value of Q5:

Q5 = 12(0.77724 + 0.77723 + 0.77722 + 0.77721 + 0.77720)

 = 12 ⋅
−
−

1 0 7772

1 0 7772

5
.

.
 = 38.5868 mg = 38,586.8 µg 

Within simulation error, this value agrees with drug_in_system (38,580.92) after the 
ifth d“se, at ti’e 32.01 h. In genera‘, the quantity “f the drug i’’ediate‘y after the 
nth tablet, Qn, is as follows:

Qn = 12(0.7772n–1 + ∙ ∙ ∙ + 0.77722 + 0.77721 + 0.77720)

 = 12 ⋅
− ( )

−
1 0 7772

1 0 7772

.

.

n

Quick Review Question 5

Using the drug “f Quic— Review Questi“n 4 and the f“r’u‘a f“r the su’ “f a inite 
geometric series, evaluate the following:

a. Q10

b. Qn 

Using the f“r’u‘a f“r the su’ “f a inite ge“’etric series, we can c“’”ute the 
quantity of drug after the nth tablet. To determine the long-range affect, we let n go 
t“ ininity and see that Qn a””r“aches 53.8599 ’g, as f“‘‘“ws:

Deinition  an–1 + ∙ ∙ ∙ + a2 + a1 + a0 for a ≠ 1 and ”“sitive integer n is a i-
nite geometric series with base a. 
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Qn = 12
1 0 7772

1 0 7772
12

1 0

1 0 7772
⋅

− ( )
−

→ ⋅
−

−
≈

.

. .

n

 53.8599 ’g

Thus, the seru’ c“ncentrati“n is ab“ut (53.8599 ’g)/(3000 ’L) = 0.0179533 ’g/
’L = 17.95 µg/’L, which agrees c‘“se‘y with the ”ea— va‘ue “f the c“ncentrati“n in 
Figure 2.5.4.

Quick Review Question 6

Using the drug of Quick Review Questions 4 and 5, determine the quantity of drug 
after the nth tablet when the patient has been taking the drug for a long time.

Sum of Finite Geometric Series

T“ derive the f“r’u‘a f“r the su’ “f a inite ge“’etric series, we start by c“nsider-
ing a particular example, Q5 as before. Let s be equal to the sum of the powers from 
0 thr“ugh 4 “f 0.7772, as f“‘‘“ws:

 s = 0.77724 + 0.77723 + 0.77722 + 0.77721 + 0.77720 (1)

Mu‘ti”‘ying b“th sides by 0.7772, we have the f“‘‘“wing:

0.7772s = (0.7772) (0.77724 + 0.77723 + 0.77722 + 0.77721 + 0.77720)
 0.7772s = 0.77725 + 0.77724 + 0.77723 + 0.77722 + 0.77721  (2)

Subtracting Equation 2 from Equation 1, we subtract off all but two terms on the 
right:

 s =  0.77724 + 0.77723 + 0.77722 + 0.77721 + 0.77720

 −0.7772s = − 0.77725 − 0.77724 − 0.77723 − 0.77722 − 0.77721

 s − 0.7772s = − 0.77725  + 0.77720

With 0.77720 being 1, we factor out s on the left as follows:

s(1  0.7772) = 0.77725 + 1

or

s(1  0.7772) = 1  0.77725 

Dividing b“th sides by the fact“r (1  0.7772), we “btain the f“‘‘“wing f“r’u‘a:

s = 
1 0 7772

1 0 7772

5−
−
.

.

By the sa’e reas“ning, we have the genera‘ f“r’u‘a f“r the su’ “f a inite ge“’etric 
series.
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Two-Compartment Model

The one-compartment model is more appropriate for an injection of a drug into the 
system than for a pill, which takes time to dissolve, be absorbed, and be distributed 
within the system. In such cases, a two-compartment model might yield better re-
su‘ts. The irst c“’”art’ent re”resents the digestive syste’ (st“’ach and/“r intes-
tines), while the second might indicate the blood, plasma, serum, or a particular 
“rgan that the drug targets. A l“w ”u’”s the drug fr“’ “ne c“’”art’ent t“ the 
other in the model. One option for modeling the rate of change of absorption from 
the intestines to blood serum has the rate proportional to the amount of drug in the 
intestines. Probably a more accurate representation has the rate of change of absorp-
tion from the intestines to blood serum be proportional to the volume of the intes-
tines and to the difference of the drug concentrations in the intestines and serum. 

Although the one- or two-compartment model is appropriate for most situations, 
a drug d“sage ”r“b‘e’ c“u‘d beneit fr“’ ’“re c“’”art’ents in a multicompart-
ment model. Various projects employ more than one compartment.

Quick Review Question 7

This question applies to the rate of change of absorption of a drug from the intestines 
to blood serum in a two-compartment model. Suppose k is a constant of proportion-
ality; i and b are the masses of the drug in the intestines and blood serum, respec-
tively; vi and vb are the volumes of the intestines and blood serum, respectively; ci 
and cb are the drug concentrations in the stomach and blood serum, respectively; and 
time t is in hours.

a. Give the differential equation for this rate if the rate of absorption is propor-
tional to the mass of drug in the intestines.

b. In this case, give the units of k.
c. Give the differential equation for this rate if the rate of absorption is propor-

tional to the volume of the intestines and to the difference of the drug con-
centrations in the intestines and blood serum.

d. In this case, give the units of k.

Exercises

1. Assuming that a quantity of a drug (Q) is Q = Q0e
Kt, show that K = –ln(0.5)/

t1/2, where t1/2 is the drug’s half-life.
2. a. In Figure 2.5.4, what are the units for MEC and MTC?

The f“r’u‘a f“r the su’ “f a inite ge“’etric series is as f“‘‘“ws:

 an–1 + ∙ ∙ ∙ + a2 + a1 + a0 = 
1

1

−( )
−( )
a

a

n

 for a ≠ 1 
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 b. What are the units for dosage?
 c.  With a dosage of Dilantin being 100 mg, why is the value of dosage 100 * 

1000?
3. Pr“ve the genera‘ f“r’u‘a f“r the su’ “f a inite ge“’etric series.
4. a.  In Dilantin example, describe the effect a longer half-life has on 

elimination_constant.
 b. Evaluate elimination_constant for t1/2 = 7 h.
 c. Evaluate elimination_constant for t1/2 = 22 h.
 d. Evaluate elimination_constant for t1/2 = 42 h.
5. a.  Suppose a patient taking Dilantin decides for convenience to take 300 mg 

once a day instead of 100 mg every 8 h. Adjusting the model in OneCom-

partDilantin, determine the results of such a decision. Is the decision 
advisable?

 b.  Mathematically, determine the long-term value of Qn, the quantity of Di-
lantin in the system immediately after the nth dose, assuming absorption 
“f “n‘y (0.09)(300 ’g).

6. a.  Determine mathematically the quantity of Dilantin in the system immedi-
ate‘y bef“re the ifth d“se. Use the sa’e assu’”ti“ns as in the secti“n 
“Mathematics of Repeated Doses.”

 b.  Determine mathematically the long-term value of the quantity of Dilantin 
in the system immediately before the nth dose.

 c. Compare your answers to the values in OneCompartDilantin.
7. How should the one-dose aspirin example be adjusted to incorporate the 

weight “f a ’a‘e ”atient? Ab“ut 65% t“ 70% “f a ’a‘e s b“dy is ‘iquid. As-
sume that 1 kilogram (kg) of body liquid has a volume of 1 L. Assume the 
”atient has a ’ass “f 90 —g (c“’”arab‘e t“ ab“ut 198 ‘b).

Projects

F“r additi“na‘ ”r“–ects, see M“du‘e 7.7, Cardi“vascu‘ar Syste’ A Pressure-
Filled Model.”

 1. Develop a two-compartment model for one dose of aspirin. 
 2. Develop a two-compartment model for aspirin, where someone with a 

headache takes three aspirin tablets and 2 h later takes two more aspirin 
tablets.

 3. In attempt to raise the concentration of a drug in the system to the minimum 
effective concentration quickly, sometimes doctors give a patient a loading 
dose, which is an initial dosage that is much higher than the maintenance 
d“sage. A ‘“ading d“se f“r Di‘antin is three d“ses 400 ’g, 300 ’g, and 
300 mg 2 h apart. Twenty-four hours after the loading dose, normal dosage 
of 100 mg every 8 h begins. Develop a model for this dosage regime.

 4. Develop a two-compartment model for Dilantin, where the rate of change 
of absorption from the stomach to the blood serum is proportional to the 
amount of drug in the stomach. 

 5. Develop a two-compartment model for Dilantin, where the rate of change 
of absorption from the stomach to the blood serum is proportional to the 
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volume of the stomach and to the difference of the drug concentrations in 
the stomach and serum. Assume the volume of the stomach is 500 mL.

 6. Develop a two-compartment model for a pediatric dosage of Dilantin that 
includes the mass of the patient. The initial dose is 5 mg/kg per day in two 
or three equally divided doses. The maintenance dosage is usually 4 to 8 
mg/kg per day.

 7. Develop a model for vancomycin HCI, which is a treatment for serious in-
fections by susceptible strains of methicillin-resistant staphylococci in pen-
icillin-allergic patients. The drug is administered by IV infusion. The intra-
venous dose is usually 2 g divided either as 500 mg every 6 h or 1 g every 
12 h, and the rate is no more than 10 mg/min or over a period of at least 50 
min, whichever is longer. When kidney function is normal, multiple intra-
venous dosing of 1 g results in mean plasma concentrations of about 63 µg/
mL immediately after infusion, 23 µg/mL in 2 h, and 8 µg/mL 11 h after 
infusion. In such patients, the mean elimination half-life from plasma is 4 to 
6 h. The mean plasma clearance is approximately 0.058 L/kg/h (liter of 
drug per kilogram of patient mass each hour), while the mean renal clear-
ance is about 0.048 L/kg/h (Hospira 2010). Thus, include the mass of the 
patient in the model.

 8. Re”eat Pr“–ect 7 f“r ”atients with rena‘ dysfuncti“n in which the average 
ha‘f-‘ife “f e‘i’inati“n is 7.5 da (H“s”ira 2010).

 9. Develop a model for Vancocin HCI in which the patient initially has nor-
’a‘ —idney functi“n (see Pr“–ect 7). H“wever, at the start “f the third day, 
one of the patient’s kidneys stops functioning; and the elimination rate be-
comes half its previous value. Consider using a step function.

10. D“ Pr“–ect 7 f“r chi‘dren, where the d“sage is 10 ’g/—g every 6 h, and the 
rate of administration is over a period of at least 60 min (Hospira 2010). 

11. D“ Pr“–ect 7 f“r ne“nates and y“ung infants. The initia‘ d“se is 15 ’g/—g. 
Thereafter, the d“sage is 10 ’g/—g every 12 h f“r ne“nates in their irst 
week of life and afterward, up to age of 1 mo, every 8 h. Administration is 
more than 60 min (Hospira 2010).

12. Model drug dosage of aspirin for arthritis, where the initial dose is 3 g/da in 
divided doses. The dosage can be increased. Relief usually occurs at plasma 
levels of 20 to 30 mg per 100 mL. The plasma half-life of aspirin increases 
with dosage, so that a dose of 1 g has a half-life of about 5 h and a dose of 
2 g has a ha‘f-‘ife “f ab“ut 9 h.

13. C“nsidering the inf“r’ati“n ab“ut ’ass in Pr“–ect 7, d“ any “f the ”revi“us 
projects except one involving children or infants, accounting for the mass 
of a male patient.

14. By c“nsu‘ting a ”har’acy reference “r website, such as htt”://www.n‘’.
nih.gov/medlineplus/druginformation.html, obtain relevant information 
about some drug. Model the dosage of this drug.

Answers to Quick Review Questions

1. K = –ln(0.5)/3.2 per hour = 0.22/h
2. plasma_concentration = aspirin_in_plasma / ”‘as’a_v“‘u’e

http://www.nlm.nih.gov/medlineplus/druginformation.html
http://www.nlm.nih.gov/medlineplus/druginformation.html
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3. absorption_fraction * (pulse of amount dosage beginning at start every in-

terva‘ hours), where the pulse function depends on the particular system dy-
namics tool

4. a. 200 mg
 b. (200 mg)(0.25) + 200 mg
 c. (200 mg)(0.25)2 + (200 mg)(0.25) + 200 mg
 d. (200 mg)(0.25)3 + (200 mg)(0.25)2 + (200 mg)(0.25) + 200 mg
 e. (200 mg)(0.25)n-1 + ∙ ∙ ∙ + (200 ’g)(0.25)2 + (200 mg)(0.25) + 200 mg
5. a. (200 mg)(1 – (0.25)10)/(1  0.25) = 266.67 ’g
 b. (200 mg)(1 – (0.25)n)/(1 – 0.25) = (200 mg)(1 – (0.25)n)/(0.75) 
6. (200 ’g)(1  0)/(0.75) = 266.67 ’g 
7. a. db/dt = ki

 b. 1/h
 c. db/dt = k(vi)(ci – cb)
 d. 1/h
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FORCE AND MOTION





MODULE 3.1

Modeling Falling and Skydiving

Downloads

The f“‘‘“wing i‘es c“ntaining the ’“de‘s in this ’“du‘e are avai‘ab‘e f“r d“wn‘“ad 
on the text’s website for various system dynamics tools: Fall, FallFriction, and 
Fa‘‘S—ydive.

Introduction

What is it like to skydive? Imagine ascending in a small plane to, say, 10,000 feet 
(ft), when the jumpmaster opens the door. The jumpmaster asks you if you are ready 
to jump. You head for the door and walk out onto a step under the wing, holding on 
to a strut. You experience lots of wind and noise. Your heart is pounding wildly. The 
jumpmaster yells, “Go!” You arch your body and release your grip on the strut. Your 
adrenalin levels have never been higher as you plunge toward earth at 120 mi/h. 
Nevertheless, you are in control. For the next 50 s, simple body movements can alter 
your speed, direction, and position.  At 3000 ft, the landscape is fast approaching, 
and you pull your cord. As it deploys, your descent slows, and the mad rush of wind 
ceases, replaced by the rustling sounds of your canopy. Soon you gently settle to the 
ground. 

The use of parachutes or parachute-like devices to slow the descent of jumpers 
from positions of considerable height may have begun with the twelfth-century Chi-
nese. H“wever, the irst evidence “f a ”arachute in the western w“r‘d a””eared in 
the ‘ate ifteenth-century drawings “f Le“nard“ da Vinci. His ”yra’id-sha”ed de-
sign was to be constructed of linen and a wooden frame. There is no record of Leon-
ardo experimenting with his invention, but late last century it was demonstrated 
successfully. 

Not much development of parachutes took place until late in the eighteenth cen-
tury, when hot-air balloons were being shown across Europe. Andres-Jacques Gar-
nerin, a French ba‘‘““nist “f dubi“us re”utati“n, was “ne “f the irst ”ers“ns t“ de’-
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onstrate a parachute without a rigid frame. He successfully descended from his 
balloon (which exploded) at about 3000 ft using a gondola suspended by an um-
brella-shaped parachute. 

Jumps using parachutes from airplanes began in the early twentieth century but 
were ”ri’ari‘y f“r rescuing “bservati“n ba‘‘““n ”i‘“ts. Barnst“r’ers ”erf“r’ed 
parachute-jumping demonstrations at air shows in the time between the world wars. 
During World War II, both sides exploited the capabilities of parachutes for dispers-
ing men and supplies. 

S”“rt ”arachuting (s—ydiving) ”r“bab‘y has its r““ts in the irst freefa‘‘ c“nducted 
in 1914, but the s”“rt rea‘‘y gained ”“”u‘arity “n‘y in the 1950s and 1960s (Bates; 
USPA 2008).

In this module, using a system dynamics tool we model the motion of someone 
skydiving. Such a jump has two phases, a free-fall stage followed by a parachute 
stage with greater air friction. In preparation, we develop a model for the motion of 
a ba‘‘ thr“wn straight u” fr“’ a bridge, irst ign“ring air fricti“n and then reining the 
model to consider this additional force. 

Acceleration, Velocity, and Position

As discussed in Module 2.2, “Unconstrained Growth and Decay,” the instantaneous 
rate of change, or derivative, of position (s) with respect to time (t) is velocity (v). 
Moreover, the instantaneous rate of change of velocity with respect to time is accel-
eration (a). In derivative notation, we have the following:

v t
ds

dt
( ) =

a t
dv

dt
( ) =

In the irst exa’”‘e, we use these derivatives in ’“de‘ing the ’“ti“n “f a ba‘‘ when, 
on a windless day, someone standing on a bridge holds a ball over the side and tosses 
the ball straight up into the air.

Quick Review Question 1

This questi“n relects “n Ste” 2 “f the ’“de‘ing ”r“cess f“r’u‘ating a ’“de‘ f“r 
deve‘“”ing a ’“de‘ f“r a fa‘‘ing “b–ect. We si’”‘ify this irst atte’”t at a ’“de‘ by 
ignoring friction.  After completing this question and before continuing in the text, 
we suggest that you develop a model for a falling object.

a. Determine four variables for the model and their units in the metric system.
b. Give a differential equation relating time (t), position (s), and velocity (v).
c. Give a differential equation relating time (t), velocity (v), and acceleration 

(a).
d. Ignoring friction, give any of the following that are constant in a fall: time, 
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distance, velocity, acceleration. In a model diagram, we will store such a 
value in a converter/variable. 

e. In a model diagram, list the components that will be in stocks (box vari-
ables): t, s, v, a, ds/dt, dv/dt.

f. In a ’“de‘ diagra’, give the va‘ue(s) that wi‘‘ l“w int“ the ”“siti“n st“c— 
(box variable) for change in position: t, s, v, a, ds/dt, dv/dt.

g. In a ’“de‘ diagra’, give the va‘ue(s) that wi‘‘ l“w int“ the ve‘“city st“c— 
(box variable) for change in velocity: t, s, v, a, ds/dt, dv/dt.

With a system dynamics tool to model the motion of a ball that someone throws 
straight up from a bridge, we have stocks (box variables) for the quantities that ac-
cumulate, the height (position) and velocity (ve‘“city) of the ball. During the simula-
ti“n, we can “bserve their changing va‘ues in a gra”h and tab‘e. A l“w re”resenting 
the change goes into velocity (change_in_ve‘“city). Change in velocity is accelera-
tion, and in this case, the acceleration is due to gravity. Therefore, a converter/vari-
able (acce‘erati“n_due_t“_gravity) contains the constant for acceleration due to 
gravity, which with u” being the ”“sitive directi“n is a””r“xi’ate‘y –9.81 m/s2. 
The converter connects to change_in_ve‘“city, which has this constant as its equa-
ti“n. A‘s“, the l“w f“r the change in height (change_in_position) is identical to the 
current velocity, ve‘“city. Thus, we have a connector from ve‘“city to change_in_po-

sition and deine the va‘ue “f this l“w t“ be ve‘“city. Because ve‘“city can be ”“si-
tive, zer“, “r negative, we s”ecify that the l“w can g“ int“ “r “ut “f position. For 
lexibi‘ity in ’“de‘s that we derive fr“’ this “ne, we a‘s“ ’a—e change_in_ve‘“city 
a bil“w. M“re“ver, we s”ecify that ve‘“city and position can take on negative as 
we‘‘ as ”“sitive va‘ues. F“r s”eciicity, we initia‘ize ve‘“city to be 15 m/s and posi-

tion to be 11 m, which is the height of the bridge. Figure 3.1.1 presents a diagram for 
a ’“de‘ “f ’“ti“n “f the ba‘‘ with a white arr“whead “n each l“w indicating the 
sec“ndary bil“w directi“n.

acceleration

due to gravity

velocity

change in velocity

position
change in position

Figure 3.1.1 Diagram of motion of ball thrown straight up
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Quick Review Question 2

Give the formula in metric units for each of the following components in Figure 
3.1.1:

a. the converter acce‘erati“n_due_t“_gravity
b. the l“w change_in_ve‘“city
c. the l“w change_in_position

Output consists of a graph and a table of velocity and height versus time. With 
∆t = 0.25 s and the Runge-Kutta 4 integration technique, which Module 6.4 dis-
cusses, we obtain a graph of velocity, as in Figure 3.1.2. Moreover, the graph of ve-
‘“city versus ti’e, a‘s“ in that igure, is the ‘ine v(t) = 15  9.8t.

For some of the models, it is more convenient to consider speed than velocity. 
The speed gives the magnitude of the change in position with respect to time, while 

1 2 3 4
t

–24

24

position

velocity

Figure 3.1.2 Graph of velocity (m/s) and position (m) of ball versus time (s)

Figure 3.1.3  Graph of velocity (m/s), position (m), and speed (m/s) of ball versus time (s)

1 2 3 4
t

–24

24

position
speed

velocity

position
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the velocity expresses the magnitude with the direction. Thus, speed is the absolute 
value of the velocity. To incorporate speed, we have a connector/arrow from the ve-

locity stock (box variable) to a new converter/variable, speed, which stores the equa-
tion for the absolute value of velocity. The graph in Figure 3.1.3 shows speed and 
velocity decreasing in a linear fashion to 0 m/s at about time 1.5 s. Afterward, speed 
steadily increases.

Physics Background

Bef“re deve‘“”ing additi“na‘ exa’”‘es “f fa‘‘ing and s—ydiving, we need t“ c“nsider 
s“’e f“r’u‘as fr“’ ”hysics Newt“n s sec“nd ‘aw and a””r“xi’ati“ns “f fricti“n. 
Newton’s second law concerns force applied to a mass imparting acceleration. So 
that we can reine ’“de‘s t“ acc“unt f“r air fricti“n, we a‘s“ c“nsider severa‘ a”-
proximations of such a force. 

Newton’s second law has far-reaching signiicance. In this text, we e’”‘“y the 
law in modeling situations from the motion of skydivers to the motion of the planets. 
The law states that a force F acting on a body of mass m gives the body acceleration 
a. Moreover, as the following models indicate, the acceleration is directly propor-
tional to the force and inversely proportional to the mass:

a = F /m

or

F = ma

We can apply this formula to obtain the relationship between weight and mass. 
Weight is a force and is not the same as mass. The acceleration involved is accelera-
ti“n due t“ gravity, which at sea ‘eve‘ is ab“ut 9.81 ’/s2 or –32 ft/s2 for up being the 
positive direction. For example, an object that has mass of 20 kg has a weight of 
196.2 newt“ns (N), as the f“‘‘“wing sh“ws:

weight = F = (20 —g)( 9.81 ’/s2) = 196.2 —g ’/s2 = 196.2 N

The metric unit for force is a newton (N), or kg m/s2.

Newton’s second law A force F acting on a body of mass m gives the body 
acceleration a according to the following formula:

F = ma

Deinition  A newton (N) is a measure of force, and 1 N = 1 kg m/s2.
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Quick Review Question 3

Determine the following, including units.

a. The ’ass “f an “b–ect that weighs 981 N
b. The acceleration that results when a net force of 10 N is applied to an object 

with mass 5 kg

Kinetic friction, or drag, also is a force. This force between objects is in the op-
posite direction to a moving object and tends to slow motion. Thus, kinetic friction 
da’”ens ’“ti“n “f an “b–ect. When an “b–ect ’“ves thr“ugh a luid, such as air “r 
water, the luid fricti“n is a functi“n “f the “b–ect s ve‘“city. F“r exa’”‘e, the faster 
we pedal a bicycle, the harder it is for us to do so. As our velocity increases, so does 
the friction of the air on our bodies.

Several models that estimate friction exist. In Module 8.3, “Empirical Models,” 
we study how to derive our own model, such as a model for drag, from data. In this 
’“du‘e, we c“nsider tw“ ’“de‘s f“r drag “n a b“dy trave‘ing thr“ugh a luid.

F“r a s’a‘‘ “b–ect trave‘ing s‘“w‘y, such as a dust ”artic‘e l“ating thr“ugh the air, 
we usually employ Stokes’s friction, which states that friction on the particle is ap-
proximately proportional to its velocity, 

F = kv

where k (—g/s) is a c“nstant “f ”r“”“rti“na‘ity f“r the ”articu‘ar “b–ect and luid and 
v (m/s) is the velocity.

F“r a ‘arger “b–ect ’“ving faster thr“ugh a luid, we usua‘‘y e’”‘“y Newtonian 
friction, which states that the drag is approximately as follows:

F = 0.5CDAv2

where C is a dimensionless constant of proportionality (the coeficient of drag, or 
drag coeficient) related to the shape of the object, D is the density “f the luid, and 
A is the object’s projected area in the direction of movement. For a particular situa-
tion, C, D, and A are constants, so that the drag is approximately proportional to the 
ve‘“city squared. At 0 °C, the density “f air at sea ‘eve‘ is 1.29 —g/’3. For shapes that 
are hydrodynamically good, C < 1; for spheres, C is about 1; and for shapes that are 
hydr“dyna’ica‘‘y ineficient, C > 1. Many “b–ects have a c“eficient “f drag “f 
about 1. Thus, through air with C = 1, Newtonian friction is approximately the 
following: 

F = 0.65Av2

The density of water at 3.98 °C, where the luid achieves its ’axi’u’ density, is 
1.00000 g/cm3, yie‘ding a f“r’u‘a with a different c“eficient. Tab‘e 3.1.1 su’’a-
rizes the three ’“de‘s f“r luid fricti“n c“nsidered here.

The drag force is in the opposite direction of motion, and the sign of velocity in-
dicates the direction. On the upward portion of a trajectory, drag and gravity both act 
downward; while on the downward part, drag is upward and gravity downward. 
Thus, for the general formula for Newtonian friction, we take the absolute value of 
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only one of the velocity terms and multiply the entire formula by –1, yielding 
–0.5CDAv|v|. If ABS is the abs“‘ute va‘ue functi“n, the trans‘ati“n “f this f“r’u‘a 
into a system dynamics tool is as follows:

-0.5 * drag_coeicient * density * projected_area * velocity * ABS(velocity)

Quick Review Question 4

Calculate the following:

a. The density “f 3.98 °C water in —g/’3

b. The ’agnitude “f fricti“n in newt“ns “f a ba‘‘ fa‘‘ing thr“ugh 3.98 °C water, 
where the c“eficient “f drag is 0.9, the cr“ss-secti“na‘ area “f the ba‘‘ is 0.03 
m2, and its velocity is –20 m/s

c. Write the formula for Newtonian friction for a system dynamics tool, where 
the c“eficient “f drag is 1 and the air density is 1.29 —g/’3, namely, 
–0.65Av|v|, A and v are a””r“”riate variab‘es, and ABS is the abs“‘ute va‘ue 
function.

Quick Review Question 5

This questi“n relects “n reine’ent “f the ’“de‘ “f an “b–ect fa‘‘ing thr“ugh sea-
level air to account for friction. After completing this question and before continuing 
in the text, we suggest that y“u revise the ’“de‘ in the irst exa’”‘e t“ acc“unt f“r 
drag friction for practice in model development.

a. Give the inputs to compute drag friction.
b. Give a formula for air friction in a system dynamics tool’s model with v for 

velocity, A f“r ”r“–ected area, and ABS for the absolute value function.
c. Give the force(s) acting on the object.

Table 3.1.1  
Summary of Several Models for Magnitude of Fluid Friction

Name Formula Meanings of Symbols When to Use

Stokes’s friction F = —v k constant Very small object moving
  v ve‘“city   s‘“w‘y thr“ugh luid 

Newtonian F = 0.5CDAv2 C c“eficient “f drag Larger “b–ects ’“ving
  friction  D density “f luid   faster thr“ugh luid
  A object’s projected area in 
    direction of movement
  v velocity
Newtonian
  friction F = 0.65Av2 A object’s projected area in Larger objects with C = 1  
  through air    direction of movement   moving faster through 
  v velocity   sea- level air
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d. Give a formula for an object’s weight in a system dynamics tool’s model, 
where g is the acceleration due to gravity and m is the mass of the object.

e. Give a formula for an object’s acceleration in a system dynamics tool’s 
model, where F is the total force on the object (weight + air friction) and m is 
the mass of an object.

Friction during Fall

The previous example for modeling the motion of a ball thrown straight up does not 
account for air friction. To do so, we consider two forces on the ball, gravity and 
drag friction. The force due to gravity is its weight, which by Newton’s second law 
is F = ma. Thus, adjusting the model diagram in Figure 3.1.1, we include a con-
verter/variable for weight with connections from converters/variables for mass and 
acce‘erati“n_due_t“_gravity (see Figure 3.1.4). Newtonian friction for the air fric-
tion including direction is F = –0.65Av|v|. In the diagram, connectors/arrows go 

acceleration

velocity

change in velocity

position
change in position

mass

acceleration

due to gravity

projected area

air friction
total force

weight

radius

speed

Figure 3.1.4 Diagra’ f“r ’“ti“n “f ba‘‘ under inluence “f air fricti“n; changes t“ c“nvert-
ers/variables from Figure 3.1.1 in color
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from ve‘“city and from a new area converter to a new converter for air_friction. The 
projected_area converter/variable stores the cross-sectional, or projected, area of the 
object in the direction of motion. Assuming spherical objects, another converter/
variable stores the radius; and the equation in projected_area is pi * radius^2, where 
pi is bui‘t in “r is an a””r“xi’ated c“nstant 3.15169, de”ending “n the syste’ dy-
na’ics t““‘. B“th f“rces, weight and air_friction, connect to a new converter/vari-
able for total_force, which is the sum of the individual forces. Employing Newton’s 
second law again with a = F/m, acceleration is total_force/mass. This acceleration 
”r“vides the change in ve‘“city f“r the l“w int“ ve‘“city. 

Figure 3.1.4 contains a feedback loop. The initial value of air friction employs 
the initial velocity, here 0 m/s; and air_friction contributes to the total_force, which 
acceleration uses. Acceleration is the change_in_position, which contributes to ve-

locity. Then, the current value of ve‘“city “feeds back” into air_friction for a new 
computation of that force.

T“ detect the inluence “f drag, we c“nsider a ba‘‘ “f ’ass 0.5 —g and radius 0.05 
m dropped (initial velocity = 0 m/s) from a height of 400 m. Equation Set 3.1.1 pre-
sents various underlying model equations with units for constants.

Equation Set 3.1.1

Various underlying equations to accompany diagram in Figure 3.1.4:

mass = 0.5 kg
acce‘erati“n_due_t“_gravity = 9.81 ’/s2

radius = 0.05 m
weight = mass * acce‘erati“n_due_t“_gravity
projected_area = 3.14159 * radius^2
air_friction = –0.65 * projected_area * ve‘“city * ABS(ve‘“city)
total_force = weight + air_friction

acceleration = total_force/mass

change_in_ve‘“city = acceleration

change_in_position = ve‘“city
speed = ABS(ve‘“city)
ve‘“city(0) = 0 m/s
ve‘“city(t) = ve‘“city(t – ∆t) + (change_in_ve‘“city) * ∆t

position(0) = 400 m
position(t) = ”“siti“n(t  ∆t) + (change_in_position) * ∆t

Running the simulation for 15 s, we see in Figure 3.1.5 that the ball reaches a 
constant, or terminal, speed, of about 31 m/s. From about time 6 s on, the position 
graph is almost linear, so that acceleration is approximately 0 m/s2. 

Quick Review Question 6

At the terminal velocity, give the relationship between weight and air_friction: 
A. weight < air_friction  B. weight = air_friction  C. weight > air_friction
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Quick Review Question 7

This questi“n relects “n reine’ent “f the ’“de‘ t“ inc“r”“rate s—ydiving. After 
completing this question and before continuing in the text, we suggest that you re-
vise the model.

a. Give the phases of the fall during the simulation.
b. Give the variable whose value we can use to trigger the change in phase: ac-

celeration, mass, position, ve‘“city, weight

c. Give the value(s) that change upon opening of the parachute: acceleration_

due_t“_gravity, mass, projected_area, weight.
d. Describe anticipated changes to the graphs in Figure 3.1.5 after deployment 

of a parachute.

Modeling a Skydive

To model a skydive, we build heavily on the example of a falling object under the 
inluence “f fricti“n. F“r si’”‘icity, we c“nsider s“’e“ne –u’”ing “ut “f a stati“n-
ary helicopter at 2000 m (about 6562 ft), and we ignore changes in air density. Proj-
ect 5 considers parachuting out of a moving plane, which imparts a horizontal veloc-
ity to the jumper. The model for a skydive out of a helicopter has two phases, one 
where the person is in a free fall and the other after the parachute opens, when the 
larger surface area results in more air resistance. For our model, the main difference 
in these two phases is the projected area in the direction of motion, down. The cross-
sectional area of a jumper in the stable arch position with arms arched back and legs 
bent at the knees is approximately 0.4 m2 (about 4.3 ft2). Parachutes vary in their 
designs, but 28 m2 (about 301 ft2) is a reasonable value. We trigger the pull of the 
ripcord by the height (position) above the ground, say, 1000 m (about 3281 ft). Thus, 
the diagram contains a converter/variable (position_open) for this quantity and con-

Figure 3.1.5 Gra”h “f ”“siti“n (’) and s”eed (’/s) “f “b–ect versus ti’e (s) under inlu-
ence of friction
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nectors/arrows from position to position_open and from position_open to projected_

area. Figure 3.1.6 presents a model diagram for this example with changes in color 
from Figure 3.1.4 on a ball’s fall. Assuming the parachute fully opens instanta-
neously, the equation in projected_area is no longer a constant but employs the fol-
lowing logic:

if (position > position_open) 
projected_area ← 0.4

else
projected_area ← 28

Figure 3.1.7 sh“ws gra”hs “f the ”“siti“n and s”eed “f a 90-—g (c“’”arab‘e t“ 
ab“ut 198 ‘b) s—ydiver versus ti’e. Unti‘ a height “f 1000 ’, which “ccurs at ab“ut 
21.3 s into the fall from 2000 m, the skydiver is in a free fall approaching a terminal 
s”eed “f ab“ut 58.2 ’/s (ab“ut 130.7 ’i/h). At 1000 ’, the ”ers“n ”u‘‘s the ri”c“rd, 
and in a very short amount of time, the parachutist’s speed slows to a new terminal 
s”eed “f 6.96 ’/s (ab“ut 15.6 ’i/h). 

acceleration

velocity

change in velocity

position
change in position

projected area

mass

acceleration

due to gravity

air friction
total force

weight

position open

speed

Figure 3.1.6 Diagra’ “f s—ydiver s ’“ti“n under inluence “f air fricti“n
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Quick Review Question 8

a. How does the terminal speed of a skydiver who curls into a ball compare to 
that of the same skydiver who is in a stable arch position?

 A. Less B. Equa‘ C. Greater

b. Referring t“ Figure 3.1.7, a””r“xi’ate‘y h“w ‘“ng d“es it ta—e f“r the s—y-
diver in freefall to be close to terminal speed?

 A. 13 s B. 21 s C. 40 s

c. Referring t“ Figure 3.1.7, at a””r“xi’ate‘y what ti’e d“es the s—ydiver ”u‘‘ 
the ripcord?

 A. 13 s B. 21 s C. 40 s

Assessment of the Skydive Model

The sha”es “f the gra”hs “f ”“siti“n and ve‘“city in Figure 3.1.7 ’atch the “”ening 
description of a skydive. However, our model exhibits a terminal speed of about 
93.0 ’i/h (ab“ut 41.4 ’/s), whi‘e actua‘, ’easured s”eeds “f 110 t“ 120 ’i/h are 
common. The example employs the sea-level density of air, while the air density at 
10,000 ft (ab“ut 3048 ’) is ab“ut 73.8% (0.952 —g/’3) of sea-level density. Adjust-
ing the initia‘ ”“siti“n t“ be 3048 ’ and using an air density “f 0.952 —g/’2 with the 
Newtonian friction of F = 0.5CDAv2, the model indicates a terminal velocity of 
48.15 m/s (about 108 mi/h) for the free fall for less than 50 s. However, the air den-
sity changes as the s—ydiver descends. Pr“–ects 4 and 7 ex”‘“re reine’ents “f the 
model to account for this variation. 

Exercises

1. a.  Using the equations and values for the example of a falling ball with no 
friction, write differential equations with initial conditions for accelera-
tion and velocity.

Figure 3.1.7 Position (m) and speed (m/s) versus time (s) of skydiver
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 b.  Using calculus, solve the differential equations of Part a to obtain velocity 
and position as functions of time.

2. Adjust Fall “f the irst exa’”‘e with n“ fricti“n s“ that the “b–ect fa‘‘s with 
an initial velocity of zero. Compare the results with those in FallFriction of 
the second example, which accounts for friction.

3. a.  Using the equations and values of the second example with friction, write 
a differential equation involving the derivative of velocity for when an 
object reaches terminal velocity. At terminal velocity, the forces acting on 
the body are equal.

 b. Solve the equation of Part a using calculus.
4. Give the adjustments to the diagram in Figure 3.1.6 along with equations so 

that graphs of new converters/variables adjusted_position and adjusted_

speed become horizontal lines at position 0 m after the parachutist lands.
5. Repeat Exercise 3 using Stokes’s friction instead of Newtonian friction.
6. Suppose a raindrop evaporates as it falls but maintains its spherical shape. 

Assume that the rate at which the raindrop evaporates (that is, the rate at 
which it loses mass) is proportional to its surface area, where the constant of 
”r“”“rti“na‘ity is 0.01. The density (’ass ”er v“‘u’e) “f water at 3.98 °C is 
1 g/cm3. The surface area of a sphere is 4πr2, and its volume is 4πr3/3, where 
r is the radius. Assume no air resistance. (Project 8 models the motion of this 
raindr“” under the inluence “f air resistance.)

 a.  Assume that the initial radius is 0.3 cm. Determine the raindrop’s initial 
mass.

 b.  Write a differential equation for the rate of change of mass as a function 
of r.

 c. Write an equation for r as a function of mass.
7. Adjust the skydiving model so that the parachute opening depends on time, 

not height above the ground.
8. Write a system of differential equations for the skydiving model.
9. Using the models in your system dynamics tool’s Fall and FallFriction i‘es 

(see “Download”), compare position graphs for a dropped object with and 
without consideration of friction. Also, consider the velocity graphs. Discuss 
the results.

Projects

1. Using Table 3.1.2, which lists the velocities of a car at certain times, develop 
a model to estimate the total change in position of the car. Employ an input 
graph instead of an equation to record the table’s values for the change in 
position. Compare your estimate to an exact value of 2031/3 m.

Table 3.1.2 
The Velocities, v (m/s), of a Car at Certain Times, t (s)

t 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
v 24.00 28.75 33.00 36.75 40.00 42.75 45.00 46.75 48.00 48.75 49.00
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2. Using Stokes’s friction, develop a model for the motion of a dust particle 
l“ating d“wn fr“’ a height “f 50 ’. Using c“’”arative ”‘“ts, deter’ine its 
terminal speeds for various values of Stokes’s constant of proportionality.

3. A bathysphere is a pressurized metal vessel in the shape of a sphere that al-
lows people to explore the ocean to much greater depths than are possible by 
skin diving. A ship lowers and raises the sphere using a steel cable and com-
’unicates with its tw“ “ccu”ants by te‘e”h“ne. In the 1930s, ex”‘“rers Wi‘-
‘ia’ Beebe and Otis Bart“n deve‘“”ed the irst bathys”here, which weighed 
4500 ‘b and had a dia’eter “f 4 ft 9 in. In a subsequent versi“n, they de-
scended to about 3000 ft in the ocean. Ignoring currents but not drag, model 
the sinking motion of a bathysphere. Assume that the boat reels out the steel 
cable fast enough so as not to affect the bathysphere’s motion (Col 2010; 
Uscher 1999).

4. Table 3.1.3 contains air densities at various altitudes. Using these values on an 
in”ut gra”h, reine the ’“de‘ f“r the s—ydiving exa’”‘e (Aber and Aber 2005). 

Table 3.1.3 
Approximate Air Densities at Various Altitudes

Altitude (m) Density (kg/m3)

    0 1.290
  610 1.216
 1219 1.146
 1829 1.078
 2438 1.014
 3048 0.952
 3658 0.894
 4267 0.839
 4877 0.786

5. Suppose an airplane is traveling in a straight line horizontally at 130 m/s at a 
height of 600 m when a parachutist jumps out of the plane at an angle of 30° 
with the horizon. Model the motion of the skydiver. 

6. Model the motion of a meteor falling to the earth. Assume an initial height of 
100,000 ’, initia‘ ve‘“city “f 10,000 ’/s, c“eficient “f drag “f 2, ’ass “f 
500 kg, and density of 8000 kg/m3 for iron or 3500 kg/m3 for stone (Schecker 
1996). Give gra”hs f“r ”“siti“n, ve‘“city, and acce‘erati“n versus ti’e. Give 
comparison graphs for velocity versus height for meteors of various masses. 
Similarly, give comparison graphs for acceleration versus height. NASA’s 
Glenn Research Center gives the following model for air density using vari-
ables D for density (slugs/ft3), P for pressure (lb/ft2), T for temperature (°F), 
and h for altitude (ft): 

D = P

T1718 459 7+( ).
 

where

for h > 82,345 ft, T = –205.05 + 0.00164 h and P = 51.97
T +
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 for 36,152 < h < 82,345 ft, T = 70 and P = 473.1 e h1 73 0 000048. .−( )

 for h < 36,152 ft, T = 59  0.00356h, and P = 2116
T +
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 If you wish to use metric instead of English units, you can use the follow-
ing: 1 s‘ug = 14.5939 —g and 1 ft = 0.3048 ’ (Bens“n).

 7. Using NASA’s Glenn Research Center model for air density at heights less 
than 36,152 ft (see Pr“–ect 6), reine the ’“de‘ in the s—ydiving exa’”‘e.

 8. a.  Model the change in mass of the raindrop that Exercise 6 describes.
 b.  Model the motion of this raindrop taking into account air resistance.
 9. Develop a model to compare the terminal velocities of objects of different 

masses, such as a mouse, cat, human, horse, elephant, and so on. With the 
density of living protoplasm being almost constant across a wide variety of 
species, assume mass is proportional to the cube of a linear dimension, such 
as length or circumference; but surface area is proportional to the square of 
a linear dimension. How do the terminal velocities of more massive objects 
compare to those of less massive objects? Can a cat survive a fall from a tall 
bui‘ding (Dia’“nd 1989)?

10. (This project was contributed by and used with permission from Dr. Ste-
phen Davies, University of Mary Washington (Davies 2012).) For a dan-
gerous mission, a team of paratroopers must land on a 200-ft by 200-ft 
square roof of a 250-ft-tall building. The soldiers will be dropped at an alti-
tude of 6400 ft from a transport jet traveling at a cruising speed of 200 
knots. Certain restrictions apply to the jump: For safety, the paratroopers 
must not be airborne for more than 2 min and must hit the ground at less 
than 20 mi/h. Each paratrooper will be carrying a load of 40 lb of equip-
’ent, in additi“n t“ an assu’ed b“dy weight “f 180 ‘b. Bef“re “”ening a 
chute, we can assume each soldier has a surface area of 0.4 m2, in both hori-
zontal and vertical directions. After opening, we can assume a 20-m2 sur-
face area projected vertically, and a 1-m2 surface area projected horizon-
tally. Assume good weather and negligible wind.

Develop a model for the jump. Plot altitude versus horizontal distance 
from the drop. Determine the following: The horizontal distance from the 
building the paratroopers should jump in order to land on the target area; 
the altitude at which they should pull their ripcords; the speed at which they 
will impact the rooftop; and the duration (in minutes and seconds) that they 
will be airborne. Use English units or metric units, but as with all models, 
be consistent throughout.

An important aspect of this problem that differs from the preceding sky-
diver model is that we must track and plot both x- and y-positions. In other 
words, in addition to following the trooper’s altitude over time, we must 
also monitor the horizontal distance from the drop point, so that we can plot 
the trajectory of the falling trooper. “Time” is still the key independent 
variable. However, we now need a stock (box variable) for the horizontal 
(x) position in addition to one for the vertical (y) position. Moreover, we 
should graph the y-position versus the x-position, or altitude versus the hor-
izontal distance, not altitude versus time. 
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The following physics facts are also useful: When the troopers make the 
jump, their initial horizontal (x) velocity will be the same as that of the 
plane (200 knots). The troopers’ horizontal velocity can be considered sep-
arately from their vertical (y) velocity; in other words, neither one affects 
the other, so they can both be tracked independently. Air friction acts in the 
horizontal direction just as it does the vertical direction; that is, horizontal 
drag retards movement according to the formula, –0.65Av|v|, where v is the 
velocity in the horizontal direction.

Answers to Quick Review Questions

1. a. time, perhaps in s; distance, perhaps in ms; velocity, perhaps in m/s; ac-
celeration, perhaps in m/s2

 b. v t
ds

dt
( ) =

 c. a t
dv

dt
( ) =

 d. Acce‘erati“n, which is acce‘erati“n due t“ gravity, 9.81 ’/s2

 e. s and v
 f. ds/dt

 g. dv/dt or a, which is the constant acceleration due to gravity without 
friction

2. a. acce‘erati“n_due_t“_gravity = 9.81 ’/s2

 b. change_in_ve‘“city = acce‘erati“n_due_t“_gravity
 c. change_in_position = ve‘“city
3. a. m = F/a = (981 N)/(9.81 ’/s2) = 100 kg
 b. a = F/m = (10 N)/(5 kg) = 2 m/s2

4. a. 
1 g

cm

1 kg

10 g

cm

m

kg

m3 3
× ×







=
10

1
10

2
3

3

3

 b. F = –0.5CDAv|v| = 0.5(0.9)(103)(0.03)(–20)|–20| = 5400 N
 c. –0.65 * A * v * ABS(v) 
5. a. velocity and projected area
 b. –0.65 * A * v * ABS(v)
 c. weight and air friction
 d. m * g
 e. F/m

6. B. weight = air_friction

7. a. before and after opening of the parachute
 b. position

 c. projected_area

 d.  The position curve should continue to decrease but not as steeply. The 
speed curve should suddenly drop and then level off to a new terminal 
velocity.

8. a.  C. Greater because projected_area is less, causing air_friction to be less, 
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making the absolute values of total_force, acceleration, change_in_ve-

locity, ve‘“city, and speed more.
 b. A. 13 s
 c. B. 21 s 
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MODULE 3.2

Modeling Bungee Jumping

Downloads

The text s website has the f“‘‘“wing i‘es c“ntaining the ’“de‘s in this ’“du‘e avai‘-
able for download with various system dynamics tools: VerticalSpring and Bungee.

Introduction

On A”ri‘ F““‘ s Day in 1979, f“ur ’e’bers “f Oxf“rd University s Danger“us 
Sports Club, dressed in tails and top hats, climbed out onto the Clifton Suspension 
Bridge in Brist“‘, U.K. Each attached “ne end “f a ny‘“n-braided, rubber sh“c— c“rd 
to himself and the other to the bridge. Then, they jumped off toward the 250-ft Avon 
Gorge. Voila! The sport of bungee jumping had begun in the western world. 

What in the world possessed these men to do such a thing? The story goes that 
they watched a i‘’ “n ‘and divers  fr“’ Pentec“st Is‘and in the S“uth Paciic and 
became inspired to try diving themselves.  

What are land divers? These divers are the male inhabitants of Pentecost who 
dive from platforms at various heights along a wooden tower. For these dives, lianas 
(vines) attached t“ the t“wer are tied t“ their an—‘es. Divers ’ay be as y“ung as 7 yr 
of age. Naturally, the lianas have to be selected very carefully. They must be just the 
right length and elasticity for the height of the platform and the weight of the diver. 
Consideration must be given to the length of the platform (which collapses and ab-
sorbs some shock), the slope of the land, and the swaying of the tower. A perfect 
dive will have the hair of the diver just brushing the ground. A miscalculation might 
be fatal. Land diving is part of ceremonies that ensure the yam harvest and fertility. 
Now, extreme-sports enthusiasts come from all over the world to experience land 
diving.

How did this practice get started? Why would men choose to jump from plat-
forms with vines tied to their ankles?  The annual land dives are based on local lore 
about a young girl betrothed to a much older man. The frightened young girl, at-
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tempting to escape her new husband, climbed high into a banyan tree. The angry 
husband pursued her up the tree. As he ascended, she tied vines to her ankles and 
jumped. The husband followed, but without the vines, and was killed. Today’s 
young men may prove that they have learned the escape trick and will not be fooled 
again (Menz 1993).

Physics Background

The action of a bungee cord is similar to that of a spring. Thus, in modeling bungee 
jumping we employ a critical law of physics concerning springs, Hooke’s law.

Hooke’s law pertains to springs that are perfectly elastic, so that they can “spring 
back” fully. Thus, the law can be applied only as long as the spring has not been 
stretched too much. The law states that within the elastic limit of the spring, a restor-
ing force (F) applied to a spring is in proportion to and in the opposite direction of 
the spring’s displacement (s) from its equilibrium position. Thus, for a spring con-
stant k, which varies depending on the spring, we have the following formula for the 
restoring force:

F = –ks

Figure 3.2.1 illustrates the situations for stretched and compressed springs. When a 
resting spring is pulled or pushed, a force is exerted to restore the spring. As long as 
we do not stretch it beyond its elastic limit, the further we pull or push the spring, the 
more force going in the opposite direction results. For example, as we tug farther on 
an exercise spring, we feel more resistance. 

Quick Review Question 1

a. If displacement is in meters, give the units of the spring constant.
b. For a displacement of 0.1 m and a spring constant of 5 kg/s2, give the restor-

ing force along with its units.

Quick Review Question 2

This questi“n relects “n Ste” 2 “f the ’“de‘ing ”r“cess f“r’u‘ating a ’“de‘ f“r 
a vertical spring’s length. Suppose a spring has a weight on the end that we pull 

Hooke’s Law Within the elastic limit of a spring, where F is the applied 
force, k is the spring constant, and s is the displacement (distance) 
from the spring’s equilibrium position, the following formula 
holds:

F = –ks
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Original length

a

b

c

Original length

Displacement, sRestoring force, F 

Original length

Displacement, s

Restoring force, F 

Figure 3.2.1 Original, stretched, and compressed spring

d“wn “r ”ush u”. C“nsider d“wn as the ”“sitive directi“n. We si’”‘ify this irst at-
tempt at a model by ignoring friction and the weight of the spring. After completing 
this question and before continuing in the text, we suggest that you develop a model 
for the motion of the spring. The next section completes such a model.

a. Give the three lengths that sum to the total length of the spring.
b. Give the force(s).
c. Besides these ‘engths and f“rces, give “ther variab‘es and c“nstants f“r the 

model.
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Vertical Springs

Bef“re ’“de‘ing bungee –u’”ing, it is he‘”fu‘ t“ exa’ine the acti“n “f a vertica‘ 
spring, such as in Figure 3.2.2, hanging from a horizontal surface with an attached 
weight. Because we are c“nsidering ‘engths, having the ”“sitive directi“n be d“wn is 
convenient. The initial length (unweighted_length) of the spring is augmented by a 
displacement due to the weight (weight_displacement) and an additional displace-
ment due to stretching or compressing (init_displacement). Thus, we initialize the 
length of the spring (length) to be the following:

unweighted_length + weight_displacement + init_displacement

We enter unweighted_length and init_displacement as parameters, but a system dy-
namics tool can calculate weight_displacement because the displacement due to 
weight, which is a force, conforms to Hooke’s law, F = –ks or s = –F/k. Using the 
variables of the model, we have the following equation:

weight_displacement = -weight/spring_constant

A system dynamics diagram for the action of a vertical spring is similar to the 
diagra’ “f the ’“ti“n “f a ba‘‘ under the inluence “f air fricti“n in Figure 3.1.4 “f 
Module 3.1, “Modeling Falling and Skydiving.” We change the name of the stock 
position to length and replace the section concerning air friction with one involving 
the force due to Hooke’s law. Moreover, because down is positive, acceleration_

due_t“_gravity is +9.81 ’/s2 instead “f 9.81 ’/s2, as in the skydiving module. 
Figure 3.2.3 presents a model diagram of the action of a vertical spring experienc-
ing no friction, or an undamped vertical spring, with changes to converters/vari-
ables from Figure 3.1.4 in color. With the total displacement at any instant being 

Restoring force, F 

weight_displacement

init_displacement

unweighted_length

Initial length

Figure 3.2.2 Vertical spring with attached weight
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(length – unweighted_length), the following Hooke’s law equation yields the restor-
ing force of the spring:

restoring_spring_force = –spring_constant * (length – unweighted_length)

For a simulation, suppose we consider hanging a 0.2-kg mass on the end of a 1-m 
spring that has a spring constant of 10 N/m. The 0.2-kg mass exerts a force of 
F = mg = (0.2 —g)(9.81 ’/s2) = 1.962 N, its weight. The resu‘ting dis”‘ace’ent be-
cause “f the weight is 1.962 N/(10 N/’) = 0.1962 ’ = 19.62 c’. Thus, the ‘ength “f 
the resting s”ring with an attached 0.2-—g ’ass is 1 ’ + 0.1962 ’ = 1.1962 ’. If we 
then consider pulling the weight an additional 0.3 m = 30 cm, the simulation with 
∆t = 0.02 s produces the graph of the length of the spring in Figure 3.2.4 with an 
initia‘ ‘ength “f 1 + 0.1962 + 0.3 = 1.4962 ’. Because the s”ring is unda’”ed, the 
si’u‘ati“n indicates ”er”etua‘ “sci‘‘ati“ns. The ‘ength luctuates fr“’ a ’axi’u’ “f 
1.4962 ’ t“ a ’ini’u’ “f 0.8962 ’. The equi‘ibriu’ ”“int, 1.1962 ’, is the ’id-
way point between the two extremes and the length of the weighted motionless 
spring. The extremes of the oscillation are each init_displacement = 0.3 m from the 

acceleration

velocity

change in velocity

length
change in length

mass

acceleration

due to gravity

total force

weight

restoring spring force 

init displacement

weight displacement

spring constant

unweighted

    length

Figure 3.2.3 Model diagram of action of undamped vertical spring 
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equilibrium point. Such periodic oscillating motion is an example of simple har-
monic motion, wh“se deiniti“n f“‘‘“ws.

Quick Review Question 3

Suppose a weight of 8 N hangs from a spring with unstretched length of 2 m and 
spring constant of 100 N/m. Then, the spring is compressed 0.5 m. Using down as 
the positive direction and ignoring drag, give the following along with units:

a. The displacement caused by the weight
b. The equilibrium position
c. The maximum length
d. The sign of the initial restoring force
e. The restoring force when the length of the spring is 3.15 m

Bef“re reining the ’“de‘ t“ inc‘ude fricti“n, we sh“u‘d ”“int “ut that a s’a‘‘ 
time step, ∆t = 0.02 s, resulted in Figure 3.2.4, a smooth graph that has approxi-

Deinition A simple harmonic oscillator satisies the f“‘‘“wing c“ndi-
tions:

1. The system oscillates around an equilibrium position. 
2. The equilibrium position is the point at which no net force 

exists.
3. The restoring force is proportional to the displacement.
4. The restoring force is in the opposite direction of the displace-

ment.
5. The motion is periodic.
6. All damping effects are neglected.

0.75 1.50 2.25 3.00
t

0.9

1.2

1.5

length

Figure 3.2.4 Graph of length (m) with respect to time (s) in undamped spring
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mately the same amplitude (distance from midpoint to high point) at each cycle. 
However, had we picked a time step 10 times larger, ∆t = 0.2 s, then the graph would 
be jagged with decreasing amplitudes, both of which are artifacts of the simulation 
instead “f relecti“ns “f rea‘ity. T““ ‘arge a ti’e ste” can ”r“duce ’is‘eading resu‘ts 
that can bring about faulty conclusions.

Returning to our model, a damped spring, which does experience friction, also is 
a simple harmonic oscillator. The diagram is as in Figure 3.2.3, with the addition of 
another force, drag, which becomes part of the total force. Exercise 5 and projects 
reine the ’“de‘ t“ inc‘ude fricti“n. The resu‘ting gra”h in Figure 3.2.5 sh“ws a 
damped oscillation with the same period as the corresponding spring with no 
friction.

Modeling a Bungee Jump

A model of a bungee jump is very similar to that of the weighted spring under the 
inluence “f air fricti“n. As a si’”‘ifying assu’”ti“n, we ign“re the weight “f the 
bungee cord. Thus, the forces are the weight of the jumper, the restoring force of the 
cord, and air resistance. The only difference between this model and that of a 
weighted damped spring is in the equation for restoring_spring_force. A vertical 
spring is fairly rigid, so that when the weight is above the equilibrium point, the 
spring exerts a restoring force in the opposite direction. However, when the bungee 

Rule of Thumb  Although not always incorrect, we should be suspicious 
that a time step is too large if a resulting graph is not smooth but 
has sharp changes in direction with what appears like line seg-
ments glued together. 

0.75 1.50 2.25 3.00
t

0.9

1.2

1.5

length

Figure 3.2.5  Graph of length (m) with respect to time (s) in damped spring
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jumper is above the unweighted length, the cord is slack and, we can assume, exerts 
no downward force. This unweighted length is the length of the original, unstretched 
cord without the jumper. Thus, the value of restoring_spring_force is a conditional 
expression. If the length is stretched beyond unweighted_length, then the restoring 
spring force obeys Hooke’s law with the displacement being (length – unweighted_

length). When the –u’”er lies ab“ve unweighted_length, the bungee cord does not 
exert such a force. Thus, the value of restoring_spring_force has the following logic:

if (length > unweighted_length) then 
restoring_spring_force ← –spring_constant * (length - unweighted_length) 

else 
restoring_spring_force ← 0

Figure 3.2.6 presents a diagram for the motion of a bungee jumper with total_

force summing weight, air_friction, and restoring_spring_force and with the addi-
ti“na‘ c“nverters/variab‘es fr“’ Figure 3.2.3 in c“‘“r. Figure 3.2.7 dis”‘ays gra”hs 
for the bungee cord’s length and the jumper’s velocity for a cord with spring con-
stant 6 N/m, unweighted length 30 m, and initial length, or distance from the top of 
the bridge, of 0 m. For this simulation, the jumper has mass 80 kg (equivalent to a 

acceleration

velocity

change in velocity

length
change in length

mass

acceleration
due to gravity

air friction
total force

weight

unweighted
length

restoring
spring force

spring
constant

projected area

Figure 3.2.6  Diagram for motion of bungee jumper 
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weight “f ab“ut 176.4 ‘b) and by –u’”ing headirst, has a s’a‘‘ ”r“–ected area “f 
about 0.1 m2. The graphs show the simple harmonic oscillation and the damping mo-
tion due to drag. One of the projects explores choosing an appropriate bungee cord 
for a jumper.

Quick Review Question 4

With down being the positive direction, give the formulas for each of the following 
components of the diagram for a bungee jump (Figure 3.2.6).

a. total_force

b. acceleration

c. weight

d. acce‘erati“n_due_t“_gravity with two digits after the decimal
e. air_friction assuming Newtonian friction, sea-level air density, and absolute 

va‘ue functi“n ABS
f. restoring_spring_force when length is greater than unweighted_length

g. restoring_spring_force when length is less than unweighted_length

Exercises

1. Give the changes in the diagram and equations for the model of the damped 
spring to account for air friction.

2. a.  Write a differential equation in terms of displacement s to model the mo-
tion of an undamped vertical spring with mass m. Recall that weight 
should equal the spring’s restoring force. Use the following variables: s, 
displacement; t, time; m, mass; k, spring constant.

b. Using calculus, show that s(t) = c1 cos
k

m
t







 + c2 sin
k

m
t







 is a solution 
to the differential equation.

15 30 45 60
t

length

velocity
45

5

–35

300

150

0

Figure 3.2.7 Graphs of length (m) and velocity (m/s) for bungee jump 
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 c. From Part b, determine the period of the vibrations.
 d.  Using k = 10 N/m and m = 0.2 kg, determine the period of the vibrations. 

Does your answer agree with the graph in Figure 3.2.4?
3. Write a differential equation in terms of displacement s to model the motion 

of a damped vertical spring with mass assuming Newtonian friction.
4. Write a differential equation in terms of displacement s to model the motion 

of a damped vertical spring with mass assuming Stokes’ friction.
5. Write differential equations in terms of displacement s to model the motion 

of a bungee jumper. The system should model two situations, s  un-

weighted_length and s < unweighted_length.

Projects

F“r additi“na‘ ”r“–ects, see M“du‘e 7.8, E‘ectrica‘ Circuits A C“’”‘ete St“ry.
From the text’s website, download a VerticalSpring i‘e with the ’“de‘ “f the ’“-

ti“n “f an unda’”ed vertica‘ s”ring f“r Pr“–ects 1 7. D“wn‘“ad a Bungee i‘e with 
the ’“de‘ “f the ’“ti“n “f a bungee –u’” f“r Pr“–ect 8.

1. Reine the ’“de‘ “f the ’“ti“n “f an unda’”ed vertica‘ s”ring t“ acc“unt f“r 
air friction, and include a graph of ve‘“city. 

 a.  Determine if changing any of the following affects the period; and if it 
does, determine a relationship between the parameter and the period: init_

displacement, mass, spring_constant.
 b. How does changing spring_constant affect the graph of length?
 c.  Give the relationship between the length of the spring and its velocity. For 

example, when the velocity is zero, what is the position of the spring? At 
what stage(s) does the spring have a maximum velocity?

2. Reine the ’“de‘ “f the ’“ti“n “f a s”ring t“ acc“unt f“r air fricti“n. Run an 
experiment with a real spring and mass to determine the lengths at various 
times and the period. Estimate the spring constant using a system dynamics 

model. 
3. Reine the ’“de‘ “f the ’“ti“n “f a s”ring t“ acc“unt f“r drag using St“—es  

friction. Suppose b is the constant of proportionality in Stokes’ friction; de-
ine u = b/(2m) for mass m. A‘s“, deine w2 = k/m, where k is the spring con-
stant. Show that when u2 > w2, with the da’”ing c“eficient ‘arge in c“’-
parison to the spring constant, the system is overdamped and displays no 
oscillation. However, when u2 < w2, the system is underdamped and does 
show oscillatory behavior.

4. The restoring force for a nonlinear hard spring is ks(1 + a2s2), where k is the 
spring constant, s is the displacement, and a is a small constant. The restoring 
force for a nonlinear soft spring is ks(1 – a2s2). Develop models for such 
springs. Discuss and compare their motions.

5. Model the motion of an aging spring by replacing the spring constant k with 
a decreasing function ke-at, where a is a positive constant and t is time.

6. Adjust the equations of the spring model to compute the spring constant 
given a weight and a corresponding displacement.
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7. Model a damped oscillator with parameters very close to those of the bungee 
jump. Discuss the results in comparison to those of the bungee jump.

8. A bungee jumper wants to have a “great ride,” getting close to the ground 
without hitting it. Suppose the distance of the jumping bridge above a gorge 
is 80 m and the length of the cord is 30 m. Determine the most appropriate 
wh“‘e nu’ber s”ring c“nstants f“r –u’”ers “f ’asses 60 —g, 70 —g, and 80 
kg. Employ comparison graphs. Discuss your results.

9. The buoyancy “f a l“ating “b–ect is the rest“ring f“rce t“ return the “b–ect t“ 
its n“r’a‘ l“ating ‘ayer after a vertica‘ dis”‘ace’ent. This f“rce is equa‘ t“ 
–grAs, where g is the acceleration due to gravity, r is the luid density, A is the 
cross-sectional area of the object, and s is the displacement from the normal 
l“ating ‘ayer. Design a ’“de‘ f“r the ’“ti“n “f a dis”‘aced “b–ect, and dis-
cuss the results of the simulation. Let the density of water be 1 g/cm3.

Answers to Quick Review Questions

1. a. N/m or kg/s2 because k = –F/s, s is in m, and F is in N or kg m/s2

 b. –(5 kg/s2)(0.1 m) = –0.5 N
2. a.  resting length of spring with no weight, displacement from that length due 

to the weight, initial displacement due to pulling down or pushing up the 
weight

 b. weight and restoring force of spring
 c.  Velocity, acceleration, mass, acceleration due to gravity, spring constant; 

a diagram of the model has the basic form of Figure 3.1.4 for an object 
fa‘‘ing with fricti“n. Bef“re c“ntinuing, we suggest that y“u revise this 
igure and inc‘ude equati“ns t“ ’“de‘ the ’“ti“n “f a s”ring, using length 
instead of position and ignoring friction.

3. a. 8 N/(100 N/m) = 0.8 m
 b. 2 m + 0.8 m = 2.8 m
 c. 2.8 m + 0.5 m = 3.3 m
 d. positive
 e. –(100 N/m)(3.15 m – 2.00 m) = –15 N
4. a. weight + air_friction + restoring_spring_force

 b. total_force/mass

 c. mass * acce‘erati“n_due_t“_gravity
 d. 9.81
 e. –0.65 * projected_area * ve‘“city * ABS(ve‘“city)
 f. –spring_constant * (length – unweighted_length)
 g. 0
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Tick Tock—The Pendulum Clock

Download

The text s website has the i‘e simplePendulum, which contains the model in this 
module, available for download for various system dynamics tools.

Introduction

When we thin— “f a ”endu‘u’, ’any “f us thin— ab“ut c‘“c—s grandfather c‘“c—s, 
mantel clocks, kitchen clocks, and the like.  We may even become nostalgic for the 
sound of such a clock in our grandparents’ or parents’ home. Such clocks had their 
origin in 1656, when a Dutch scientist, Christiaan Huygens, built a “pendulum” 
c‘“c—. C“nsidering the ear‘y date, his irst c‘“c— was incredib‘y accurate, ‘“sing ‘ess 
than a ’inute each day (Jes”ersen and Fitz-Rand“‘”h 1999).  

Galileo is usually credited with the invention of the pendulum, studying its mo-
tion during the sixteenth century. Although a popular myth is that he studied gravity 
by dropping objects from the top of the Leaning Tower of Pisa, Galileo actually used 
the ’“ti“n “f a ”endu‘u’ (B“yd 2002). 

Physicists use the pendulum as a classic example of energy conservation. A mass 
(bob) on a string is attached to a pivot point (i.e., a pendulum) and is acted upon by 
both gravity and tension. The mechanical energy of the mass is affected only by ex-
terna‘ f“rces and, theref“re, is inluenced in this case “n‘y by tensi“n. Mechanica‘ 
energy is equal to the total of kinetic and potential energy and, assuming no friction 
with the air, is always constant during the oscillation of the pendulum. If you pull up 
the mass, you increase the potential energy. When you release it, the potential en-
ergy decreases as the mass falls, but the kinetic energy increases as the speed of the 
mass increases (Walker et al. 2010). 
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Simple Pendulum

We start our model of a pendulum’s motion by considering a simple pendulum, 
which incorporates the following simplifying assumptions: All the mass for the bob 
is concentrated at a point; the stiff string has no mass; and friction does not exist. 
Figure 3.3.1 depicts such a simple pendulum with bob of mass m and string of length 
l being at an angle θ (in radians, rad) off the vertical (Elmer 2011; Weissteins 2003). 
We consider the angle to be positive when to the right of the vertical and negative 
when to the left. 

As noted in the diagram, the weight of the bob is mg, where g = 9.8 m/s2 is the ac-
celeration due to gravity with down being the positive direction. The only force pull-
ing the bob along an arc in this simple pendulum is the tangential component of the 
weight, whose magnitude is mg sin θ. Because the component points to the left when 
θ > 0 and points to the right when θ < 0, the force acting on the bob is –mg sin θ.

According to a geometric formula, the arc length from the bob to the vertical is 
the product of the string length and the angle in radians, lθ. Thus, acceleration along 
the bob’s path, the angular acceleration, is the second derivative of this arc length, 
or angular acceleration = d2(lθ)/dt2. Because length is constant for a given pendulum, 
by calculus, d2(lθ)/dt2 = ld2(θ)/dt2. By Newton’s second law of motion, the force is 
equal the mass times the acceleration. Thus, the force pulling the bob along the arc is 
as follows:

force = (mass)(angular acceleration) = mld2(θ)/dt2

Equating this expression to the negative of the earlier component of weight along the 
arc, –mg sin θ, we have the following:

l

mg

mg sin θ

θ

lθ θ

l

Figure 3.3.1 A simple pendulum
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mld2(θ)/dt2 = –mg sin θ

Canceling m and dividing by l, we have the following formula for angular acceler-
ation:

angular acceleration = d2(θ)/dt2 = –g(sin θ)/l

Initial conditions include specifying that at time t = 0, θ = π/4. and the initial angular 
velocity is d(θ)/dt = 0.

Because we cance‘ m, we see that the mass of the bob is irrelevant for the angular 
acceleration. According to the formula, for a given acceleration due to gravity at a 
particular location, the angular acceleration of a simple pendulum depends only on 
the length of the string and the angle off the vertical.

Quick Review Question 1

This questi“n relects “n Ste” 2 “f the ’“de‘ing ”r“cess f“r’u‘ating a ’“de‘ f“r 
deve‘“”ing a ’“de‘ f“r a ”endu‘u’. We si’”‘ify this irst atte’”t at a ’“de‘ by ig-
noring friction. After completing this question and before continuing in the text, we 
suggest that you develop a model for a pendulum.

a. Determine variables for the model and their units in the metric system.
b. Which of these variables is the rate of change of angular velocity?
c. What is the l“w int“ a st“c— (b“x variab‘e) “f angu‘ar ve‘“city?
d. Give a differential equation relating angular acceleration (d2(θ)/dt2), angle 

(θ), time (t), and pendulum length (l).
e. What is the va‘ue “f the l“w int“ a st“c—/b“x variab‘e “f ang‘e?

Angular acceleration is the rate of change of angular velocity, and angular veloc-
ity is the rate of change of the angle, or dθ/dt. With this information, we are in a posi-
tion to develop a model diagram, which appears in Figure 3.3.2. The stocks (box 
variables) are angle, which has an initial value of init_angle, and angu‘ar_ve‘“city, 
with an initial value of 0. Angular acceleration (angular_acceleration), whose for-
mula developed previously is –g(sinθ)/l, is in a l“w g“ing int“ angu‘ar_ve‘“city. 
The l“w int“ angle, angle_change, has a value equal to angu‘ar_ve‘“city. B“th an-

gular_acceleration and angle_change are bidirectional to allow for increasing and 
decreasing stocks as the pendulum swings back and forth. Moreover, angu‘ar_ve‘“c-

ity and angle should be allowed to accommodate negative and positive values. Vari-
ous underlying equations that accompany this diagram appear in Equation Set 3.3.1.

Equation Set 3.3.1

Various underlying equations to accompany Figure 3.3.2

init_angle = 3.14159/4
length = 1 
g = 9.81
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angle_change = angu‘ar_ve‘“city
angle(0) = init_angle

angular_acceleration = –g * sin(angle) / length

angu‘ar_ve‘“city(0) = 0

angle change

angular acceleration

length g

angular velocity

angle

init angle

Figure 3.3.2 Model diagram for a simple pendulum

Figure 3.3.3 Plot of angle (rad), angular velocity (rad/s), and angular acceleration (rad/s2) 
versus time (s) 
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For a string length of 1 m and initial angle of π/4, Figure 3.3.3 presents a plot of 
the angle , angular velocity, and angular acceleration versus time. With only the 
force involving weight, the pendulum moves back and forth forever.
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Quick Review Question 2

The following questions relate to a simple pendulum with mass of 3 kg, length of 4 
’, and initia‘ ang‘e “f π/6.

a. Give the magnitude of the initial tangential component of weight along with 
its units.

b. Give the initial angular acceleration along with its units.

Linear Damping

In a real pendulum, the motion is damped by friction. As indicated in Module 3.1, a 
simple model of such effect is Stokes’ friction (F = —v). Thus, we assume that the 
damping force is proportional to the angular velocity, d(θ)/dt. In this case of linear 
damping, the model for the forces is as follows, where k is a positive constant:

 ml d2(θ)/dt2 = –mg sin θ – kd(θ)/dt

The initial conditions continue to be θ = θ0 and d(θ)/dt = 0 when t = 0. Projects ex-
”‘“re vari“us ’“de‘s “f a ”endu‘u’ s ’“ti“n that inc“r”“rate fricti“n (Danby 1997).

Quick Review Question 3

a. Using linear damping, give the formula for angular acceleration.
b. With linear damping, give the effect (increases, decreases, or no effect) on 

the amplitude of the angular acceleration of increasing the mass.

Pendulum Clock

As the exercises and projects explore, the angle θ of a pendulum does not affect its 
period, or the length of time to complete a full cycle. Thus, we can use the device in 
construction of a clock.

We consider the construction of a 60-second clock with only one hand, as in Fig-
ure 3.3.4. Falling toward the ground, a weight attached to a rope wound around a 
drum provides potential energy to run the clock. The drum also has an attached 
clock hand so that the hand moves as the drum does. The weight is prevented from 
fa‘‘ing t“ the l““r i’’ediate‘y by the acti“n “f the pendulum and a toothed wheel, 
or escapement gear. The shaft of the pendulum bob attaches rigidly to a shaft with 
an anchor that has an associated lever arm. As the pendulum swings in one direction, 
this attachment moves the anchor, and a tooth of the gear escapes the grasp of a right 
or left stop on the anchor, lowering the weight and producing a “tick” sound. Swing-
ing in the opposite direction, the advancing gear hits the other stop with a “tock” 
s“und. Besides regu‘ating the ‘“wering weight, the gear i’”arts en“ugh “f the fa‘‘ing 
weight’s potential energy through the rigid shaft attachment to the pendulum for the 
latter to overcome friction that dampens its motion. Thus, the pendulum continues 
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swinging for an extended period of time. Although we do not picture it here, through 
the interaction of gears, the mechanism also controls the hour and minute hands of 
the c‘“c—. A ”r“–ect ’“de‘s a ”endu‘u’ c‘“c— with a sec“nd hand (Brain 2002).

Quick Review Question 4

For each of the following, match the clock part: escapement gear with anchor and 
stops, pendulum, second hand, stop, weight.

a. Prevents weight fr“’ fa‘‘ing t“ l““r
b. Provides potential energy to run clock
c. Regulates timing
d. Transfers energy from weight to overcome friction 

Exercises

1. a.  Using a computational tool, evaluate sin(θ)/θ for values of θ getting closer 
and closer to 0.

pendulum 
weight 

anchor 

escapement gear 

second hand 

right stop 

left stop  

Figure 3.3.4 Pendulum clock with only a second hand
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 b.  Using your answer from Part a, give an approximation for sin(θ) for small 
angles θ.

 c.  Using your answer from Part b, give a formula that is an approximation 
for the restoring force due to gravity for a simple pendulum.

 d.  Using your answer from Part c and the formula for length of an arc, give a 
formula with independent variable of the arc length that is an approxima-
tion for the restoring force due to gravity for a simple pendulum.

 e.  Using your answer from Part a, give a differential equation that is an ap-
proximation for the angular acceleration for small angles θ.

 f.  Determine a, b, and c so that θ(t) = a cos(ct) + b sin(ct) is a solution to the 
differential equation of Part e with initial conditions θ(0) = θ0 and 
θ’(0) = 0.

2.  a.  Using the model for the simple pendulum in simplePendulum (see “Down-
load”) with length being 1, determine the period.

 b.  Change the length of the string to 4 and determine the period.
 c.  Change the ‘ength “f the string t“ 9 and deter’ine the ”eri“d in re‘ati“n-

ship to your answer in Part a.
 d.  Determine a relationship between the period and the length of string for a 

given acceleration due to gravity.
3.  a.  Using the model for the simple pendulum in simplePendulum (see “Down-

load”) with length being 1, determine the period.
 b.  Change the acce‘erati“n due t“ gravity t“ 4 × 9.8 and deter’ine the 

period.
 c.  Change the acce‘erati“n due t“ gravity t“ 9 × 9.8 and deter’ine the ”eri“d 

in relationship to your answer in Part a.
 d.  Determine a relationship between the period and the acceleration due to 

gravity for a given string length.
4.  a.  Using the model for the simple pendulum in simplePendulum (see “Down-

‘“ad ) with ‘ength being 1 and the acce‘erati“n due t“ gravity being 9.81 
m/s2, determine the period.

 b.  Determine a formula for period by using the answers from Part a, Exer-
cise 2d, and Exercise 3d.

5.  Using the model for the simple pendulum in simplePendulum (see “Down-
load”) with length being 1, determine the periods for different initial angles. 
Does the angle have any effect on the period?

6.  Write a description of what the three graphs in Figure 3.3.3 show. Describe 
the relative phases of the three curves. Is it reasonable that the magnitude of 
the angular velocity is greatest when the angle is zero? Is it reasonable that 
the angular acceleration is greatest when the angle is least, and vice versa?

Projects

1. According to the conservation of energy principle, with only conservation 
forces in effect, the sum of a particle’s potential and kinetic energies is con-
stant throughout motion. The formula for potential energy is mgh and for ki-
netic energy is 0.5’v2, where m is mass, g is acceleration due to gravity, h is 
height, and v is velocity. Adjust the simple pendulum model in simplePendu-
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lum (see “Download”) to illustrate the Conservation of Energy Principle. 
Note that h is the y-value of the bob.

2. Develop a model of the pendulum assuming damping as described in the sec-
tion “Linear Damping.” Determine the period. With the model and with 
mathematics, show the effect of increasing mass on the resistance. Does the 
period change as the amplitude diminishes?

3. Develop a model of the pendulum assuming constant-magnitude dry friction 
whose sign is opposite that of d(θ)/dt.

4. Develop a model of the pendulum assuming dry friction whose magnitude is 
greater at angular velocities closer to zero. 

5. Develop a model of a pendulum clock that completes a cycle in 1 s. Assume 
linear damping as modeled in Project 2. Have an impulse change the angular 
ve‘“city by an a””r“”riate ixed a’“unt at the b“tt“’ “f a swing in “ne di-
rection. If available in your system dynamics tool, a delay function that re-
turns the value of an argument in the previous time step might be helpful in 
determining when angle changes sign. Approximately how long does your 
model run before the clock “runs down”?

6. Develop a model of a pendulum clock. Assume dry friction as modeled in 
Project 4. Have an impulse change the kinetic energy or equivalently, the 
angu‘ar acce‘erati“n, by an a””r“”riate ixed a’“unt (see Pr“–ect 5). A”-
proximately how long does your model run before the clock “runs down”?

Answers to Quick Review Questions

1. a.  time in s; length of pendulum in m; angle in rad; angular velocity, perhaps 
in rad/s; angular acceleration in rad/s2 

 b. angular acceleration
 c. angular acceleration
 d. angular acceleration = d2( )/dt2 = –g(sin θ)/l
 e. angular velocity
2. a. |mg sin(θ)| = (3)(9.81)sin(π/6) kg m/s2 = (3)(9.81)(0.5) N = 14.7 N
 b. –g(sin θ)/l = (9.81)sin(π/6)/4 m/s2 = –1.23 m/s2

3. a. d2(θ)/dt2 = –g(sin θ)/l – (k·d(θ)/dt)/(ml)
 b. increases
4. a. escapement gear with anchor and stops
 b. weight
 c. pendulum
 d. escapement gear with anchor and stops
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Up, Up, and Away—Rocket Motion

Download

The text s website has the f“‘‘“wing i‘e c“ntaining a fra’ew“r— f“r the ’“de‘ in 
this module available for download for various system dynamics tools: Rocket.

Introduction

Of c“urse Peter had been triling with the’, f“r n“ “ne  
can ly un‘ess the fairy dust has been b‘“wn “n hi’.

J. M. Barrie, The Adventures “f Peter Pan

Hu’an beings have ‘“ng ‘““—ed t“ the s—y with a yearning t“ ly and have ‘“ng ex-
perimented with various methods and contrivances to accomplish this goal. Around 
AD 1500, a ’andarin na’ed Wan-Hu atte’”ted t“ ly t“ the ’““n in a wic—er chair 
t“ which were attached 47 r“c—ets actua‘‘y 47 ba’b““ tubes i‘‘ed with b‘ac— 
powder (Dvir 2003; Lethbridge 2000). Unfortunately, the innovator was unable to 
conduct other experiments with the potential of rockets to propel human beings into 
the sky. The successful launching of human beings into space would have to wait 
several centuries. Now, the launching of rockets with or without human beings is 
quite an ordinary event. The space above earth is littered with various types of satel-
lites placed into orbit by rockets.

The Chinese generated a f“r’ “f b‘ac— ”“wder, “r gun ”“wder,  during the irst 
century AD from charcoal, saltpeter, and sulfur (Lethbridge 2000). Initially, they 
used this ”“wder f“r irew“r—s; but s“’eti’e ar“und the year AD 1000, they ada”ted 
this ”“wder f“r use in ire arr“ws. These ire arr“ws were ’ade by attaching ”“wder-
i‘‘ed ba’b““ tubes t“ arr“ws and ‘aunching the’ with a b“w. By 1232, they had 
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’“diied these arr“ws by ixing tubes, “”en at “ne end and ca””ed at the “ther end, 
t“ ‘“ng stic—s. They ‘it the ”“wder, and the irst true r“c—ets were ‘aunched t“ward 
their M“ng“‘ attac—ers. The ti”s “f these r“c—ets were c“ated with either la’’ab‘e 
materials or poison. How effective these rockets were as weapons is questionable, 
but the Chinese successfully warded off these invaders. Furthermore, the Mongols 
developed their own rockets and helped to spread their use to Europe. In fact, the 
word rocket probably originated from an Italian word “rochetta,” coined by Muratori 
in his descri”ti“n “f ire arr“ws used in ’edieva‘ ti’es (Lethbridge 2000).

Fr“’ the ti’e “f the Chinese ire arr“ws, r“c—ets have c“ntinued t“ ”‘ay i’”“r-
tant military roles. During the last half of the twentieth century, however, rockets 
have taken on new roles in the exploration of the universe. Currently, satellites car-
ried by rockets are providing us with three-dimensional views of polar ice sheets to 
give us insight into climate and its effects on life. Rockets have launched space 
telescopes and propelled probes to Mars, to the edge of our solar system, and be-
y“nd. M“re than 400 ”e“”‘e have trave‘ed int“ s”ace b“rne by r“c—ets since 1961 
(NASA).

Physics Background

Bef“re e’bar—ing “n “ur deve‘“”’ent “f a ’“de‘ “f r“c—et ’“ti“n, we need t“ c“n-
sider some of the physics fundamentals. We have already worked extensively with 
Newton’s second law, F = ma, where F is a force acting on an object of mass m and 
imparting an acceleration, a (see the secti“n Physics Bac—gr“und  fr“’ M“du‘e 
3.1, “Modeling Falling and Skydiving”). In that same section, we discussed drag on 
an object. 

With rockets, we consider another mechanical force, thrust. A rocket’s engine 
generates thrust through the acceleration of a mass of gas through the bottom, pro-
pelling the rocket in the opposite direction. Thus, the forces obey Newton’s third 
law of motion: “for every action, there is an equal and opposite reaction.” The con-
ce”t f“r a r“c—et is the sa’e as that “f a i‘‘ed and re‘eased ba‘‘““n, where ex”e‘‘ed 
gas under ”ressure causes the ba‘‘““n t“ ly ar“und the r““’. 

Suppose c is the velocity of the gas relative to the rocket and v is the velocity of 
the rocket, so that c + v is the velocity of the gas in space. If m is the mass and up is 
positive, then the thrust of the engine (T) is as follows:

T = c
dm

dt

Over a period of time ∆t, we have the following discrete version:

T c
m

t
=

∆
∆

Deinition  Thrust is a mechanical force caused by the acceleration of a 
’ass “f luid and in the “””“site directi“n t“ l“w.
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or

T ∆t = c ∆m 

Quick Review Question 1

a. Select all appropriate units of measure for thrust: kg, kg m/s2, kg/s2, m/s2, 
mi/h, N, N s, lb, lb/s2, s. 

b. With up being positive, suppose a rocket is traveling up at a speed of 500 
m/s, and the speed of the downward gas is 800 m/s. Give the value of c.

c. Suppose over a period of 0.1 s, 2 kg of propellant burns. Give the engine 
thrust.

As rocket fuel burns, the mass of the fueled rocket decreases. From time t to time 
t + ∆t, the impulse is the product of the thrust and ∆t, as follows:

I = T ∆t

During that period, the speciic impulse (Isp) is the impulse per newton (or pound) of 
fuel, or the quotient of impulse and the weight of the burned fuel, ∆w. 

Isp = 
I

w

T t

m g∆
∆

∆
=
( )

Solving for T, we have the following value of thrust from time t to time t + ∆t:

T = I g
m

t
sp

∆
∆

Letting ∆t approach 0, we have the equivalent derivative form:

T = I g
dm

dt
sp

As with earlier models of motion, our model of the motion of a rocket incorpo-
rates acceleration. In this case, we wish to have a formula for acceleration due to 
thrust. Because thrust is a f“rce, f“r acce‘erati“n a we have the following equation 
by Newton’s second law:

T = ma

Substituting for T and solving for acceleration, the following is true:

I g
dm

dt
sp

 = ma

Deinitions    An impulse is the product of the thrust and the length of 
time. Speciic impulse is the impulse per unit weight of burned 
fuel, or the quotient of impulse and the change in the fuel’s 
weight.
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or

a = 
I g

dm

dt

m

sp

Quick Review Question 2

a. Select all appropriate units of measure for impulse: kg, kg m/s2, kg/s2, m/s2, 
mi/h, N, N s, lb, lb/s2, s. 

b. Su””“se a fue‘ burning f“r 2 s i’”arts a thrust “f 75 N t“ a r“c—et. Give the 
impulse.

c. Se‘ect a‘‘ a””r“”riate units “f ’easure f“r s”eciic i’”u‘se: —g, —g ’/s2, kg/
s2, m/s2, mi/h, N, N s, lb, lb/s2, s.

d. Su””“se 0.5 —g “f the fue‘ “f Part b burns during 2 s. Give the s”eciic 
impulse.

System Dynamics Model

The model of the motion of a ball tossed into the air in Figure 3.1.1 of Module 3.1, 
“Modeling Falling and Skydiving,” serves as a basis for the rocket-motion model. 
For the extension, we make several assumptions:

• The only forces acting on the rocket are gravitation and thrust derived from 
burning fuel.

• Acceleration due to gravity is constant.
• The earth is lat.
• The rocket is vertical.
• The rocket has only one stage.

Quick Review Question 3

This questi“n relects “n Ste” 2 “f the ’“de‘ing ”r“cess f“r’u‘ating a ’“de‘ f“r 
developing a model for rocket motion. We employ the preceding simplifying as-
sumptions. After completing this question and before continuing in the text, we sug-
gest that you develop a model for rocket motion.

a. Bui‘ding “n the ’“de‘ in the secti“n Acce‘erati“n, Ve‘“city, and P“siti“n  
of Module 3.1, “Modeling Falling and Skydiving,” determine additional 
variables for the rocket-motion model and their units in the metric system.

b. Give a differential equation for change in total mass (dm/dt) as a function of 
the constants mass of initial unburned fuel (f) and time to burn (b). Use the 
simplifying assumption that dm/dt is constant.

c. Give a differential equation for acceleration, or change in velocity (dv/dt), in 
terms of total mass (m), change in total mass (dm/dt), s”eciic i’”u‘se (Isp), 
and acceleration due to gravity (g).
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Extending the irst ’“de‘ in M“de‘ing Fa‘‘ing and S—ydiving,  in which we as-
sume no friction, thrust from burning fuel also impacts the motion of a rocket. The 
change_in_ve‘“city, or acceleration, now involves acceleration due to this thrust as 
well as acceleration due to gravity. The extended model has an additional stock (box 
variable), mass, that contains the total mass of the fuel and rocket, which has mass 
rocket_mass. This stock has an initial value of initial_mass. We assume that while 
fue‘ is ”resent, the l“w “ut, change_in_mass, is constant and consists of the mass of 
the initial unburned fuel divided by the time for it to burn (burnout_time). After 
burnout, change_in_mass becomes zero. Figure 3.4.1, which is similar to Figure 
3.1.1, contains a model diagram of a rocket’s motion.

Quick Review Question 4

Refer to Figure 3.4.1 to give the formulas for the following:

a. The mass of the unburned fuel
b. The change in mass per unit of time of rocket with fuel

Figure 3.4.2 displays a graph of position (in color) and velocity versus time when 
initial_mass = 5000 kg, rocket_mass = 1000 kg, burnout_time = 60 s, and s”eciic_
impulse = 200 s. The graph shows the velocity increasing more and more until the 

Figure 3.4.1 Model diagram of a rocket’s motion
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fue‘ c“’”‘ete‘y burns. With a ve‘“city “f ab“ut 2567 ’/s = 2.567 —’/s at that instant, 
the rocket continues to rise to a height of about 388,500 m = 388.5 km before starting 
its descent. Various projects complete and expand upon the model in Figure 3.4.1.

Exercises

1. Write the differential equations in the model developed in this module.
2. Revise the model’s differential equation for acceleration (dv/dt) to accom-

modate Newtonian friction (see the secti“n Physics Bac—gr“und  fr“’ 
Module 3.1, “Modeling Falling and Skydiving”). The following formula ap-
proximates the density of Earth’s atmosphere:

 D = 1.225e-0.1385y kg/m3 for altitudes y < 100 km

 The c“eficient “f drag f“r a very shiny r“c—et c“u‘d be as ‘“w as 0.6, whi‘e 
rougher surfaces command higher values closer to 1.

3. Revise the model’s differential equation for acceleration (dv/dt) where ac-
celeration due to gravity is not constant but decreases with altitude according 

to the formula g
R

R y

2

2+( )
, where R is the radius of the earth, which is approxi-

’ate‘y 6.378 × 106 m, g is the acceleration due to gravity at sea level, and y 
is the distance of the rocket above the earth’s surface. Continue to use c =  
Isp g. The next exercise develops the formula for acceleration due to gravity 
at altitude y.

4. This exercise develops the formula for acceleration due to gravity at altitude 
y from the previous exercise. 

 a.  Newton’s gravitation law states that the gravitation force between two 
objects of masses m1 and m2 is as follows:

F G
m m

d
= 1 2

2
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t
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velocity
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Figure 3.4.2 Graph of position (m) and velocity (m/s) versus time for a rocket
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   where G is the universa‘ gravitati“na‘ c“nstant (6.672 × 10-11 N m2 kg-2) 
and d is the distance between the centers of mass of the objects. Let R be 
the radius of the earth, me its mass, and m the mass of an object. Write 
Newton’s gravitation law for the weight of the object at the earth’s surface 
using these masses.

 b.  Write the weight of the object at the earth’s surface using Newton’s sec-
ond law and g.

 c.  Setting Parts a and b equal, solve for g, and simplify.
 d.  Consider the object at an altitude y above the surface of the earth. Write 

Newton’s gravitation law for the weight of the object at height y.
 e.  Write the weight of the object using Newton’s second law and gy, the ac-

celeration due to gravity at altitude y.
 f.  Setting Parts d and e equal, solve for gy and simplify.
 g.  Evaluate the ratio gy/g and simplify.
 h.  Solve for gy.
5.  National Association of Rocketry (NAR) codes, such as C6-3, appear on 

hobby rocket motors, as follows:
• The ‘etter, which can be fr“’ 1/2A t“ K, s”eciies the t“ta‘ i’”u‘se, with C 

indicating 5.01 to 10.00 N s. A letter’s range is double that of its predeces-
sor, so that an impulse in the range of 1/2A is the smallest, and that in the 
range “f K is the ‘argest. Thus, the t“ta‘ i’”u‘se f“r r“c—ets with ‘etter B is 
from 2.51 to 5.00 N s.

• The subsequent number, such as 6, indicates average thrust (in newtons). 
The average thrust with total impulse indicates the length of time over 
which the motor releases its total energy.

• The number after the dash, such as 3, gives time delay (in seconds), or the 
time from motor burnout until activation of a recovery parachute. During 
that time, the rocket coasts to a higher altitude and slows. 

 For the following questions involving total impulse, use the higher range 
value, such as 10.00 N s for type-C motors.

 a.  Approximate the length of time for which a C6-5 motor delivers its 
energy.

 b.  Repeat Part a for a C4-5 motor.
 c.  Repeat Part a for a C10-5 motor.
 d.  Repeat Part a for a C5-3 motor.
 e. Which of the preceding three engines is most powerful?
 f. The C5-3 burns 12.7 g “f ”r“”e‘‘ant. Ca‘cu‘ate its s”eciic i’”u‘se.

Projects

1. Complete the model of rocket motion described in this module and begun in 
Rocket (see “Download”). Plot position (altitude) and velocity with respect 
to time. Obtain the maximum altitude and velocity. Try various parameter 
values, such as those for a hypothetical rocket with initial mass of 5000 kg, 
r“c—et ’ass “f 1000 —g, burn“ut ti’e “f 60 s, and s”eciic i’”u‘se “f 200. 
Also, consider values of real engines, such as those in Table 3.4.1 with code 
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information (see Exercise 5). Write a discussion of the results. Augment your 
work by having a comparative plot of altitude and velocity versus time for 
various rocket masses. Discuss the impact of various rocket masses on the 
altitude and velocity at burnout. Similarly, investigate the impact of various 
s”eciic i’”u‘ses.

2. Complete the model of rocket motion described in this module and begun in 
Rocket (see “Download”). Use your model to compare a Centaur Upper 
Stage System, which is a chemical system, and the Electrostatic Thruster 
System, which utilizes the sun’s nuclear energy as well as a propellant (see 
Table 3.4.2). Your comparison should include maximum velocity, propellant 
’ass, thrust ti’e, and the ty”es “f ’issi“ns advisab‘e f“r each (Fin—e 1980).

3. The irst ’“de‘ assu’”ti“n bef“re was t“ ign“re the effects “f drag. In this 
”r“–ect, reine the ’“de‘ t“ acc“’’“date Newt“nian fricti“n (see Exercise 
2). Investigate the impact of drag on altitude and speed at burnout. Discuss 
the results, including the reasonableness of the assumption to ignore drag.

4. One assumption before was that acceleration due to gravity is constant. In 
this ”r“–ect, reine the ’“de‘ t“ c“nsider decreasing acce‘erati“n due t“ grav-
ity as the rocket gains altitude according to the formula in Exercise 3. Inves-
tigate the impact on altitude and speed at burnout. Discuss the results, includ-
ing the range of altitudes at which the assumption that acceleration due to 
gravity is constant seems reasonable.

5. Develop a model of a single-stage rocket in which after burnout and a time 
delay a parachute deploys so that the rocket falls safely to earth (see Module 
3.1, “Modeling Falling and Skydiving”). 

6. Develop a model for a two-stage rocket. Each stage has an engine with pro-
pellant. After the initial burn, the rocket coasts for a few seconds before sec-
ond stage ignition occurs. Discuss the advantages and disadvantages of such 
an arrangement.

Table 3.4.1 
R“c—et Engine S”eciicati“ns (a‘s“ see Exercise 5; Cu‘”)

Engine Type Maximum Lift (g) Initial Mass (g) Propellant Mass 

(g)

A10- 3T 141.5 7.9 3.78
C5- 3 226.4 25.5 12.7
C6- 3 113.2 24.9 12.48
D12- 5 283.0 43.1 24.93

Table 3.4.2 
Comparison of Chemical and Solar Electric Engines, Each with Total Impulse = 6 × 107 N s 
(Fin—e 1980)

    Propellant  
Engine Isp (s) T (N ) Burn Time (s)  Mass (kg)

Centaur (chemical) 440 66,000 880 13,600
Electrostatic Thruster 3,000 1 5 × 107 2,000



Force and Motion 107

Answers to Quick Review Questions

1. a. kg m/s2, N, lb
 b. –300 m/s
 c. c ∆m/∆t = (–300)(2)/(0.1) = –6000 N
2. a. N s
 b. I = T ∆t = (75)(2) = 150 N s
 c. s
 d. Isp = I/∆w = I/(∆m g) = (150 N s) / ((0.5 —g)(9.81 ’/s2)) = 30.6 s
3. a.   rocket mass in kg, total mass of rocket and fuel in kg, change in total mass 

in —g, ti’e f“r fue‘ t“ burn in s, s”eciic i’”u‘se in s
 b. dm/dt = f/b
 c.  Acceleration is the sum of acceleration due to gravity and acceleration 

due to thrust. Thus, a = dv/dt = 
I g

dm

dt

m

sp

 + g

4. a. initial_mass – rocket_mass

 b. (initial_mass – rocket_mass)/burnout_time
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SYSTEM DYNAMICS MODELS WITH INTERACTIONS





MODULE 4.1

Competition

Download

The text’s website has available for download for various system dynamics tools the 
i‘e sharkCompetition, which contains a submodel for this module, available for 
download for various system dynamics tools.

Community Relations 

In any population of organisms, the individuals are interacting with each other and 
with their environment. Populations, which are made up of only one species, are also 
interacting with other species in a particular area in what we term a community. 
These interacti“ns inluence the c“’”“siti“n and dyna’ics “f the c“’’unity 
through time. Some of these interactions are robust, while others are not so robust or 
are even very weak. The magnitude of these interactions depends on the extent of 
their niche overlap. An ecological niche can be deined as the c“’”‘ete r“‘e that a 
species plays in an ecosystem. The more overlap two species have, the stronger the 
interaction will be. Two of these interactions between species are competition and 
predator-prey relationships. 

 Introduction to Competition 

Everyone is familiar with competition. We compete for attention in families, for 
grades in school, for jobs and promotions, for parking spaces, and on and on. Com-
petition is integral to most economic activity. Through competition in human societ-
ies, wages and prices are set; quantities and types of products manufactured are se-



112 Module 4.1

lected; businesses succeed or fail; and resources are distributed. Economic and social 
competition may occur even in noncapitalist systems.

More broadly, competition is a basic characteristic of all communities, human 
and nonhuman. It may occur within a population of the same species (intraspeciic), 
like the human species, or it may occur between populations of different species 
(interspeciic). Competitive interactions affect species distribution, community or-
ganization, and species evolution. 

Simply speaking, competition is the struggle between individuals of a population 
or between species for the same limiting resource. If one individual (species) re-
duces the availability of the resource to the other, we term that type of competition 
exploitative, or resource depletion. This interaction is indirect and may involve 
removal of the resource or denial of living space. If there is direct interaction be-
tween individuals (species), where one interferes with or denies access to a resource, 
we term that competition interference. In this form, there may be physical contests 
for territory or resource. Interference may also, as in some plants, involve the pro-
duction of toxic chemicals. 

Modeling Competition

Sometimes two species are not eating each other but are competing for the same 
‘i’ited f““d s“urce. F“r exa’”‘e, whiteti” shar—s (WTS) and b‘ac—ti” shar—s (BTS) 
in an area ’ight feed “n the sa’e —inds “f ish in a year when the ish su””‘y is ‘“w. 
We antici”ate that a ‘arge increase in “ne s”ecies, such as BTS, ’ight have a detri-
mental effect on the ability of the other species, such as WTS, to obtain an adequate 
amount of food and, therefore, to thrive. Also, we expect that superior hunting skills 
of one species would diminish the food supply for the other species. As one species 
grows, the other shrinks, and vice versa.

In an unconstrained growth model (see Module 2.2, “Unconstrained Growth”), 
which ignores competition and limiting factors, we consider a population’s (P) births 
to be proportional to the number of individuals in the population (r1P) and its deaths 
to follow a similar proportionality (r2P). Thus, in this model, the rate of change of 
the population is dP/dt = r1P – r2P = (r1 – r2)P, so that the solution is an exponential 
function, P = P0e

(r1 – r2)t.
However, with competition, a competing species has a negative impact on the 

rate of change of a population. In this situation, we can model the number of deaths 
of each species as being proportional to its population size and the population size of 
the other species. Thus, for B being the ”“”u‘ati“n “f BTS and W the population of 
WTS, the number of deaths of each species is proportional to the product BW. More-
over, the constant of proportionality associated with this proportionality for one spe-
cies relects c“’”etitive s—i‘‘s “f the “ther s”ecies. (Pr“–ects ex”‘“re vari“us ty”es “f 
competition.) Consequently, we have the following equations for the change in the 
number of deaths of each species:

∆(deaths “f WTS) = wBW, where w is a WTS death proportionality constant

∆(deaths “f BTS)  = bWB = bBW, where b is a BTS death ”r“”“rti“na‘ity c“nstant
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Equation Set 4.1.1

Some equations to accompany Figure 4.1.1 with basic unit of time being 1 month

BTS_population(0) = 15
BTS_birth_fraction = 1
BTS_births = BTS_birth_fraction * BTS_population

BTS_death_proportionality_constant = 0.20
BTS_deaths = (BTS_death_proportionality_constant * WTS_population) * 

BTS_population

WTS_population(0) = 20
WTS_birth_fraction = 1
WTS_births = WTS_population * WTS_birth_fraction

WTS_death_proportionality_constant = 0.27
WTS_deaths = (WTS_death_proportionality_constant * BTS_population) * 

WTS_population

Figure 4.1.1 illustrates the interaction with the number of each species of shark af-
fecting the deaths of the other species. With the basic unit of time being a month, 

WTS births

WTS birth

  fraction

   WTS

population
WTS deaths

 WTS death

proportionality

   constant

BTS births
 BTS

deaths

BTS birth fraction  BTS death

proportionality

   constant

BTS population

Figure 4.1.1  Model diagram of competition of species 
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Equation Set 4.1.1 gives some of the equations and constants, which in this case 
models births as being unconstrained. The set of numbers serve as an example and, 
although realistic, do not represent any actual population. Typically, a computational 
scientist uses actua‘ ie‘d data t“ estab‘ish reas“nab‘e ”ara’eters f“r a ’“de‘. 

Quick Review Question 1

This questi“n relects “n Ste” 2 “f the ’“de‘ing ”r“cess f“r’u‘ating a ’“de‘ f“r 
developing a model for competition. As before, let W be the number of WTS and B 
the nu’ber “f BTS. We si’”‘ify this ’“de‘ by assu’ing unc“nstrained births. After 
completing this question and before continuing in the text, we suggest that you de-
velop a model for competition.

a. Give an equation for WTS births.
b. Give an equation for WTS deaths.

Quick Review Question 2

If all other parameters are equal and the WTS death proportionality constant (w) is 
‘arger than the BTS death ”r“”“rti“na‘ity c“nstant (b), which population should be 
larger after a few time steps?

 A. WTS B. BTS C. I’”“ssib‘e t“ deter’ine

Note that in this hypothetical example, the death proportionality constants (0.2 
and 0.27) are ’uch s’a‘‘er than the birth fracti“ns (1 and 1). The f“r’er c“nstants 
are multiplied by product of the two populations, BW, potentially a very large num-
ber, while the later are multiplied by their respective populations, B or W. For birth 
fractions of 1, each type of shark gives birth to approximately one pup each month. 
With BTS_population(0) being 15 and WTS_population(0) being 20, initial predic-
ti“ns are f“r ab“ut 15 BTS and 20 WTS t“ be b“rn in the irst ’“nth. Sh“u‘d a death 
”r“”“rti“na‘ity c“nstant f“r BTS “r WTS a‘s“ be 1, the rate “f change “f deaths f“r 
that type of shark would initially be 1 × 15 × 20 = 300 sharks/month; and the popu-
lation would quickly become extinct. Thus, we have the following rule of thumb.

With populations inhibited only by the competition for food, we might have a 
situation like the one illustrated in Figure 4.1.2 and Table 4.1.1. In this case, the 
WTS initia‘‘y “utnu’ber the BTS. H“wever, the WTS death ”r“”“rti“na‘ity c“n-
stant (w = 0.27) is ‘arger than the BTS death ”r“”“rti“na‘ity c“nstant (b = 0.20). 
Early in the simulation, the population of both species decreases. Eventually, the 

Rule of Thumb:  A constant of proportionality for a product of populations, 
such as BW, is frequently at least an order of magnitude (decimal 
point moved one place to the left) less than a constant of propor-
tionality for one population, such as B or W.
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WTS die “ut and the BTS thrive. The ”r“–ects and exercises ex”‘“re situati“ns that 
have different initial populations and constants of proportionality and, consequently, 
different results.

Table 4.1.1 
Table of Results of Simulation from Figures 4.1.1 and 4.1.2 where 
w = 0.27 and b = 0.20

Time (months) WTS BTS

 0 20.00 15.00
 1 6.57 5.37
 2 4.69 4.84
 3 3.08 6.00
 4 0.99 10.83
 5 0.02 27.43

1.25 2.50 3.75 5.00
t

7

14

21

28

BTS

WTS

population

Figure 4.1.2 Graph of results of simulation from Figure 4.1.1, where the WTS death pro-
portionality constant (w) is 0.27, the BTS death ”r“”“rti“na‘ity c“nstant (b) is 0.20, and time 
(t) is in months

Exercises

1. a.  Write the differential equations for modeling competition with uncon-
strained growth for both populations.

 b. Find all equilibrium solutions to these equations.
2. a.  Write the differential equations for modeling competition with con-

strained growth for both populations.
 b. Find all equilibrium solutions to these equations.
3. What w“u‘d be the effect “n each “f the f“‘‘“wing “f increased intras”eciic 

competition? Hint: Increased c“’”etiti“n w“u‘d be relected in higher ”“”-
ulation densities. 
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 a.  Mortality in terms of number of pines/acre 
 b.  Fertility in terms of number of seeds/plant/m2

 c.   Average adult weight in terms of average adult bluegill weight per liter 
of water

 d.  Rate of growth in terms of increase in mallard duckling weight per unit 
of time

Projects

F“r additi“na‘ ”r“–ects, see M“du‘e 7.11, Fue‘ing Our Ce‘‘s Carb“hydrate 
Metabolism.”

1. a.  Using your system dynamics tool’s sharkCompetition i‘e, which c“ntains 
a ’“de‘ f“r c“’”eting s”ecies, ind va‘ues f“r the initia‘ ”“”u‘ati“ns and 
the constants of proportionality in which one population becomes 
extinct.

 b.  Find values for which the two populations reach equilibrium.
 c.  Discuss the results.
 d.  Adjust the model to have the populations constrained by carrying capaci-

ties (see Module 2.3, “Constrained Growth”).
 e.  Adjust the parameters several times obtaining different results. 
 f.  Explain the models and discuss the results.
2.  Argentine ants (Linepithema humile) are native to South America but have 

been invading the temperate zone of North America from the turn of the 
twentieth century. With its large and aggressive workers, Argentine ants are 
generally able competitively to exclude many native ant species. This suc-
cess comes from the ant’s ability to use exploitive as well as interference 

c“’”etitive ’echanis’s (H“‘way 1999).
 a.  Develop a model of exploitive competition for the Argentine ant versus a 

native ant. The competitive factors include discovery time and rate of 
recruitment. The Argentine ant might discover a food source faster and 
attract other workers to the food source more quickly than the native ant.

 b.  Develop a model of interference competition for the Argentine ant versus a 
native ant. The competitive factors include physical inhibition/removal 
and che’ica‘ re”e‘‘ents. Argentine ants ’ight ight “ff “r re’“ve native 
ants from the food source, or they might use chemicals to repel them.

3.  M“de‘ intras”eciic c“’”etiti“n. See Exercise 3 f“r exa’”‘es. Discuss ’“r-
ta‘ity and rate “f gr“wth in res”“nse t“ increasing intras”eciic c“’”etiti“n.

4.  Plants can produce chemicals that, when released to the soil, inhibit the 
growth of other plants. These chemicals can act by inhibiting respiration, 
photosynthesis, cell division, protein synthesis, mineral uptake, or altering 
the function of membranes. For instance, sandhill rosemary (Ceratiola eri-

coides), an evergreen shrub found along the coastal plain of the southeastern 
United States, produces ceratiolin. This chemical washes from the leaves 
and degrades to hydrocinnamic acid, a compound that effectively inhibits 
seed germination of many competing species (Hunter and Menges 2002).
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Assume that this chemical is increasingly effective at germination inhibi-

tion with increasing concentrations. Assume the highest concentration re-

leased to be 60 ppm (parts per million) and that concentration decreases lin-

early from the tips of the outermost leaves (for periods without rain).

 a.  Model inhibition of a competing plant species, where the effective con-

centrations of the toxin are between 20 and 60 ppm. 

 b.  Model inhibition for this species with 2 cm rain per day. Set your own 

decrease in concentration per cm of rain for your model.

5.  Model the interference competition of titmice versus other birds at feeders. 

6.  M“de‘ an envir“n’ent with tw“ c“’”eting s”ecies “f l“wering ”‘ants
s”ecies A and s”ecies B and tw“ essentia‘ res“urces ”h“s”h“rus and ni-
trogen. The constant renewal rate for each resource is 0.4 units/month. Ini-

tially, the availabilities of phosphorus and nitrogen are 12 units and 28 units, 

respectively. Each species has a starting population of 12 plants. At these 

‘eve‘s, the ’axi’u’ ”r“geny ”r“duced ”er ”‘ant f“r s”ecies A and B are 1.2 
plants/month and 1.0 plants/month, respectively; while their per plant deaths 

are 0.5 plants/month. Consider progeny production and deaths proportional 

to the number of species individuals. For maximum births, the phosphorus 

c“nsu’”ti“n a’“unts ”er ”‘ant f“r s”ecies A and B are 0.5/’“nth and 0.25/
month, respectively, and the nitrogen consumption amounts per plant are 

0.25/month and 0.5/month, respectively. For fewer resources, the relative 

amounts of phosphorus and nitrogen consumption and the birth rates are pro-

portionally smaller. Explain the model and discuss the results. Will this sce-

nari“ resu‘t in equi‘ibriu’ (Ti‘’an 1980)?

Answers to Quick Review Questions

1. a. cW, where c is a birth rate

 b. wBW or wWB, where w is a death proportionality constant

2. A. BTS, because a ‘arger ”“rti“n “f the white ti” shar—s are dying
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Predator-Prey Model

Download

The text’s website has a Predator-Prey i‘e, which c“ntains the ’“de‘ “f this ’“d-
ule, available for download for various system dynamics tools.

Introduction

One “f the inters”eciic interacti“ns (see M“du‘e 4.1, C“’”etiti“n ) c“’’“n t“ 
biological communities is the predator-prey relationship. When one species 
(predator) consumes another species (prey) while the latter is still living, the action 
is predation. Predation might involve the consumption of a young squirrel by a 
hawk, but examples also include tomato hornworms consuming tomato plant leaves 
and a tapeworm feeding off its mammalian host. Predator-prey interactions are im-
”“rtant inluences “n ”“”u‘ati“n ‘eve‘s and ec“syste’ energy l“w. 

One of the most interesting characteristics of this type of relationship is that both 
predators and prey develop fascinating adaptations, which normally come about 
over long periods of time. Predator adaptations usually involve better prey detection 
and capture, whereas prey adaptations normally involve improved abilities to escape 
and avoid detection. 

So, let’s consider a 3/4-in. frog, commonly called a poison dart frog. We might 
expect that such a small animal would, to avoid predation, come out only at night or 
ad“”t s“’e ca’“ulaged c“‘“rati“n. H“wever, this brazen creature f“rages f“r s’a‘‘ 
invertebrates during the day (prey may also be predators) and is brilliantly colored 
(bright red, yellow, etc.). How might it manage then to avoid predation? The answer 
lies in the skin of the frog, which contains toxic, alkaloid chemicals that cause pa-
ralysis and/or death in the predator. Over time, predators associate the coloration 
with the toxic nature of the prey and, hence, avoid that prey. So the bright coloration 
is termed warning, or aposematic, coloration.
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Lotka-Volterra Model

In the 1920s, ’athe’aticians Vit“ V“‘terra and A‘fred L“t—a inde”endent‘y ”r“-
posed a model for populations of a predator species and its prey, such as hawk and 
squirrel populations in a certain area. For simplicity, we assume that a hawk hunts 
only squirrels and that no other animal eats squirrels. If the hawk’s only food source 
is squirre‘ and the nu’ber “f squirre‘s di’inishes signiicant‘y, then scarcity “f f““d 
will result in starvation for some of the hawks. With reduced numbers of hawks, the 
squirrel population should increase.

Quick Review Question 1

This questi“n relects “n the ”redat“r-”rey situati“n bef“re we begin the discussi“n.

a. Do predator-prey interactions have a direct impact on the births or deaths of 
the prey? 

b. Based “n “ther interacti“n ’“de‘ “f M“du‘e 4.1, we can ’“de‘ the ”rey 
deaths as being directly proportional to what?

c. If we consider prey births as being unconstrained, we can model prey births 
as being directly proportional to what?

d. Are predator-prey interactions advantageous or disadvantageous for 
predators?

e. Based “n “ther interacti“n ’“de‘s “f M“du‘e 4.1, we can ’“de‘ ”redat“r 
births as being directly proportional to what?

f. If we consider predator deaths as being unconstrained, we can model the 
predator deaths as being directly proportional to what?

Let s be the number of squirrels in the area and h be the number of hawks. If no 
hawks are present, the change in s from time t  ∆t to time t is as in the uncon-
strained model (see Module 2.2, “Unconstrained Growth and Decay”): 

 ∆s = s(t) – s(t - ∆t) 

 = (squirrel growth at time t  ∆t) * ∆t 

 = ks * s(t  ∆t) * ∆t for constant ks

However, this prey’s population is reduced by an amount proportional to the product 
of the number of hawks and the number of squirrels, h(t  ∆t) * s(t  ∆t). Thus, with 
a proportionality constant khs for this reduction, the change in the number of squirrels 
from time t  ∆t to time t is as follows:

 ∆s = s(t) – s(t  ∆t) 

 = (squirrel growth at time t  ∆t) * ∆t 

 = (ks * s(t  ∆t) – khs * h(t  ∆t) * s(t  ∆t)) * ∆t 

for constants ks and khs.
We can interpret the term khs * h(t  ∆t) * s(t  ∆t) in a couple of ways. First, 

h(t  ∆t) * s(t  ∆t) is the maximum number of distinct interactions of hawks with 
squirrels. For example, for h(t  ∆t) = 3 hawks and s(t  ∆t) = 2 squirrels, (3)(2) = 6 
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possible pairings exist. The decrease in the number of squirrels is proportional to this 
product, where the constant of proportionality, khs, is related to the hunting ability of 
the hawks and the survival ability of the squirrels. A second interpretation of khs * 
h(t  ∆t) * s(t  ∆t) = (khs * h(t  ∆t)) * s(t  ∆t) is that the size of the squirrel popula-
tion decreases in proportion to the size of the hawk population.

While the squirrel population decreases with more contacts between the predator 
and prey, the hawk population increases. Moreover, the death rate of hawks is pro-
portional to the number of hawks. Thus, the change in the hawk population from 
time t  ∆t to time t is as follows:

 ∆h = h(t) – h(t  ∆t) 

 = (hawk growth at time t  ∆t) * ∆t 

 = (ksh * s(t  ∆t) * h(t  ∆t) – kh * h(t  ∆t)) * ∆t

for constants ksh and kh. Although the deaths of the squirrels and the births of the 
hawks are both proportional to the product of the number of possible interactions of 
the two populations, their constants of proportionality, khs and ksh, respectively, are 
probably different. For instance, 2% of the possible interactions might result in the 
death of a squirrel, while only 1% of the possible interactions might contribute to the 
birth of a hawk.

We can express the predator-prey model, known as the Lotka-Volterra model, 
as the following pair of difference equations for the change in prey (here, change in 
the squirre‘ ”“”u‘ati“n, ∆s) and change in predator (here, change in the hawk popu-
‘ati“n, ∆h) from time t  ∆t to time t:

 ∆s = (ks * s(t  ∆t) – khs * h(t  ∆t) * s(t  ∆t)) * ∆t (1)

 ∆h = (ksh * s(t  ∆t) * h(t  ∆t) – kh * h(t  ∆t)) * ∆t 

or as the following pair of differential equations:

 (2)

Figure 4.2.1 contains a diagram for the predator-prey model with the prey population 
affecting the nu’ber “f ”redat“r births and the ”redat“r ”“”u‘ati“n inluencing the 
number of prey deaths. 

Quick Review Question 2

Consider the following Lotka-Volterra difference equations:

 ∆x = (2 * x(t  ∆t) – 0.02 * y(t  ∆t) * x(t  ∆t)) * ∆t with x(0) = 100

 ∆y = (0.01 * x(t  ∆t) * y(t  ∆t) – 1.06 * y(t  ∆t) ) * ∆t  with y(0) = 15

a. Which equati“n (∆x, ∆y, both, or neither) models the change in predator 
population?

ds

dt
k s k h s

dh

dt
k s h k h

s hs

sh h

= −

= −
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For each of the following questions, indicate the appropriate answer from the fol-

lowing choices:

 A. 2 B. 0.02 C. 0.02 D. 0.01

 E. 1.06 F. –1.06 G. 100 H. 15

b. Which number represents the predator birth fraction?
c. Which number represents the prey birth fraction?
d. Which number represents the predator death proportionality constant?
e. Which number represents the prey death proportionality constant?
f. What is the initial number of predators?
g. What is the initial number of prey?

Particular Situations

Historical Note During the Cu‘tura‘ Rev“‘uti“n in China (1958 1960), 
Chairman Mao Zedong decreed that all sparrows be killed because 
they ate too much of the crops and they seemed to be only for plea-
sure anyway. With reduction in its main predator, the insect popula-
tion increased dramatically. The insects destroyed much more of 
the crops than the birds ever did. Consequently, the Chinese re-
versed the decisi“n that caused the i’ba‘ance (PBS 2002).

prey
population

prey births prey deaths

prey birth
 fraction

  prey death
proportionality
    constant

  predator
populationpredator

  births

predator
  deaths

predator birth
    fraction

predator death
proportionality
    constant

Figure 4.2.1  Predator-prey diagram
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Returning to the example of the hawks and squirrels, some of the model’s equa-
tions and constants appear in Equation Set 4.2.1. In that example, prey_birth_frac-

tion (ks) = 2, prey_death_proportionality_constant (khs) = 0.01, predator_birth_

fraction (ksh) = 0.01, predator_death_proportionality_constant (kh) = 1.06, the 
initial prey_population (s0) = 100, and the initial predator_population (h0) = 15. As 
suggested in the “Rule of Thumb” in Module 4.1, “Competition,” the proportionality 
constants (0.01 and 0.01) for products, which involve interactions, are at least an 
order of magnitude less than the proportionality constants (2 and 1.06) for single 
populations.

Equation Set 4.2.1

Some of the equations and constants for model in Figure 4.2.1:

predator_population(0) = 15
predator_birth_fraction = 0.01
predator_births = (predator_birth_fraction * prey_population) * predator_pop-

ulation

predator_death_proportionality_constant = 1.06
predator_deaths = predator_death_proportionality_constant * predator_popu-

lation

prey_population(0) = 100
prey_birth_fraction = 2
prey_births = prey_birth_fraction * prey_population

prey_death_proportionality_constant = 0.02
prey_deaths = (prey_death_proportionality_constant * predator_population) * 

prey_population

Table 4.2.1 and Figure 4.2.2 show the varying prey and predator populations  
as time advances through 12 months. Shortly after the squirrel, or prey, population 

Table 4.2.1  
Table of Prey and Predator Populations over 12- month period

Months Prey Population Predator Population

 0.000 100.00 15.00
 1.000 449.58 62.00
 2.000 30.43 280.24
 3.000 5.63 108.55
 4.000 10.54 40.32
 5.000 45.61 17.59
 6.000 244.25 19.97
 7.000 215.76 298.60
 8.000 7.91 173.18
 9.000 6.52 63.69
10.000 21.30 24.81
11.000 109.68 14.61
Fina‘ 470.44 74.28
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increases, the hawk, or predator, population does likewise. As the predators kill off 
their food supply, the number of predators decreases. Then, the cyclic process starts 
over.

Quick Review Question 3

To the nearest whole number, what is the period (in months) of the cyclic functions 
for population in Figure 4.2.2?

Figure 4.2.3 shows the graph of a solution to the difference or differential equa-
tions with the prey population along the horizontal axis and the predator population 
along the vertical axis. With the initial predator population being 15 and prey popu-
lation being 100, the plot starts at the bottom toward the left and proceeds counter-
clockwise as time progresses. Initially, with few predators endangering them, the 

3 6 9 12 
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predator s 

population 

prey 

Figure 4.2.2 Graph of populations versus time in months
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Figure 4.2.3 Graph of predator population versus prey population
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Figure 4.2.4 Several solutions to the predator-prey model using different initial conditions 
and the coloration shown

Predat“r Prey C“‘“r “f Gra”h

15 100 black
75 125 gray
135 150 dark color
195 175 ‘ight c“‘“r

”rey ”“”u‘ati“n reaches a ’axi’u’ “f ab“ut 475 when the ”redat“r ”“”u‘ati“n is 
about 100. Then, with the graph developing to the left and up, we see that the prey 
population starts decreasing as the predator population continues to increase with the 
abundant su””‘y “f its f““d, the ”rey. At the gra”h s high ”“int, ab“ut (107, 322), 
with a””r“xi’ate‘y 107 ”rey, the ”redat“r ”“”u‘ati“n achieves a ’axi’u’ “f 322 
individua‘s. That sa’e nu’ber “f ”redat“rs, ab“ut 107, “ccurs t“ward the b“tt“’ “f 
the graph when the prey only number about 15. After a maximum, the number of 
predators falls off rapidly because of the limited food supply, and the number of prey 
decreases as well. Eventually, on the bottom part of the graph, with the diminished 
number of predators, the prey are able to stage a comeback, and the cyclical process 
begins again. Figure 4.2.4 illustrates several such solutions employing different ini-
tial conditions.

Quick Review Question 4

The following are the Lotka-Volterra differential equations for the particular model 
we have been considering:

 ds/dt = 2s – 0.02hs

 dh/dt = 0.01sh – 1.06h

 with s(0) = 100 and h(0) = 15.
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a. Indicate all that must be true for the system to be in equilibrium: ds/dt = 0; 
s = 0; dh/dt = 0; h = 0; all of these; none of these.

b. A trivial solution for equilibrium is s = 0 and h = 0. Find a nontrivial solu-
tion, where s ≠ 0 and h ≠ 0.

Exercises

1. Give tw“ sets “f L“t—a-V“‘terra equati“ns with a‘‘ c“eficients being differ-
ent that represent a system in equilibrium, such that the number of prey is 
always 3000 and the number of predators is always 500.

2. Write the differential or difference equations for a predator-prey model where 
there is a carrying capacity M for the predator. See differential equation 1 or 
difference equation 2 in Module 2.3, “Constrained Growth.”

3. The blue whale, which can grow to 30 m in length, is a baleen whale whose 
favorite food is Antarctic krill, a small shrimp that is about 5 cm long. The 
difference equation for the change in the krill population is similar to that for 
∆s in (1), except the birth term must be logistic (see Equation 2 in Module 
2.3, “Constrained Growth”). The difference equation for the change in the 
number of blue whales is a logistic equation, except that the carrying capac-
ity is not a constant but is proportional to the krill population. Write the dif-
ference equati“ns t“ ’“de‘ this syste’ (Greenw““d 1983)

Projects

F“r additi“na‘ ”r“–ects, see M“du‘e 7.11, Fue‘ing Our Ce‘‘s Carb“hydrate Me-

tabolism”; M“du‘e 7.12, Mercury P“‘‘uti“n—Getting “n Our Nerves ; M“du‘e 
7.13, Managing t“ Eat What s the Catch? ; M“du‘e 7.14, C“ntr“‘ Issues: The 
O”er“n M“de‘ ; and M“du‘e 7.15, Tr“ub‘ing Signa‘s: C“‘“n Cancer.  

1. Develop a model where the prey birth fraction (ks) is periodic, such as 
follows:

 ks = f + a cos(p × t), where f, a, and p are constants;  
  0 < a < f; 0 < f; and t is time.

 Note that a is the a’”‘itude; the ”eri“d is 2π/p; and addition of f raises the 
graph of a cos(pt) by the amount f. (For a more detailed discussion, see the 
section “Trigonometric Functions” of Module 8.2, “Function Tutorial.”) Have 
a table of population numbers, a graph of populations versus time, and a 
graph of one population versus the other. Determine values for the parame-
ters so that the system is periodic, and then determine values where the sys-
tem is chaotic. Discuss your results. 

2. Using system dynamics software or a computer program, model the preda-
tor-prey example, including crop consumption discussed in the Historical 
Note about the Chinese Cultural Revolution.

dell
Highlight
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3. Develop a predator-prey model where humans hunt both predator and prey 
equally. For example, the predator might be sharks and the prey tuna. 

 a.  Mathematically solve for the equilibrium point. 
 b.  Run the ’“de‘ f“r severa‘ situati“ns assu’ing n“ ishing. Using th“se 

sa’e situati“ns, gradua‘‘y increase the a’“unt “f ishing (the rate “f catch-
ing shar— and tuna), but —ee” this rate ‘ess than the ”rey birth rate. Because 
these simulations are run with a time scale of months, consider the human 
”“”u‘ati“n t“ be c“nstant, but vary the a’“unt “f ishing. Rec“rd a‘‘ y“ur 
results. What happens to the number of prey and predators? Why? Use 
well-written discussions with supporting work from your model.

 c.  C“ntinue increasing the a’“unt “f ishing. At what ‘eve‘ “f ishing d“ the 
predators all die? How does this level compare to the prey birth rate? 
Using the equilibrium point from Part a, discuss why.

 d.  A‘ter y“ur ’“de‘ t“ have seas“na‘ ishing. Use a f“r’u‘a f“r the rate “f 
ishing eff“rt si’i‘ar t“ that in Pr“–ect 1. Run the ’“de‘ f“r severa‘ situa-
tions. Discuss your results.

4. Implement the model of Exercise 2. Graph the populations as time pro-
gresses. Also, graph one population against the other. Run the model for sev-
eral carrying capacities. Discuss the results. Compare this system to the one 
without a carrying capacity.

5.  Are the two sets of equilibrium points in Quick Review Question 4 stable? 
Discuss your answers and give supporting evidence.

6.  a.  Implement the model in Exercise 3 for the Antarctic, assuming the 
following:

  krill carrying capacity = 4×108 tons
  krill birth rate = 5%
  blue whale growth rate = 10%
  yearly consumption of krill by a blue whale = 115 to 450 tons
  rate of blue whale consumption of krill = 1%

   Assume there are initially 5000 blue whales and 3 × 108 tons of krill and  
n“ “ther ani’a‘ eats —ri‘‘. Discuss y“ur resu‘ts (M“ri and Butterw“rth 2005).

 b.  Find the equilibrium point. Run the model assuming an ecological disas-
ter kills 10% of the equilibrium level of whales and 80% of the equilib-
rium level of krill. Describe what happens.

 c.  Run the model assuming whales are almost hunted to extinction, to 1% of 
their equilibrium level. Describe what happens after hunting stops. De-
velop a table of how long it takes for the whales to return to equilibrium 
level starting with different initial amounts: 1%, 2%, . . ., 10% of equilib-
rium level.

Historical Note The situation in Project 3 was observed in the Mediterra-
nean Sea between 1914 and 1923. Li’ited ishing “ccurred dur-
ing W“r‘d War I. A‘th“ugh ishing increased after the war, s“ did 
the number of tuna.
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 7.  Suppose a rat population is growing logistically in an area of the city. At-
tempts to kill off the population through poisons or trapping are not 100% 
successful. Moreover, killing off half might cause the population to in-
crease rapidly. Alternatively, people could attempt to decrease the carrying 
capacity by cleaning up garbage and sealing trash containers. Develop 
models for each of the proposed solutions to the rat problem. Compare and 
contrast the proposals, and discuss the circumstances under which each is 
best. Make recommendations to the city.

 8.  In predator-prey systems, predators make two basic types of responses to 
increasing prey density. Predators may react by taking more prey or taking 
them faster. This response is normally quick and termed by ecologists to be 
a functional response. On the other hand, predators may also respond by 
increased levels of immigration (movement in) or through producing more 
offspring. This type of response is typically going to take more time. 

In 1959, the ec“‘“gist C. S. H“‘‘ing ”resented a c‘assiicati“n “f three 
types of predator functional responses determined by the proportion of prey 
c“nsu’ed (H“‘‘ing 1959). This and the next tw“ ”r“–ects inv“‘ve ’“de‘ing 
these types.

For this project, model a Type-I predator functional response: The 
predator consumes a constant proportion of prey, regardless of prey density 
(density-independent). Predation rate increases in a linear fashion, until the 
current population of predators achieves satiation. Few good examples 
exist, but one is a spider feeding on insects they trapped in its web. 

 9.  Model a Type-II predator functional response (see Project 8): the preda-
tor consumes less as it nears satiation, which determines the upper limit on 
consumption. In this type of response, prey handling time (TH) and search 
time (TS) are separated. Predators do not handle while they are searching 
and do not search while they are handling. Whatever time is necessary for 
handling decreases the time available for searching. Predation rate in-
creases more slowly as prey populations increase than it does in Type I. A 
peak occurs when predators are consuming prey as fast as they can search 
and eat them. A praying mantis preys on insect prey and must process its 
prey before it can hunt for more food. This type of response is described by 
the following disk equation (H“‘‘ing 1959):

predation rate = (Na/P)/T = aN/(1 + aTHN)

 where Na = prey attacked or killed, N = prey density, P = predator density, 
a = attack rate constant (= Na/T), T = time predators and prey exposed, 
TH = prey handling time, and (T = TS + THNa).

10. Model a Type-III predator functional response (see Pr“–ects 8 and 9): the 
predation increases slowly at low prey density, increases rapidly at higher 
densities, but levels off at satiation, even if prey density continues to increase. 
These predators also have separate handling and search times. This type of 
response is typical of predators that are generalists. They may use alternative 
prey as the prey densities of their primary prey decline. For instance, a hawk 
’ight switch t“ squirre‘s if s’a‘‘er r“dents beca’e scarce (H“‘‘ing 1959). 

11.  Where w“u‘d an herbiv“r“us ani’a‘ (e.g., rabbit, deer, etc.) it in the func-
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ti“na‘ res”“nse sche’es described in Pr“–ects 8, 9, and 10? Deve‘“” a 
model for this creature.

12.  If you have visited the coast of northern California, Washington State, or 
southeastern Alaska and spent any time looking out to sea, you have prob-
ab‘y seen a few ca”tivating, furry ani’a‘s swi’’ing, diving, and l“ating 
on their backs. These creatures are sea otters. Sea otters have extremely 
dense fur t“ —ee” the’ war’ in c“‘d Paciic waters, because they ‘ac— the 
layer of insulating blubber possessed by other marine mammals of that 
area. For the fur, these creatures were hunted to near extinction during the 
eighteenth century. The sea otters have survived many challenges during 
the intervening centuries. 

Sea otters are carnivorous and must also eat one-fourth to one-third of 
their body weight per day to maintain body temperature (adult males, 65 lb 
and adult females, 45 lb). Therefore, they spend much of their time (20% to 
60%) hunting for and eating food. Sea otters eat a variety of grazing ani-
mals, such as sea urchins, snails, crabs, abalone, mussels, and clams that 
live in the rich kelp forests along the coast. 

When sea otters are lost from a kelp forest, the grazing prey, particularly 
urchins, rapidly increase in numbers and feast on the kelp forests, sending 
them into decline. Kelp forests, some of the most highly productive com-
munities in the world, are extremely important, especially for sheltering 
and feeding ish and she‘‘ish c“’’unities. L“ss “f —e‘” resu‘ts in the ‘“ss 
of many species. Where otters have been reintroduced, the healthy kelp 
forests return. For the key role otters play in maintaining the richness and 
diversity of the ecosystem, they are termed keystone predators (NOAA; 
Otter Project). 

Model this situation and discuss the results.
13.  This project allows you to model the changes in species diversity using the 

intertidal community of Washington State. The intertidal zone, in this case, 
is a rocky area covered by seawater at high tide, but uncovered at low tide. 
The community structure described for this project is based on the commu-
nities as re”“rted by R. T. Paine during the 1960s (Paine 1966; Paine 1969). 
This community, like the kelp forest (see Project 12), has a keystone preda-
tor, the ochre sea star Pisaster ochraceus. This sea star can achieve a radius 
of 11 in. and is a voracious predator, preferring the delectable taste of mus-
sels. The rest of the community is made up of various species of algae (pri-
mary producers), mussels, clams, chitons, barnacles, crustaceans, and snails. 
The organisms that live in this zone are specialists, adapted for the condi-
tions that exist there. Thus, competition is intense. Following are the compo-
nents you should consider in developing your model, in addition to Pisaster.

Molluscs Molluscs  Crustacea  

(herbiv“res) (carniv“res) (i‘ter feeders) A‘gae

Katherina tunicata (grazer) Nucella Mitella Porphyra

Mytilus (i‘ter  feeder)  Balanus Neorhodamela

   Corralina
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 The following are the feeding relationships in this community:

Pisaster: feeds on Mytilus preferentially but will also feed on K. tunicata 
and Mitella, depending on prey densities.

Nucella: feeds on Mitella and Balanus.

K. tunicata: feeds on all species of algae listed.
Mytilus, Mitella, and Balanus: i‘ter f““d “ut “f the “cean water.
All the algae photosynthesize for energy and organic matter production.

 a.  Bef“re y“u try t“ ’“de‘ this c“’’unity, generate a diagra’ that re‘ates 
each of these organisms by feeding relationships. The following is the 
succession of changes that Paine found in the community, after excluding 
Pisaster from discrete areas of the intertidal zone:

Year 1: Mitella disappears, replaced by the other barnacle, Balanus.
Year 2: B“th barnac‘es disa””ear. Mytilus (mussel) out-competes and re-

places them. With no barnacles for food, the snail, Nucella, disappears. 
Mytilus begins crowding out the algae as well.

Years 3–6: Only Mytilus remains.

 b.  Given this scenario, what do you think the role of Pisaster is in this 
community?

 c.  Generate a model that describes community dynamics when Pisaster is 
present.

 d.  Generate a model that describes community dynamics when Pisaster is 
removed.

Answers to Quick Review Questions

1. a. deaths
 b. the product of the number of predators and the number of prey
 c. the number of prey
 d. advantageous 
 e. the product of the number of predators and the number of prey
 f. the number of predators
2. a. ∆y

 b. D. 0.01
 c. A. 2
 d. E. 1.06
 e. B. 0.02
 f. H. 15
 g. G. 100
3. 6 mo
4. a. ds/dt = 0 and dh/dt = 0
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 b.  s = 106 and h = 100. The following discussion derives the solution. We 
wish to solve the following system of equations:

 0 = 2s – 0.02hs

 0 = 0.01sh – 1.06h

 Because s ≠ 0, we can cance‘ “ut the fact“r s in the irst equati“n t“ “btain 
0 = 2 – 0.02 h . Thus, h = 2/0.02 = 100 hawks (predators). Similarly, because 
h ≠ 0, we can cance‘ “ut the fact“r h in the second equation to obtain 
0 = 0.01s – 1.06. Thus, s = 1.06/0.01 = 106 squirrels (prey). See the section 
on “Equilibrium and Stability” in Module 2.3, “Constrained Growth” for a 
discussion of equilibrium.
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MODULE 4.3

Modeling the Spread of SARS— 
Containing Emerging Disease

Downloads

The text’s website has SIR and SARSRelationships i‘es, which c“ntain ’“de‘s f“r 
the examples of this module, available for download for various system dynamics 
tools.

Introduction

Imagine being a college student in New York City and being told not to leave the 
city. That s what ha””ened in 2003 in Bei–ing, when th“usands “f ”e“”‘e were “r-
dered t“ stay h“’e and c“‘‘ege students were t“‘d t“ stay in Bei–ing. Quarantine 
procedures were instituted for those who were thought to have had “intimate con-
tact” with others who showed signs of a new rapidly spreading respiratory disease. 
More than 40 had died in the capital, and thousands of people in China were display-
ing sy’”t“’s “f this ”neu’“nia. I’agine the fee‘ings “f fear and ”anic that Bei–ing 
residents ’ust have had ”e“”‘e in ’as—s, disinfecting their h“’es, and h“arding 
of food and other necessities. 

This new disease was called SARS, severe acute respiratory syndrome, with 
the irst case “ccurring “n N“ve’ber 16, 2002, in s“uthern China. Chinese hea‘th 
“ficia‘s re”“rted the “utbrea— t“ the W“r‘d Hea‘th Organizati“n (WHO) “n Febru-
ary 11, 2003. By A”ri‘ 2, the t“ta‘ re”“rted cases “f SARS were 2000; and by Ju‘y, 
the count was over 8400 with more than 800 dead. In response to the initial report, 
WHO coordinated the investigation into the cause and implemented procedures to 
control the spread of this disease. The control measures were extremely effective, 
and the last new case was reported on June 12, 2003 (WHO).

By the third wee— in March severa‘ ‘ab“rat“ries w“r‘dwide had identiied the 
”r“bab‘e causative agent SARS-CoV, the SARS coronavirus. Coronaviruses repre-
sent a large group of +-stranded RNA-containing viruses associated with various 
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respiratory and gastrointestinal illnesses. Although the human diseases associated 
with these viruses have been mild previously, this coronavirus is quite different. 
Like many respiratory pathogens, SARS is spread by close personal contact and 
perhaps by airborne transmission.

The Centers for Disease Control and Prevention (CDC) in the United States uses 
clinical epidemiological and laboratory criteria to diagnose SARS. Severe cases ex-
hibit a fever higher than 38 oC and “ne “r ’“re res”irat“ry sy’”t“’s dificu‘ty 
breathing, cough, or shortness of breath. Additionally, the person must show radio-
gra”hic evidence (‘ung ini‘trates) “f ”neu’“nia, “r respiratory distress syndrome 
(RDS). RDS is an inla’’at“ry disease “f the ‘ung, characterized by a sudden “nset 
“f ede’a and res”irat“ry fai‘ure. A few “thers qua‘iied if they exhibited an unex-
”‘ained res”irat“ry i‘‘ness that resu‘ted in death and an aut“”sy c“nir’ed RDS with 
n“ identiiab‘e cause. E”ide’i“‘“gica‘ evidence ’ight inc‘ude c‘“se c“ntact with a 
known SARS patient or travel to a region with documented transmission within 10 
days “f “nset “f sy’”t“’s. T“day, ‘ab“rat“ry tests c“nir’ SARS if they revea‘ “ne 
of the following (CDC):

• Antibody to SARS virus in specimens obtained during acute illness or more 
than 28 days after onset of illness

• SARS viral RNA detected by RT-PCR
• SARS virus

On July 5, 2003, the World Health Organization declared that SARS had been 
contained. The outbreak resulted in 812 deaths, but the toll might have been much 
higher if WHO and other health agencies had not acted so quickly and effectively 
(WHO). Besides the direct effect “n the victi’s and their fa’i‘ies, SARS beca’e a 
major drag on the economies of China, Taiwan, and Canada. Hong Kong’s unem-
ployment rate climbed to an unprecedented 8.3%, and travel warnings for Toronto 
cost Canada an estimated $30 million per day. One can only imagine the impact of 
this disease being spread into Africa, where there are poor healthcare systems and 
the astronomical HIV infection rates generate immunologically compromised 
populations.

SARS is an interesting disease for modeling, particularly because there is so 
much epidemiological information. We still have much to learn about SARS, and we 
still have no available, effective treatment. 

SIR Model

Bef“re deve‘“”ing a ’“de‘ f“r the s”read “f SARS, we c“nsider the si’”‘er situa-
tion of a disease in a closed environment in which there are no births, deaths, immi-
grati“n, “r e’igrati“n. A 1978 British Medical Journal article reported on such a 
situati“n inluenza at a b“ys  b“arding sch““‘. On January 22, “n‘y “ne b“y had 
the lu, which n“ne “f the “ther b“ys had ever had. By the end “f the e”ide’ic “n 
February 4, 512 “f the 763 b“ys in the sch““‘ had c“ntracted the disease (Murray 
1989; NCSLIP).

T“ ’“de‘ this s”read “f inluenza, we e’”‘“y the SIR Model, which W. O. Ker-
’ac— and A. G. McKendric— deve‘“”ed in 1927 (Ker’ac— and McKendric— 1927). 
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Many systems models of the spread of disease, including the SARS model later in 
this module, are extensions of the SIR Model. The name derives from the following 
three populations considered:

Susceptibles (S) have no immunity from the disease.
Infecteds (I) have the disease and can spread it to others.
Recovereds (R) have recovered from the disease and are immune to further in-

fection.

The model gives the differential equation for the rate of change for each of these 
populations. We assume that after a certain amount of time, an individual with the 
lu rec“vers. Thus, the rate “f change “f the nu’ber “f rec“vereds is ”r“”“rti“na‘ t“ 
the number of infecteds. 

Quick Review Question 1

With the constant of proportionality being the recovery rate (a), give the differential 
equation for the rate of change of the number of recovereds.

As the answer to Quick Review Question 1 states, the differential equation for the 
rate of change of the number of recovereds is dR/dt = aI for recovery rate a. If the 
time unit is in days and d is the number of days that someone remains infected, we can 
consider a to be 1/d. F“r exa’”‘e, if a b“y is usua‘‘y sic— with the lu f“r 2 days, then 
d = 2 and a = 0.5/day, so that approximately half the infected boys get well in a day.

A susce”tib‘e b“y at the b“arding sch““‘ bec“’es infected with inluenza by hav-
ing contact with an infected boy. The number of such possible contacts is the prod-
uct of the sizes of the two populations, SI. For example, suppose the set of suscepti-
bles is S = {Joe, Lee, Orlando} and the set of infecteds is I = {Hondre, Leslee}. As 
Figure 4.3.1 illustrates, (3)(2) = 6 possible interactions exist between pairs of boys in 
different sets. The virus in Hondre can spread through contact to Joe, Lee, and Or-
lando. Similarly, Joe can become infected with the virus from Hondre or Leslee. 
With no new students entering the school, the number of susceptibles can only de-
crease, and the rate of change of the number of boys in this set is directly propor-
tional to the number of possible contacts, SI, between susceptibles and infecteds. 

Model: In the SIR model, recovery rate = 1/(number of days infected). 

Joe

Lee

Orlando

Hondre

Leslee

Figure 4.3.1 Possible contacts between S and I
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Quick Review Question 2

a. Is the rate of change of S positive, zero, or negative?
b. With r > 0 being the constant of proportionality, give a differential equation 

for the rate of change of S.

In Module 4.1, “Competition,” because of interactions, we modeled competitors’ 
death rates of change using the same proportionality to a product of population sizes. 
Similarly, in Module 4.2, “Predator-Prey Models,” considering contacts between 
predators and prey, we modeled predator births and prey deaths using the same type 
of product. Thus, three very different applications employ the same model for rates 
“f change where interacti“n “ccurs the ”r“duct “f a c“nstant and the tw“ interact-
ing population sizes.

As the answers to Quick Review Question 2 reveal, because of the interaction of 
susceptibles and infecteds in spreading the disease, we employ this model for the 
rate of change of susceptibles with respect to time: dS/dt = –rSI for positive constant 
of proportionality r. The constant r, called the transmission constant, relects the 
extent and the infectiousness of the disease and the interactions among the students. 
In the case of the boys’ school, we use 0.00218 per day. Thus, 0.00218 = 0.218% of 
the total number of possible contacts, SI, results in the disease being spread from one 
child to another. 

Notice how small the transmission constant (0.00218/day) is in comparison to the 
recovery rate (0.5/day). Also, recall in interactions for competition and predator-
prey, where a rate-of-change model involves a product of populations, the constant 
of proportionality is small in comparison to constants multiplied by only one popula-
ti“n. Brea—ing d“wn dS/dt another way helps to explain why the constant of propor-
tionality, here r = 0.00218 per day, is so small. For a sick child to pass the disease to 
someone else, the sick boy must come in contact with someone else, that person 
must be susceptible, and the interaction must result in the spread of the disease. 
Thus, the rate of change of S with respect to time (dS/dt) is minus the product of the 
mean number of contacts per day an infected has (k), the probability such a contact 
is with a susceptible, the probability that the disease is spread during such a contact 
(b), and the number of infecteds. Moreover, if N is the total population size (here 
763) and the gr“u” is we‘‘ ’ixed, then f“r an infected, the ”r“babi‘ity “f that c“ntact 
he has is with a susceptible is S/N, and the rate of change of S is as follows:

dS/dt = -k(S/N)bI = -(kb/N)SI = –rSI

Thus, the transmission constant r is (kb/N). For example, suppose on the average an 
infected child has 33.3 contacts per day and the probability that a contact results in 
the spread of the disease is 5% = 0.05. Then, for N = 763, the trans’issi“n c“nstant 
is r = (kb/N) = 0.00218. 

Model:  One model for the rate of change involving the interaction of con-
stituents with sizes A and B is cAB, where c is a constant.

dell
Highlight

dell
Highlight

dell
Highlight
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Note that this transmission constant, here 0.00218/day, is not the rate of infection. 
Suppose a report to the school’s principal after all are well states that 80% of the 
b“ys had had the lu. The 80% is “f the t“ta‘ ”“”u‘ati“n “f N = 763 b“ys, n“t “f the 
number of possible interactions, SI. Moreover, 80% of the susceptible boys do not 
bec“’e sic— in “ne day. If lu ‘asted in the sch““‘ f“r 3 wee—s, as the f“‘‘“wing 
shows, on the average 3.81% of the boys get sick in 1 day:

0 80

3

1

7

0 0381 3 81. . . %

weeks

week

days day day
× = =

We must be careful to be consistent in units, such as not mixing days and weeks, and 
to understand of what we are taking a percentage, such as of SI instead of S or N.

Returning to our model, only susceptibles become infected, and infecteds eventu-
ally recover. What I gains comes from what S has lost; and what I loses, R acquires. 
Thus, the differential equation for the rate of change of the number of infecteds is the 
sum of the negatives of the other two rates of change: 

dI/dt = –dS/dt – dR/dt

Quick Review Question 3

Give the differential equation for the rate of change of the number of infecteds in 
terms of S, I, R, the transmission constant (r), and the recovery rate (a).

Figure 4.3.2 presents a diagram for the SIR model with susceptibles, infecteds, 
and rec“vereds replacing the symbols S, I, and R, respectively, and with transmis-

sion_constant and rec“very_rate representing the constants of proportionality r and 
a, respectively. Some of the corresponding equations and constants for a particular 
simulation appear in Equation Set 4.3.1.

Equation Set 4.3.1

With basic unit of time of 1 day, some equations and constants for SIR model in 
Figure 4.3.2

susceptibles(0) = 762
transmission_constant = 0.00218

susceptibles
get sick

infecteds
recover

transmission rate recovery rate

recovereds

Figure 4.3.2 Diagram for the SIR model
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get_sick = transmission_constant * susceptibles * infecteds

infecteds(0) = 1
rec“very_rate = 0.5
rec“ver = rec“very_rate * infecteds

rec“vereds(0) = 0

The graphs of the three populations that result from running the simulation are in 
Figure 4.3.3. The number of susceptibles decreases s‘“w‘y at irst bef“re ex”erienc-
ing a rapid decline and subsequent leveling. In contrast, the number of rec“vereds, 
which is initially 0, has a graph that appears similar to the logistic curve. When the 
number of susceptibles decreases sharply, the infecteds increase to their maximum. 
Afterwards, as the number of infecteds decreases, the number of rec“vereds rises. 
A‘th“ugh n“t ’i’ic—ing the ina‘ nu’bers exact‘y, this ’“de‘ d“es ca”ture the trend 
of the data along with the epidemic increase and decrease and the progress towards a 
steady state.

3. 5 7. 0 10. 5 14. 0 
t 

259 

762 

S 

I 

R 

population

Figure 4.3.3 Graphs of susceptibles (S), infecteds (I), and rec“vereds (R) versus time (t) in 
days

Quick Review Question 4

Answer the following questions referring to Figure 4.3.3.

a. On what day was the number of cases the largest?
b. On what day were most of the boys sick or recovered?
c. On what day were most of the boys recovered?

SARS Model

Marc Lipsitch in collaboration with others developed a model for the spread of se-
vere acute respiratory syndrome (SARS) and used the model to make predictions 
on the impact of public health efforts to reduce disease transmission (Lipsitch et al. 
2003). Such efforts included quarantine of exposed individuals to separate them 
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fr“’ the susce”tib‘e ”“”u‘ati“n, ”erha”s by c“nine’ent t“ their h“’es, and isola-
tion of those who had SARS to remove them to strictly supervised hospital areas with 
no contacts other than by healthcare personnel. The Lipsitch model is an extension of 
the SEIR ’“de‘, which is a reine’ent “f the SIR ’“de‘. Besides the ”“”u‘ati“ns 
considered by SIR, the SEIR Model (susceptible-exposeds-infecteds-recovereds) 
has an intermediate exposed (E) population of individuals who have the disease but 
are n“t yet infecti“us. The Li”sitch ’“de‘ ’“diies SEIR t“ a‘‘“w f“r quarantine, 
isolation, and death. The modelers make the following simplifying assumptions:

1. There are no births.
2. The only deaths are because of SARS.
3. The number of contacts of an infected individual with a susceptible person is 

constant and does not depend on the population density.
4. For susceptible individuals with exposure to the disease, the quarantine pro-

portion (q) is the same for non-infected as for infected people.
5. Quarantine and isolation are completely effective. Someone in quarantine or 

isolation cannot spread disease or, in the case of a susceptible, cannot catch 
the disease.

The populations considered are as follows:

susceptible (S) do not have but can catch SARS from infectious individuals.
susceptible_quarantined (SQ) do not have SARS, quarantined because of expo-

sure, so cannot catch SARS.
exposed (E) have SARS, no symptoms, not yet infectious. 
exposed_quarantined (EQ) have SARS, no symptoms, not yet infectious, quaran-

tined because of exposure.
infectious_undetected (IU) have undetected SARS, infectious.
infectious_quarantined (IQ) have SARS, infectious, quarantined, cannot  

transmit. 
infectious_isolated (ID) have SARS, infectious, isolated, cannot transmit.
SARS_death (D) are dead due to SARS.
rec“vered_i’’une have recovered from SARS, immune to further infection.

Because we are assu’ing that quarantine is c“’”‘ete‘y effective, “n‘y s“’e“ne in 
the susceptible (S) category can catch SARS, and transmission to a susceptible can 
occur only through exposure to an individual in the infectious_undetected (IU) cate-
gory. Those with SARS in other categories are under quarantine or isolation or are 
not yet infectious. 

Quick Review Question 5

After completing this question and before continuing in the text, we suggest that you 
’a—e a diagra’ with st“c—s (b“x variab‘es) and l“ws “n‘y t“ re”resent ”“ssib‘e 
transitions between categories. For each of the following, give the possible 
category(ies):

a. Flows out of S into what categories?
b. Flows into S from what categories?
c. Flows into D from what categories?
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Without inclusion of converters and connectors, Figure 4.3.4 displays a diagram 
with the st“c—s that re”resent these ”“”u‘ati“ns a‘“ng with the l“ws between the’. 
As illustrated, a susceptible individual who has had contact with someone having 
SARS and has moved from the susceptible group can be quarantined with or without 
the disease (to exposed_quarantined or susceptible_quarantined, respectively) or can 
be infected and not quarantined (to exposed). A susceptible, quarantined person who 
does not have SARS (in susceptible_quarantined) eventually is released from quaran-
tine (to susceptible). An exposed but not yet infectious individual who does have 
SARS, whether quarantined or not (in exposed_quarantined or exposed, respec-
tively), eventually becomes infectious (to infectious_quarantined or infectious_unde-

tected, respectively). Regardless of quarantine status, an infectious individual can re-
cover (to rec“vered_i’’une), go into isolation after discovery (to infectious_isolated), 
or die (to SARS_death). Isolated patients who are sick with SARS can recover or die.

Quick Review Question 6

Using this model, indicate if each of the following situations is possible or not:

a. A susceptible person dies of SARS.
b. A person who has undetected SARS in the early stages recovers without ever 

becoming infectious.
c. Someone in quarantine diagnosed with SARS recovers without going into 

isolation.
d. Someone who has recovered from SARS becomes infected with the disease 

again.
e. Someone is transferred from isolation to quarantine.

The model employs the following parameters:

b probability that a contact between person in infectious_undetected (IU) and 
someone in susceptible (S) results in transmission of SARS

k  mean number of contacts per day someone from infectious_undetected (IU) 
has. By assu’”ti“n, the va‘ue d“es n“t de”end “n ”“”u‘ati“n density.

m per capita death rate
N0 initial number of people in the population
p fraction per day of exposed people who become infectious; this fraction ap-

plies to the transitions from exposed (E) to infectious_undetected (IU) and 
from exposed_quarantined (EQ) to infectious_quarantined (IQ). Thus, 1/p is 
the number of days in the early stages of SARS for a person to be infected 
but not infectious.

q fraction per day of individuals in susceptible (S) who have had exposure to 
SARS that go into quarantine, either to category susceptible_quarantined 
(SQ) or to exposed_quarantined (EQ) 

u fraction per day of those in susceptible_quarantined (SQ) who are allowed 
to leave quarantine, returning to the susceptible (S) category; thus, 1/u is the 
number of days for a susceptible person to be in quarantine.

v  per capita recovery rate; this rate is the same for the transition from cate-
gory infectious_undetected (IU), infectious_isolated (ID), or infectious_

quarantined (IQ) to category rec“vered_i’’une.
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Figure 4.3.4 Initial diagram of relationships for SARS

w  fraction per day of those in infectious_undetected (IU) who are detected and 
isolated and thus transferred to category infectious_isolated (ID)
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Quick Review Question 7

a. Suppose it takes an average of 5 days for someone who has SARS but is not 
infectious to progress to the infectious stage. Give the value of p along with 
its units.

b. Give the formula for the rate of change of exposed individuals who are not 
quarantined to move into the phase of being infectious and undetected, from 
E to IU.

c. Give the formula for the rate of change of exposed individuals who are quar-
antined to move into the phase of being infectious and quarantined, from EQ 
to IQ.

d. Suppose 10% of the people who have been in quarantine but who do not have 
SARS are allowed to leave quarantine each day. Give u and the average 
number of days for a susceptible person to be in quarantine.

e. Suppose the duration of quarantine is 16 days. If someone has not developed 
symptoms of SARS during that time period, he or she may leave quarantine. 
Give the corresponding parameter and its value.

f. Give the formula for the rate of change of susceptible, quarantined individu-
als leaving quarantine, from SQ to S.

As illustrated in Figure 4.3.4, three paths exist for someone to leave infectious_

undetected (IU) t“ rec“vered_i’’une at a rate of v, to SARS_death at a rate of m, 
or to infectious_isolated (ID) at a rate of w. Thus, the total rate of change to leave 
infectious_undetected (IU) is (v + m + w)/day. For example, if v = 0.04, m = 0.0975, 
and w = 0.0625, v + m + w = 0.2/day. In this case, 1/(v + m + w) = 5 day is the aver-
age duration of infectiousness.

By assu’”ti“n, k is the number of contacts an undetected infectious person has, 
regardless of population density. Thus, with N0 being the initial population size, k/N0 
is the fracti“n ”er day “f such c“ntacts. Because b is the probability of transmitting 
the disease, the product (k/N0)b is the transmission constant. As in the SIR model, 
the product IUS gives the total number of possible interactions. Thus, (k/N0)b 

IUS = kbIUS / N0 is the number of new cases of SARS each day. Of these new cases, a 
fraction (q) go into category exposed_quarantined (EQ), while the remainder, the 
fraction (1 – q), go into exposed (E).

Quick Review Question 8

a. Suppose k = 10 contacts/day, and N0 = 10,000,000 people. Give the percent-
age of contacts per day.

b. Suppose 6% of contacts between an infectious and a susceptible person re-
sult in transmission of the disease. Give the corresponding parameter, its 
value, and units. 

c. Using your answers to Parts a and b, what percentage of all possible contacts 
results in transmission of SARS each day?

d. If the sizes of infectious_undetected (IU) and susceptible (S) are 5000 and 
9,000,000, res”ective‘y, give the t“ta‘ nu’ber “f ”“ssib‘e c“ntacts.
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e. Using your answers to Parts c and d, give the number of contacts per day that 
result in transmission of SARS.

f. Suppose q = 0.1 = 10% of the individuals who have had contact with an in-
fectious person go into quarantine. Give the number of those from Part e who 
go into exposed_quarantined (EQ).

g. Give the formula for the rate of change from susceptible (S) to exposed_

quarantined (EQ).
h. Assuming q = 0.1, give the number of those from Part e who go into exposed 

(E).
i. Give the formula for the rate of change from susceptible (S) to exposed (E).

For those transferring from susceptible (S) to susceptible_quarantined (SQ), al-
though they have been exposed to an infectious person, the disease was not transmit-
ted to them. The fraction of total possible contacts, IUS, is (k/N0), and the probability 
of nontransmittal is (1 – b). Thus, the total number of nontransmission contacts is  
(k/N0)(1 – b)IUS = k(1 – b)IUS / N0. However, only a fraction (q) of those go into 
quarantine. Thus, the rate of change of those going from susceptible (S) to suscepti-

ble_quarantined (SQ) is qk(1 – b)IUS / N0.

Quick Review Question 9

Using the values from Quick Review Question 8, determine the rate of change of 
those going from susceptible (S) to susceptible_quarantined (SQ).

Reproductive Number

Several exercises deal with the differential equations for this SARS model, and a 
project completes the model. In this model, an important value in evaluating the ef-
fectiveness of quarantine and isolation is the reproductive number R, which is the 
expected number of secondary infectious cases resulting from an average infectious 
case once the epidemic is in progress. The basic reproductive number, R0, is the 
initial reproductive number with one infectious individual and all others being sus-
ceptible. For example, if at the start of a disease in an area the infectious individual 
transmits SARS to a mean of three other people who eventually become infectious, 
then the basic reproductive number is R0 = 3. Such a number results in the alarming 
prospect of exponential growth of the disease. On the average, one person transmits 
infectiousness to three other people, who each cause three other people to become 
infectious, and so forth. In such a situation, at stage n of transmission, 3n new people 
would eventually become infectious. For example, at stage n = 13, 313, or more than 
1.5 ’i‘‘i“n, new ”e“”‘e, w“u‘d get sic—. Because “f such ex”“nentia‘ gr“wth, it very 
important that R be less than 1. With R < 1, there is no epidemic. For R > 1, there is 
an epidemic. The larger the reproductive number, the more virulent the epidemic.

For this SARS model, on the average, an undetected infectious person has k con-
tacts per day. At the beginning of the disease with all individuals except one being 
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susceptible, each such contact can result in the disease spreading. Thus, with a prob-
ability b of transmission, approximately kb secondary cases of SARS per day derive 
fr“’ the irst infecti“ns individua‘. Thus, f“r ’ean disease durati“n “f D days, the 
basic reproductive number, R0, is kbD. Because the average durati“n “f infec-
tiousness is 1/(v + m + w) da (see ex”‘anati“n after Quic— Review Questi“n 7), 
without quarantine being a factor, one infectious person eventually gives rise to 
R0 = kb/(v + m + w) secondary infectious cases of SARS. However, when a fraction, 
q, go into quarantine so that a fraction (1 - q) do not, the reproductive number is 

R
kb

v m w
q

0
1=

+ +
−( ) . The larger q is, the smaller R0 is, and the less severe the im-

pact of the disease is. 

Quick Review Question 10

Evaluate the basic reproduction number, R0, using the values of Quick Review  
Question 8 and text material: k = 10 contacts/da, b = 0.06, v = 0.04, m = 0.0975, 
w = 0.0625, and q = 0.1.

Examining R0, the death rate, and other factors, WHO and other health organiza-
tions realized that they must act quickly with bold measures involving quarantine 
and isolation to avoid a major, worldwide epidemic of SARS. Computer simulations 
with scenari“ ana‘yses veriied the seri“usness “f the disease. Than—s t“ aggressive 
actions, a terrible catastrophe was averted.

Exercises

1. Write the system of differential equations for the SIR model using a trans-
mission constant of 0.0058 and a recovery rate of 0.04.

Deinitions  The reproductive number R is the expected number of sec-
ondary infectious cases resulting from an average infectious case 
once the disease has started to spread. The basic reproductive 
number R0 is the expected number of secondary infectious cases 
resulting from one infectious individual in a completely suscepti-
ble population.

Model: A model of the basic reproductive number is as follows:

R0 = kbD

where k is the mean number of contacts an undetected infectious 
person has per time unit (such as day), b is the probability of dis-
ease transmission, and D is the mean duration of the disease.
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 In the SARS ’“de‘, give the differentia‘ equati“n f“r each rate “f change in 
Exercises 2 10.

2. dSQ /dt 3. dE/dt 4. dEQ /dt 5. dS/dt 6. dIU /dt

7. dID /dt 8. dIQ /dt 9. d(rec“vered_i’’une)/dt 10. dD/dt

11. a.  For basic reproductive number of R0 = 3, give the number of new people 
that will eventually become infectious at stage n = 10 of transmission of 
the disease.

 b.  Give the total number of people who will eventually become infectious.
 c. Repeat Part a for n = 15.
 d. Repeat Part b for n = 15. 

Projects

F“r additi“na‘ ”r“–ects, see M“du‘e 7.11, Fue‘ing Our Ce‘‘s Carb“hydrate Me-

tabolism”; M“du‘e 7.14, C“ntr“‘ Issues: The O”er“n M“de‘ ; and M“du‘e 7.15, 
“Troubling Signals: Colon Cancer.” 

1. Adjust the SIR model to allow for vaccination of susceptible boys. Assume 
that 15% are vaccinated each day, and make a simplifying assumption that 
immunization begins immediately. Discuss the effect on the duration and 
intensity of the epidemic. Consider the impact of other vaccination rates.

2. Adjust the SIR model to allow for vaccination of susceptible boys. Assume 
that 15% are vaccinated each day and that immunization begins after 3 days. 
Discuss the effect on the duration and intensity of the epidemic. Consider the 
impact of other vaccination rates.

3. Adjust the SIR model to allow for vaccination of susceptible boys. Assume 
that a‘‘ chi‘dren are vaccinated 2 days bef“re a b“y c“’es d“wn with the lu 
and that immunization begins after 4 days. Discuss the effect on the duration 
and intensity of the epidemic. Consider the impact of other vaccination rates.

4. Develop an SEIR model of disease.
5. Complete the Lipsitch SARS model introduced in the text. Have the model 

evaluate R. Produce graphs and a table of appropriate populations, including 
susceptible, rec“vered_i’’une, SARS_death, and the t“ta‘ “f the ive cate-
gories of infecteds. Employ the following parameters: k = 10/day; b = 0.06; 
1/p = 5 days; v = 0.04, m = 0.0975, and w = 0.0625, so that v + m + w =  
0.2/day and 1/(v + m + w) = 5 days; 1/u = 10 days; N0 = 10,000,000 people. 
Vary q from 0 upward. Note that in each case, the graph of the number of 
susceptibles appears logistic and the solution eventually reaches equilibrium. 
Describe the shapes of the graphs and discuss the results. 

6. After deve‘“”ing the ’“de‘ “f Pr“–ect 5, with a ixed va‘ue “f q, test other 
ranges of k from 5 to 20 per day. Discuss the results. 

7. After deve‘“”ing the ’“de‘ “f Pr“–ect 5, with a ixed va‘ue “f q, test other 
ranges of 1/(v + m + w) from 1 to 5 days.

8. Adjust the model of Project 5 so that the simulation is allowed to run for a 
while before quarantine and isolation measures that reduce R to below 1 are 
instituted. Discuss the implications on the number of people quarantined and 
on the health care system of not taking aggressive measures initially.
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 9. Complete the Lipsitch SARS model introduced in the text. Run the simula-
tion for various values of R0. Produce graphs and a table of appropriate 
populations, including susceptible, rec“vered_i’’une, SARS_death, and 
the t“ta‘ “f the ive categ“ries “f infecteds. Describe the shift “f the steady 
state as R0 becomes larger, and discuss the implications.

10. Deve‘“” a ’“de‘ “f stre” thr“at. Bacteriu’ Gr“u” A Streptococcus causes 
strep throat, which occurs most frequently in school-aged children. The bac-
terium spreads through direct or airborne contact with the mucus from an 
infected person. Symptoms start from 1 to 5 days after exposure and include 
fever, sore throat, and tender and swollen neck glands. If untreated, people 
with strep throat are infectious for 10 to 21 days. Usually, 24 h after antibi-
otic treatment, those who are ill are no longer contagious. The spread of 
strep throat can be minimized by infectious people covering their mouths 
when sneezing or coughing and by washing their hands frequently (IDEHA).

11. Develop a model of the viral infection mumps. Symptoms include painful 
and swollen salivary glands, painful swallowing, fever, weakness, fatigue, 
and a tender, swollen testicle. Infection is spread through breathing of in-
fected saliva droplets. About one-third of those with mumps experience no 
symptoms. If present, symptoms usually start 2 to 3 weeks after infection. 
The person is contagious from approximately 1 day before salivary gland 
swelling occurs and remains contagious for at least another 3 days. As the 
swe‘‘ing di’inishes, s“ d“es the degree “f the c“ntagi“n. Bef“re ‘icensing 
“f the ’u’”s vaccine in 1967, the United States had ’“re than 200,000 
cases per year. Since then, the country has had fewer than 1000 cases per 
year (Mayo Clinic Staff 2012). 

12. Diphtheria has been virtually eradicated in the United States because of a 
vaccine, which was intr“duced in the 1920s. Bef“re that ti’e, the United 
States had 100 to 200 cases per 100,000 people. The disease is still a prob-
lem in developing countries. Two types of diphtheria exist, respiratory and 
cutaneous. The former is more serious, and death results in about 10% of 
those cases. The disease is spread through respiratory droplets and from 
contaminated objects or food. The incubation period for the disease is usu-
a‘‘y 2 t“ 5 days. Deve‘“” a ’“de‘ f“r res”irat“ry di”htheria (NCBI).

13. Using data and mathematical models implemented in spreadsheets, the 
Dutch Ministry of Health, Welfare and Sports developed “a national plan to 
’ini’ize effects “f ”ande’ic inluenza.  Thr“ugh scenari“ ana‘ysis, scien-
tists examined various intervention options and estimated the number of 
hospitalizations and deaths. In the base case, in which no intervention was 
”“ssib‘e, they assu’ed 30% “f the ”“”u‘ati“n w“u‘d bec“’e i‘‘ with inlu-
enza. In the Inluenza Vaccinati“n Scenari“, they c“nsidered tw“ strategies: 

 1.  Vaccinate two risk groups, persons 65 years of age or older (N = 2.78 
million (M)) and healthcare workers (N = 0.80 M)

 2.  Vaccinate the total population (N = 15.6 M)

They assumed the vaccine to be 56% effective in preventing hospitaliza-
tions and deaths for the older at-risk group and 80% effective for those 
y“unger than 65. Deve‘“” a ’“de‘ f“r the irst strategy. With n“ interven-
ti“n, assu’e a h“s”ita‘izati“n rate (”er 100,000) f“r inluenza and inlu-
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enza-related illnesses of 125 (per 100,000) for persons 65 years of age or 
older and a rate (per 100,000) of 50 for the younger age group; and assume 
death rates (per 100,000) of 56 and15, respectively, for the two age groups. 
(In the actual study, scientists considered three age groups and a more in-
volved set of input variables; van Genugten et al. 2003)

14. Develop a model for the second strategy in Project 13.
15. Develop models for the two strategies in Project 13, discuss the results, and 

make recommendations.
16. Adjust a SIR model to have seasonal changes in infectiousness by having a 

”eri“dic functi“n f“r a trans’issi“n c“eficient (see Pr“–ect 1 in M“du‘e 
4.2, “Predator-Prey Model”). Discuss the results.

17. Repeat Project 16 for a SEIR model.
18. Obtain information and data about another infectious disease, where the 

disease spreads from one individual to another. Model at least one aspect 
of the spread of the disease, starting with one infected individual in a par-
ticular area. Run the model for various scenarios, produce graphs and ta-
bles, and discuss the results. The following are some suggested diseases: 
pinkeye in cattle (see “Introduction” in Module 11.2, “Agents of Interac-
tion: Steering a Dangerous Course”), rotavirus, pertussis, meningitis, bac-
terial/viral pneumonia, cold (rhinovirus), tuberculosis, various STD’s, im-
petigo, herpes (cold sores).

Answers to Quick Review Questions

1. dR/dt = aI

2. a. negative while people are getting sick because the number of susceptibles 
is decreasing

 b. dS/dt = –rSI

3. dI/dt = rSI - aI

4. a. day 7
 b. day 6
 c. day 8
5. a. E, EQ, SQ

 b. SQ

 c. IU, IQ, ID

6. a. no
 b. no
 c. yes
 d. no
 e. no
7. a. 0.2/day
 b. pE

 c. pEQ

 d. 0.1/day, 10 days
 e. u = 1/16 per day = 0.0625/day
 f. u SQ
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8. a. k/N0 = 10/10,000,000 = 0.000001 = 0.0001%/day
 b. b = 0.06/day
 c. (0.000001)(0.06) = 0.00000006 = 0.000006%/day
 d. (5000)(9,000,000) = 45,000,000,000
 e. (0.00000006)(45,000,000,000) = 2700
 f. (0.1)(2700) = 270 ”e“”‘e
 g. qkbIUS / N0

 h. (1  0.1)(2700) = (0.9)(2700) = 2430 ”e“”‘e; “r 2700  270 = 2430 ”e“”‘e
 i. (1 – q)kbIUS / N0

9. qk(1 – b)IUS / N0 = (0.1)(10)(1  0.06)(5000)(9,000,000)/(10,000,000) = 4230 
people

10. R0 = (1 – q)kb/(v + m + w) = (1  0.1)(10)(0.06)/(0.04 + 0.0975 + 0.0625) =  
2.7
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MODULE 4.4

Modeling a Persistent Plague: Malaria

Download

The text’s website has a malaria i‘e, which c“ntains the ’“de‘ “f this ’“du‘e, avai‘-
able for download for various system dynamics tools.

Introduction

How important to civilization can a mosquito-borne protozoan be? Unfortunately, 
we cannot ask the ancient Romans, but we do have some recent evidence that impli-
cates this tiny parasite in the fall of one of the mightiest empires of all time. Excava-
tions in a cemetery near Lugano, Italy, have uncovered at least one infant from AD 
450 that yielded the DNA of Plasmodium falciparum the dead‘iest “f a‘‘ the hu’an 
’a‘arias. Nearby, 50 “ther infants, wh“ a‘s“ sh“wed inger”rints “f this ”arasite, 
were buried in a relatively short period of time. 

The death of many infants would be expected during a malaria epidemic, partially 
because falciparum induces high rates of miscarriages and infant death. The mosqui-
t“es that trans’it ’a‘aria l“urish in ’arshy areas f“und in the Tiber River va‘‘ey; 
and if malaria swept through Rome, the disease may indeed have contributed to its 
downfall. Even if Roman troops were not directly affected by disease, disruptions to 
the production and supply of food and war materials could have drastically impaired 
the military’s ability to protect Rome.

Interestingly, around the time the infant lived, Attila’s Huns were pillaging in the 
north of Italy en route to Rome. Although legend credits Pope Leo the Great with 
persuading Attila to withdraw, it is more likely that the presence of malaria in the 
city was even more convincing (Carroll 2001).

Malaria is a very old disease (probably prehistoric), originating in Africa, spread-
ing as humankind migrated to other lands. The disease gets its name from an Italian 
word for “bad air” (RPH).
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After more than 1500 yr, we still have mosquitoes and malaria. In fact, the WHO 
estimates that malaria sickens 216 million people, killing more than 655,000 of 
the’, each year that is a‘’“st 1800 ”er day. M“st “f these fata‘ities are a’“ng 
African children (WHO, World Malaria Report). In fact, 1 out of 20 African children 
die of malaria before the age of 5. (NetMark).

 So long as Woman has walked the earth,  

 ’a‘aria ’ay have sta‘—ed her.
 Duffy et a‘. 

Pregnant women and their developing young seem to be at special risk from in-
fection, which seems to have been true from the earliest human records (Duffy et al. 
2001). P. falciparum malaria in pregnant women is associated with high levels of 
’aterna‘ and feta‘ ’“rbidity and ’“rta‘ity (Desai et a‘. 2007). The ane’ia ass“ci-
ated with malaria infections results in approximately 10,000 maternal deaths and 
thousands of low-birth-weight infants. Up to 200,000 of such infants in Africa may 
die annually (ter Kuile and Rogerson 2008). 

Background Information 

A vector is an animal that transmits a pathogen, or something that causes a disease, 
to another animal. Mosquitoes are the only vectors for malaria, but only 60 out of the 
380 species of Anopheles mosquitoes can host malaria-causing Plasmodium (Ryan 
2008).

Three-ifths “f the fe’a‘e Anopheles mosquitoes, like their sisters of other lines, 
are dependent on blood meals to feed their maturing eggs. While sipping blood, a 
Plasmodium-infected female mosquito injects thread-shaped, infectious agents 
called sporozoites into her human host. Sporozoites circulate for a time and then 
enter the parenchymal cells of the liver to hide out from the immune system. Here, 
they live for 1 to 2 weeks, multiplying asexually to produce thousands of offspring, 
which mature into other invasive cells, merozoites. Eventually, all this activity 
causes the parenchymal cell to break open and release merozoites into the blood. In 
other malaria-causing parasites, P‘as’“diu’ vivax and “va‘e, some of the sporozo-
ites become dormant hypnozoites. Later, these mature to reinvade other liver cells, 
where they continue to produce more merozoites, causing recurring bouts with ma-
laria. Interestingly, the most deadly species, Plasmodium falciparum, does not pro-
duce these hypnozoites (Despommier et al. 2005; NIAID; Wiser).

Merozoites enter red blood cells to feed on the blood. They reproduce asexually 
to form more merozoites, which invade other red blood cells. This cycle continues 
unless stopped by the body’s defenses or medicine (NIAID).

While in the red blood cells, some merozoites mature into male and female ga-
metocytes. Upon release, these do not enter the red blood cells, but circulate, await-
ing transfer to the mosquito host. The female mosquito takes her blood meal from an 
infected host and simultaneously sucks up some of the gametocytes. 

In the mosquito’s stomach, the male gametocyte (sperm) and the female game-
tocyte (egg) fuse. The resulting oocyst divides to produce thousands of sporozo-
ites. The sporozoites migrate to the salivary glands of the mosquito awaiting their 
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journey into a vertebrate host. Figure 4.4.1 diagrams the life cycle of Plasmodium 

falciparum.

In Human
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sporozoites

male & female
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Figure 4.4.1 Life cycle of Plasmodium falciparum

Analysis of Problem

In the discussion that follows in this module, we consider the modeling process in-
volving malaria (see Module 1.2, “The Modeling Process”). We begin by analyzing 
the situation to identify the problem and understand its primary questions.

In this problem, we wish to investigate the progress of malaria. In particular, we 
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consider the relationships between human and Anopheles mosquito populations, 
both of which are necessary for the life cycle of Plasmodium. Thus, with a system 
dynamics model, we wish to study the changing numbers of various categories of 
humans and mosquitoes as time progresses.

Formulating a Model: Gather Data

Data “n ’a‘aria are “ften dificu‘t t“ ind and ’ay be unde”endab‘e. C“untries with 
high rates of malaria are also often desperately poor, and the effectiveness of data 
collection can vary dramatically from year to year. Moreover, climate can play a 
signiicant r“‘e, with the nu’ber “f cases “f ’a‘aria c“rre‘ating t“ ”eri“ds “f high 
rainfall. Also, the values associated with mosquitoes, such as numbers in each cate-
gory, birth and death rates, bite probabilities, and constants of proportionality, are 
usually not available. 

In a computational science study, such as of malaria, an interdisciplinary team 
approaches a problem from many directions. “Wet-lab” team members conduct ini-
tial experiments and, with their “dry-lab” counterparts, pose questions for the latter 
to consider in modeling. In formulating a model, the group may uncover the need for 
additional parameters, such as birth and death rates of anopheline mosquitoes. If not 
available from other sources, the team may decide to conduct additional experiments 
to collect data for empirical computations of such values.

Websites for the WHO, the U.S. Central Intelligence Agency (CIA), and other 
organizations do provide some enlightening and startling data concerning people. 
For example, the entire population of Malawi lives in malarious areas. In 2012, the 
population of Malawi was more than 16 million, with a birth rate of 40.42 births/1000 
population, a death rate of 12.84 deaths/1000 population, and a life expectancy of 
only 52.31 years (CIA 2012). According to the Kaiser Family Foundation, in 2010, 
there were 6,851,108 reported cases of malaria, thousands of which will result in 
death (KFF 2010). Pregnant women and children under the age of 5 are at particular 
risk. Infected mothers are more likely to miscarry or to experience intrauterine de-
mise, premature delivery, low-birth-weight neonates, and neonatal death. They are 
also more likely to develop anemia and/or die during delivery (Schantz-Dunn and 
N“ur 2009).

Formulating a Model: Make Simplifying Assumptions

F“r “ur irst ’“de‘ “f ’a‘aria, we ’a—e severa‘ si’”‘ifying assu’”ti“ns. We ’“de‘ 
the serious form of malaria that Plasmodium falciparum causes, in which relapses do 
not occur. In the model, we primarily consider the number of individuals in several 
categories of humans and mosquitoes and ignore Plasmodium. 

Quick Review Question 1

Considering the simplifying assumption in the preceding paragraph, give the major 
submodels of the malaria model.
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Because the ‘ife ex”ectancy “f a hu’an is ’uch greater than that “f a ’“squit“, 
we assume that the population of humans is closed with no births, no immigration, 
and no deaths except from malaria. We presume that as soon as a vector bites a 
human, the individual becomes a host. No immunity exists for uninfected individu-
als, and no incubation period occurs. Some human hosts eventually become immune 
and others die, while still others recover and become susceptible again. We ignore 
the chance of relapse. Deceased individuals pass from consideration in the model.

Because “f their re‘ative‘y sh“rt ‘ife ex”ectancy, we d“ c“nsider ’“squit“ births 
and deaths. We have the assumption that the death rates for infected and uninfected 
mosquitoes are identical. Similarly, we assume that all mosquitoes reproduce at the 
sa’e rate. At birth, a ’“squit“ is uninfected. As a si’”‘iicati“n f“r this irst versi“n 
of the model, we suppose that an infected mosquito immediately becomes a host that 
can infect humans. 

Quick Review Question 2

Based “n these assu’”ti“ns, ‘ist ’a–“r categ“ries “f “rganis’s f“r a ’“de‘. In a 
system dynamics diagram, we represent these categories, which can accumulate in-
dividuals, as stocks (box variables).

A‘s“, f“r si’”‘iicati“n in this versi“n “f the ’“de‘, exce”t where re‘evant interac-
tions between mosquitoes and humans occur, let us assume that the number of organ-
isms in each category (uninfected humans, human hosts, immune humans, uninfected 
mosquitoes, mosquito vectors) expands or contracts in an unconstrained manner. In 
such situations, constraints, such as competition for food or predators, do not exist. 

Formulating a Model: Determine Variables and Units

Based “n these si’”‘ifying assu’”ti“ns, we ’“nit“r three categ“ries “f hu’ans, 
employing the following variables with the basic unit being one person: 

uninfected_humans, who are susceptible to the disease
human_hosts, who have malaria and can infect mosquitoes that bite them
immune, who cannot get the disease again

For the mosquito submodel, as with the human submodel, we do not count the num-
ber of dead individuals. Consequently, assuming no incubation period for Plasmo-

dium, we consider the following two categories of mosquitoes: 

uninfected_mosquitoes, which do not carry Plasmodium 
vectors, which carry Plasmodium

We employ a day as the basic unit of time, t.

Quick Review Question 3

This question considers the relationships among these categories of humans and 
mosquitoes. After completing the question, we recommend that you develop a rela-



152 Module 4.4

tionship diagram with stocks (box variables) representing the categories and with 
a””r“”riate l“ws. Ma—ing the f“reg“ing si’”‘ifying assu’”ti“ns, give the requested 
l“w inf“r’ati“n by se‘ecting fr“’ the categ“ries uninfected_humans; human_hosts; 

i’’une; uninfected_’“squit“es; vect“rs; and undesignated “clouds,” such as for 
deceased humans, dead mosquitoes, and unborn mosquitoes:

a. Destinati“n(s) “f l“w(s) fr“’ uninfected_humans

b. S“urce(s) “f l“w(s) t“ uninfected_humans

c. Destinati“n(s) “f l“w(s) fr“’ human_hosts

d. S“urce(s) “f l“w(s) t“ immune

e. S“urce(s) “f l“w(s) t“ undesignated c‘“ud(s)  f“r deceased hu’ans 
f. Destinati“n(s) “f l“w(s) fr“’ uninfected_mosquitoes

g. S“urce(s) “f l“w(s) t“ uninfected_mosquitoes

h. S“urce(s) “f l“w(s) t“ vect“rs
i. Destinati“n(s) “f l“w(s) fr“’ vect“rs
j. S“urce(s) “f l“w(s) t“ undesignated c‘“ud(s)  f“r dead ’“squit“es 

Formulating a Model: Establish Relationships

Based “n bi“‘“gy “f the “rganis’s and the si’”‘ifying assu’”ti“ns, Figure 4.4.2 
presents a relationship diagram with the two major submodels for humans and mos-
quitoes, stocks (box variables) representing the three human and two mosquito cat-
eg“ries, and a””r“”riate l“ws between st“c—s. Arr“ws (c“nnect“rs) re”resent the 
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Figure 4.4.2 Relationship diagram
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impact of one population on the other. For example, the infected mosquito category 
(vect“rs) is a necessary component in an uninfected human becoming infected, a 
member of human_hosts. Similarly, for an uninfected mosquito to become to a vec-
tor, the former must bite a person in human_hosts.

Quick Review Question 4

One of the simplifying assumptions is that, except where interactions between mos-
quitoes and humans occur, the number of organisms in a category (stock or box vari-
able in Figure 4.4.2) exhibits unconstrained expansion or contraction. Give requested 
differential equations that utilize this assumption. Incorporate additional proportion-
ality constants as needed.

a. d(immune)/dt 
b. d(deceased_humans)/dt

c. rate of change from human_hosts to uninfected_humans

d. d(deceased_vect“rs)/dt

Formulating a Model: Determine Equations and Functions

Because we assu’e unc“nstrained gr“wth “r decay exce”t where interacti“ns be-
tween ’“squit“es and hu’ans “ccur, the f“‘‘“wing l“w equati“ns with c“nstants “f 
proportionalities in boldface correspond to proportionalities:

l“w_t“_i’’une = immunity_rate * human_hosts

human_host_deaths = malaria_induced_death_rate * human_hosts

rec“vered = recovery_rate * human_hosts

mosquito_births = mosquito_birth_rate * mosquitoes, where mosquitoes = unin-

fected_mosquitoes + vect“rs
uninfected_mosquito_deaths = mosquito_death_rate * uninfected_mosquitoes

vect“r_deaths = mosquito_death_rate * vect“rs

Because “n‘y uninfected ’“squit“es are b“rn and b“th categ“ries “f ’“squit“es  
reproduce, mosquito_births is proportional to the total number of mosquitoes. More-
over, we assume that the death rate is the same for uninfected mosquitoes and vec-
tors, so the last two equations have the same constant of proportionality, mosquito 

_death_rate.

Quick Review Question 5

Su””“se f“r a si’u‘ati“n that the change in ti’e (∆t) from one time step to another 
is 0.1 da.

a. Give the unit of measure for d(immune)/dt.
b. If at day 6 immunity_rate is 0.2, human_hosts is 500, and immune is 400, 

using the technique discussed in the section on “Difference Equation” from 
Module 2.2, “Unconstrained Growth and Decay,” estimate the number of im-
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mune people at day 6.1. (This technique is Euler’s method, which Module 
6.2 considers in greater detail.)

For uninfected humans, we have individuals entering from and exiting to the pop-
ulation of human hosts. The differential equation contains a positive term for a 
growth component with constant rec“very_rate while subtracting a decay term, as 
follows:

d(uninfected_humans)/dt = (rec“very_rate)(human_hosts) 
 –  (transmission_constant)(uninfected_humans) (1)

We can break transmission_constant into two factors, the probability that a 
human is bitten by a mosquito (prob_bit) and the probability that a mosquito is a 
vector (prob_vector). The product of these two probabilities forms the transmission 
constant. For example, if the probability that someone is bitten by a mosquito is 
60% = 0.60 and the probability that a mosquito is a vector is 20% = 0.20, then the 
probability that a human is bitten by a vector is (0.60)(0.20) = 0.12 = 12%. With no 
presumed immunity, the transmission constant is equal to this probability. Thus, the 
f“‘‘“wing differentia‘ equati“n relects a reine’ent “f Equati“n 1:

d(uninfected_humans)/dt = (rec“very_rate)(human_hosts) 
 –  (prob_bit)(”r“b_vect“r)(uninfected_humans) (2)

The probability of a vector is the quotient of the number of vectors (vect“rs) and 
the total number of mosquitoes (mosquitoes). Thus, we have the following equation:

”r“b_vect“r = vect“rs/mosquitoes

Substituting into Equation 2, the rate of change of uninfected_humans is as follows:

d(uninfected_humans)/dt = (rec“very_rate)(human_hosts) 
 –  (prob_bit)(vect“rs)(uninfected_humans)/mosquitoes 

Similar to the situation for humans, the rate of change from uninfected mosquito 
to vector is the product of a rate and uninfected_mosquitoes. Assuming that an unin-
fected mosquito that bites a human host always becomes infected, we again break 
the rate into two factors, the probability that the mosquito bites a human (prob_bite_

human) and the probability that a human is a host (prob_host). Thus, the differential 
equation for the rate of change from uninfected to infected mosquito (vect“r_f“r’a-

tion) is as follows: 

d(vect“r_f“r’ati“n)/dt = l“w_t“_h“st 
 =  (prob_bite_human)(prob_host)(uninfected_mosquitoes) (3)

The probability that a mosquito is a vector (”r“b_vect“r) and the probability  
that a human is a host (prob_host) are the connections between the models for hu-
mans and mosquitoes. For humans, being the total number of humans (uninfected_ 

humans + human_hosts + immune), we have the following identities:
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prob_host = human_hosts/humans

 = human_hosts/(uninfected_humans + human_hosts + immune)

Solving the Model

We can use a system dynamic tool to help model the spread of malaria, perform a 
simulation, and generate graphs and tables of the results. Figure 4.4.3 pictures a 
human submodel of the malaria model. A converter/variable, humans, stores the sum 
of the quantities in the three stocks (box variables) for humans. Other converters/
variables store constants of proportionality and probabilities. For example, immu-

nity_rate might store the constant 0.01 to indicate that the rate at which human hosts 
become immune from malaria is 1% a day. An initial value 1 for human_hosts would 
indicate that the human population has one human host at the start of the simulation. 

Quick Review Question 6

Consider Figure 4.4.3.

a. Give the number of terms in the differential equation for d(human_hosts)/dt.
b. Give the number of these terms that contribute to an increase in human_ 

hosts. 

The ’“squit“ sub’“de‘ in Figure 4.4.4 a‘s“ has f“ur l“ws, with ass“ciated c“n-
verters/variables for constants of proportionality and probabilities. Similar to the 
human submodel, a converter/variable, mosquitoes, contains the sum of the popula-
tions for uninfected_mosquitoes and vect“rs.
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Figure 4.4.3 Human submodel for a closed system
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Converters/variables for the probability of a vector (”r“b_vect“r) and the proba-
bility of a host (prob_host) a””ear in b“th sub’“de‘s and in c“‘“r in the igures. We 
calculate ”r“b_vect“r in the mosquito submodel and use it in the human submodel. 
Symmetrically, the calculation for prob_host is in the human submodel, while the 
mosquito submodel employs the result. 

Quick Review Question 7

Give the difference equation to estimate vect“rs(t) using the technique discussed in 
the section “Difference Equation” from Module 2.2, “Unconstrained Growth and 
Decay.”

We s”ecify a si’u‘ati“n ‘ength “f 200 days and ∆t = 0.0625 days with Euler’s 
method for the integration technique. Equation Set 4.4.1 shows parameters for one 
run of the simulation. We begin with equal numbers of uninfected mosquitoes and 
humans (300), no vectors or immune humans, and one human host. (However, we 
could change the units and consider, for example, the number of humans in the thou-
sands and the number of mosquitoes in the millions.) From such a small incidence, 
we hope to observe the dramatic spread of the disease to become an epidemic. In this 
run of the simulation, for humans we make the rates of immunity, recovery to being 
susceptible once more, and malaria death be 1%, 30%, and 0.5% per day, respec-
tively. We give the probability that a human is bitten by a mosquito or that a mos-
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quito bites a human as 30%/day. For a constant number of mosquitoes, we make 
their birth and death rates equal, in this case 1%/day.

Equation Set 4.4.1

Parameters for one run of the simulation:

uninfected_humans(0) = 300 
human_hosts(0) = 1 
immune(0) = 0 
prob_bit = 0.3
rec“very_rate = 0.3
immunity_rate = 0.01
malaria_induced_death_rate = 0.005
mosquito_birth_rate = 0.01
mosquito_death_rate = 0.01
vect“rs(0) = 0 
uninfected_mosquitoes(0) = 300 
prob_bite_human = 0.3

Verifying and Interpreting the Model’s Solution

Figure 4.4.5 ”resents the gra”hs “f the ive st“c—s, and a tab‘e “f va‘ues with a re-
porting interval of 1 day appears in Table 4.4.1. Over 80 days, we observe a dramatic 
drop from 300 to a minimum of about 24 uninfected mosquitoes and a corresponding 
rise fr“’ 0 t“ a ’axi’u’ “f ab“ut 276 vect“rs. Afterward, the nu’ber “f uninfected 
mosquitoes begins to increase, while the number of vectors drops. With equal birth 
and death rates, the population of mosquitoes holds constant at 300, which helps to 
verify the solution.

Figure 4.4.5 Graphs resulting from simulation with parameters of Equation Set 4.4.1 and 
time, t (da)
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Trailing the rapid increase in the number of vectors is a fast decrease in the num-
ber of uninfected humans and quick increase in the number of human hosts over 
ab“ut a 25-day ”eri“d. The nu’ber “f h“sts reaches a ’axi’u’ “f ab“ut 119 ab“ut 
day 55. Then, the number of hosts gradually falls, while the number of uninfected 
humans continues declining, but not as rapidly. Eventually, the two graphs appear 
almost parallel, while the graph of the number of immune humans increases in a 
concave-down fashion. 

Extending the length of the simulation to 1500 days, we obtain the graphs of Fig-
ure 4.4.6. The numbers of uninfected humans and human hosts approach zero, and 
most of the surviving humans are immune. The total number of humans is reduced 
by about one-third to around 200. With the number of vectors tending to zero, the 
vast ’a–“rity “f the ’“squit“es are uninfected. Because ’“st hu’ans are i’’une 
and almost no mosquito carries Plasmodium, malaria is virtually eradicated. 

The resu‘ts see’ reas“nab‘e under the assu’”ti“ns and si’”‘iicati“ns. H“wever, 
c“nsiderati“ns suggest severa‘ stages “f reine’ent.

We have extended the length of the simulation to more than 4 years and presumed 
no births or deaths from causes other than malaria for humans. Also, we have not 
considered the incubation period for Plasmodium. 

For another model we might consider a different form of malaria, in which an 
individual could have a relapse of the disease. Moreover, expectant mothers tend to 
have lower-birth-weight children and more miscarriages, which affects the birth and 
death rates for humans. Also, data show that children have a higher death rate from 

Table 4.4.1  
Table of Values Corresponding to Graphs of Figure 4.4.5

  Uninfected  Human  Uninfected   

Time Humans Hosts Immune Mosquitoes Vectors

0 300.00 1.00 0.00 300.00 0.00
10 299.34 1.53 0.09 297.52 2.48
20 292.08 8.20 0.48 286.58 13.42
30 261.42 35.96 2.41 239.30 60.70
40 199.40 88.69 8.61 136.33 163.67
50 156.09 116.17 19.16 59.11 240.89
60 136.89 117.66 30.97 32.17 267.83
70 125.57 111.74 42.46 25.29 274.71
80 116.63 104.46 53.28 24.15 275.85
90 108.70 97.25 63.36 24.65 275.35
100 101.44 90.44 72.75 25.65 274.35
110 94.72 84.08 81.47 26.86 273.14
120 88.48 78.16 89.58 28.19 271.81
130 82.67 72.65 97.12 29.62 270.38
140 77.28 67.53 104.13 31.13 268.87
150 72.27 62.77 110.64 32.73 267.27
160 67.61 58.35 116.69 34.41 265.59
170 63.27 54.25 122.32 36.19 263.81
180 59.24 50.43 127.56 38.06 261.94
190 55.49 46.88 132.42 40.03 259.97
200 52.00 43.58 136.94 42.10 257.90
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’a‘aria than “‘der hu’ans. C“nsequent‘y, “ther ’“de‘ reine’ents c“u‘d inv“‘ve 
expanding the number of human categories with varying death rates. Various proj-
ects c“nsider such reine’ents.

Exercises

1. Discuss ”“ssib‘e fact“rs that c“u‘d c“ntribute t“ the situati“n in which 90% 
of malaria cases occur in Africa, south of the Sahara.

2. Give a differential equation for the rate of change of human_hosts.
3. Give a differential equation for the rate of change of uninfected_mosquitoes.
4. Give a differential equation for the rate of change of vect“rs.

Projects

F“r additi“na‘ ”r“–ects, see M“du‘e 7.11, Fue‘ing Our Ce‘‘s Carb“hydrate Me-

tab“‘is’ ; M“du‘e 7.14, C“ntr“‘ Issues: The O”er“n M“de‘ ; and M“du‘e 7.15, 
“Troubling Signals: Colon Cancer.” 

1. Run the simulation for the following situations. Describe and explain the 
long-term results.

 a. Various initial values of stocks (box variables)
 b. Slightly higher birth rate than death rate for mosquitoes
 c. No human host and one vector
 d. Zero death rate for humans
 e. Probability that a human is bitten reduced by a factor of 10 to 3%
 f. Probability that a mosquito bites a human reduced by a factor of 10 to 3%
2. Reine the ’a‘aria ’“de‘ “f this ’“du‘e t“ acc“’’“date hu’an births and 

deaths.
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Figure 4.4.6 Simulation run for 1500 da
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3. Reine the ’a‘aria ’“de‘ “f Pr“–ect 2 “f this ’“du‘e t“ inc‘ude a st“c— (b“x 
variable) of tainted mosquitoes, who are infected but not yet vectors. In 
these mosquitoes, the Plasmodium protozoans are in incubation. 

4. Develop an alternative implementation of the model for Project 3 that em-
”‘“ys a c“nvey“r f“r the tainted ’“squit“es. Because we are c“nsidering 
births and deaths f“r ’“squit“es, the inl“w ’u‘ti”‘ier fr“’ the c“nvey“r t“ 
the stock of vectors is not 1. However, the value is not 1 – mosquito_death_

rate, which is 0.99 f“r a death rate “f 0.01, because the inl“w ’u‘ti”‘ier 
applies only to the number exiting the conveyor at that time step, not over 
the period of incubation. Consequently, you must employ the actual, accu-
mulated survival rate over the period of incubation as a multiplier. You can 
use mathematics or your system dynamics tool to compute the actual sur-
vival rate for the number exiting the conveyor.

Because we “n‘y re’“ve ’“squit“es fr“’ the c“nvey“r at the end “f the 
incubation period, using the number in the conveyor to calculate the total 
number of mosquitoes, mosquitoes, results in an overestimate for mosqui-

toes. Thus, for this project, assume a constant number of mosquitoes, so 
mosquitoes is the sum of the initial values of the various mosquito stocks.

5. Develop an alternative implementation of the model for Project 3 that em-
ploys a separate stock (block variable) for each day of incubation. A por-
tion (mosquito_death_rate) of the mosquitoes is siphoned off each day, and 
the re’ainder is transferred t“ the next day s st“c— “r, after the ina‘ day “f 
incubation, to the stock vect“r. 

6. Model malaria caused by P‘as’“diu’ vivax or “va‘e in which a human 
host can go into remission and have relapses.

7. Reine “ne “f the ”revi“us ’“de‘s t“ relect a seas“na‘ increase in the nu’-
ber of mosquitoes, such as in a rainy season (see Project 1 in Module 4.2, 
“Predator-Prey Model”).

8. Using one of the previous models, consider the effect on the epidemic of 
distribution of a prophylactic drug, such as Malazone, which travelers take 
to prevent malaria. Suppose everyone in the population takes the drug. In-
vestigate varying degrees of effectiveness. Such drugs are expensive, espe-
cially relative to the economy of populations in which malaria thrives. Dis-
cuss the practicality of such treatments.

9. Using one of the previous models, consider the effect on the epidemic of 
using insecticides to control the mosquito population. Investigate varying 
degrees of insecticide effectiveness. Discuss the practicality of such an ap-
proach relative to the ecosystem.

10. Starting with the model from Project 8, consider the effect on the epidemic 
of a combined approach consisting of distribution of a prophylactic drug, 
mosquito netting, and use of insect repellant and insecticides.

11. Reine a ’a‘aria ’“de‘ “f Pr“–ects 2 5 t“ c“nsider that a ”ers“n d“es n“t 
obtain permanent, complete immunity from malaria, but only temporary, 
partial immunity. 

12. Reine a ’a‘aria ’“de‘ by ex”anding the nu’ber “f hu’an categ“ries with 
varying contraction and death rates. In particular, data shows that falci-

parum is lethal to children under 5 years old. Each day, approximately 3000 
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children under the age of 5 die from malaria. In some of the worst areas, it 
is estimated that more than 40% of the toddlers die from the disease. More 
than 30% of the children in Africa get malaria by time they are 3 months 
old. However, approximately, one-eighth of the children in some countries 
of sub-Saharan Africa are born with sickle cell anemia, which makes it 
’“re dificu‘t f“r the’ t“ c“ntract ’a‘aria.

13. Because ’“thers are ’“re ‘i—e‘y t“ suffer ’a‘aria‘ re‘a”ses during ”reg-
nancy, malaria is an important cause of low weight births and stillbirths. 
More than half of the miscarriages in endemic areas are caused by malaria. 
Ad–ust the ’“de‘ f“r Pr“–ect 12 t“ relect this inf“r’ati“n.

14. Adjust one of the earlier models to have constrained growth with a carrying 
capacity for humans and a carrying capacity for mosquitoes. Examine and 
discuss the effects of these changes. A logistic equation can model such 
constrained growth (see Module 2.3, “Constrained Growth”). 

15. Obtain information and data about another infections disease, where the 
disease spreads through a vector. Model at least one aspect of the spread of 
the disease, starting with one infected individual in a particular area. Run 
the model for various scenarios, produce graphs and tables, and discuss the 
results. The following are some suggested diseases: West Nile virus, Lyme 
disease, Chagas’ disease, bubonic plague, typhus.

16. Repeat Project 16 for a zoonotic disease, which can spread from one animal 
species to another. The following are some suggested diseases: Nipah virus, 
hantavirus, avian lu, rabies, tu‘are’ia.

Answers to Quick Review Questions

1. humans and mosquitoes
2. uninfected humans, human hosts, immune humans, uninfected mosquitoes, 

mosquito vectors
3. a. human_hosts

 b. human_hosts

 c.  uninfected_humans, immune, and undesignated “cloud” for deceased 
humans

 d. human_hosts

 e. human_hosts

 f. vect“rs and undesignated “cloud” for dead mosquitoes 
 g. undesignated “cloud” for unborn mosquitoes
 h. uninfected_mosquitoes

 i. undesignated “cloud” for dead mosquitoes
 j. uninfected_mosquitoes and vect“rs
4. a. d(immune)/dt = immunity_rate * human_hosts

 b. d(deceased_hu’ans)/dt = malaria_induced_death_rate * human_hosts

 c.  rate of change from human_hosts to uninfected_humans = rec“very_rate 
* human_hosts

 d. d(deceased_vect“rs)/dt = mosquito_death_rate * vect“rs
5. a. people per day
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 b.  410 because immune(6.1) = immune(6) + immunity_rate * human_hosts(6) 
* ∆t = 400 + (0.2)(500)(0.1) = 400 + 10 = 410

6. a. 4, “ne f“r each l“w entering “r ‘eaving the st“c— human_hosts

 b. 1, because “n‘y “ne l“w enters the st“c— human_hosts.
7. vect“rs(t) = vect“rs(t  ∆t) + (infected – vect“r_deaths) * ∆t
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MODULE 4.5

Enzyme Kinetics: A Model of Control

Download

The text s website has the i‘e substrate, which contains a submodel for this module, 
available for download for various system dynamics tools.

Introduction

Enzymes catalyze, or hasten, chemical reactions for biological systems. Although 
most enzymes are proteins, there are some RNA enzymes as well. They are remark-
ab‘y ada”ted f“r this r“‘e, because in ’inute quantities they are very s”eciic and can 
be quite active. Enzy’es d“ n“t inluence the directi“n “f the reacti“n. Unchanged 
by the reaction, they can be used over and over again. Without them, even spontane-
ous reactions would not proceed fast enough to support living cells. Enzymes can 
increase the rate of reaction by a factor of up to 1020. Additionally, they are “regulat-
able” by both physical and chemical factors. Many biochemists study the activities 
of enzymes and the factors that regulate enzyme activity.

Archiba‘d Garr“d (1902), studying the disease alkaptonuria, proposed that the 
instructi“ns f“r ”r“ducing s”eciic enzy’es in the ce‘‘ were inherited. He e‘ab“rated 
on his work in his Inborn Errors of Metabolism, ”ub‘ished in 1923 (Garr“d 1923). 
Essentially, his hypothesis was that diseased individuals lacked a normal enzyme in 
the catab“‘is’ “f ”r“teins. This enzy’e deiciency resu‘ted fr“’ receiving “ne reces-
sive gene fr“’ each ”arent. Later investigati“n c“nir’ed that a‘—a”t“nurics ‘ac— the 
activity of homogentisate dioxygenase. This enzyme normally converts homogentis-
ate, one of the intermediate compounds in the breakdown of the amino acid tyrosine, 
into maleylacetoacetate. Hence, homogentisate accumulates in and darkens various 
body tissues (e.g., bone, skin, prostate), causing symptoms of arthritis. Some is elimi-
nated in the urine, which turns dark if allowed to stand. We now understand the bases 
of many metabolic diseases, which are consequences of defective enzymes. 

All the attention to metabolic diseases has catalyzed great interest in enzymes and 
how they work. One area of focus has been on the rate of enzyme activity and its 
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control. The quantitative study of enzyme behavior is enzyme kinetics. Using math-
e’atica‘ a””r“aches we can exa’ine the fact“rs that inluence the rate “f an enzy-
matic reaction. Commonly, we consider things like substrate concentration, enzyme 
concentrations, cofactors, inhibitors, pH, and temperature. 

Enzymatic Reactions

We begin by considering a simple reaction in which a substrate, S, in the presence 
of an enzyme, E, converts to one product, P. (Not all reactions involve breaking 
one substrate into parts; some combine or rearrange.) In their seminal work, bio-
chemist Leonor Michaelis and physician Maud Menten hypothesized that the en-
zyme catalyzes the reaction by interacting with the substrate to form an intermediate 
enzyme-substrate complex, ES (Michae‘is and Menten 1913). This c“’”‘ex un-
dergoes a catalytic reaction to form the enzyme E and the product P. The following 
diagram represents the situation where k1, k2, k3, and k4 are rate constants, and Figure 
4.5.1 depicts the enzyme reaction in the forward direction:

E + S ES E + P
k

k

k

k

1

2

3

4

 →
← 

 →
← 

Thus, Reaction 1 for the chemical reactions indicates the following about the rate 
constants:

• k1 rate “f change “f substrate S in the ”resence “f enzy’e E t“ inter’ediate 
enzyme-substrate complex ES

• k2 reverse reacti“n rate “f change “f inter’ediate enzy’e-substrate c“’-
plex ES back to substrate S and enzyme E

• k3 rate “f change “f inter’ediate enzy’e-substrate c“’”‘ex ES t“ ”r“duct P 
and enzyme E

• k4 reverse reacti“n rate “f change “f ”r“duct P and enzy’e E bac— t“ inter-
mediate enzyme-substrate complex ES

As Figure 4.5.1 illustrates with the forward reaction, one molecule of substrate 
(S) combines with one molecule of enzyme (E) to form a molecule of the enzyme-
substrate complex (ES), which then dissociates, or breaks apart, into a molecule of 
enzyme and a molecule of product (P). Reaction 1 moves forward and backward, so 
that in the backward, or reverse, reaction a molecule of E and a molecule of P com-
bine to create a molecule of ES, which can dissociate into a molecule each of E and S. 

E S ES E P

+ +

Figure 4.5.1 Depiction of a simple enzyme reaction in the forward direction
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We wish to model Reaction 1 so that given rate constants and initial concentra-
tions of enzyme and substrate, written [E] and [S], respectively, we can determine 
the eventual product concentration, [P].

Differential Equations

As with interactions of competing species (see Module 4.1, “Competition”), of pred-
ator and prey (see Module 4.2, “Predator-Prey Model”), of susceptibles and infect-
eds (see M“du‘e 4.3, M“de‘ing the S”read “f SARS C“ntaining E’erging Dis-
ease”), and humans and mosquitoes (see Module 4.4, “Modeling a Persistent 
P‘ague Ma‘aria ), the rate “f change “f re’“va‘ “f [S] is ”r“”“rti“na‘ t“ the ”r“d-
uct of the concentrations of E and S, k1[E][S], which obeys the law of mass action. 
Because s“’e “f the enzy’e-substrate c“’”‘ex ES reverts t“ f“r’ a ’“‘ecu‘e “f E 
and a molecule of S, the rate of change of the formation of [S] is proportional to the 
concentration of ES, k2[ES]. Thus, as the following differential equation indicates, 
the rate of change of the concentration of S is equal to the rate of change of forma-
tion minus the rate of change of removal:

d[S]/dt = k2[ES] – k1[E][S]

Because in this reacti“n a ’“‘ecu‘e “f enzy’e reacts with a ’“‘ecu‘e “f sub-
strate, the rate of change of removal of [E] in the forward direction is the same as the 
rate of change of removal of [S], namely, k1[E][S]. Similarly, in the backward direc-
tion, the rate of change of removal of [E] is proportional to the product of [E] and 
[P], k4[E][P]. However, [E] can be formed from [ES] by forward and backward reac-
tions. The rate of change of each of these reactions is proportional to [ES]. With rate 
constants of k3 and k2 for the forward and backward reactions, respectively, the rate 
of change of the forward reaction for the formation of [E] is k3[ES], while the rate of 
change of the backward reaction equals k2[ES]. Thus, the total rate of change of the 
formation of [E] is the sum of these two values.

Quick Review Question 1

Considering the simple reaction shown in (1), give the formula for each of the fol-
lowing quantities:

a. the rate of change of the formation of [E]
b. d[E]/dt

c. d[P]/dt

d. d[ES]/dt

Quick Review Question 2

In the model diagram for the simple reaction shown in (1), what do the stocks (box 
variables) represent?
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Model

The model mimics the differential equations of the last section. A stock (box vari-
able) exists for each of the four concentrations, [E], [S], [ES], and [P]. Recall that the 
rate of change of [S] is as follows:

d[S]/dt = k2[ES] - k1[E][S]

Thus, the l“w int“ [S] has c“nnect“rs/arr“ws fr“’ the st“c— f“r [ES] and fr“’ a 
converter storing the value of the rate constant k2, and its equation is the product of 
these two values. Flows do not connect stocks for different concentrations, such as 
[ES] and [S], because the concentration for one substance, such as ES, does not be-
come the concentration for another substance, such as S. With connectors/arrows 
from the converter for k1 and the st“c—s f“r [E] and [S], the l“w “ut “f [S] is the 
product of these values. Figure 4.5.2 depicts a submodel for [S] with d[S]/
dt = k2[ES] – k1[E][S]. The igure d“es n“t inc‘ude s“’e diagra’ e‘e’ents, such as 
l“ws, ass“ciated with [E], [ES], and [P].

Quick Review Question 3

In a submodel for [E] with differential equation d[E]/dt = (k2 + k3)[ES] – k1[E][S] –  
k4[E][P], give the number of connectors/arrows that

a. g“ t“ the l“w int“ [E] s st“c—,
b. g“ t“ the l“w that ‘eaves [E] s st“c—,
c. come out of [E]’s stock.

Moles vs. Molar

Bef“re “bserving the gra”hs resu‘ting fr“’ running the si’u‘ati“n, we sh“u‘d c‘arify 
units for amounts and concentrations of chemicals. The mole (mol) is widely used 
by chemists to measure the amount of a substance. They might use it in the same 
way that far’er “r gr“cer w“u‘d use a d“zen t“ describe a gr“u” “f 12 eggs. By f“r-

S formation

S concentration
S removal

k2
ES concentration E concentration

k1

Figure 4.5.2 Submodel for [S]
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’a‘ deiniti“n, a ’“‘e is the nu’ber “f carb“n (C) at“’s in exact‘y 12 g “f car-
bon-12 (12C), which is 6.02214 × 1023, or Avogadro’s number. We can apply the 
ter’ t“ “ther substances, deining a ’“‘e “f a substance as the quantity “f that sub-
stance containing an equal number of units, such as atoms or molecules, as there are 
in exactly 12.0 g of 12C. A mole of any compound is its formula mass in grams. Thus, 
1 mol of sodium chloride (NaCl) would equal 58.45 g, or the sum of the atomic 
weights of sodium (23) and chlorine (35.45).

Chemists often express the concentration of a solute in a solvent, such as water, 
as molarity (M), which is the number of moles of solute per liter of solution. For a 
0.05-M NaCl solution, we have 0.05 mol of sodium chloride in every liter of water. 
A molar, then, is equivalent to 1 mol/L. For example, suppose we add 50 g of NaCl 
to a liter of water. We know from above that the mass of 1 mol of NaCl is 58.45 g. 
Thus, using cancellation of units as follows, we determine that 0.855 mol of NaCl is 
in the liter of water:

50 g NaCl  
1 mol NaCl

58.45 g NaCl
×  = 0.855 mol NaCl

Because we have diss“‘ved 0.855 ’“‘ “f NaC‘ in 1 L “f s“‘vent, the c“ncentrati“n “f 
NaCl ([NaCl]) in the solution is 0.855 M.

Quick Review Question 4

The following questions relate to magnesium chloride, MgCl2, where each molecule 
contains one atom of magnesium and two atoms of chlorine. The atomic weight of 
magnesium is 24.31, while that of chlorine is 35.45.

a. Find the formula mass of MgCl2.
b. Find the number of grams in a mole of MgCl2.
c. Give the number of molecules in a mole of MgCl2.
d. Determine the moles in 50 g of MgCl2.
e. If 50 g of MgCl2 are diss“‘ved in 700 ’L “f s“‘uti“n, ca‘cu‘ate the ’“‘arity.
f. Determine [MgCl2] for Part e.

Results

Returning to our model, the velocity of the reaction is the rate of change of [P], 
d[P]/dt. This derivative (rate_of_P) in a model is the rate of change of formation 

Deinition   A mole (mol) of a substance is the quantity of that substance 
containing 6.02214 × 1023 units (atoms, molecules, or some other 
unit). A mole of any compound is its formula weight in grams. 
The concentration of a solute in a solvent is often express as  
molarity (M), or the number of moles of solute per liter of solu-
tion. One molar is 1 mol/L.
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minus the rate of change of removal of [P], k3[ES] – k4[E][P], “r the l“w int“ [P] 
’inus the l“w “ut “f [P]. F“r use in gra”hing, we have a c“nverter/variab‘e eva‘uat-
ing this difference. In an actual chemical reaction, we consider the initial velocity of 
the reaction because of restrictive factors, such as the amount of substrate. In this 
model, for a particular substrate concentration, the rate of change of [P] approaches 
a limit. To observe the impact of substrate concentration on velocity, we have a sys-
tem dynamics tool generate a comparative graph of rate_of_P versus S_concentra-

tion with S_concentration taking on values 0.0, 1.5, 3.0, . . ., 30.0 millimolar (mM). 
For each value, we run the simulation using the Runge-Kutta 4 method for 3 s with 
∆t = 0.05 s. Figure 4.5.3 displays a resulting graph for parameters of k1 = 0.05 s–1, 
k2 = 0.1 s–1, k3 = 0.02 s–1, and k4 = 0.0 s–1. Tabular output gives the top of the last 
c“‘u’n as ab“ut 0.0001837 ’M/s.

0.0 7.5 15.0 22.5 30.0
[S]

3

6

9

12

15

18

Rate of [P](�10–5)

Figure 4.5.3 Comparative graph of rate_of_P (× 10-5 mM/s) versus S_Concentration (mM)

Michaelis-Menten Equation

For most enzymes, if we increase substrate concentration and hold enzyme concentra-
tion constant, the resulting initial velocities (initial d[P]/dt), or reaction rates, of the 
reaction (v) produce an asymptotic curve, which is the situation we observe by fol-
lowing the tops of the columns in Figure 4.5.3. In other words, v increases rapidly at 
irst as we increase [S]. Then, with the c“nstant nu’ber “f enzy’e ’“‘ecu‘es, the rate 
of increase in v decreases, and v approaches a limit of the reaction rate, called Vmax. 
No further increases in [S] will increase velocity. With some assumptions, the Mi-
chaelis-Menten equation describes this relationship between [S] and v, as follows:

v
V

K
=

+
max

m

[S]

[S]

The graph of this model appears in Figure 4.5.4. Km is the Michaelis-Menten con-

stant and is equal to the [S] where v = 
V
max

2

. Km is an indicat“r “f the enzy’e s afin-

ity for the substrate. The lower the Km va‘ue, the higher the afinity, s“ it ta—es ‘ess 
substrate to reach half of Vmax and the enzyme is a better catalyst for the reaction. 
Table 4.5.1 provides Km values for several enzyme-substrate combinations. 
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Quick Review Question 5

The following questions refer to Figure 4.5.3.

a. Select the best estimate of Vmax from the tick values.
b. Using your answer from Part a, estimate Km to the nearest whole number.

To derive their model, Michaelis and Menten made the following simplifying 
assumptions:

1. The reaction rate is determined before very much product is formed. Conse-
quently, the reverse reaction from E + P to ES is negligible, so that k4 is zero.

2. k3 is small in comparison to k1 and k2; that is, the rate of product formation is 
slow in comparison to the rate of ES formation and the rate of ES dissocia-
tion to E + S.

3. [S] is much greater than [E], so that [S] is virtually constant.
4. [E] + [ES] is constant.

Under these assumptions, the Michaelis-Menten equation models Reaction 1 as fol-
‘“ws (Danby 1997):

v
V

K
m

=
+

max
[

[

S]

S]

[S]

v

Vmax

Vmax

K m

2

Figure 4.5.4 Graph of initial reaction velocity versus substrate concentration for the  
Michaelis-Menten equation 

Table 4.5.1   
Michaelis- Menton Constants (Hardin et al. 2012; Kimball 2003)

Enzy’e Substrate Km (mMol/L)

Acety‘ch“‘inesterase Acety‘ch“‘ine 0.09
Carbonic anhydrase CO2 12
Catalase H2O2 1,100
Chymotrypsin Gly- Tyr- Gly 108
Fumarase Fumarate 0.005
Triose phosphate isomerase Glyceraldehyde- 3- phosphate 0.5
Beta- ‘acta’ase Benzy‘”enici‘‘in 0.02
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Exercise 3 derives this equation. Note that our choices of parameters adhere to these 
conditions and that our graph in Figure 4.5.3 corresponds to the graph of the Michae-
lis-Menten equation in Figure 4.5.4.

Quick Review Question 6

a. Using Assumption 1, give an approximate value for k4.
b. Using Assumption 3, give an approximate value for d[S]/dt.
c. Using the preceding assumptions, give the approximate relationship between 

the initial velocity of the reaction, v, and the rate of change of the product, 
d[P]/dt.

Although the Michelis-Menten equation captures the relationship of reaction ve-
locity to substrate concentration, Km and Vmax are dificu‘t t“ ascertain fr“’ its gra”h, 
such as in Figure 4.5.4. Hans Lineweaver and Dean Bur— re“rganized the equati“n 
int“ a f“r’ that is ’“re he‘”fu‘ f“r deter’inati“n “f these c“nstants (Danby 1997). 
As Exercise 5 develops, taking the reciprocal of both sides, they solved for 1/v in 
terms of 1/[S], as follows:

1 1 1

v

K

V V

m= 





+
max max

[S]

K

V

m

max

 and 
1

V
max

 are constants. Moreover, considering x = 1/[S] to be an indepen-

dent variable and y = 1/v to be a dependent variable, the equation has the form of a 

line, y = mx + b. Thus, in the graph of 1/v versus 1/[S], the slope is 
K

V

m

max

, and the 

vertical intercept is 
1

V
max

. Setting 1/v equa‘ t“ zer“, we ind that the h“riz“nta‘ inter-

cept is –
1

K
m

. Figure 4.5.5 presents the graph of 1/v versus 1/[S] for the Michaelis-

Menten equation in Figure 4.5.4. The following Quick Review Question determines 

Vmax and Km from this graph.

1
––
[S]

1
––
v

Vmax

1

Km

–1

Figure 4.5.5 Graph of 1/v versus 1/[S] for Figure 4.5.4
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Quick Review Question 7

Determine the following for Figure 4.5.5, where the vertical intercept is 0.2 and the 
horizontal intercept is -4:

a. Vmax

b. Km

c. Km/Vmax

d. The slope

Modeling Inhibition

The form of the Michelis-Menten equation, v
V

K
m

=
+

max
[

[

S]

S]
, parallels one way to model 

the process involving inhibition, which we employ in various project modules. Sup-
pose without inhibition the rate of change of some quantity, p, is u, as follows: 

dp/dt = u

However, suppose x inhibits this process. The larger that the value of x is, the smaller 
dp/dt is. A ”re‘i’inary reine’ent “f the ’“de‘ t“ acc“unt f“r this inhibiti“n is t“ 
divide the right-hand side of the equation by x, as follows:

d p

dt

u

x

( )
=

However, we have a division-by-zero error if x is not present. One possible solution 
is to add a small number, say 0.01 to the denominator, such as follows:

d p

dt

u

x

( )

.
=

+ 0 01

However, if x is zero, division by 0.01 multiplies u by 100. Thus, we complete the 
inhibition model by multiplying the numerator by 0.01, as follows:

d p

dt

u

x

u

x

( ) .

.

.

.
=

⋅
+

=
+

0 01

0 01

0 01

0 01
 

If x is zero, the 0.01 in the numerator and the 0.01 in the denominator cancel out each 
other. As x becomes larger and larger, the fraction, and hence the instantaneous rate 

of change of p, approaches zero. In the Michelis-Menten equation, v
V

K
m

=
+

max
[

[

S]

S]
, Km 

plays the role of the inhibitor of v, the initial velocity of the reaction: The larger Km 
is, the smaller v is. 
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Modeling Inhibition

 is. A ”re‘i’inary reine’ent “f the ’“de‘ t“ acc“unt f“r this inhibiti“n is t“ 

v
v

Model  A model for inhibition of dp/dt = u by x is as follows:

dp

dt

cu

x c
c=

+
, where  is a small constant

Exercises

1. For the simple model of enzyme kinetics in (1), give the relationship between 
d[E]/dt and d[ES]/dt.

2. In the Michaelis-Menten equation, by considering the instant when [S] = Km, 

show that Km is equal to the substrate concentration when v = 
V
max

2
.

3.   In this exercise, we derive the Michae‘is-Menten equati“n (Danby 1997).
 a.   The irst assu’”ti“n is that the reverse reacti“n fr“’ E + P t“ ES is neg‘i-

gible, so that k4 is zero or very small. Write the differential equation d[E]/
dt for assuming k4 = 0.

 b.   Write the differential equation d[ES]/dt for assuming k4 = 0.
 c.   Write the differential equation d[P]/dt for assuming k4 = 0.
 d.   The irst assu’”ti“n a‘s“ states that the reacti“n rate is deter’ined very 

early. Give the derivative that the initial velocity v of the reaction equals.
 e.   In the irst assu’”ti“n, d[S]/dt is zero. Using this assumption, solve for 

[E][S] in terms of [ES].
 f.   Using your answer to Part e, [E][S] is proportional to [ES]. Give the con-

stant of proportionality and call it Km.
 g.   Using your answers to Parts e and f, solve for Km in terms of [ES], [E], and 

[S].
 h.   By Assu’”ti“n 4, [E] + [ES] is c“nstant. Ca‘‘ this c“nstant [E0]. Using 

this equation, solve for [E] in terms of [ES] and [E0].
 i.   Substitute your solution of [E] from Part h into the answer to Part g, and 

solve for [ES].
 j.   Substitute your solution of [ES] from Part i into the differential equation 

for d[P]/dt in Part c.
 k.   As [S] increases, the initial velocity of the reaction, v = d[P]/dt, approaches 

its maximum, Vmax. Moreover, as [S] increases, Km is small in comparison 
to [S], so that [S] and Km + [S] are approximately the same. Using your 
answer to Part j, we can also say that d[P]/dt approaches what value?

 l.   Using Parts j and k, solve for v = d[P]/dt, and obtain the Michaelis-Men-
ten equation.

4.   The Briggs-Haldane model assumes that very soon the rate of change of 
[ES] is small in comparison to [E] and [S], so that d[ES]/dt is almost zero. 
Using this assumption and the differential equation from your answer to Part 
b “f Exercise 3, s“‘ve f“r [ES] in ter’s “f [E][S]. Deine K as an appropriate 
constant, and in a similar fashion to Exercise 3 complete the solution of 
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v = d[P]/dt as k3[E0][S]/(K + [S]), where [E0] is the constant [E] + [ES] 
(Danby 1997).

5.   From the Michaelis-Menten equation, derive the solution of 1/v in terms of 1/
[S], as follows: 

1 1 1

v

K

V V

m= 





+
max max

[S]
 

6. In Reaction 1, one molecule of the enzyme reacts with one molecule of the 
substrate. In the following reaction, one molecule of the enzyme reacts with 
n molecules of the substrate, and we assume that the reverse reaction from 
E + P to ES is negligible:

 E S ES E P+  →
←   → +n

k

k

k1

2

3  (2)

 Write a differentia‘ equati“n f“r each “f the f“‘‘“wing ”arts. Because the re-
action involves one molecule of enzyme for n molecules of substrate, we 
take the product of [E] and n copies of [S], that is [E][S]n, where appropriate 
(Danby 1997).

 a. d[S]/dt

 b. d[E]/dt 
 c. d[P]/dt 
 d. d[ES]/dt 
7. Give the Michaelis-Menten approximation for the reaction in Exercise 6.

Projects

F“r additi“na‘ ”r“–ects, see M“du‘e 7.11, Fue‘ing Our Ce‘‘s Carb“hydrate Me-

tab“‘is’ ; M“du‘e 7.14, “Control Issues: The O”er“n M“de‘ ; and M“du‘e 7.15, 
“Troubling Signals: Colon Cancer.” 

1. M“de‘ the f“‘‘“wing si’”‘iied reacti“n:

S P
k

k

1

2

 →
← 

 Plot substrate concentration [S] and product concentration [P] versus time. 
Describe the growth of [P] and decline of [S]. With your simulator, deter-
mine experimentally [P]eq, [S]eq, when equilibrium occurs, and the equilib-
rium constant Keq for several values of k1 and k2. Do the experimental results 
agree with the analytical ones?

2. Model the complete Reaction 1. Generate tables with time, the values of all 
concentrations, and the rate of change of [P]. Generate the following graphs: 
[S] and [P] versus time, the rate of change of [P] versus time, and the rate of 
change of [P] versus [S]. Generate a comparative graph as in Figure 4.5.3. 
Estimate Vmax and Km from this graph. Using the generated data, plot 1/v ver-
sus 1/[S] with a computational tool, such as a spreadsheet. From the graph, 
estimate Vmax and Km.

3. M“de‘ the c“’”‘ete Reacti“n 1. A‘s“, c“’”ute the Briggs-Ha‘dane and Mi-
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chae‘is-Menten a””r“xi’ati“ns. The Briggs-Ha‘dane a””r“xi’ati“n assu’es 
that after an initial period, the rate of formation of [ES] is small in compari-
son with the change in [S] and change in [P] (see Exercise 4). This approxi-
mation for the rate of change of the concentration of [P] is as follows:

d

dt

k

k k

k

[ ] ([ ] [ ])[ ]

( )
[ ]

P E ES S

S

=
+

+
+

3

2 3

1

 The Michaelis-Menten approximation is as follows:

d

dt

k

k

k

[ ] ([ ] [ ])[ ]

[ ]

P E ES S

S

=
+

+

3

2

1

 Find parameter values that satisfy the assumptions of the approximations. 
Graph and compare the rate of change of [P] for your simulation and the ap-
”r“xi’ati“ns versus ti’e (Danby 1997). 

4. Complete Project 2 and explore the situation of having a very low substrate 
concentration, where [S] << Km. In this case, [S] is much lower than Km, so 
that Km + [S] is approximately Km. Simplify the Michaelis-Menten equation 
in this situation. Have your model compute this v. Compare your model with 
the computed value. How does v vary with [S] (Danby 1997)?

5. Complete Project 2 and explore the situation of having very high substrate 
concentration, where [S] >> Km. In this case, [S] is much higher than Km, so 
that Km + [S] is approximately [S]. Simplify the Michaelis-Menten equation 
in this situation. Have your model compute this v. Compare your model with 
the computed value. How does v vary with [S]? How does Vmax vary with [E] 
(Danby 1997)?

6. Complete Project 2 and explore the situation of [S] = Km. Simplify the Mi-
chaelis-Menten equation in this situation. Have your model compute this v. 
Compare your model with the computed value. What is the meaning of Km 
(Danby 1997)?

7. Model the complete Reaction 2 of Exercise 6. Generate tables with time, the 
values of all concentrations, and the rate of change of [P]. Generate the fol-
lowing graphs: [S] and [P] versus time, the rate of change of [P] versus time, 
and the rate of change of [P] versus [S]. Generate a comparative graph as in 
Figure 4.5.3. Estimate Vmax and Km from this graph. Using the generated data, 
plot 1/v versus 1/[S]n with an appropriate computational tool, such as a 
spreadsheet. From the graph, estimate Vmax and Km.

8. We have observed oscillations in several contexts, including predator-prey 
and pendulum problems. However, most chemists were disbelieving when 
B“ris P. Be‘“us“v c‘ai’ed in the 1950s t“ have f“und a che’ica‘ reacti“n 
that “sci‘‘ated between ye‘‘“w and c‘ear. In 1964, Anat“‘ M. Zhab“tins—y 
developed what became known as the Belousov-Zhabotinsky (BZ) reac-
tion, a reine’ent “f Be‘“us“v s w“r— that “sci‘‘ated in ti’e and s”ace with 
changing geometric patterns.
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 This project involves modeling the following theoretical chemical reac-
tion, called the Brusselator, which exhibits oscillation of the concentrations 
of X and Y: 

   

 Assume that [A] is constant, say, 1 M, and that B, C, D, E, and F are inactive. 
Graph [X] and [Y] versus time and [X] versus [Y] for increasing values of [B]. 
Verify that [X] = [A] and [Y] = [B] / [A] is an equilibrium point. Is the point 
stable or unstable for [B]  1 + [A]2? For [B] > 1 + [A]2? Describe the graphs 
close to the equilibrium if 1 - [A] + [A]2 < [B] < 1 + [A] + [A]2 (Danby 1997).

9. Model the following chemical reaction, called the Oregonator, which oscil-
‘ates in ti’e (see the irst ”aragra”h “f Pr“–ect 8): 

  

 where X is br“’“us acid (HBrO2), Y is br“’ide i“n (BR-), and Z is cerium 
ion (Ce(IV)). Assume [A] and [B] are constant and P and Q are inert. The 
original paper gave the following rate constants: k1 = 1.34 M-1 s-1, 
k2 = 1.6 × 109 M-1 s-1, k3 = 8 × 103 M-1 s-1, k4 = 4 × 107 M-1 s-1, and k5 = 1 M-1 
s-1 (Fie‘d and N“yes 1974). F“r a variety “f initia‘ c“ncentrati“ns, gra”h the 
logarithms of [X], [Y], and [Z] versus time for at least 2000 s. Verify that an 
equilibrium occurs at [X] = 2.45562 × 10-8 M-1 s-1, [Y] = 2.99388 × 10-7 M-1 
s-1, and [Z] = 1.1787 × 10-5 M-1 s-1. Explore the situations with initial condi-
ti“ns near the equi‘ibriu’. Discuss the resu‘ts (Danby 1997; Fie‘d and N“yes 
1974).

Answers to Quick Review Questions

1. a. rate of change of formation of [E] = k2[ES] + k3[ES] = (k2 + k3)[ES]
 b. d[E]/dt = (k2 + k3)[ES] – k1[E][S] – k4[E][P]
 c. d[P]/dt = k3[ES] – k4[E][P]
 d. d[ES]/dt = k1[E][S] + k4[E][P] – (k2 + k3)[ES]
2. the four concentrations, [E], [S], [ES], and [P]
3. a. 3, from k2, k3, and [ES]
 b. 5, from k1, [E], [S], k4, and [P]
 c. 4, “ne t“ each l“w
4. a. 95.21 g = (24.31 + 2 × 35.45) g
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 b. 95.21 g
 c. 6.02214 × 1023

 d. 0.525 ’“‘ = 50 g × 1 ’“‘/(95.21 g)
 e. 0.75 M = 0.525 ’“‘/(0.700 L) = 0.75 ’“‘/L
 f. 0.75 M
5. a. Vmax ≈ 18 × 10-5 mM/s = 0.00018 mM/s
 b.  Km ≈ 5.0 ’M. If Vmax = 0.00018 mM/s, Vmax / 2 = 0.00009 ’M/s, which 

occurs at approximately S_Concentration = 5.0 mM.
6. a. k4 ≈ 0 because the reverse reacti“n fr“’ E + P t“ ES is neg‘igib‘e
 b.  d[S]/dt ≈ 0 because [S] is virtua‘‘y c“nstant, giving an a‘’“st 0 va‘ue f“r 

the rate of change of [S] with respect to time
 c.  v = d[P]/dt. By Assu’”ti“n 1, the reverse reacti“n fr“’ E + P t“ ES is 

negligible, so the rate of change in [P] comes from formation, not from 
def“r’ati“n “f P. By Assu’”ti“n 4, [E] + [ES] is c“nstant, s“ that the 
total amount of the enzyme, which is in the free form of E and ES, is con-
stant. Moreover, d[S]/dt ≈ 0 (see Part b). Thus, the initia‘ ve‘“city “f the 
reaction is the rate of change of [P].

7. a. 1/0.2 = 5
 b. Km = –1/(–4) = 0.25
 c. Km/Vmax = 0.25/5 = 0.05
 d. 0.05
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COMPUTATIONAL ERROR





MODULE 5.1

Computational Toolbox—Tools of the Trade: Tutorial 1

Download

From the textbook’s website, download Tutorial 1 in the format of your computa-
tional tool or in PDF format. We recommend that you work through the tutorial and 
answer all Quick Review Questions using the corresponding software.

Introduction

Various computer software tools are useful for graphing, numeric computation, and 
sy’b“‘ic ’ani”u‘ati“n. This irst c“’”utati“na‘ t““‘b“x tut“ria‘ is avai‘ab‘e f“r 
download from the textbook’s website for several different software systems. Tuto-
rial 1 in your system of choice gives an introduction to that software and prepares 
you to use the tool to complete various projects in the next few chapters. The tutorial 
introduces concepts and functions, such as the following: 

• Getting started
• Evaluation
• Saving
• File organization, such as cells
• Styles
• Numbers
• Arithmetic operators
• Bui‘t-in functi“ns, such as the 

natural logarithm, sine, and 
exponential functions

• Variables

• Assignments
• User-deined functi“ns
• Online documentation
• Printing
• Looping
• Plotting
• Differentiation (optional)
• Solving differential equations 

(optional)
• Integration (optional)

The module gives computational examples and Quick Review Questions for you to 
complete and execute in your desired software system. 
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Errors

Introduction

Errors can occur in the solution of a computational science problem at any stage, 
from the earlier steps of data collection and simplifying assumptions to the later time 
of computer implementation. The modeler must be aware of possible errors to mini-
’ize their “ccurrence and t“ av“id drawing inc“rrect c“nc‘usi“ns fr“’ lawed s“‘u-
tions. In this module, we discuss various concepts surrounding and the sources of 
errors.

Data Errors

Unfortunately, the sources for errors in the data upon which we base and verify our 
models can be numerous. For example, a sensor measuring barometric pressure 
might malfunction, giving incorrect values or values that are valid in one range but 
n“t in an“ther. M“re“ver, the accuracy “f the sens“r ’ight n“t be suficient. In addi-
tion to equipment error, someone can fail to calibrate an instrument properly, mis-
read measurements, or record results incorrectly.

Modeling Errors

Humans can also make errors in formulation of a model. Perhaps the modeler makes 
simplifying assumptions or determines incorrect equations that cause the model’s 
results to deviate drastically from reality. He or she may not even be aware of crucial 
fact“rs. F“r exa’”‘e, L“rd Ke‘vin (Wi‘‘ia’ Th“’s“n, Bar“n Ke‘vin “f Largs), the 
accomplished nineteenth-century scientist who proposed the absolute temperature 
scale that bears his name, developed, in the mid to late part of that century, a math-
ematical model to calculate the age of the earth. Kelvin based his model on the as-
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sumption that the earth was cooling from a molten mass, with the sun being its only 
source of energy. Using only conduction, he calculated the time it would have taken 
for the earth, as it cooled, to reach the surface temperature at the time, and from that 
he ’ade his esti’ates. It was dificu‘t t“ deter’ine the te’”erature “f the earth s in-
nermost region; but assuming that the earth was solid, he calculated that the tem-
perature could not be high enough to melt the rock. His model estimated the age of 
the earth to be between 20 and 400 million years old (although later in life he re-
duced the upper value to 40 million years). His computed range is drastically differ-
ent from its currently accepted age, which is about 4.5 billion years. However, his 
underlying assumptions were faulty. The earth is not solid, but is composed of a very 
hot core, surrounded by a viscous, but plastic, mantle. So, under the earth that we 
know, called the crust, is another source of heat. Convection from the interior of the 
earth war’s the surface, and that ’a—es Ke‘vin s ca‘cu‘ati“ns t““ ‘“w.  With Bec-
querel’s work with radioactivity, scientists proposed the heat provided from decay-
ing radioactive elements in the earth’s crust as another source of error. However, 
most scientists today think that this heat source is likely irrelevant, despite the perva-
siveness “f this hy”“thesis thr“ugh“ut the Internet. Ke‘vin was a ine scientist, 
lawed in s“’e ways ”erha”s; but at the ti’e, he c“u‘d n“t have inc‘uded subsequent 
—n“w‘edge in is ca‘cu‘ati“ns (Eng‘and et a‘. 2007; Marescha‘ and Jau”art 2009).

Implementation Errors

In a computer program implementing a model, computational scientists can make 
‘“gica‘ err“rs that ”r“duce disastr“us resu‘ts. F“r exa’”‘e, in 1999, NASA s Mars 
Climate Orbiter spacecraft was lost because the builder of the spacecraft, Lockheed 
Martin Corp., programmed the system to use English units, such as pounds and feet, 
and NASA’s Jet Propulsion scientists employed metric units, such as newtons and 
meters.

Precision

Other errors we consider in this module also involve computer calculations. In this 
section, we discuss some basic terms involved with such computations; and in the 
next secti“n, we deine tw“ ’etrics “f err“r. Then, we return t“ a discussi“n “f “ther 
errors encountered in modeling and simulation.

Many c“’”uter ‘anguages a‘‘“w l“ating-”“int nu’bers t“ be ”rinted in ex”“nen-
tial form as a decimal fraction times a power of 10. For instance, output of 
9.843600e02 ’eans 9.843600 × 102 = 984.36 = 0.98436 × 103. Usually, loating-
point numbers, or numbers with a decimal expansion, are stored in the computer in 
three parts: 0 or 1 representing the sign + or –, respectively; a signiicand, fractional 
part, or mantissa, such as 98436; and an ex”“nent, such as 3. Every day, we use the 
decimal, or base 10, nu’ber syste’ with digits, 0, 1, 2, . . ., 9, A c“’”uter usua‘‘y 
employs the binary, or base 2, number system with only 2 binary digits, or bits, 0 
and 1, but the concepts are the same regardless of base.
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A normalized number in exponential notation has the decimal point immediately 

”receding the irst n“nzer“ digit, as in 0.98436 × 103. This notation is similar to sci-

entiic notation, which ”‘aces the deci’a‘ ”“int i’’ediate‘y after the irst n“nzer“ 
digit, such as 9.8436 × 102. When a number is expressed in normalized exponential 

n“tati“n, as with 0.98436 × 103, a‘‘ the digits “f the signiicand, such as 98436, are 
what we call signiicant digits. For integers written without a decimal, all the digits 

except leading and trailing zeros are signiicant digits; for other numbers, all digits 

are signiicant exce”t ‘eading zer“s. F“r exa’”‘e, there are 4 signiicant digits in 
003,704,000 = 0.3704 × 107: 3, 7, 0, and 4. The most signiicant digit is the leftmost 

“ne, 3. The ’“st signiicant digit “f 0.09200 = 0.9200 × 10–1 is 9 because the ‘eading 
zer“ is n“t signiicant. A‘‘ “ther digits after the deci’a‘ ”“int (9, 2, 0, 0), h“wever, 
are signiicant in this nu’ber.

Precision is the nu’ber “f signiicant digits. Thus, 003,704,000 and 0.09200 
each have a precision of 4. Magnitude is an indication of the relative size of a num-

ber and is 10 to the power when the number is expressed in normalized exponential 

notation. Therefore, 0.3704 × 107 has a magnitude of 107. In C and C++, the preci-

si“n “f a l“ating-”“int nu’ber “f ty”e l“at, which we call a single-precision num-

ber, is ab“ut 6 “r 7 deci’a‘ digits, whereas the ’agnitude ranges fr“’ ab“ut 10–38 to 

1038. Taking up twice as much computer storage space as a l“at variable, a variable 

of type double, which stores a double-precision number, has 14 “r 15 signiicant 
digits and magnitude from about 10–308 to 10308.

Deinitions A loating-point number is expressed with a decimal expan-
sion. Exponential notation re”resents a l“ating-”“int nu’ber as 
a decimal fraction times a power of 10. With a being a decimal 
fraction and n an integer, the exponential notation aen represents 
a × 10n. The integer formed by dropping the decimal point from a 
is the signiicand, fractional part, or mantissa, and n is the ex-
ponent.

Deinitions A normalized number in exponential notation has the decimal 
”“int i’’ediate‘y ”receding the irst n“nzer“ digit. The signii-
cant digits “f a l“ating-”“int nu’ber are a‘‘ the digits exce”t the 
leading zeros. The signiicant digits of an integer are all the dig-
its except the leading and trailing zeros.

Deinitions    The precision “f a nu’ber is the nu’ber “f signiicant dig-
its. Magnitude is 10 to the power when the number is expressed 
in normalized exponential notation.
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Quick Review Question 1

Use 0.0004500 for the following problems.

a. In n“r’a‘ized ex”“nentia‘ n“tati“n, give the signiicand.
b. In normalized exponential notation, give the exponent of 10.
c. Give the precision.

Absolute and Relative Errors 

To understand the size of a problem, it is helpful to have ways of measuring error. 
The absolute error is the absolute value of the difference between the exact answer 
and the computed answer. The relative error is this difference divided by the abso-
lute value of the exact answer, provided the exact answer is not zero. We often ex-
press relative error as a percentage. For example, we can write a relative error of 
0.03 as 3%.

Example 1

Su””“se a c“’”uter has a ”recisi“n “f 3, a‘‘“wing “n‘y 3 digits in the signiicand, 
and truncates, “r ch“”s “ff, the signiicand t“ 3 digits. N“ c“’”uter has such ‘i’-
ited ”recisi“n, but ‘i’iting the ”recisi“n t“ 3 si’”‘iies “ur c“’”utati“ns and sti‘‘ 
illustrates the problem. We evaluate the absolute and relative errors in the computa-
tion (0.356 × 108)(0.228 × 10–3). The exact answer is as follows: 

(0.356 × 108)(0.228 × 10–3) = (0.356)(0.228)(108)(10–3)

  = 0.081168 × 105

Normalizing, we obtain correct = 0.81168 × 104. 
For a computer with a precision of 3, the result of this computation is result =  

0.811 × 104. Thus, an error has been introduced. The absolute error is as follows: 

|correct – result| = |0.81168 × 104 – 0.811 × 104| = 0.00068 × 104 = 6.8 

Deinitions  If correct is the correct answer and result is the result ob-
tained, then

absolute error = | correct – result |

relative error  

provided correct ≠ 0.
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The relative error is the ratio of the absolute error and the positive correct answer, 
as shown: 

(0.00068 × 104)/(0.81168 × 104) = 0.0008378 = 0.08378% 

The error is about eight-hundredths of a percent of the exact answer.

Quick Review Question 2

Using the nu’ber 6.239, ind the f“‘‘“wing:

a. The absolute error as it is truncated to 2 decimal places.
b. The relative error for Part a. Express your answer as a percentage.

Round-off Error

Instead “f truncating a nu’ber t“ it in st“rage, a c“’”uter ’ight round. To round 
the signiicand “f 0.81168 × 104 t“ a ”recisi“n “f 3, we c“nsider the f“urth signii-
cant digit, 6. If that digit is less than 5, we round down; but if the digit is greater 
than or equal to 5, we round up. Thus, 0.81168 × 104 and 0.81158 × 104 round up to 
0.812 × 104, while 0.81138 × 104 rounds down to 0.811 × 104.

Quick Review Question 3

R“und each “f the f“‘‘“wing s“ that the signiicand has a ”recisi“n “f 2:

 a. 0.93742 × 10–5 b. 0.93472 × 10–5 c. 0.93572 × 10–5

Example 2

This exa’”‘e i‘‘ustrates the dificu‘ty “f ex”ressing exact deci’a‘ l“ating-”“int 
numbers in the computer. Suppose we enter a computation for 1/3 into a cell of a 
spreadsheet, as follows:

=1/3

Deinition    To truncate a normalized number to k signiicant digits, e‘i’-
inate a‘‘ digits “f the signiicand bey“nd the kth digit.

Deinitions  To round a normalized number to precision k, consider the 
(k + 1)th signiicant digit, d. If d is less than 5, round down the 
n“r’a‘ized nu’ber by truncating the signiicand t“ k signiicant 
digits. If d is greater than or equal to 5, round up the normalized 
nu’ber by truncating the signiicand t“ k signiicant digits and 
then adding 1 to the kth signiicant digit “f the signiicand, carry-
ing as necessary to digits on the left.
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Alternatively, suppose we make the following assignment statement in the pro-

gramming language C, C++, or Java that gives the value of the expression on the 

right to the variable, x, on the left: 

x = 1.0/3.0;

The c“’”uter st“res the l“ating-”“int re”resentati“n “f 1/3 = 0.333. . . in the s”read-

sheet cell or in the location for x. If our computer can store only 3 digits of the sig-

niicand, the ’achine r“unds “r truncates the va‘ue t“ 0.333. 

Round-off error is the ”r“b‘e’ “f n“t having en“ugh bits t“ st“re an entire l“at-
ing-point number. We have round-off error whether the computer rounds or trun-

cates the nu’ber t“ it in a ‘“cati“n. If the c“’”uter uses a greater nu’ber “f bits t“ 
store the number, the round-off error will not be as serious. For example, if we store 

the signiicand with 7 digits, the va‘ue “f x wi‘‘ be 0.3333333; st“rage f“r 15 signii-

cant digits will yield the even more accurate 0.333333333333333.

Overlow and Underlow

The ”r“b‘e’s “f “verl“w and underl“w can a‘s“ ensue fr“’ inite st“rage and bi-
nary representation of numbers in a computer. Suppose we are working with a very 

small computer that uses 16 bits to store an integer. If we ask the computer to per-

form the sum 20480 + 16384, the result, surprisingly, will be a negative number, 

28672. The ”r“b‘e’ arises when the ‘eft’“st bit, the sign bit, gets a carry fr“’ the 
addition on the right, converting the result to a negative number. There simply are 

n“t en“ugh bits t“ ex”ress the answer, s“ the ina‘ answer has the wr“ng sign. Over-
l“w a‘s“ “ccurs when we add tw“ negative nu’bers and get a ”“sitive resu‘t.

Deinitions    An assignment statement causes the computer to store the 
value of an expression in a memory location associated with a 
variable. In most programming languages, the assignment state-
ment has a format similar to the following, with the expression 
always appearing on the right and the variable getting the value 
always being on the left of an assignment operator, here an 
equal sign:

variab‘e = expression

Deinition    Round-off error is the problem of not having enough bits to 
st“re an entire l“ating ”“int nu’ber and a””r“xi’ating the resu‘t 
to the nearest number that can be represented.
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An “verl“w err“r caused the Eur“”ean S”ace Agency s Ariane 5 r“c—et t“ ex-
”‘“de in 1996. Less than 37 sec“nds int“ the ‘aunch, the guidance syste’ s c“’”uter 
atte’”ted t“ c“nvert the r“c—et s sideways ve‘“city fr“’ a 64-bit l“ating-”“int 
nu’ber t“ a 16-bit integer. H“wever, because the nu’ber was t““ ‘arge, “verl“w 
resulted; the guidance system attempted a severe correction for a wrong turn that had 
n“t “ccurred; and very quic—‘y the r“c—et had t“ se‘f-destruct. The “verl“w “f a few 
bits caused the ‘“ss “f a r“c—et that t““— 10 years and $7 bi‘‘i“n t“ deve‘“” (G‘eic— 
1996).

Problems can also arise when the result of a computation is too small for a com-
puter to represent, in a situation called underlow. For example, suppose the small-
est l“ating-”“int nu’ber a c“’”uter can ex”ress has ’agnitude 10 39. If the correct 
value for an arithmetic expression, such as 10–48, is smaller than the smallest positive 
l“ating-”“int va‘ue a c“’”uter can re”resent, then underl“w “ccurs, and the c“’-
puter evaluates the expression as zero. 

Arithmetic Errors

Errors can arise in addition. Consider (0.684 × 103) + (0.950 × 10–2). Unlike in multi-
plication, the decimal points must be aligned for addition, so we have the following: 

 0.684 × 103 =  684.0000

 0.950 × 10–2 = + 0.0095

 684.0095

If “ur c“’”uter a‘‘“ws f“r “n‘y 3 signiicant digits, the n“r’a‘ized resu‘t is 
0.684 × 103, and the effect “f the 0.950 × 10–2 is lost.

Quick Review Question 4

Su””“se a ”articu‘ar c“’”uter r“unds st“red l“ating-”“int nu’bers t“ 4 signiicant 
digits. Calculate (0.1235 × 102) + (0.2499 × 10–1). Do not use exponential notation 
in the answer.

Because “f such ”r“b‘e’s, when adding nu’bers wh“se ’agnitudes are drasti-
ca‘‘y different, we sh“u‘d accu’u‘ate s’a‘‘er nu’bers irst bef“re c“’bining the’ 

Deinition  Overlow is an error condition that occurs when there are not 
enough bits to express a value in a computer.

Deinition  Underlow is an error condition that occurs when the result of a 
computation is too small for a computer to represent.
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with larger ones. Thus, the sum of the smaller numbers has a chance of being large 
en“ugh t“ ’a—e a difference in the ina‘ answer.

Similarly, when multiplying and dividing in a term, to avoid loss of precision, we 
usually should perform all multiplications in the numerator before dividing by the 
den“’inat“r. F“r exa’”‘e, in “ur c“’”uter that r“unds t“ 3 signiicant digits, su”-
pose we are to calculate (x/y)z, where x = 2.41, y = 9.75, and z = 1.54. The quotient 
x/y = 0.247179 r“unds t“ 0.247, s“ that the ”r“duct is (x/y)z = (0.247)(1.54) =  
0.38038, or 0.380 after rounding. However, algebraically (x/y)z = (xz)/y. Performing 
’u‘ti”‘icati“n irst, we have xz = 3.7114, “r 3.71 in r“unded f“r’. Dividing, we 
have (xz)/y = 3.71/1.54 = 0.380513. The r“unded 0.381 is c‘“ser t“ the exact answer 
of 0.380656.

Of course, whether or not we should perform all numerator multiplications before 
division depends on the numbers. In the example (xz)/y, if the product xz would 
cause “verl“w, we sh“u‘d irst divide x by y to obtain a smaller result before multi-
plying by z.

Quick Review Question 5

Suppose variables r, u, x, y, and z st“re l“ating-”“int nu’bers. Write the f“‘‘“wing 
expression to minimize round-off error upon evaluation, assuming no problems with 
“verl“w “r underl“w:

3

z
r
x y

u







+



( )

Error Propagation

Looping enables the computer to execute a segment of code several times. Such a 
segment that is executed repeatedly is called a loop. Perf“r’ing l“ating-”“int “”-
erations within loops can compound round-off error.

An accumulation error in a loop had disastrous consequences during the First 
Gulf War in Dharan, Saudi Arabia, when an American Patriot missile battery failed 
to intercept a Scud missile. The Scud hit an American army barracks, killed 28 
soldiers, and injured more than 100 others. The Patriot’s internal computer clock 
measured time in tenths of a second and multiplied the number of ticks by 1/10 to 
obtain the actual time in seconds. For example, 15 ticks indicated an elapsed time 
of (15 ticks)(0.1 s/tick) = 1.5 s. The missile’s computer used 24 bits to store num-

Rule of Thumb In an expression involving multiplication and division on a 
computer, it is generally best to perform the division last.

Deinition  A loop is a segment of code that is executed repeatedly.
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bers. H“wever, because 1/10 has an ininite ex”ansi“n in binary re”resentati“n (si’-
ilar to the expansion 1/3 has in decimal representation), the system could not hold all 
the nu’ber s bits. Each 1/10 incre’ent ”r“duced an err“r “f ab“ut 0.000000095 s. 
At the time of the disaster, the Patriot Missile had been operating for 100 h, caus - 
ing an err“r “f ab“ut (100 h)(60 ’in/h)(60 s/’in)(10 tic—s/s)(0.000000095 s/tic—) =  
0.34 s. During that third “f a sec“nd, a Scud lew ab“ut 1676 ’, s“ that the interce”t-
ing Patriot Missile missed its target (Arnold 2000).

Example 3

In ’any si’u‘ati“ns “f scientiic ”hen“’ena, such as ”“‘‘uti“n in a strea’, we have 
the computer calculate the values of various quantities as time advances in small, 
discrete time steps. Suppose time, t, starts at 0.0 s and is to end at 10 min = 600 s. 
The length of a time step is dt. Perhaps we wish to designate dt to be 0.1 s, so that the 
number of time steps (numberOfTimeSteps) would be 6000. However, because of 
c“nversi“n t“ base 2 and inite st“rage in “ur exaggerated‘y s’a‘‘ c“’”uter, su””“se 
the actual stored value of dt is 0.09961 = 0.9961 × 10–1 s. Inside a loop, we compute 
new values for time and other quantities, such as a simulated amount of mercury in a 
stream. A loop variable or index, i, takes on values 1, 2, 3, . . ., 6000. Thus, this 
simulation has the following general algorithm:

One method of updating time can lead to a serious accumulation of round-off 
error. Suppose that each time through the loop, we calculate the new value of time (t 
on the left-hand side of the assignment statement) as the old value of time (t on the 
right-hand side of the assignment statement) plus the change in time (dt):

t = t + dt

Suppose the machine for this example uses the decimal system and rounds to 4 sig-
niicant digits. Ign“ring ”r“b‘e’s “f having 0.09961 instead “f 0.1 f“r dt and conver-
sion between the decimal and binary number systems, Table 5.2.1 enumerates the 
absolute and relative errors of t for several iterations of the loop. 

As the table illustrates, round-off error increases with the number of loop execu-
tions. After the eleventh iteration (i = 11), the new value of t should be (11)
(0.09961) = 1.09571. F“r a c“’”uter with a ”recisi“n “f 4, h“wever, the r“unded 
va‘ue is 1.096. The subsequent abs“‘ute err“r is 0.00029, and the re‘ative err“r is 
about 0.026%. After iteration i = 51, the relative error is about 0.3128% and is more 
than 30 times the relative error in the loop with i = 2. 

numberOfTimeSteps = number of time steps for simulation
dt = 0.09961, the ‘ength “f a ti’e ste” in sec“nds
t = 0.0, the starting time in seconds
initialize other quantities as necessary
for i going from 1 through numberOfTimeSteps do the following:
 compute a new value for t
 compute quantities being simulated
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To avoid the cumulative error of this loop, we should compute t as the index, i, 
times dt = 0.09961, as f“‘‘“ws with * indicating ’u‘ti”‘icati“n:

t = i * dt

We still have round-off error, but its effect is minimized because there is no accumu-
lation. For example, in the evaluation with i = 51 “f (51)(0.09961) = 5.08011, the 
c“’”uter st“res 4 signiicant digits, 5.080. The abs“‘ute err“r is 5.08011  5.080 =  

Table 5.2.1 
Accumulation of Error in Time (t = t + dt) for Example 3

  Accumulated 

 C“rrect New New Va‘ue  Abs“‘ute Re‘ative  
Value of i Value of t of t = t + dt Error Error

1 0.09961 0.09961 0 0
 +0.00000 +0.00000 
 0.09961 0.09961 

  is 0.09961 r“unded 
  with precision 4

2 0.09961 0.09961 0.19922 0.00002/0.19922
 +0.09961 +0.09961 −0.1992  ≈ 0.0001
 0.19922 0.19922 0.00002 = 0.01%

  is 0.1992 r“unded 
  with precision 4

3 0.09961 0.09961 0.29883 0.00003/0.29883 
 +0.19922 +0.1992  −0.2988  ≈ 0.0001
 0.29883 0.29881 0.00003 = 0.01%

  is 0.2988 r“unded 
  with precision 4

4 0.09961 0.09961 0.39844 0.00004/0.39844
 +0.29883 +0.2988  −0.3984  ≈ 0.0001
 0.39844 0.39841 0.00004 = 0.01%

  is 0.3984 r“unded 
  with precision 4

5 0.09961 0.09961 0.49805 0.00005/0.49805
 +0.39844 +0.3984  −0.4980  ≈ 0.0001
 0.49805 0.49801 0.00005 = 0.01%

  is 0.4980 r“unded 
  with precision 4

11 1.09571 1.096 1.096 0.00029/1.09571
   −1.09571 ≈ 0.00026
   0.00029 = 0.026%

51 5.08011 5.096 5.096 0.01589/5.08011
   −5.08011 ≈ 0.003128
   0.01589 = 0.3128%
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0.00011 = 0.011%, while the relative error is 0.00011/5.08011 = 0.000022 = 0.0022%. 
In the iteration i = 51, the relative error using an accumulated t = t + dt =  
t + 0.09961 is ab“ut 140 ti’es greater than the c“rres”“nding re‘ative err“r using 
t = i * dt = (i)(0.09961). In s“’e si’u‘ati“ns, it is n“t ”“ssib‘e t“ av“id such re-
peated additions; but where possible, we should.

Quick Review Question 6

Which assignment statement is better (if there is a difference) in a loop with index k 

whose initial value is 1? Assume that sum is initialized to 0 before the loop.

 A. sum = sum + 0.00492 B. sum = 0.00492 * k C. It doesn’t matter.

Violation of Numeric Properties

The secti“n Arith’etic Err“rs  hints at a ”r“b‘e’ that can ‘ead t“ err“rs nu’eric 
properties do not necessarily hold in computer arithmetic. Expressions that are nu-
merically equivalent might not evaluate to equal values on the computer. Mathemat-
ically, (x/y)z = (xz)/y, but for x = 2.41, y = 9.75, and z = 1.54 “n a 3-signiicant-digit 
machine with rounding, we showed (x/y)z = 0.380, while (xz)/y = 0.381. S”ecii-
cally, the following are some of the properties that can be violated using computer 
arithmetic:

Associative Properties: (a + b) + c = a + (b + c) and (ab)c = a(bc) 

These properties indicate that grouping of numbers in addition or multiplication 
does not matter. However, a computer can yield different results, for example, if 
a and b are small numbers and c is very large.

Distributive Property: a(b + c) = ab + ac

This property involves the distribution of multiplication over addition. Under 
certain circumstances, this property may not hold in a computer, such as in the 
case where a and b are very small in comparison to c.

In the exercises and projects, we explore these and other properties that can fail 
using computer arithmetic.

Quick Review Question 7

By eva‘uating x(y + z) and x(y) + x(z), show that the distributive property does not 
hold for x = 2.48, y = 9.34, and z = 1.55 on a machine that truncates intermediate and 
ina‘ resu‘ts t“ 3 signiicant digits.

Rule of Thumb In ‘““”ing, whenever ”“ssib‘e, av“id accu’u‘ating l“at-
ing-point values through repeated addition or subtraction.
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Comparison of Floating-Point Numbers

Conversion back and forth between the decimal system that people usually employ 
and the binary system of computers can result in the loss of information. For exam-
ple, with a subscript indicating the base, the decimal number 0.610 is equivalent to 
the binary number 01001. 2, where the line over 1001 indicates that this pattern con-
tinues f“rever. H“wever, a c“’”uter cann“t st“re an ininite ex”ansi“n. If the ”ar-
ticu‘ar c“’”uter truncates t“ 20 bits t“ st“re the signiicand, the st“red va‘ue w“u‘d 
be 0.100110011001100110012, which is equiva‘ent t“ 0.5999994277954101562510. 
Thus, if we want t“ ”rint this va‘ue, the c“’”uter ’ight dis”‘ay 0.599999 instead “f 
the expected 0.600000.

This c“nversi“n between bases, a inite a’“unt “f c“’”uter st“rage, and err“r 
propagation are the reasons we should not test if l“ating-”“int nu’bers are exact‘y 
equa‘ in a c“’”uter. Thus, in a s”readsheet, we sh“u‘d n“t test if the l“ating-”“int 
contents of cells B2 and B3 are equal as follows: 

=If(B2 = B3, . . .)  # Do NOT test loating-point numbers this way

Si’i‘ar‘y, in a ”r“gra’’ing ‘anguage, we sh“u‘d n“t test if l“ating-”“int variab‘es 
x and z are identical, as in the following C/C++/Java statement, which employs two 
adjacent equal signs, ==, to check for equality:

if (x == z) . . .  // Do NOT test loating-point numbers this way

Example 4

For ease of computation, let us consider a computer that uses the decimal system but 
truncates t“ 3 digits f“r the signiicand. Su””“se x has the value 0.536. Now, suppose 
we multiply x by 7, using * for multiplication, to obtain y and divide this va‘ue by 7, 
assigning the ina‘ resu‘t t“ z, as follows:

 x = 0.536

 y = 7 * x

 z = y / 7

In mathematics x and z are identical; but when we multiply x = 0.536 by 7, we “btain 
3.752 = 0.3752 × 101, which truncates to y = 0.375 × 101 in a system that has 3-digit 
signiicands. Divisi“n by 7 yie‘ds an ininite deci’a‘ ex”ansi“n, 0 53571428. , which 
truncates in 3 decimal places to 0.535 for z. Thus, x = 0.536 and z = 0.535 are not 
identica‘. We have exaggerated the ”r“b‘e’ by using “n‘y 3 digits f“r the signii-
cand, but the idea is the sa’e f“r a ‘arger signiicand.

T“ av“id the ”r“b‘e’, we sh“u‘d instead test if the difference between tw“ l“at-
ing-point values is “close enough” to zero. For our limited system that uses only 3 
digits f“r the signiicand, we ’ight decide that if the difference is within 0.001 “f 
zer“, then we wi‘‘ c“nsider the va‘ues t“ be equa‘. Because the difference c“u‘d be 
positive or negative, we take the absolute value of the difference and make the fol-
lowing test: 

 If |x – z| < 0.001, consider x and z to be the same. (1)
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In a more-realistic computer system, to determine equality we might test if x and z 

are within some very small number of each other, say, 0.000001 of each other. 

Quick Review Question 8

Write a state’ent si’i‘ar t“ (1) t“ test if tw“ l“ating-”“int variab‘es are not equal to 

within 0.000001 of each other.

Truncation Error

Just as a c“’”uter cann“t exact‘y st“re nu’bers with ininite ”recisi“n, a c“’”uter 
cann“t ”erf“r’ an ininite nu’ber “f ca‘cu‘ati“ns. Let us c“nsider a resu‘t “f ca‘cu-

lus that says ex has the f“‘‘“wing ininite series ex”ansi“n:

ex = 1 + x + 
x x x x

n

n2 3 4

1 2 1 2 3 1 2 3 4⋅
+

⋅ ⋅
+

⋅ ⋅ ⋅
+ + +⋯ ⋯

!
 

Therefore, e1 = e, which is Eu‘er s nu’ber, 2.718281828459045 . . ., is exact‘y equa‘ 
t“ the f“‘‘“wing ininite series, with 1 re”‘acing x in the last equation:

e = 1 + 1 + 
1

1 2

1

1 2 3

1

1 2 3 4

1

⋅
+

⋅ ⋅
+

⋅ ⋅ ⋅
+ + +⋯ ⋯

n!

H“wever, a inite ’achine is unab‘e t“ ”erf“r’ such an ininite nu’ber “f additi“ns. 
If we wish to use this series to evaluate e, we must truncate the sum. For example, if 

we perform the additions to n = 20 to obtain a partial sum, we have the following 

close approximation of e:

e ≈ 1 + 1 + 
1

1 2

1

1 2 3

1

1 2 3 4

1

20

6 613 313 319 248 080 001

2 432⋅
+

⋅ ⋅
+

⋅ ⋅ ⋅
+ + =⋯

!

, , , , , ,

, ,, , , , ,902 008 176 640 000

This inite su’ d“es n“t inc‘ude ter’s fr“’ 1/(21!) “n and resu‘ts in the f“‘‘“wing 
truncation error:

 
1

21

1

22

1

23
2 05 10

20

! ! !
.+ + + ≈ × −⋯

Rule T“ deter’ine if l“ating-”“int nu’bers x and z are equal on a com-
puter, test if x and z are within some small value of each other, 
that is, test if |x – z| < c for some small constant, c, such as 
0.000001.
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Figure 5.2.1 displays graphs of ex (in color) and the following approximating par-

tial-sum functions (in black): fn(x) = 1 + x + 
x x x x

n

n2 3 4

1 2 1 2 3 1 2 3 4⋅
+

⋅ ⋅
+

⋅ ⋅ ⋅
+ +⋯

!
 for 

n = 1 through n = 4: 

 f1(x) = 1 + x

 f2(x) = 1 + x + 
x

x
x2 2

1 2
1

2⋅
= + +

 f3(x) = 1 + x + 
x x

x
x x2 3 2 3

1 2 1 2 3
1

2 6⋅
+

⋅ ⋅
= + + +

 f4(x) = 1 + x + 
x x x

x
x x x2 3 4 2 3 4

1 2 1 2 3 1 2 3 4
1

2 6 24⋅
+

⋅ ⋅
+

⋅ ⋅ ⋅
= + + + +

As n becomes larger, the graphs of the partial-sum functions fn(x) approach, or con-
verge to, the graph of f(x) = ex.

Deinition A truncation error is an error that occurs when a truncated, or 
inite, su’ is used as an a””r“xi’ati“n f“r the su’ “f an ininite 
series.

–1 1 2
x

2

4

6

y

–2

Figure 5.2.1 Graphs of ex (in c“‘“r) and f“ur inite series a””r“xi’ati“ns

Quick Review Question 9

Calculus shows that sin(x) equa‘s the f“‘‘“wing ininite series:

sin(x) = x – 
x x x3 5 7

3 5 7! ! !
+ − +⋯

a. Obtain an a””r“xi’ati“n f“r sin(2), truncating the ininite series t“ 2 ter’s.
b. Give the error for this approximation.
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Exercises

Write the nu’bers “f Exercises 1 12 in n“r’a‘ized ex”“nentia‘ n“tati“n.

 1. 63,850 2. 29.748 3. 0.00032 4. 53.7 × 103

 5. 0.496 6. 0.0000017 7. 0.009 × 10–5 8. 0.009 × 105

 9. –0.82 10. –82 11. –0.00082 12. 4.4

13. Give the ’agnitude and ”recisi“n “f 0.743621 × 1025.
14. Give the ’agnitude and ”recisi“n “f 93.6 × 107.
15.  Give the precision and the largest magnitude of numbers in a computer 

where the signiicand has 8 digits and the ‘argest ”“wer “f 10 is 125.

Give the nu’ber “f signiicant digits and the ’“st signiicant digit f“r the nu’bers in 
Exercises 16 21.

 16. 63,850 17. 29.004 18. 0.00074
 19. 103 20. 4 × 10–5 21. 0.300500

22. Give the range “f the n“r’a‘ized ”“sitive nu’bers where the signiicand 
has three digits and the exponent of 10 is from –5 to +5.

23. Give the range of the normalized positive numbers that can be expressed 
with 7 digits in the signiicand and an ex”“nent “f 10 fr“’ 78 t“ +73.

F“r exercise 24 26, ind the f“‘‘“wing: (a) the absolute error and  (b) the re‘ative 
error of each number as it is rounded to 2 decimal places. Then compute (c) the ab-

solute error and (d) the re‘ative err“r “f each nu’ber as it is truncated t“ 2 deci’a‘ 
places.

24. 6.239 25. 6.231 26. 1.0/3.0 st“red with 5 signiicant digits
27. a.  Perform the arithmetic (9.4 × 10–5) + (3.6 × 104), expressing the an-

swer in normalized exponential notation. 
 b.  Give the ina‘ answer if the re”resentati“n a‘‘“ws “n‘y 5 signiicant 

digits, rounded. 
 c.  Give the absolute error of Part b. 
 d.  Give the relative error of Part b. 
28.  Re”eat Exercise 27 f“r (0.7 × 103) – (0.825 × 102). Use 3 signiicant digits 

instead “f 5 signiicant digits f“r Parts b d.
29. Suppose the following sequence is executed: x = 6.239;  x = x + x. For a ma-

chine that truncates t“ 3 signiicant digits, give the va‘ues st“red f“r x after 
execution of each statement and the relative error for the value of x after 
the last statement. Compare this error with your answer in Exercise 24.

30. C“nsider a ’achine that r“unds t“ 4 signiicant digits. Su””“se initia‘‘y 
y = 9.649 and x = 7.834.  The f“‘‘“wing assign’ent state’ent, which ca‘-
culates the expression on the right, (y + x), and then replaces the value of 
y on the left with the result, is in a loop that executes four times: y = y + x. 
After each iteration of the loop, give the value stored in y and the absolute 
and relative errors: 

31.  Using the computer described in Example 3 and t = i * dt, evaluate the 
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computer’s value for t, the absolute error, and the relative error for the 
values of i in Table 5.2.1. Compare your results with those of Table 5.2.1. 

32. Mathematics can prove that 1 0 0 99 0 999. . .= = . Suppose this value is as-
signed to x and to y as a series “f 9s truncated t“ 4 signiicant digits.

 a.  If x = x + y is executed four times in a loop, each time replacing the 
old value of x with the result of the sum on the right, give the values 
of x and the absolute and relative errors for the original assignment 
and after each iteration of the loop.

 b.  By “bserving the resu‘ts “f Part a, give the va‘ue “f x and the absolute 
and relative errors after the tenth iteration of the loop. 

33. Refer t“ Exa’”‘e 4 f“r the ”r“”er testing “f equa‘ity “f l“ating-”“int 
numbers.

 a.  Write an if statement that puts 1 in the current cell of a spreadsheet if 
the l“ating-”“int va‘ues in ce‘‘s B2 and B3 are equal and otherwise 
puts 0 in the current cell. 

 b.  In another computational tool, write an if statement that displays 1 if 
the l“ating ”“int va‘ues in x and z are equal and otherwise displays 0.

34. a. Calculus shows that cos(x) equa‘s the f“‘‘“wing ininite series:

cos(x) = 1 –
x x x2 4 6

2 4 6! ! !
+ +− ⋯

   Obtain a decimal expansion approximation for cos(2), truncating the 
ininite series t“ three ter’s.

 b.  Find inite series a””r“xi’ati“ns f“r c“s(2) unti‘ successive a””r“xi-
’ati“ns are the sa’e f“r the irst 4 signiicant digits and give that 
approximation.

35. a. With a computational tool, evaluate the following:

  10000000000000000. + 1. – 10000000000000000. 

 that is, 1.0 × 1016 + 1. – 1.0 × 1016.
 b.  What should the result be?
 c.  Explain what happened. 
36. F“r a ’achine that r“unds t“ 3 signiicant digits, give an exa’”‘e where a 

l“ating-”“int nu’ber, x, does not have a multiplicative inverse, y, where 
xy = 1.

37. F“r a ’achine that r“unds t“ 3 signiicant digits, give an exa’”‘e where 
the associative property for addition does not hold.

Projects

1. Using a computational tool, evaluate each of the following expressions for 
t = 355/113, r = 101/113, and s = 52/113: t – s – r – r – r, t – r – r – r – s, 
t – r – r – s – r, t – r – 2r – s, t – r – s – r – r, t – 2r – r – s, t – 3r – s, t – r  –  
s – 2r. Using mathematics, what are the values of the expressions? What nu-
meric property or properties are violated (Panoff 2004)?
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2. Using a computational tool, evaluate ex for a given value of x using the series 
expansion in the section “Truncation Error” and enough terms so that succes-
sive approximations differ by no more than 1 hundred-thousandth. Show all 
steps of the developing expansion on separate rows. Also, evaluate ex using 
the built-in exponential function.

3. Do Project 2 for sin(x) using the series expansion in Quick Review Question 
9.

4. Do Project 2 for a function and its Taylor series expansion. Do not use ex or 
sin(x). Refer to a calculus text for such an expansion.

5. Using a c“’”utati“na‘ t““‘ and the ininite series ex”ansi“ns “f sin(x) (see 
Quic— Review Questi“n 9), deine ive ”artia‘-su’ a””r“xi’ati“n functi“ns. 
Graph sin(x) and the approximating functions. Evaluate sin(x) and the ap-
proximating functions at several values of x, and compute the absolute and 
relative errors of the approximations.

6. Do Project 5 for a function and its Taylor Series expansion. Do not use ex or 
sin(x). Refer to a calculus text for such an expansion.

7. Develop a system dynamics model for Exercise 8 in Module 2.2, “Uncon-
strained Growth and Decay.” Have your system dynamics tool calculate the 
absolute and relative errors of the simulated values in comparison to the ana-
lytical values.

8. This project requires the use of programming in a computer language or a 
computational tool. A chemical is added a drop at a time to a container in 
which a reaction is occurring. Each drop is measured as precisely 0.xxxx mL. 
The total amount of the chemical must be computed after each drop is added. 
Write a program to perform the calculation in two ways: by incrementing the 
previous total by 0.xxxx (accumulated) and by multiplying 0.xxxx (multi-

plied) by the number of drops so far. At the beginning of the program, ask the 
user for the number of iterations and the reporting interval. Print the iteration 
number and both ongoing totals at the requested intervals. Use the last 4 dig-
its of your phone number as the nonzero digits in the measurement of the 
drop of the chemical. Replace zeros with different odd digits. For example, 
with a ”h“ne nu’ber “f 555-9389, use 0.9389; and with 555-8090, ”“ssib‘y 
use 8193. Sa’”‘e “ut”ut f“r 0.xxxx = 0.9389 is as f“‘‘“ws:

Give the number of iterations: 1000

Give the reporting interval:  200

Iteration 200

Accumulated = 187.781

Multiplied = 187.78

Iteration 400

Accumulated = 375.561

Multiplied = 375.56

Iteration 600

Accumulated = 563.342

Multiplied = 563.34

Iteration 800

Accumulated = 751.123

Multiplied = 751.12
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Iteration 1000

Accumulated = 938.904

Multiplied = 938.9

Print the output and report for each of the following:
a. Run the ”r“gra’ with a re”“rting interva‘ “f 1 t“ deter’ine the irst iterati“n 

in which there is a difference between the two computations. What are the 
absolute and relative errors for accumulated at that point? Is there an error 
for multiplied?

b. Run the program with a reporting interval of 1,000,000. What are the abso-
lute and relative errors for both totals?

c. Run the ”r“gra’ with a re”“rting interva‘ “f 999,999. What are the abs“‘ute 
and relative errors for both totals? Note: To compute the correct answer, take 
the correct answer for the millionth iteration and subtract 0.xxxx.

d. Run the program with a large enough number of iterations and a large report-
ing interval so that eventually the value of accumulated does not change from 
one report to the next. What explanation do you have for this phenomenon?

Answers to Quick Review Questions

1. a. 4500
 b. –3
 c. 4 because the 4 digits “f 4500 are signiicant
2. a. 6.239  6.23 = 0.009
 b. (6.239  6.23)/6.239 = 0.144%
3. a. 0.94 × 10–5

 b. 0.93 × 10–5

 c. 0.94 × 10–5

4. 12.37 because the su’ is 12.35 + 0.02499 = 12.37499, r“unded t“ 4 signii-
cant digits.

5. 
3r x y

zu

( )+
, or 3r(x + y)/(zu). Note: In the second form, parentheses around  

the denominator product are essential because of priority of operations. 

Without the parentheses around zu, z would be divided into 3r(x + y) and
inc“rrect‘y the resu‘t w“u‘d be ’u‘ti”‘ied by u, which is equivalent to 
3 3r x y

z
u

r x y u

z

( ) ( )+



 =

+
.

6. B. sum = 0.00492 * k
7. x(y + z) = 2.48(9.34 + 1.55) = 2.48(10.89). H“wever, 10.89 truncates t“ 10.8. 

Thus, 2.48(10.8) = 26.784, which truncates t“ 26.7.
 x(y) + x(z) = 2.48(9.34) + 2.48(1.55) = 23.1632 + 3.844, which after trunca-

ti“n is 23.1 + 3.84 = 26.94, “r 26.9.

x(y + z) = 26.7 ≠ x(y) + x(z) = 26.9

8. If | x – z |  0.000001, c“nsider x and z not to be the same.
9. a. 2 – 23/(3!) = 2 – 8/6 = 2/3

 b. 
5 7

2

5

2

7! !
− +⋯  = sin(2) – 2/3
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MODULE 6.1

Computational Toolbox—Tools of the Trade: Tutorial 2

Prerequisite: M“du‘e 5.1, C“’”utati“na‘ T““‘b“x T““‘s “f the Trade:  
Tut“ria‘ 1.

Download

From the textbook’s website, download Tutorial 2 in the format of your computa-
tional tool or in PDF format. We recommend that you work through the tutorial and 
answer all Quick Review Questions using the corresponding software.

Introduction

Various computer software tools are useful for graphing, numeric computation, and 
symbolic manipulation. This second computational toolbox tutorial, which is avail-
able from the textbook’s website in your system of choice, prepares you to use the 
tool to complete projects for this and subsequent chapters. The tutorial introduces 
the following functions and concepts: 

• Lists/arrays
• Plotting data
• Comments
• Appending

The module gives computational examples and Quick Review Questions for you to 
complete and execute in the desired software system. 



MODULE 6.2

Euler’s Method

Download

The text s website has the i‘e unconstrainedError, which contains a model for the 
“Error” section in this module, available for download for various system dynamics 
tools.

Introduction

With system dynamics tools, we often have the choice of simulation techniques, 
such as Euler’s Method, Runge-Kutta 2, Runge-Kutta 4, and others. These numeri-
cal methods are for solving ordinary differential equations, as we have done in 
Cha”ters 2 4, and esti’ating deinite integra‘s f“r which the indeinite integra‘ d“es 
not exist. In this module, we discuss the most straightforward of these, Euler’s 
method.

Reasoning behind Euler’s Method

In Module 2.2, “Unconstrained Growth and Decay,” to simulate with P0 = 100, we 
employ the following underlying equations with INIT meaning “initial” and dt rep-
resenting a s’a‘‘ change in ti’e, ∆t:

growth_rate = 0.10

INIT population = 100

growth = growth_rate * population

population = population + growth * dt

These equations, which we enter explicitly or implicitly with a model diagram, rep-
resent the f“‘‘“wing inite difference equati“ns using Euler’s method:
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growth_rate = 0.10

population(0) = 100

growth(t) = growth_rate * population(t - ∆t)

population(t) = population(t - ∆t) + growth(t) * ∆t

The population at one time step, population(t), is the population at the previous 
time step, population(t  ∆t), plus the estimated change in population, growth(t) * 
∆t. The derivative of population with respect to time is growth, and

 growth(t) = growth_rate * population(t  ∆t) 
  = 0.10 * population(t  ∆t) 

or dP/dt = 0.10P. The change in the ”“”u‘ati“n is the l“w (in this case, growth) 
times the change in time, ∆t; and the l“w (growth) is the derivative of the function 
at the previous time step, t  ∆t. 

Figure 6.2.1 illustrates Euler’s method used to estimate P1 = P(8) for the preced-
ing differential equation by starting with P0 = P(0) = 100 and using ∆t = 8. In this 
situation, t = 8, t − ∆t = 0, and the derivative at that time is Pʹ(0) = 0.1(100) = 10, 
which, as Figure 6.2.1 depicts, is the slope of the tangent line to the curve P(t) at (0, 
100). We multiply ∆t, 8, by this derivative at the previous time step, 10, to obtain the 
estimated change in P, 80. Consequently, the estimate for P1 is as follows: 

 estimate for P1 = previous value of P + estimated change in P 
 = P0 + Pʹ(0)∆t
 = 100 + 10(8)
 = 180

In Module 2.2, “Unconstrained Growth and Decay,” we discovered analytically that 
the solution to the preceding differential equation is P = 100 e0.1t. Because the gra”h 
of the actual function is concave up, this estimated value, 180, is lower than the ac-
tual value at t = 8, 100e0.1(8) ≈ 223.

– 4 –2 2 4 6 8 10 12 
t 

50 

100 

150 

200 

250 

300 

P 

8 

80 

100 

(8, 223) 

(8, 180) 

Figure 6.2.1 Actual point, (8, 223), and point obtained by Euler’s method, (8, 180)
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Quick Review Question 1

For dP/dt = 10 + P/5, with P0 = 500 and ∆t = 0.1, calculate the following: 

a. dP/dt at t = 0
b. Euler’s estimate of P1

Algorithm for Euler’s Method

Following the preceding description, Algorithm 1 presents Euler’s method. 

Thus, this si’u‘ati“n uses a sequence “f ti’es t0, t1, t2, ... and ca‘cu‘ates a c“r-
res”“nding sequence “f esti’ated ”“”u‘ati“ns P0, P1, P2, .... In Algorithm 1, 
tn = tn–1 + ∆t or  tn–1 = tn  ∆t, and Pn = Pn–1 + Pʹ(tn–1)∆t.

H“wever, as i‘‘ustrated in M“du‘e 5.2, Err“rs,  re”eated‘y accu’u‘ating ∆t into 
t usually produces an accumulation error. To minimize error, we calculate the time 
as the su’ “f the initia‘ ti’e and an integer ’u‘ti”‘e “f ∆t. Using the functional nota-
tion f(tn–1, Pn–1) to indicate the derivative dP/dt at Step n – 1, Algorithm 2 presents a 
revised Euler’s Method that minimizes accumulation of error.

Quick Review Question 2

Match each of the following symbols to its meaning in Algorithm 2 for Euler’s 
method. Here, previous means immediately previous.

A. Change in time between time steps
B. Derivative “f functi“n at esti’ated va‘ue “f functi“n f“r current ti’e ste” 

Algorithm 1: Euler’s Method 

t ← t0

P(t0) ← P0 
Initialize SimulationLength

while t < SimulationLength do the following:

 t ← t + ∆t

 P(t) = P(t  ∆t) + Pʹ(t  ∆t) ∆t 

Algorithm 2 Revised Euler’s Method to minimize error accumulation of 
time with  f(tn–1, Pn–1) indicating the derivative dP/dt at step n – 1

Initialize t0 and P0

Initialize NumberOfSteps

for n going from 1 to NumberOfSteps do the following:

 tn = t0 + n ∆t

 Pn = Pn - 1 + f(tn - 1, Pn - 1) ∆t
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C. Derivative of function at estimated point for previous time step
D. Estimated value of function at current time step
E. Estimated value of function at previous time step
F. Initial time
G. Initial value of function
H. Number of current time step
I. Time at current time step
J. Time at previous time step
 a. tn 

 b. t0 
 c. n 
 d. ∆t 

 e. Pn

 f. Pn–1

 g. f(tn–1, Pn–1)
 h. tn–1   

Error

As we saw in Module 2.2, “Unconstrained Growth and Decay,” the analytical solu-
tion to dP/dt = 0.10P with P0 = 100 is P = 100e0.10t. Even with Algorithm 2, com-
parison of the results of Euler’s method with the analytical solution reveals an ac-
cumulation error. As Figure 6.2.2 and an unconstrainedError i‘e i‘‘ustrate (see 
“Download”), we can adjust the unconstrained growth model to demonstrate the 
variation.

The converter/variable actual_population evaluates P0e
rt, or 100e0.10t. The for-

mula does not use the changing value of population, but the initial population, ini-

tial_population. With Time as the current value of time and EXP as the exponential 
function, the equation in the converter actual_population is as follows:

initial_population * EXP(growth_rate * Time)

population

growth

growth rate

actual population

relative

error %

Figure 6.2.2 Unconstrained growth model with monitoring
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Similarly, the converter re‘ative_err“r_% computes the percent relative error as the 
”r“duct “f 100 and the abs“‘ute va‘ue (ABS) “f the difference in Eu‘er s esti’ate 
and the analytical population with the result divided by the latter, as follows:

ABS(population - actual_population) * 100 / actual_population

Figure 6.2.3 presents graphs of the analytical solution and the solution using Euler’s 
Meth“d, with ∆t being 1. As demonstrated, the simulated solution is below the ana-
lytical one. At the end of the run, at time 100, the analytical value for the population 
is 2,202,647, whi‘e the si’u‘ated s“‘uti“n using Eu‘er s ’eth“d ”r“duces 1,378,061, 
s“ that the re‘ative err“r is ’“re than 37.4%. F“r ∆t being cut in half, the relative 
error is almost cut in half to 21.5% at time 100. The new simulated population is 
1,729,258, which is c“nsiderab‘y c‘“ser t“ the ana‘ytica‘ s“‘uti“n “f 2,202,647. If we 
cut the ti’e ste” in ha‘f again s“ that ∆t is 0.25, the relative also reduces by about 
ha‘f t“ 11.6% at ti’e 100. Thus, the re‘ative err“r is ”r“”“rti“na‘ t“ ∆t. We say that 
the relative error is on the order of ∆t, O(∆t).

t

y

25 50 75 100

2203000

1101500

actual population

0

population

Figure 6.2.3 Graphs of analytical solution and Euler’s Method solution with ∆t = 1

Quick Review Question 3

The analytical solution to dP/dt = 10 + P/5, with P0 = 500, of Quick Review Ques-
tion 1 is P = 550et/5 – 50.  Part b of that question showed that for ∆t = 0.1, the Euler’s 
Method estimate of P1 is 511. Calculate the relative error as a percentage with 4 
decimal places.

Of the three simulation techniques in this chapter, Euler’s method is the easiest to 
understand and has the fastest execution time but is the least accurate. We usually 
can reduce the error of the Euler method by employing a smaller ∆t, which unfortu-
nately slows the simulation. Despite its shortcomings, the reasoning behind Euler’s 
method serves as an excellent introduction to the other techniques, Runge-Kutta 2 
and Runge-Kutta 4, because each “f these has Eu‘er s ’eth“d e’bedded as the irst 
step in its simulation.



Simulation Techniques 209

Exercises

1. Use dP/dt = 0.10P, with P0 = 100, and Euler’s method to calculate P2 starting 
with P1 = 180 at t = 8 h in Figure 6.2.1.

In Exercises 2 5, f“r each differentia‘ equati“n with initia‘ c“nditi“n and ∆t, ca‘cu-

late the following using Euler’s method and any other requested computation:

 a.  The irst esti’ated ”“int, such as P1, where the differential equation is in 

terms of dP/dt

 b. The second estimated point, such as P2

2.  dP/dt = 0.10P, with P0 = 100 and ∆t = 2
 c. The relative error for P1

3. The logistic equation 
dP

dt

P
P= −



0 5 1

1000
.  with P0 = 20 and ∆t = 2

 c. The relative error for P1, where the exact solution is P(t) = 
10

0 01 0 49
0 5

. .
.+ −

e
t

4. The rate of change of the number of particles of radioactive carbon-14 in a 
dead tree dA/dt = 2.783e-0.000121t with A0 = 23,000 ”artic‘es and ∆t = 0.2 yr

 c. The relative error for A2, where the exact solution is A(t) = 23,000e–0.000121i

5. The Gompertz differential equation dN/dt = kN ln(M/N), with N(0) = 200, 
k = 0.1, M = 1000, and ∆t = 0.5

 c. The relative error for N2, where the exact solution is N(t) = Meln(N0/M)e-kt 

Projects

Using A‘g“rith’ 2 f“r Eu‘er s ’eth“d, deve‘“” a c“’”utati“na‘ t““‘ i‘e t“ ”erf“r’ 
the si’u‘ati“ns “f Pr“–ects 1 7. Run the si’u‘ati“n f“r the indicated ‘ength “f ti’e 
and perform any other requested tasks.

1. Calculate P from t = 0 through t = 100, where dP/dt = 0.10P, with P0 = 100 
and ∆t = 2. Calculate the relative error at each time step using the solution 
P = 100e0.1t. Re”eat the c“’”utati“n with ∆t = 0.25. Check your results using 
a system dynamics tool. Use your results in a discussion of relative error. 

2. Calculate P from t = 0 through t = 100 for logistic equation
dP

dt

P
P= −



0 5 1

1000
. , with P0 = 20 and ∆t = 2. Calculate the relative error 

at each time step using the solution P(t) = 
10

0 01 0 49
0 5

. .
.+ −

e
t

. Repeat the com-

”utati“n with ∆t = 0.25. Check your results using a system dynamics tool. 
Use your results in a discussion of relative error.

3. Suppose the instantaneous rate of change of the number of particles, A, of 
radioactive carbon-14 in a gram of a dead tree is dA/dt = 2.783e–0.000121i

 par-
ticles/year from the time, t, the tree dies with A0 = 23,000 particles. Use Eul-
er’s method to estimate the total change in the number of particles of car-
b“n-14 between years 10 and 20. Ca‘cu‘ate the exact va‘ue “f the deinite 
integral with calculus or an appropriate computational tool and compute the 
relative error.
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4. The Gompertz differential equation, which is one of the best models for pre-
dicting the growth of cancer tumors, follows:

dN/dt = kN ln(M/N) 

 where N is the number of cancer cells. Calculate N from t = 0 through t = 20, 
where k = 0.1, M = 1000, and ∆t = 0.5. Using the solution N(t) = Meln(N0/M)e-kt

,  
calculate the relative error at each time step. Repeat the computation with 
∆t = 0.25. Check your results using a system dynamics tool. Use your results 
in a discussion of relative error.

5. Estimate 
1

5

∫  (–t2 + 10t +24)dt using ∆t = 0.25. Calculate the exact value using 
calculus or an appropriate computational tool and compute the relative error 
of the simulated result.

6. Estimate 
1

2

2

0

2

π
e dtt−∫  using ∆t = 0.1. The c“rres”“nding indeinite integra‘ 

does not exist. The function being integrated is the normal distribution with 
mean 0 and standard deviation 1.

7. Calculate h(t) and s(t) from t = 0 through t = 50 using ∆t = 0.25 for the fol-
lowing system of differential equations:

ds

dt
s hs s

dh

dt
sh h h

= − =

= − =










2 0 02 100

0 01 1 06 15

0

0

. ,

. . ,

 As Module 4.2, “Predator-Prey Model,” discusses, this system is a model for 
predator (h) and prey (s) populations.

Answers to Quick Review Questions

1. a. 110 because 10 + (500)/5 = 110
 b. 511 because 500 + 0.1(110) = 511
2. a. tn  I. Time at current time step
 b. t0 F. Initial time
 c. n H. Number of current time step
 d. ∆t A. Change in time between time steps
 e. Pn D. Estimated value of function at current time step
 f. Pn–1 E. Estimated value of function at previous time step
 g. f(tn–1, Pn–1) C.  Derivative of function at estimated point for previous 

time step
 h. tn–1 J. Time at previous time step
3. 0.0217% because 

550e0.1/5 – 50 = 511.111 and
| (511  511.111) |/511.111 = 0.000217 = 0.0217%
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MODULE 6.3

Runge-Kutta 2 Method

Introduction

In Module 6.2, “Euler’s Method,” which is a prerequisite to the current module, we 
discuss the simplest of this chapter’s simulation techniques for solving differential 
equati“ns and c“’”uting deinite integra‘s nu’erica‘‘y. In this secti“n, we c“nsider 
a second and better simulation technique, Euler’s predictor-corrector (EPC) 
method, also called Runge-Kutta 2.

Euler’s Estimate as a Predictor

In the current module, we consider the example of Module 6.2, “Euler’s Method,” 
dP/dt = 0.10P, with P0 = 100. As in that section, f(tn, Pn) is sometimes a more conve-
nient notation for the derivative dP/dt at Step n. Thus, at (t, P) = (0, 100), the deriva-
tive is f(0, 100) = 0.1(100) = 10. According to that technique, using the derivative at 
(tn–1, Pn–1), which is always equal to the slope of the tangent line there, we have the 
following computation for tn and estimation of Pn:

 tn = t0 + n ∆t

 Pn = Pn–1 + f(tn–1, Pn–1) ∆t 

As Figure 6.2.1 of “Euler’s Method” and Figure 6.3.1 illustrate for t0 = 0 and ∆t = 8, 
the estimate at t1 = 8 is the vertical coordinate of the point on the tangent line, 
100 + 8(10) = 180.

Corrector

To estimate (tn, Pn), we would really like to use the slope of the chord from (tn–1, Pn–1) 
to (tn, Pn) instead of the slope of the tangent line at (tn–1, Pn–1). As in Figure 6.3.2, if 
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we know the slope of the chord between (0, P(0)) = (0, 100) and (8, P(8)) = (8, 

100e0.10(8)) ≈ (8, 223) is a””r“xi’ate‘y 223 100

8 0

123

8

−
−

= , we can evaluate P(8) =  

P(0) + slope_of_chord * ∆t = 100 + 
123

8
8





  = 223. However, to evaluate the slope 

of the chord, we must know P(8) ≈ 223, which is the va‘ue we are trying t“ esti-
mate. If we know the actual value, there is no need to estimate. 

Although we do not know the slope of the chord between (0, P(0)) and (8, P(8)), 
we can estimate it as approximately the average of the slopes of the tangent lines at 
P(0) and P(8):

slope of the chord

between (0, (0)) and (8, (8))

sl

P P







≈
oope of tan at (0) (slope of tan at (8)P P( ) + ( )

2
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Figure 6.3.1 Actual point, (8, P(8)) ≈ (8, 223), and ”“int “btained by Eu‘er s ’eth“d, (8, 
180)

–4 –2 2 4 6 8 10 12 
t 

50 

100 

150 

200 

250 

300 

P 

8 

123 

100 

(8, 223) 

Figure 6.3.2 Actual point, (8, P(8)) ≈ (8, 223), a‘“ng the ch“rd between (0, 100) and (8, 
223)
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Figure 6.3.3 depicts these two tangent lines.
H“w can we ind the s‘“”e “f the tangent ‘ine at P(8) when we do not know P(8)? 

Instead of using the exact value, which we do not know, we predict P(8) as in Eul-
er s ’eth“d. As the c“’”utati“n in the irst secti“n, Eu‘er s Esti’ate as a Predic-
tor,” shows, in this case, the prediction is Y = 180. We use the point (8, 180) in de-
rivative formula to obtain an estimate of slope at t = 8. In this case, the slope of the 
tangent line at (8, 180), or the derivative, is f(8, 180) = 0.1(180) = 18. Using 18 as 
the approximate slope of the tangent line at (8, P(8)), we estimate the slope of chord 
between (0, P(0)) and (8, P(8)) as the following average of tangent line slopes:

s‘“”e “f ch“rd ≈ (10 + 18)/2 = 0.5(10 + 18) = 14

As Figure 6.3.4 shows, using 14, the corrected estimate is P1 = 100 + 14(8) = 212, 
which is closer to the actual value of 223. 

–4 –2 2 4 6 8 10 12
t
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250

300

P

(8, 223)

Figure 6.3.3 Tangent lines at (0, P(0)) and (8, P(8))
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Figure 6.3.4 Predicted and corrected estimation of (8, P(8))
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Quick Review Question 1

Quick Review Question 1 of Module 6.2, “Euler’s Method,” considered dP/
dt = 10 + P/5, with P0 = 500 and ∆t = 0.1. Part a calculated the derivative at t = 0 to 
be 110, and Part b evaluated Euler’s estimate of P1 to be 511. Calculate the corrected 
estimate for P1 using the technique of this section and decimal notation for your 
answer.

Runge-Kutta 2 Algorithm

Computations of the previous section illustrate Euler’s predictor-corrector method for 
estimating P numerically given a differential equation involving dP/dt. The algorithm 
for Euler’s predictor-corrector (EPC) method, or Runge-Kutta 2, is the same as 
Euler’s, with only one more statement in the loop to obtain the corrected value.

Quick Review Question 2

Match each of the following symbols to its meaning in the algorithm for Euler’s 
predictor-corrector (EPC) method. Here, previous means immediately previous; 
EPC estimate means estimated value of function using the EPC method; and Euler 
estimate means estimated value of function using Euler’s method.

A. Average of derivatives of function at previous EPC estimate and current 
Euler estimate

B. Average “f derivatives “f functi“n at ”revi“us Eu‘er esti’ate and current 
EPC estimate

C. Derivative of function at EPC estimate for current time step
D. Derivative of function at EPC estimate for previous time step
E. Derivative of function at Euler estimate for current time step
F. Derivative of function at Euler estimate for previous time step
G. EPC estimate at current time step
H. EPC estimate at previous time step

Algorithm for Euler’s Predictor-Corrector (EPC) Method, or Runge-
Kutta 2, with f(tn–1, Pn–1) indicating the derivative dP/dt at step n – 1

Initialize t0 and P0

Initialize NumberOfSteps

for n going from 1 to NumberOfSteps do the following:

 tn = t0 + n ∆t

 Yn = Pn - 1 + f(tn - 1, Pn - 1)∆t, which is the Euler’s method estimate
 Pn = Pn - 1 + 0.5 (f(tn - 1, Pn - 1) + f(tn, Yn))∆t
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I. Euler estimate at current time step
J. Euler estimate at previous time step
 a. Yn

 b. Pn–1

 c. f(tn–1, Pn–1)
 d. Pn 

 e. f(tn, Yn)
 f. 0.5 (f(tn–1, Pn–1) + f(tn, Yn))

Error

As noted previously, the actual slope of the chord is (P(8)  100)/8 ≈ (222.6  100)
/8 ≈ 15.3, but 14 is certain‘y a better s‘“”e t“ use than 10 fr“’ Eu‘er s ’eth“d. 
With Euler’s method, P1 = 180, giving a relative error of (180 – P(8))/P(8) ≈  
|180  222.6|/ 222.6 ≈ 0.191 ≈ 19.1%. We get a ’uch better esti’ate with Eu‘er s 
predicator-corrector (Runge-Kutta 2) method, P1 = 212, which has a relative error of 
|212 – P(8)|/ P(8) ≈ |212  222.6|/222.6 ≈ 0.047 ≈ 4.7%.

As we saw in the “Error” section of Module 6.2, “Euler’s Method,” the relative 
err“r “f Eu‘er s ’eth“d is “n the “rder “f ∆t, O(∆t). If we cut the ti’e interva‘ ∆t in 
half, the relative error is halved as well. Using the same model with the Runge-Kutta 
2 simulation method, Table 6.3.1 shows estimates of P(100), whose actual value to 0 
deci’a‘ ”‘aces is 2,202,647, f“r ∆t = 1, 0.5, and 0.25. As the time interval is cut by 
1/2, the relative error is cut by about (1/2)2 = (1/4). Thus, the relative error of the 
EPC ’eth“d is O((∆t)2), “r “n the “rder “f (∆t)2. Thus, although we must compute a 
correction in each EPC algorithm iteration, the EPC method is more accurate than 
Euler’s method.

Table 6.3.1  
Estimates of P(100) and Relative Errors for Various Changes in Time Using 
 Runge- Kutta 2 Simulation Method, where dP/dt = 0.10P with P0 = 100

EPC Estimates at Time 100

∆t Estimated P(100) Re‘ative Err“r

1.00 2,168,841 1.53%
0.50 2,193,824 0.40%
0.25 2,200,396 0.10%

Quick Review Question 3

The analytical solution to dP/dt = 10 + P/5, with P0 = 500, of Quick Review Ques-
tion 1 is P = 550et/5 – 50. That question showed that the Euler’s predictor-corrector 
method estimate of P1 is 511.11 for ∆t = 0.1. Calculate the relative error as a per-
centage rounded to 4 decimal places.
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Exercises

Repeat the exercises of Module 6.2. “Euler’s Method,” using the Runge-Kutta 2 

Meth“d. C“’”are the re‘ative err“rs with th“se “f the c“rres”“nding exercises fr“’ 
Module 6.2.

Projects

Repeat the projects of Module 6.2, “Euler’s Method,” using the Runge-Kutta 2 

method. 

Answers to Quick Review Questions

1. 511.11 because Y1 = 511; f(0.1, 511) = 10 + 511/5 = 112.2; 500 + (0.5)
(110 + 112.2) (0.1) = 511.11

2.  a. Yn I. Euler estimate at current time step
 b. Pn–1 H. EPC estimate at previous time step
 c. f(tn–1, Pn–1) D.  Derivative of function at EPC estimate 

for previous time step
 d. Pn G. EPC estimate at current time step
 e. f(tn, Yn) E.  Derivative of function at Euler esti-

mate for current time step
 f. 0.5 (f(tn - 1, Pn - 1) + f(tn, Yn)) A.  Average of derivatives of function at 

previous EPC estimate and current 
Euler estimate

3. 0.0002% because 550e0.1/5 – 50 = 511.111 and |511.11 – 511.111|/511.111 = 
0.000002 = 0.0002%
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 MODULE 6.4

Runge-Kutta 4 Method

Introduction

Of the three integrati“n techniques “f this cha”ter Eu‘er s, Runge-Kutta 2, and 
Runge-Kutta 4 ’eth“ds the ‘ast is the ’“st inv“‘ved but the ’“st accurate. The 
re‘ative err“rs “f the techniques are O(∆t), O(∆t2), and O(∆t4), respectively, with the 
na’es Runge-Kutta 2 and 4 indicating the ex”“nents “f ∆t. Thus, the latter tech-
nique i’”r“ves the ’“st as ∆t gets smaller.

To illustrate Runge-Kutta 4 method, we again use the example f(t, P) = dP/
dt = 0.10P, with P0 = 100 and ∆t = 8, to show the derivation of P1 from P0. To esti-
mate Pn, the technique adds to Pn–1 a weighted average “f f“ur esti’ates ∂1, ∂2, ∂3, 
and ∂4 “f the change in P. 

First Estimate, ∂1, Using Euler’s Method

As with the Runge-Kutta 2 method, in the Runge-Kutta 4 method we employ the 
esti’ated va‘ue “f the functi“n fr“’ Eu‘er s ’eth“d f“r the irst ”redicted change in 
P. As the section “Reasoning behind Euler’s Method” from Module 6.2 explains, we 
multiply the derivative of the function at (t0, P0) ti’es ∆t for the change in the value 
of the function from the initial value, P0, to the new estimate, P1. In our example, f(0, 
100) = 0.1 × 100 = 10, s“ the irst esti’ate “f the change in P is ∂1 = f(0, 100)∆t =  
10 × 8 = 80. Figure 6.4.1 illustrates this change with a dashed line in color to the 
estimated point that is also in color. 

In general, the irst estimate “f ∆P = Pn – Pn - 1 is as follows:

∂1 = f(tn–1, Pn–1)∆t
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Quick Review Question 1

Suppose dP/dt = –P2/1000, t30 = 1, and P30 = 500. Eva‘uate ∂1 f“r ∆t = 6.

Second Estimate, ∂2

T“ ca‘cu‘ate the sec“nd esti’ate “f ∆P for the previous example, we use the point 
halfway between the initial point (t0, P0), and point from Euler’s estimate, (t0 + ∆t, 
P0 + ∂1), in Figure 6.4.1. The midpoint is on the tangent line to the graph of the func-
tion P at (t0, P0) = (0, 100). Its irst c““rdinate is t0 + 0.5∆t = 0 + 0.5(8) = 4, and its 
second coordinate is P0 + 0.5∂1 = 100 + 0.5(80) = 140. Figure 6.4.2 depicts this 
point, (4, 140), in color.
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Figure 6.4.1 First estimate of change in P, ∂1 = 80

Figure 6.4.2 Midpoint (4, 140) between (t0, P0) = (0, 100) and (t0 + ∆t, P0 + ∂1) = (8, 180) 
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We calculate the derivative, f, for this midpoint using the derivative formula f(t, 
P) = 0.1P, as follows:

f(4, 140) = 0.1(140) = 14

Figure 6.4.3 shows, with less thickness, the exponential function through (4, 140) 
that has derivative 14 at t = 4. Thus, at t = 4 the curve’s tangent line, which is in 
color, has slope 14.

For the second estimate of the change in P, ∂2, we determine the change in the 
vertica‘ directi“n f“r this ‘ine f“r ∆t = 8, as follows:

∂2 = ((0.1)(140)) (8) = 14 (8) = 112

Figure 6.4.4 pictures a line of the same slope (14) that passes through the initial point 
(0, 100). After a change in t of 8 units, P increases by 112. Thus, the second estimate 
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Figure 6.4.3 Estimate slope at midpoint between (0, 100) and (8, 180)
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Figure 6.4.4 Second estimate of change in P, ∂2 = 112
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of P1 is 100 + 112 = 212. The actual value of P at t = 8 is about 222.6, so 212 is an 
improvement over the estimate using Euler’s method, 100 + 80 = 180. Figure 6.4.4 
de”icts the new esti’ated ”“int in c“‘“r as being signiicant‘y c‘“ser t“ the actua‘ 
point than Euler’s estimate in Figure 6.4.1. The improvement comes from making a 
midway correction.

Quick Review Question 2

Suppose dP/dt = –P2/1000, t30 = 1, and P30 = 500. Quick Review Question 1 showed 
that ∂1 = 1500 f“r ∆t = 6. 

a. Give the t-c““rdinate “f the ”“int at which t“ ca‘cu‘ate the derivative f“r ∂2.
b. Give the P-c““rdinate “f the ”“int at which t“ ca‘cu‘ate the derivative f“r ∂2.
c. Eva‘uate ∂2.

Third Estimate, ∂3

F“r the third esti’ate, ∂3, we use the same process as for the second estimate on the 
line in Figure 6.4.4 that passes through the initial point (0, 100) and the second esti-
mate point,  (t + ∆t, P0 + ∂2) = (8, 212). First, we ind the ’id”“int, (4, 156), be-
tween the endpoints (see Figure 6.4.5).

Using the derivative formula, f(t, P) = 0.1P, we estimate the slope of the curve at 
t = 4 as f(4, 156) = 0.1(156) = 15.6. The line through (4, 156) with slope 15.6 ap-
pears in color in Figure 6.4.6.

The second estimate for the change in P employs the estimated slope at 
the point (tn–1 + 0.5∆t, Pn–1 + 0.5∂1), as follows:

∂2 = f(tn–1 + 0.5∆t, Pn–1 + 0.5∂1)∆t
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Figure 6.4.5 Midpoint (4, 156) between (t0, P0) = (0, 100) and (t0 + ∆t, P0 + ∂2) = (8, 212)
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Using the slope of this line, we determine the third estimated change in P over 
∆t = 8, ∂3, as follows:

∂3 = ((0.1)(156)) (8) = 15.6 (8) = 124.8

Figure 6.4.7 dis”‘ays this third esti’ate “f ∆P, ∂3, as the length of the colored, verti-
cal dashed line to the point, (8, 224.8), both of which are in color.

The third estimate for the change in P employs the estimated slope at the 
point  (tn–1 + 0.5∆t, Pn–1 + 0.5∂2), as follows:

∂3 = f(tn–1 + 0.5∆t, Pn–1 + 0.5∂2)∆t
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Figure 6.4.6 Estimate slope at midpoint between (0, 100) and (8, 212)
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Figure 6.4.7 Third estimate of change in P, ∂3 = 124.8
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Quick Review Question 3

Suppose dP/dt = –P2/1000, t30 = 1, and P30 = 500. Quick Review Question 2 showed 
that ∂2 = 375 f“r ∆t = 6. Express your answers to 1 decimal place.

a. Give the t-c““rdinate “f the ”“int at which t“ ca‘cu‘ate the derivative f“r ∂3.
b. Give the P-c““rdinate “f the ”“int at which t“ ca‘cu‘ate the derivative f“r ∂3.
c. Eva‘uate ∂3.

Fourth Estimate, ∂4

The f“urth esti’ate, ∂4, of the change in P “ver the interva‘ “f ‘ength ∆t occurs at the 
end “f the interva‘. As Figure 6.4.8 i‘‘ustrates, using the third esti’ate ∂3, the end-
point is (t0 + ∆t, P0 + ∂3) = (8, 224.8) for the example under discussion.

With dP/dt = f(t, P) = 0.1P, The following computation estimates the slope at the 
endpoint:

f(8, 224.8) = 0.1(224.8) = 22.48

Figure 6.4.9 sh“ws the end”“int a‘“ng with the ex”“nentia‘ functi“n and tangent ‘ine 
of slope 22.48 through that point.

With this s‘“”e, we esti’ate ∂4, the increase in P as t increases, by ∆t = 8, as 
follows:

∂4 = ((0.1)(224.8))(8) = 22.48(8) = 179.84

This f“urth esti’ate “f ∆P is the length of the boldfaced, vertical dashed line to the 
”“int (8, 279.84), b“th “f which are in c“‘“r in Figure 6.4.10. Using ∂4, 279.84 is the 
new estimate of P1.
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Figure 6.4.8 Endpoint (t0 + ∆t, P0 + ∂3) = (8, 224.8)
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Quick Review Question 4

Suppose dP/dt = –P2/1000, t30 = 1, and P30 = 500. Quick Review Question 3 showed 
that ∂3 = 585.9 f“r ∆t = 6. Express your answers to 1 decimal place. 

a. Give the t coordinate of the point at which to calculate the derivative for  
∂4.

The fourth estimate for the change in P employs the estimated slope at the 
point (tn–1 + ∆t, Pn–1 + ∂3), as follows:

∂4 = f(tn - 1 + ∆t, Pn–1 + ∂3)∆t
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Figure 6.4.9 Estimate slope at (8, 224.8)
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Figure 6.4.10 Fourth estimate of change in P, ∂4 = 179.84
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b. Give the P c““rdinate “f the ”“int at which t“ ca‘cu‘ate the derivative f“r ∂4.
c. Eva‘uate ∂4.

Using the Four Estimates

We have obtained estimates of the rate of change of P with respect to t, dP/dt = f(t, 
P), at f“ur ”‘aces “n the interva‘ “f ‘ength ∆t, at each end and twice at the midpoint. 
Using these c“’”utati“ns, we derived f“ur esti’ates (∂1, ∂2, ∂3, and ∂4) of the change 
in P over the interval from t0 = 0 to t0 + ∆t = 8. Figure 6.4.11 shows, corresponding 
t“ the b‘ac— ”“ints, the esti’ates at the ‘eft and right end”“ints (f“r ∂1 = 80 and 
∂4 = 179.84, res”ective‘y) and, c“rres”“nding t“ the ”“ints in c“‘“r, the tw“ esti-
’ates at the ’id”“int (f“r ∂2 = 112 and ∂3 = 124.8). Each value indicates a length of 
vertical dashed line in color from a height of P0 = 100 to a point whose second coor-
dinate is the corresponding estimate of P1.

To determine the Runge-Kutta 4 estimate of P1, we add to P0 = 100 a weighted 
average “f ∂1, ∂2, ∂3, and ∂4. Giving twice the weight to the estimates at the midpoint, 
the computation is as follows:

 P1 = P0 + (∂1 + 2∂2 + 2∂3 + ∂4)/6
  = 100 + (80 + 2 ∙ 112 + 2 ∙ 124.8 + 179.84)/6

  = 100 + 122.24 
  = 222.24

The Runge-Kutta 4 estimate of Pn is as follows:

Pn = Pn–1 + (∂1 + 2∂2 + 2∂3 + ∂4)/6
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Figure 6.4.11 F“ur esti’ates “f ∆P
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Quick Review Question 5

Suppose dP/dt = -P2/1000, t30 = 1, and P30 = 500. F“r ∆t = 6, we found the following 

esti’ati“ns “f ∆P:

 ∂i Quic— Review Questi“n

 ∂1 = −1500 1

 ∂2 = −375 2
 ∂3 = −585.9 3
 ∂4 = −44.3 4

Evaluate Runge-Kutta 4’s estimate of P31 to 1 decimal place.

Runge-Kutta 4 Algorithm

The following Runge-Kutta 4 algorithm combines the computation of the four esti-

’ates “f ∆P, the weighted average, and the ina‘ esti’ate “f Pn into a loop.

Quick Review Question 6

Match each of the following symbols to its meaning in the Runge-Kutta 4 algorithm. 

Here, previous means immediately previous and estimate means estimated value of 

function using the indicated method.

A. Derivative at midpoint between (tn–1, Pn–1) and point with Euler estimate as 

second coordinate

B. Derivative at ’id”“int between (tn–1, Pn–1) and point with EPC estimate as 

second coordinate

C. Esti’ate “f ∆P at a midpoint

D. Esti’ate “f ∆P at right endpoint

Runge-Kutta 4 Algorithm with f(tn -1, Pn–1) indicating the derivative dP/dt 
at step n – 1

Initialize t0 and P0

Initialize NumberOfSteps

for n going from 1 to NumberOfSteps do the following:
tn = t0 + n ∆t

∂1 = f(tn–1, Pn–1) ∆t

∂2 = f(tn–1 + 0.5∆t, Pn–1 + 0.5∂1)∆t

∂3 = f(tn–1 + 0.5∆t, Pn–1 + 0.5∂2)∆t

∂4 = f(tn–1 + ∆t, Pn–1 + ∂3)∆t

Pn = Pn–1 + (∂1 + 2∂2 + 2∂3 + ∂4)/6
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E. Euler estimate at current time step
F. Euler estimate at previous time step
G. Runge-Kutta 2 estimate
H. Runge-Kutta 4 estimate
I. Weighted average “f inter’ediate esti’ates “f ∆P

 a. ∂1

 b. f(tn–1 + 0.5∆t, Pn–1 + 0.5∂1)
 c. ∂3

 d. ∂4 

 e. (∂1 + 2∂2 + 2∂3 + ∂4)/6
 f. Pn

Error

For the preceding example, the analytical solution of P1 to 2 decimal places is 
222.55, while the Runge-Kutta 4 estimate is 222.24. Thus, as the following shows, 
the relative error is small:

|222.24 – 222.55|/222.55 = 0.0014 = 0.14%

An even more dramatic illustration of the improvement in accuracy of the Runge-
Kutta 4 method over Euler’s and Runge-Kutta 2 (Euler’s predictor-corrector, EPC) 
methods occurs at the estimate of P(100). The analytical solution of P(100) to 0 
deci’a‘ ”‘aces is 2,202,647. Tab‘e 6.4.1 ‘ists the re‘ative err“rs f“r the three tech-
niques using ∆t = 1, 0.5, and 0.25. With the Runge-Kutta 4 ’eth“d at ∆t = 0.25, the 
relative error is extremely small, and the rounded estimate and analytical solutions 
are identical. 

Pr“ducing such s’a‘‘ err“rs, si’u‘ati“ns can usua‘‘y have ‘arger ste” sizes, “r ∆t 
values, with the Runge-Kutta 4 method than with the other two techniques. How-
ever, the computation is slower because on each step, the Runge-Kutta 4 algorithm 
computes the derivative, f, four times instead of one or two times. Thus, a trade-off 
of time for accuracy exists.

Table 6.4.1  
Relative Errors of P(100) for Various Time Changes and 
Simulation Methods, where dP/dt = 0.10P with P0 = 100

Re‘ative Err“rs at Ti’e 100

∆t Euler’s EPC Runge- Kutta  

   4

1.00 37.4% 1.53% 0.000767%
0.50 21.5% 0.40% 0.000050%
0.25 11.6% 0.10% 0.000003%
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Exercises

Re”eat the exercises “f M“du‘e 6.2, Eu‘er s Meth“d,  using the Runge-Kutta 4 
’eth“d. C“’”are the re‘ative err“rs with th“se “f the c“rres”“nding exercises fr“’ 
Module 6.2, “Euler’s Method,” and Module 6.3, “Runge-Kutta 2 Method.”

6. D“wn‘“ad the i‘e simplePendulum from the text’s website in one of the sys-
te’ dyna’ics t““‘s. Figure 3.3.3 “f M“du‘e 3.3, Tic— T“c— The Pendu-
lum Clock,” shows a plot of a simple pendulum’s angle, angular velocity, 
and angular acceleration versus time that is the result of the simulation with 
∆t = 0.01 and Runga-Kutta 4 integrati“n. Run the si’u‘ati“n with ∆t = 0.01 
using, in turn, Runga-Kutta 4, Runga-Kutta 2, and Euler’s methods or what-
ever methods are available with your system dynamics tool.  Describe any 
an“’a‘ies in the gra”hs. Re”eat the si’u‘ati“ns and descri”ti“n f“r ∆t = 0.1. 
Discuss the i’”‘icati“ns “f y“ur indings.

Projects

Re”eat the ”r“–ects “f M“du‘e 6.2, Eu‘er s Meth“d,  using the Runge-Kutta 4 
Method.

Answers to Quick Review Questions

1. 1500 because the ”r“duct “f the derivative and ∆t at (t30, P30) is f(1, 500)∆t =     
(–(5002)/1000)(6) = –1500

2. a. 4 because t30 + 0.5∆t = 1 + 6/2 = 4
 b. –250 because P30 + 0.5∂1 = 500 + ( 1500/2) = 500  750 = 250
 c.  375 because f(t30 + 0.5∆t, P30 + 0.5∂1)∆t = f(4, 250)∆t = (–(–250)2/ 

1000) 6 = 375
3. a. 4 because t30 + 0.5∆t = 1 + 6/2 = 4
 b. 312.5 because P30 + 0.5∂2 = 500 + ( 375/2) = 500  187.5 = 312.5
 c.  585.9 because f(t30 + 0.5∆t, P30 + 0.5∂2)∆t = f(4, 312.5)∆t = (–(312.5)2/ 

1000) 6 = 585.9
4. a. 7.0 because t30 + ∆t = 1 + 6 = 7
 b. 85.9 because P30 + ∂3 = 500  585.9 = 85.9
 c.  –44.3 because f(t30 + ∆t, P30 + ∂3)∆t = f(7, 85.9)∆t = ( ( 85.9)2/1000) 6 =  

–44.3
5. 77.7 because 500 + ( 1500 + 2( 375) + 2( 585.9) + ( 44.3))/6 = 77.7
6. a. ∂1 F.  Euler estimate at previous time step
 b. f(tn–1 + 0.5∆t, Pn–1 + 0.5∂1) A.  Derivative at midpoint between 

(tn − 1, Pn − 1) and point with Euler esti-
mate as second coordinate

 c. ∂3 C. Esti’ate “f ∆P at a midpoint
 d. ∂4 D. Esti’ate “f ∆P at right endpoint
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 e. (∂1 + 2∂2 + 2∂3 + ∂4)/6 I.  Weighted average of intermediate es-
ti’ates “f ∆P

 f. Pn H. Runge-Kutta 4 estimate
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7
ADDITIONAL SYSTEM DYNAMICS PROJECTS

Overview

In the previous chapters, we have studied techniques, issues, and applications of 
computational science system dynamics models. Projects often extended the exam-
ples discussed and developed in the modules. We cannot overemphasize the impor-
tance of developing solutions to such projects, for it is in doing modeling that we 
learn computational science problem-solving abilities.

This chapter provides opportunities to further this learning through additional ex-
tensive projects. Unlike earlier chapters, these modules do not include examples. 
Instead, each ’“du‘e c“ntains suficient bac—gr“und in a scientiic a””‘icati“n area 
f“r y“u t“ c“’”‘ete the ”r“–ects. Cha”ter 7 s ’“du‘es ‘ist the ”rerequisite ’“du‘es. 
Moreover, the project sections of those previous modules cross-reference the mate-
ria‘ in Cha”ter 7. Thus, students can w“r— with ”r“–ects in the current cha”ter as 
soon as they have covered the appropriate prerequisites or at a later time. 

As with earlier projects, the projects in this chapter are well suited for teamwork. 
In computational science, most research and development are done using interdisci-
plinary teams. Thus, experiences developing models with teams, perhaps on applica-
tions out of an area of major study, are important for a student studying computa-
tional science.

Cha”ter 7 s a””‘icati“ns with ”r“–ects inv“‘ving syste’ dyna’ics ’“de‘s are in a 
variety “f scientiic areas, inc‘uding the f“‘‘“wing: radi“active chains, b‘““d ce‘‘ 
populations, scuba diving, the carbon cycle, global warming, growth in a garden, the 
cardiovascular system, electrical circuits, transmission of nerve impulses, carbohy-
drate ’etab“‘is’, ’ercury ”“‘‘uti“n, the ec“n“’ics “f c“’’ercia‘ ishing, ‘ac “”-
eron, and colon cancer. 
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Radioactive Chains—Never the Same Again

Prerequisite: M“du‘e 2.2, Unc“nstrained Gr“wth and Decay.

Introduction

The mass Q(t) of a radioactive substance decays at a rate proportional to the mass of 
the substance (see the section “Unconstrained Decay” in Module 2.2, “Uncon-
strained Growth and Decay”). Thus, for positive disintegration constant, or decay 
constant, r, we have the following differential equation: 

dQ/dt = –rQ(t)

and its difference equation counterpart:

∆Q = –rQ(t  ∆t)∆t

In this module, we model the situation where one radioactive substance decays 
into another radioactive substance, forming a chain of such substances. For example, 
radioactive bismuth-210 decays to radioactive polonium-210, which in turn decays 
to lead-206. We consider the amounts of each substance as time progresses.

Modeling the Radioactive Chain

If a radioactive substance, substanceA, decays into substance substanceB, we say 
that substanceA is the parent of substanceB and that substanceB is the child of sub-

stanceA. If substanceB is also radioactive, substanceB is the parent of another sub-
stance, substanceC, and we have a chain “f substances. Figure 7.1.1 de”icts the situ-
ation where A, B, and C are the masses of radioactive substances, substanceA, 
substanceB, and substanceC, respectively; and different disintegration constants, 
decay_rate_of_A (a) and decay_rate_of_B (b), exist for each decay. 
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Quick Review Question 1

Suppose A and B are the masses of substanceA and substanceB, respectively, at time 
t; ∆A and ∆B are the changes in these masses; and a and b are the positive disintegra-
tion constants. 

a.  Using these constants and variables along with arithmetic operators, such as 
minus and plus, give the difference equation for the change in the mass of 
substanceA, ∆A.

b.  Through disintegration of substanceA, substanceB’s mass increases, while 
some of substanceB decays to substanceC. Give the difference equation for 
the change in the mass of substanceB, ∆B. 

c.  In Figure 7.1.1, where A, B, and C are the masses of three radioactive sub-
stances, give the formula as it appears in a system dynamics tool’s equation 
f“r the l“w decay_A_to_B.

d.  Give the formula as it appears in a systems dynamics tool’s equation for the 
l“w decay_B_to_C.

The mass of substanceA that decays to substanceB is aA. Thus, in Figure 7.1.1, 
the l“w decay_A_to_B contains the formula decay_rate_of_A * A. What substan-

ceA loses, substanceB gains. However, substanceB decays to substanceC at a rate 
proportional to the mass of substanceB, bB. C“nsequent‘y, in Figure 7.1.1, the l“w 
decay_B_to_C c“ntains the ’ass that l“ws fr“’ “ne st“c— t“ an“ther, decay_rate_

of_B * B. The total change in the mass of substanceB consists of the gain from sub-

stanceA minus the loss to substanceC with the result multiplied by the change in 
ti’e, ∆t:

∆B = (aA – bB) ∆t

We consider the initial amounts of substanceB and substanceC to be zero.

A B C

decay B to C 

decay rate of A decay rate of B

decay A to B 

Figure 7.1.1 Chain of decays
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Projects

1. a.  With a system dynamics tool or a computer program, develop a model for 
a radioactive chain of three elements, from substanceA to substanceB to 
substanceC. Allow the user to designate constants. Generate a graph and a 
table for the amounts of substanceA, substanceB, and substanceC versus 
time. Answer the following questions using this model.

 b.  Explain the shapes of the graphs.
 c.  As the decay rate of A, a, increases from 0.1 to 1, describe how the time of 

the maximum total radioactivity changes. The total radioactivity is the 
sum of the change from substanceA to substanceB and the change from 
substanceB to substanceC, or the total number of disintegrations. Why?

 d.  (The veriicati“n in Part d requires ca‘cu‘us.) With b being the decay rate 
of B, in several cases where a < b, observe that eventually we have the 
following approximation:

B

A

a

b a
≈

−
 With the ratio of the mass of substanceB (B) to the mass of substanceA 

(A) being almost constant, a/(b - a), we say the system is in transient 
equilibrium. Eventually, substanceA and substanceB appear to decay at 
the same rate. Using the following material, verify this approximation:

Find the exact solution to the differential equation for the rate of 
change of A with respect to time, dA/dt = –aA (see the section “Analytic 
Solution” in Module 2.2, “Unconstrained Growth and Decay”). 

Verify that B = 
aA

b a
e b
at bt0

−
−− −( ), where A0 is the initial mass of sub-

stanceA, is a solution to the differential equation for the rate of change of 
B with res”ect t“ ti’e (see the difference equati“n f“r ∆B). What number 
does e-at approach as t g“es t“ ininity? F“r a < b, which is smaller, e-at or 
e-bt? Thus, for large t, B is approximately equal to what?

 e.  Using your model from Part a, observe in several cases where a > b that 
the ratio of the mass of substanceB to the mass of substanceA does not 
approach a number. Thus, transient equilibrium (see Part d) does not 
occur in this case. 

 f.  (Requires calculus) Verify the observation from Part e analytically using 
work similar to that in Part d. 

 g.  If a is much smaller than b, we have A ≈ A0 and B ≈ 
aA

b a

0

−
. With the two 

amounts being almost constant, we have a situation called secular equi-

librium. Observe this phenomenon for the radioactive chain from ra-
dium-226 to radon-222 to polonium-218: Ra226 → Rn222 → Po218, where 
the decay rate of Ra226, a, is 0.00000117/da and the decay rate “f Rn222, b, 
is 0.181/da. Using your work from Part a, run the simulation for at least 
one year. 
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 h.  (Requires calculus) Show analytically that the approximations from Part g 
hold.

 i.  In the radi“active chain Bi210 → Po210 → Pb206 (bismuth-210 to polo-
niu’-210 t“ ‘ead-206), the decay rate “f Bi210, a, is 0.0137/da and the 
decay rate of Po210, b, is 0.0051/da. Assu’ing the initia‘ ’ass “f Bi210 is 
10–8 g and using y“ur ’“de‘ fr“’ Part a, ind, a””r“xi’ate‘y, the ’axi-
mum mass of Po210 and when the maximum occurs.

 j.  (Requires calculus) In Part d, we veriied that B = 
aA

b a
e b
at bt0

−
−− −( ). Using 

this resu‘t, ind ana‘ytica‘‘y the ’axi’u’ “f ’ass “f substanceB and 
when this maximum occurs. 

 k.  Check your approximations of Part i using your solution to Part j. 
 l.  F“r the chain in Part g, use y“ur s“‘uti“n t“ Part – t“ ind when the ‘argest 

mass of Rn222 occurs. 
 m.  For the chain in Part g, use your simulation of Part a to approximate the 

time when the largest mass of Rn222 occurs. How does your approximation 
compare with the analytical solution of Part l?

2. Develop a model for a chain of four elements. Perform simulations, observa-
tions, and analyses similar to those before. Discuss your results

Answers to Quick Review Question

1. a.  ∆A = –aA ∆t

 b.  ∆B = (aA – bB)∆t

 c.  decay_A_to_B = decay_rate_of_A * A
 d.  decay_B_to_C = decay_rate_of_B * B

Reference

H“re‘ic—, Brinde‘‘, and Sinan K““nt. 1979, 1989. Radi“active Chains: Parents and 
Children.” UMAP M“du‘e 234. COMAP, Inc.



MODULE 7.2

Turnover and Turmoil—Blood Cell Populations

Prerequisite: Module 2.2, Unc“nstrained Gr“wth and Decay.

Introduction

In a healthy individual, the count of blood cells is usually constant. However, for 

certain diseases, blood cell counts may oscillate, perhaps in an involved or chaotic 

manner. Such disorders are in a category of dynamical diseases, which include 

HIV, forms of leukemia, and anemia. We can use modeling to study the origins, be-

haviors, and treatments of these diseases.

Formation and Destruction of Blood Cells

B‘““d is c“’”“sed “f luid, ca‘‘ed plasma, and blood cells. The following are major 

types of blood cells:

• Red blood cells, which are for oxygen transport from the lungs to tissues

• White blood cells, which are part of the body’s defense mechanism against 

infections

• Platelets, which help the blood to clot

In a hea‘thy individua‘, if a deicit f“r a ”articu‘ar ty”e “f b‘““d ce‘‘ “ccurs, ”hysi-
ological mechanisms in the body cause an increase in production of that type of cell. 

Similarly, if an oversupply exists, the production rate decreases. Thus, the produc-

tion of new blood cells of a particular type depends on the number of blood cells of 

that type. 

Aging, disease, or infection causes the eventual death of any cell. As with produc-

tion, the number of blood cells destroyed also depends on the number of blood cells 

of that type.



238 Module 7.2

Basic Model

Suppose x is the number of blood cells of a particular type, and xi is the number of 
such blood cells at time ti. As indicated before, the number of such blood cells 
produced (p), or the production rate, and the number of such blood cells de-
stroyed (d), or the destruction rate, are functions of the number in existence, x. 
Thus, p(xi) and d(xi) are the production and destruction rates, respectively, for the 
given number of cells at time ti.

Quick Review Question 1

Suppose the number of blood cells of a particular type at time ti is below the normal 
range. For each part, give the relationship that is desirable.

a. xi+1 > xi xi+1 < xi xi+1 = xi

b. p(xi+1) > p(xi) p(xi+1) < p(xi) p(xi+1) = p(xi)
c. d(xi+1) > d(xi) d(xi+1) < d(xi) d(xi+1) = d(xi)

For a healthy mammal, one widely accepted model for d is that the number of 
blood cells destroyed is directly proportional to the number of blood cells existing. 
Thus, for a constant of proportionality, c, called the destruction coeficient, we have 
the following model for the number of blood cells destroyed:

 d(xi) = cxi (1)

Quick Review Question 2

Indicate which of the following are true about the destruction function d and the de-
structi“n c“eficient c: c > 0; c < 0; c = 0; c  1; c  1; d(0) = 0; the graph of d is 
increasing; the graph of d is decreasing; the graph of d is a line; the graph of d cannot 
be a line.

A model for the number of blood cells of a particular type produced is more compli-
cated. As noted earlier, the production is a function of the number of blood cells of that 
type. Certainly, if there were no blood cells (x = 0), we would expect no production be-
cause the animal would be dead. As x increases, p increases rapidly to some maximum 
and then production decreases, tailing off to zero. One possible such graph of produc-
ti“n versus ”“”u‘ati“n f“r a ”articu‘ar ty”e “f b‘““d ce‘‘ a””ears in Figure 7.2.1. 

For a healthy person, we expect no change in the number of blood cells from one 
time step to another, so that xi+1 = xi = v, a constant called the steady-state level. In 
this case, xi+1 – xi. = 0. Thus, the production rate p(v) and the destruction rate d(v) are 
equal at v, or p(v) = d(v).

Model Parameters

As n“ted in Gearhart and Marte‘‘i (1990), it ta—es ab“ut 6 days f“r red b‘““d ce‘‘s t“ 
reach maturity, while in a healthy person about 2.3% of the cells are destroyed per 
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day. Thus, for a change in time of 6 days, an approximation for the destruction coef-

icient is c = (6)(0.023) = 0.14; and the destruction function, or the number of blood 

cells destroyed as a function of the number of blood cells at time ti, is as follows:

 d(xi) = 0.14xi (2)

In 1977 Las“ta used the f“‘‘“wing ”r“ducti“n functi“n, which has the sha”e “f 
Figure 7.2.1 (Las“ta 1977):

 p x bx es sx r( ) /= −  (3)

where p is the number of blood cells produced as a function of the number of blood 

cells, x, and b, r, and s are positive constants. To determine these constants, use the 

f“‘‘“wing data (Gearhart and Marte‘‘i 1990):

• N“r’a‘ red-ce‘‘ c“unt ≈ 3.3 × 1011 cells/kg

• Maxi’u’ red-ce‘‘ ”r“ducti“n ≈ 10 ti’es the steady-state ”r“ducti“n rate
• F“r a red-ce‘‘ ”“”u‘ati“n “f 75% “f the steady-state ‘eve‘ (c“unt), 
• red-ce‘‘ ”r“ducti“n ≈ ive ti’es steady-state ‘eve‘

Because the n“r’a‘ red-ce‘‘ c“unt is ab“ut 3.3 × 1011 cells/kg, we can use this 

igure as the steady-state ‘eve‘ “r

v = 3.3 × 1011 cells/kg

At v, production equals destruction or p(v) = d(v). From Equation 2 

d(v) = 0.14v 

so we know the following:

 p(v) = 0.14v
 p(3.3 × 1011) = 0.14 × 3.3 × 1011 = 4.62 × 1010 cells/kg

x

P

Figure 7.2.1 General graph of blood cell production (p) versus blood cell population (x)
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At v = 3.3 × 1011 cells/kg, production and destruction equal 4.62 × 1010 cells/kg, 
which is the steady-state production rate. 

Quick Review Question 3

Using this information, indicate which of the following points are on the graph of the 
production function p: (3.3 × 1011, 4.62 × 1010), (4.62 × 1010, 3.3 × 1011), (3.3 × 1011, 
0.14), (0.14, 3.3 × 1011), (v, 0.14v), (0.14v, v).

According to the second bullet, the maximum value of p is 10 times the steady-
state rate, or 10 × 4.62 × 1010 cells/kg = 4.62 × 1011 cells/kg. To determine where 
this ’axi’u’ “ccurs, we ta—e the irst derivative “f Equati“n 3 and set it equa‘ t“ 0, 
solving for x (see Project 1). Keeping in mind that b, r, and s are c“nstants, we ind 
that the maximum occurs at x = r; and the maximum is as follows:

p r br es s( ) = −  = 4.62 × 1011

Quick Review Question 4

Interpret the third bullet given earlier as one or more equations: 

A. p(5v) = 0.75v B. p(0.75v) = 5v
C. p( 5(0.14v) ) = 0.75v D. p(0.75 × 3.3 × 1011) = 5 × 4.62 × 1010

E. p(0.75v) = 5(0.14v) F. p(0.75 × 3.3 × 1011) = 5 × 3.3 × 1011

G. p(5 × 4.62 × 1010) = 0.75 × 3.3 × 1011

Projects

F“r a‘‘ ’“de‘ deve‘“”’ent, use an a””r“”riate syste’ dyna’ics t““‘.

1. Develop a model for a red blood cell population using the following produc-
tion function, which is a variation of Equation 3: p(x) = bv(x/v)se-sx/(vr), where 
v is the normal red-cell count, b = 1.1 × 106, s = 8, and r = 0.5 (Gearhart and 
Marte‘‘i 1990). Acc“unt f“r the (a””r“xi’ate) 6-day ’aturati“n “f ce‘‘s, ”er-
haps using a conveyor; and determine reasonable constants by referring to 
the “Model Parameters” section. Graph blood cells per kilogram, blood cells 
produced per kilogram, and blood cells destroyed per kilogram versus time. 
Discuss your results

Find analytically where the maximum occurs and the maximum for the 
production function in Equation 3, and verify that your model approximately 
agrees with this value. 

For r = 3, b = 50, s = 5, and c = 0.5, what is the period?
2. Develop a model for a type of white blood cell (granulocyte) population 

using a destructi“n c“eficient “f 0.6 f“r a ti’e ste” “f 6 days and a ”r“duc-
tion function of p(x) = bxe-x/(vr), where the steady state is about v = 8.2×109 
granu‘“cytes/—g (Gearhart and Marte‘‘i 1990). C“nsidering steady-state and 
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maximum productions, determine reasonable constants. Alternatively, for p, 
use graphical input where p(0) = 0, p increases initially to a maximum and 
then decreases to 0. Graph blood cells per kilogram, blood cells produced per 
kilogram, and blood cells destroyed per kilogram versus time.

3. Develop a model for granulocytes, a type of white blood cell. Use the follow-
ing ”r“ducti“n functi“n by Mac—ey and G‘ass (1977), where b, a, and m are 
”“sitive c“nstants (Gearhart and Marte‘‘i 1990):

 p(x) = 
ba x

a x

m

m m+
 (4)

The units of a are cells/kilogram, while b and m are unitless. Determine rea-
sonable constants by referring to the “Model Parameters” section. Graph 
blood cells per kilogram, blood cells produced per kilogram, and blood cells 
destroyed per kilogram versus time.

4. Complete Project 3. Show that we can use this work to model chronic my-
elogenous leukemia (CML), a cancer resulting in an overproduction of the 
white blood cells. In CML, the white cell count may be 150 times the normal, 
and c“unts can “sci‘‘ate ar“und the e‘evated ‘eve‘ with a ”eri“d “f 30 t“ 70 
da. As Gearhart and Marte‘‘i (1990) indicates, the f“‘‘“wing are ”ara’eters 
for a normal person: 

 c = µ∂ with µ = 0.16/day
 b = ∂ with  = 1.43/day
 a = 3.22 × 108 cells/kg
 m = 3

 and the de‘ay in ”r“ducti“n, ∂, is 0.68 day.
Show that increasing a can result in a gain in white blood cell count, and 

increasing ∂ can cause the indicated ”eri“dicity. Find a””r“”riate va‘ues f“r 
a and ∂ that ’atch the abn“r’a‘ variati“ns in white b‘““d ce‘‘ c“unts “f 
CML.

Answers to Quick Review Questions

1. a.  x i+1 > xi 

 b.  p(xi+1) > p(xi)
 c.  d(xi+1) < d(xi)
2. c > 0 because as the number of cells increase, the number destroyed in-

creases. d(0) = 0 because if there are no cells, none can be destroyed. The 
graph of d is increasing because c and x are positive, and as the number of 
cells increases, the number destroyed increases. The graph of d is a line.

3. (v, 0.14v) and (3.3 × 1011, 4.62 × 1010) because p(v) = 0.14v = p(3.3 × 1011) 
= 4.62 × 1010 cells/kg

4. Equati“ns B and F, p(0.75v) = 5v and p(0.75 × 3.3 × 1011) = 5 × 3.3 × 1011, 
because v = 3.3 × 1011 is the steady-state level.
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MODULE 7.3

Deep Trouble—Ideal Gas Laws and Scuba Diving

Prerequisite: M“du‘e 2.2, Unc“nstrained Gr“wth and Decay.

Pressure

Scuba divers are often under great amounts of pressure and, therefore, should be 
very concerned with it. Pressure, which is the weight of matter per unit area, in-
creases rapidly with increasing depths. For divers, the total pressure is a combination 
of the weight of air and water per square centimeter. Air pressure at sea level is 
about 10.1 N/cm2, meaning that a square centimeter column of air as tall as the atmo-
sphere (about 80 km, or 50 mi) weighs about 10.1 N (10.1 N/cm2 = 760 mm of 
mercury (mm Hg) = 760 torr = 14.7 lb/in.2). The atmospheric pressure at sea level 
is by deiniti“n equa‘ t“ 1 atmosphere (atm). Water pressure derives from the 
weight of water, which is considerably greater than air. As indicated in Module 3.1, 
M“de‘ing Fa‘‘ing and S—ydiving,  the density “f water at 3.98 °C is 1.00000 g/c’3. 

Thus, at this temperature, a column of water 10 m high with a base of area cm2 
weighs 9.81 N, as the f“‘‘“wing ca‘cu‘ati“ns sh“w:

 weight = F = ma = 
1.00000 g
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2

2
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  = (1.00000 —g)(9.81 ’/s2) = 9.81 N 

This weight of a 10-m by 1-cm2 column of water approximately matches the 
weight of the entire column of air above it. Hence, a diver at a depth of about 10 m 
(33 ft) experiences 2 atm of pressure, resulting from the pressure of 1 atm of air 
plus the equivalent of approximately an additional atmosphere of pressure from the 
water. Each 10 m of depth adds approximately 1 atm of pressure to the diver.
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Quick Review Question 1

Determine the water pressure at 15 m in terms of each of the following units:

a.  atm
b.  N/cm2

c.  torr

Ideal Gas

In this module, we employ several ideal gas laws, which describe the behaviors of 
an ideal gas, in models related to scuba diving. An ideal gas is one in which the vol-
u’e “f its at“’s is insigniicant in c“’”aris“n t“ the t“ta‘ v“‘u’e “f the gas and in 
which atom interactions are negligible except for the energy and momentum ex-
changed during collisions. Remarkably, under most circumstances, the ideal gas 
laws model well the behaviors of real gases because of the great distances between 
the atoms and molecules of a gas.

Dalton’s Law

Scuba equipment provides air to divers at the higher pressures of deeper waters. Air 
n“r’a‘‘y c“ntains 21% “xygen (O), 78% nitr“gen (N), and 1% vari“us inert gases. 
We must consider nitrogen and the inert gases in calculating the speeds and rest 
schedules for a scuba diver. Thus, scuba computations frequently group nitrogen and 
the inert gases together and assume N2 is 79% of the air. Because the ”artia‘ ”res-
sure of a gas is determined by its fractional portion in a mixture, at sea level 1 atm of 
”ressure is c“’”“sed “f 0.21 at’ “f “xygen and 0.79 at’ “f nitr“gen (assu’ing 
79% nitr“gen). This re‘ati“nshi” f“‘‘“ws “ne “f the ideal gas laws as proposed by 
Dalton. Although air for divers is compressed, the percentage of the gas components 
is the same. So, as pressure on a diver increases during a dive, the partial pressure 
exerted by each gas in the diver’s body and tank increases. For example, a diver 

Deinitions  Pressure is the weight of matter per unit area. One atmo-
sphere (atm) is the atmospheric pressure at sea level.

Deinitions  The ideal gas laws describe the behaviors of an ideal gas. An 
ideal gas is “ne in which the v“‘u’e “f its at“’s is insigniicant 
in comparison to the total volume of the gas and in which atom 
interactions are negligible except for the energy and momentum 
exchanged during collisions.
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reaching 20 m (66 ft) experiences 3 atm of pressure, with partial pressures of O2 and 
N2 equa‘ing 0.63 and 2.37 at’, res”ective‘y. 

Quick Review Question 2

Determine the partial pressure in atmospheres (atm) of nitrogen in a mixture of air at 
15 m.

Boyle’s Law

Pr“bab‘y the ’“st i’”“rtant gas ‘aw t“ divers is that “f R“bert B“y‘e, wh“ disc“v-
ered that at a particular temperature, the volume of a gas is inversely proportional to 
pressure. Hence, the product of pressure (P) and volume (V) yields a constant (K).

PV = K

When pressure increases at constant temperature, gas volume decreases, and vice 
versa. For example, assuming constant temperature, Boyle’s law means that if we 
ta—e an air-i‘‘ed ba‘‘““n, which is 3 ’3 in volume at the surface of the ocean to a 
depth of 20 m, the balloon would shrink to a volume of 1 m3. We can obtain this re-
sult by using the pressure at the surface, P1 = 1 atm, with volume V1 = 3 m3. At 20 m, 
pressure is P2 = 3 at’. Thus, assu’ing c“nstant te’”erature, by B“y‘e s ‘aw we 
have the following relationship:

P1V1 = P2V2

Substituting the values, we have (1)(3) = 3V2, or V2 = 1 m3.

Dalton’s law states that the partial pressure of a gas (Pg) is the product of the 
fraction of the gas in the mixture (Fg) and the total pressure (P) of all gases, 
excluding water vapor:

Pg = FgP

Boyle’s law for gas at a particular temperature is as follows:

PV = K

where P is pressure, V is volume, and K is a constant.
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Quick Review Question 3

Su””“se an air-i‘‘ed ba‘‘““n is 3 ’3 in volume at the ocean’s surface. Assuming 
constant temperature, determine its size to three decimal places at a depth of 32 m.

Skin divers hold their breath when they dive. During descent to, say, 10 m, the 
air-i‘‘ed ‘ungs are reduced t“ “ne-ha‘f their surface v“‘u’e. As they ascend, the 
lungs again expand to their normal volume. Of course, there are limits of depth for 
diving without the aid of scuba equipment.

Scuba divers breathe air from tanks through regulators that deliver the air at am-
bient pressure, the pressure of the surrounding water pressure. As divers at 20 m (3 
atm pressure) inhale, they take in the equivalent of 3 breaths of air from the surface 
(1 atm pressure). Accordingly, it is important for divers to determine their surface 
air consumption (SAC) rate so that they can calculate how long their air tanks will 
last at the depths they are diving.

Another important consideration that comes from breathing air at these pressures 
is that as divers rise fr“’ the dee”, the gases in their ‘ungs “bey B“y‘e s ‘aw and 
expand with the decreasing pressure. Rapid and extensive expansion of the equiva-
lent of three times the normal lung volume could cause the lungs to burst. Conse-
quently, scuba divers are always cautioned never to hold their breath, but return to 
the surface slowly, exhaling.

Charles’s Law

Charles’s law takes into consideration pressure (P), volume (V), and temperature 
(T). The relationship is as follows:

PV = nRT

where T is temperature in kelvins (K), n is the number of moles, and the constant 
R = 0.0821 atm/(mol K). The conversion from a Celsius temperature (TC) to a Kel-
vin temperature (TK) is the following:

TK = TC + 273.15

The number of moles, n, in a mass m of molecular weight M is the following:

n = m/M

The ’“‘ecu‘ar ’ass “f dry air is 29.0 g/’“‘, “f nitr“gen is 28.0 g/’“‘, and “f “xygen 
is 32.0 g/mol. However, frequently in scuba diving examples, the form of the law we 
employ relates the pressures, volumes, and temperatures at two depths, as follows: 

PV

T

PV

T

1 1

1

2 2

2

=
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Quick Review Question 4

Suppose a balloon is 1 m3 in 30 ºC weather on the ocean’s surface. Determine the 

balloon’s volume at 15 m in 10 ºC seawater.

Henry’s Law

Divers who dive deeply for long periods of time also face another problem that fol-

lows from Henry’s law the a’“unt “f any gas in a ‘iquid at a ”articu‘ar te’”era-

ture is a functi“n “f the ”artia‘ ”ressure “f the gas and its s“‘ubi‘ity c“eficient in that 
liquid. Thus, divers must be concerned with the amount of nitrogen gas in their 

blood. For Vg being gas volume, VL being liquid volume, s being the solubility coef-

icient f“r the gas in that ‘iquid, and Pg being the pressure of gas, Henry’s law is as 

follows:

Vg/VL = sPg

The solubility coeficient for nitrogen in blood is 0.012, and the total volume of 

blood in an adult’s body is approximately 5 L. With the greater pressure, blood can 

absorb a greater volume of nitrogen, which the body cannot use.

Charles’s law states that 

PV = nRT

where P is pressure, V is volume, T is temperature in kelvins, n is the number 
of moles, and the constant R = 0.0821 atm/(mol K). Thus, if an object has vol-
ume V1 at pressure P1 and Kelvin temperature T1, then at pressure P2 and Kel-
vin temperature T2 its volume is V2, according to the following:

PV

T

PV

T

1 1

1

2 2

2

=

The conversion from a Celsius temperature (TC) to a Kelvin temperature (TK) 
is the following:

TK = TC + 273.15

The number of moles, n, in a mass m of molecular weight M is the 
following:

n = m/M
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Quick Review Question 5

Determine the volume of nitrogen that can go into solution in the blood at the fol-
lowing pressures:

a.  1 atm
b.  2 atm

Rate of Absorption

The rate at which tissue (a compartment) takes up an inert gas, such as nitrogen, is 
proportional to the difference in the partial pressures of the gas in the lungs and the 
gas in the tissues: 

dPtissue/dt = k(Plungs – Ptissue)

where Plungs is the partial pressure of the gas in the lungs, Ptissue is the partial pressure 
of the gas in the tissue, and k depends on the type of tissue. (This formula is similar 
to Newton’s Law of Heating and Cooling in Exercise 4 of Module 2.2, “Uncon-
strained Growth and Decay.”) We can show that 

k = (ln 2)/thalf

where thalf is the half-time, or the time for the tissue to absorb or release half of the 
partial difference of the gas. Thus, if it takes 20 min for such absorption, then we 
have the following calculation of the constant k:

k = (ln 2)/thalf = (‘n 2)/20 = 0.0346574

Henry’s law for the amount of any gas in a liquid at a particular temperature 
is as follows:

Vg/VL = sPg

where Vg is gas volume, VL is liquid volume, s is the s“‘ubi‘ity c“eficient f“r 
the gas in that liquid, and Pg is the pressure of gas.

The rate of absorption at which tissue (a compartment) takes up an inert gas 
is as follows:

dPtissue/dt = k(Plungs – Ptissue)

where Plungs is the partial pressure of the gas in the lungs, Ptissue is the partial 
pressure of the gas in the tissue, and k is a proportionality constant, which de-
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Quick Review Question 6

Suppose the half-time for nitrogen absorption into a certain tissue is 4 min, the par-
tial pressure in the lungs is 1.58, and the partial pressure in the tissue is 1.22. Com-
pute the following to 3 decimal places:

a.  The constant of proportionality, k, in the rate of absorption equation
b.  The rate at which the tissue takes up nitrogen

Decompression Sickness

Remember that the partial pressure of nitrogen in air under higher pressures is pro-
”“rti“nate‘y higher. Divers at 20 ’, f“r instance, receive nitr“gen ”ressures “f 2.37 
at’, increasing its s“‘ubi‘ity in b“dy luids. Nitr“gen gas has n“ r“‘e in ce‘‘u‘ar ’e-
tabolism of the diver, so it accumulates in solution. The total amount of residual ni-
trogen is dependent on the depth and duration of the dive. Deep divers may experi-
ence nitrogen narcosis, a sudden feeling of euphoria that can impair judgment and 
lead to serious or even fatal consequences. Furthermore, such divers returning to the 
surface too rapidly risk decompression sickness (“bends”), which is not only pain-
ful, but also potentially lethal.

Decompression sickness results from the reduced solubility of nitrogen gas in the 
blood, causing the release of nitrogen bubbles as pressure decreases. As the diver 
ascends, these bubb‘es c“ntinue t“ f“r’ and t“ ex”and. Bubb‘es ’ay cause –“int ”ain 
and block blood vessels. Such blockages may lead to heart attack, stroke, or ruptured 
blood vessels in the lungs.

Professional diving organizations publish dive tables to use for calculating how 
much nitrogen is absorbed during dives at varying depths and durations. Generally 
speaking, the deeper the dive, the shorter the duration should be.

Projects

1. Develop a scuba diving model, including pressure and volume of air in the 
lungs. Assume that the temperature is constant, the descent rate is less than or 
equal to 23 m/min, and the ascent rate is no more than 12 m/min = 0.2 m/s 
(U.S. Navy 2008).

2. Repeat Project 1 with comparison graphs for seawater at various locations, 

pends on the type of tissue. The value of k is as follows:

k = (ln 2)/thalf

where thalf is the time for the tissue to absorb or release half of the partial dif-
ference of the gas.
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such as Juneau, Alaska, at 10 ºC (50 ºF); Paita, Peru, or Santa Monica, Calif., 
at 20 ºC (68 ºF); Savannah Beach, Ga., at 30 ºC (86 ºF; NOAA 2008).

3. Develop a model for the pressure and volume of the air in a diver’s suit. Sup-
pose initially the volume of the gas is 8 L = 0.008 m3. 

4. Develop a model for the duration of scuba tank usage. Suppose the surface 
air consumption rate is 3.3 × 10-4 m3/s, and the tank initially holds 12 L (de 
Lara 2002). A scuba tank delivers air to a diver at ambient pressure. Consider 
the depth consumption rate, or consumption rate at a depth, as part of your 
model. 

5. Develop a model for the amount of nitrogen in tissue. At about 1.5 times the 
partial pressure of nitrogen at surface, nitrogen is not able to go into solution 
in blood.

6. Repeat Project 5 and have comparative graphs with half times of 5, 10, 20, 
40 and 75 ’in.

7. The DECOM dive tables give the list of decompression stops for someone 
wh“ dives t“ 39.6 ’ (130 ft) “f seawater f“r the indicated a’“unt “f ti’e 
(Tab‘e 7.3.1) (NAUI). F“r exa’”‘e, if s“’e“ne dives t“ 39.6 ’ (130 ft) “f 
seawater and stays there 25 min, on return the diver should stop for 4 min at 
a de”th “f 9.1 ’ (30 ft), 9 ’in at 6.1 ’ (20 ft), and 14 ’in at 3.0 ’ (10 ft). A 
rate “f ascent is assu’ed t“ be ab“ut 9.1 ’/’in (30 ft/’in). Deve‘“” a ’“de‘ 
for the amount of nitrogen in the body using each of these scenarios. Run the 
model long enough to determine the length of time for the amount of nitro-
gen in the blood to return to normal.

Table 7.3.1 
DECOM Dive Tab‘e f“r Dive t“ 39.6 ’ (130 ft) “f Seawater

Time at

39.6 m (130 ft) 12.2 m 9.1 m 6.1 m 3.0 m  

Bottom (40 ft) (30 ft) (20 ft) (10 ft)

15   3 6
20  1 7 9
25  4 9 14
30 2 6 11 19

Answers to Quick Review Questions

1. a.  2.5 atm 
 b.  25.25 N/cm2 = 2.5(10.1) N/cm2 
 c.  1900 t“rr = 2.5(760) t“rr
2. 1.975 = (0.79)(2.5 at’)
3. 0.714 ’3 because at 32 m, P2 = 1 atm + (32 m)(1 atm /10 m) = 4.2 atm; and 

P1V1 = P2V2, or (1)(3) = 4.2V2, or V2 = 3/4.2 ≈ 0.714
4. 0.374 ’3: at 15 m, the pressure is 2.5 atm; 30 ºC = 303.15 K, and 

10 ºC = 283.15 K; (1)(1)/(303.15) = (2.5)(V2)/283.15, or V2 = 283.15/((2.5)
(303.15)) = 0.374
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5. a.  0.0474 L because Vg = VLsPg = (5 L)(0.012)(0.79)
 b.  0.0948 L because Vg = VLsPg = (5 L)(0.012)(2 × 0.79)
6. a.  0.173 = k = (ln 2)/4
 b.  0.062 = dPtissue/dt = k(Plungs – Ptissue) = 0.173(1.58  1.22)
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MODULE 7.4

What Goes Around Comes Around—The Carbon Cycle

Prerequisites: M“du‘e 2.2, Unc“nstrained Gr“wth and Decay  f“r Pr“–ect 1; 
M“du‘e 2.3, C“nstrained Gr“wth  f“r Pr“–ects 2 and 3.

Introduction

Most of us are familiar with carbon in the form of the gas carbon dioxide (CO2). 
However, carbon dioxide is only one form of carbon (C), an element with very wide 
distribution on the earth. Carbon combines with elements like calcium, iron, and 
magnesium to form rocks. Carbon-containing compounds are dissolved in the oceans 
and other bodies of water. All things living are made up of organic molecules, which 
are all carbon based. Carbon moves in varying forms among the four major environ-
mental subsystems (interdependent parts of the earth’s system) of the earth: litho-
sphere (ground and inside the earth), atmosphere (air surrounding the earth), hy-
drosphere (lakes, rivers, and oceans), and biosphere (a‘‘ ‘iving things). Because “f 
the importance of carbon dioxide accumulation in the atmosphere and its effect on 
climate, scientists are particularly interested in carbon and its movement. This move-
ment of carbon is described as the carbon cycle, and as carbon is transferred from 
one subsystem to another, it is often transformed from one form of carbon to 
another.

Flow between Subsystems

Most estimates of atmospheric CO2 fa‘‘ s“’ewhere near 2745 gigat“ns (1 gigat“n 
(Gt) = 1015 g). Some CO2 is taken up by plants and converted to various organic 
compounds through photosynthesis. Most plants, animals, and some other life 
forms oxidize organic molecules to release CO2 back into the atmosphere. Other 
CO2 dissolves in seawater. Some CO2 is also released from solution back into the 
atmosphere. The atmosphere, photosynthetic organisms (part of the biosphere), and 
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the ocean (hydrosphere) all represent reservoirs for carbon. Soil, sediments, and 
various rock formations represent other reservoirs of carbon. The transfer of carbon 
from one reservoir to another is usually termed a lux and is given as gigatons of 
carbon transferred per year. (1 Gt carbon is equivalent to 3.66 Gt CO2.) Tab‘es 7.4.1 
and 7.4.2 ‘ist the ’a–“r reserv“irs and luxes active‘y inv“‘ved in the carb“n cyc‘e 
(A‘‘’“n et a‘. 2006). In Tab‘e 7.4.2, the source is the origin, and the sink is the des-
tinati“n “f the carb“n l“w. Carb“n di“xide gas exchange between the atmosphere 
and the ocean surface, which involves gas dissolving into and evaporating from 
water, is in the direction of greater to lesser carbon concentration. Upwelling occurs 
when dee” currents bring c““‘, nutrient-rich b“tt“’ “cean water t“ the surface. By 
contrast, with downwelling currents move ocean surface water to lower depths.

Fossil Fuels

Human activity, such as deforestation and combustion of fossil fuels, especially the 
latter, has greatly accelerated the release of carbon dioxide from more static reser-
voirs into the atmosphere. Fossil fuels are essentially combinations of carbon and 
hydrogen (hydrocarbons), which are oxidized into CO2 u”“n burning. In 2011, 9.5 
Pg (Pg = Petagram = 1 × 1015g) “f carb“n (= 3.47 × 1010 tonnes = 3.8502 × 1010 
tons, where 1 tonne (t), or metric ton, is 1000 kg and 1 ton is 2000 lb) were released 
into the atmosphere, a 3% increase from the previous year. Not surprisingly, 56% of 

Table 7.4.1 
Major Reservoirs in Carbon Cycle

Reserv“ir Initia‘ A’“unt “f Carb“n (Gt)

atmosphere 750
terrestrial biosphere 600
ocean surface 800
deep ocean 38,000
soil 1,500

Table 7.4.2  
Major Fluxes in Carbon Cycle

F‘ux Rate (Gt C/yr) S“urce Sin—

terrestrial photosynthesis 110 at mo sphere terrestrial
marine photosynthesis 40 at mo sphere ocean surface
terrestrial respiration 55 terrestrial biosphere at mo sphere
marine respiration 40 ocean surface at mo sphere
carbon dissolving 100 at mo sphere ocean surface
evaporation 100 ocean surface at mo sphere
u”we‘‘ing 27 dee” “cean “cean surface
downwelling 23 ocean surface deep ocean
marine death 4 ocean surface deep ocean
plant death 55 terrestrial biosphere soil
plant decay 55 soil at mo sphere
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these e’issi“ns ca’e fr“’ –ust f“ur ”“‘itica‘ entities China, United States, Eur“-
”ean Uni“n, and India (GCP 2012). Other gases are re‘eased as we‘‘ carb“n ’“n-
oxide, various hydrocarbons, nitrogen oxides, and sulfur dioxide. Some of these 
gases, like carbon dioxide, contribute further to global warming, while others con-
tribute to severe respiratory problems, smog, and acid rain (EPA 2011). 

Why all the concern about the spiraling levels of atmospheric CO2 and other so-
called greenhouse gases? Each greenhouse gas gets this designation because it is 
capable of trapping some of the outgoing radiant energy from the earth’s surface, 
increasing the surface temperatures. Even though the increase of gas concentrations 
each year is seemingly small, over time they may lead to increases in the average 
surface te’”erature suficient‘y t“ a‘ter ”reci”itati“n ”atterns, raise sea ‘eve‘, and 
decrease the pH of the oceans. Should these changes be effected, they will threaten 
our food and water supplies, wreck ecological networks, and threaten the health of 
all living organisms (Shah 2012). 

Projects

1. Pre”are a ’“de‘ “f the carb“n cyc‘e using the reserv“irs and luxes in Tab‘es 
7.4.1 and 7.4.2. Assu’e that the rate “f change “f ’arine ’ateria‘s sin—ing t“ 
the deep ocean is constant, but in all other cases, assume that the rate of car-
bon transfer from source to sink is proportional to the amount of carbon in 
the s“urce. Have a se”arate l“w c“rres”“nding t“ each lux with a c“nverter 
for its rate constant. Running the simulation for one simulation year using a 
Runge-Kutta 4 technique and a time step of 0.01 yr, determine proportional-
ity c“nstants t“ “btain the indicated luxes. Then, running the si’u‘ati“n f“r 
a longer period of time, produce appropriate graphs, such as the quantities in 
the reservoirs versus time. Vary these values, and discuss the results.

2. a.  Modify the model you developed in Project 1 to include the effects of 
deforestation and fossil fuel combustion. Suppose a fossil-fuel-deposits 
reserv“ir has an initia‘ va‘ue “f 4000 Gt and luxes f“r c“’busti“n and 
deforestation have values of 5 and 1.15 Gt C/year, respectively. Assume 
that the rate of change of fossil fuel emissions has constrained growth 
with a carrying capacity of 15 Gt C/year and growth rate of 0.03/year (see 
Module 2.3, “Constrained Growth”). Produce a similar model for defores-
tati“n (H“ught“n et a‘. 1999). 

 b.  What is the effect on carbon reservoirs of various atmospheric carbon 
dioxide concentrations?

 c.  What is the effect of doubling the rate of deforestation or fossil fuel 
combustion?

 d.  What is the effect of doubling both? 
3. In a 1999 artic‘e fr“’ Science, Houghton et al. estimated that appropriate 

‘and ’anage’ent (e.g., ref“restati“n, ire su””ressi“n) ’ight “ffset s“’e “f 
the CO2 emissions from fossil fuel consumption by 10% to 30%. Factor land 
management into your evolving model from Project 2 of the carbon cycle 
(H“ught“n et a‘. 1999; Mersereau and Zareba-K“wa‘s—a 1997).
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MODULE 7.5

Heated Debate—Global Warming

Prerequisites: M“du‘e 2.3, C“nstrained Gr“wth ; M“du‘e 7.4, What G“es 
Around Comes Around—The Carbon Cycle.”

Greenhouse Effect

If you drive your car into an uncovered parking lot on a clear, sunny day, one of the 
irst things y“u d“ is t“ ‘““— f“r s“’e shade. Y“u —n“w fr“’ ex”erience that if y“u 
leave your car parked in the sunlight for even a short amount of time, the tempera-
ture inside will become exceptionally high. What is happening in your automobile is 
what happens in a greenhouse. The visible light waves enter your car, passing 
through the glass. The light is absorbed by the interior of the car and is emitted as 
heat (infrared). This heat warms the air contained in the car so that the interior tem-
perature is far greater than the air temperature outside the car. 

The heating of the earth by sunlight is often described as a result of the green-
house effect. Visible light from the sun passes through the atmosphere, with more 
than 50% of the original solar energy reaching the earth’s surface (NASA 2000; 
B“thun 1998). C‘“uds and vari“us gases and ”artic‘es abs“rb 23% “f the incident 
s“‘ar energy, whi‘e c‘“uds and ”artic‘es relect an“ther 25% (B“thun 1998). M“st “f 
the solar energy that reaches the earth’s surface is absorbed, increasing the tempera-
ture of the ground or water. Energy is then radiated from the surface as heat or infra-
red radiati“n. At’“s”heric gases abs“rb ’“st “f this radiati“n. In fact, 70% “f at’“-
spheric heating is realized from this energy, with the rest from the incoming light 
energy (Heyw““d 1998). The gases “f the at’“s”here, n“w war’er, begin t“ radiate 
infrared energy themselves, much of it toward the earth, which absorbs the infrared. 
This “natural” greenhouse effect is responsible for increasing the annual, all-latitude 
average temperature to 15 oC. Without such effect the earth would average a chilly 
–18 oC (Pidwirny and Jones 2010).
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Global Warming

If this so-called greenhouse effect makes the earth a hospitable place for human be-
ings, why is there so much concern about it? This effect, without our help, helps to 
sustain life, but with our help, it might become “too much of a good thing.” Human 
activity (e.g., combustion of fossil fuel, deforestation, etc.) has gradually increased 
the atmospheric concentration of the greenhouse gases. From the development of 
James Watts’ steam engine in the mid-eighteenth century, carbon dioxide (CO2) had 
risen fr“’ 280 ”arts ”er ’i‘‘i“n (””’ = “ne ”art in “ne ’i‘‘i“n = ’g/L) t“ 392 ””’ 
in 2012 (NOAA 2012). With more absorptive gases in the atmosphere, there is 
greater potential for heat absorption, which can then lead to a gradual heating of the 
earth global warming. There is substantia‘ evidence f“r this g‘“ba‘ war’ing. Be-
tween 1900 and 2009, the average surface te’”erature f“r the earth increased a”-
”r“xi’ate‘y 0.7 ºC “vera‘‘, but was increasing during the ‘ast 50 years “f that ti’e 
by at a‘’“st d“ub‘e the average rate (0.13 ºC ”er decade; Dah‘’an 2009). Acc“rding 
to the EPA, during the thermometer-based temperature-recording period until that 
time, the decade 2001–2010 was the warmest. Mean surface temperature has in-
creased at 0.078 °C, “n average, f“r each decade since 1901. A‘ar’ing‘y, during the 
‘ast tw“ decades “f the twentieth and the irst decade “f the twenty-irst centuries, the 
United States warmed more rapidly than the rest of the world (EPA 2012).

The vast majority of evidence leads to the conclusion that the alarming trend of 
global warming is largely a result of anthropogenic (hu’an inluence “n nature) 
activities. Models, using various emission scenarios, predict CO2 concentrations will 
reach 540 t“ 970 ””’ by the end “f the twenty-irst century. Increases “f these ’ag-
nitudes may boost the earth’s average temperature by 1.4 to 5.8 oC (IPCC 2001). 

Greenhouse Gases

Carbon dioxide is only one of several greenhouse gases (GHGs). Greenhouse gases 
are atmospheric gases that absorb infrared radiation (IR), preventing its loss to space. 
The most common of these gases is actually water vapor, but other naturally occur-
ring examples include methane and nitrous oxide. Human activities add to the in-
crease “f these gases and synthetic GHGs, such as ch‘“r“lu“r“carb“ns (CFCs) and 
hydr“lu“r“carb“ns (HFCs). S“’e “f these gases have ’uch higher abs“r”tive 
power (hence, greater warming potential) than carbon dioxide. Nevertheless, carbon 
dioxide is the focus of most studies and concern, because CO2 will contribute more 
than 50% of the increase in radiative forcing (increased IR absorption and warm-
ing) for the next century (IPCC 2001; Schlesinger 2001). 

Consequences

Let us accept for the purpose of modeling that the accumulation of certain gases in 
the atmosphere results in greater absorption of heat from the earth’s surface and 
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leads to rising global temperatures. We also accept that human activities lead to an 
increase in the concentration of these gases. Some people might think that a 1 oC 
increase is not very great over a century, and we would hardly live long enough to 
notice. Why are so many people concerned about this problem? The answer is quite 
complicated because temperature affects so many processes on earth, most espe-
cially climate. 

Climate changes of even minor amplitude may have drastic and dramatic conse-
quences of life on this planet. These effects will be seen globally and regionally. 
Global warming will result in thermal expansion of the oceans and in glacial and ice 
cap melting that will raise the sea level. Projections based on various emissions/
war’ing ’“de‘s ”redict a rise “f 0.09 t“ 0.88 ’ by the end “f this century (IPCC 
2001). Thousands of coastal miles would be inundated by seawater. Parts of lower 
Manhattan, for instance, might return to the sea (Claussen 2002). 

Projects

1. Assume that there is a relationship between increasing concentrations of at-
mospheric carbon dioxide ([CO2]) and average global temperature (T). Add 
these c“’”“nents t“ y“ur carb“n cyc‘e ’“de‘ “f Pr“–ect 2 fr“’ M“du‘e 7.4, 
“What Goes Around Comes Around—The Carbon Cycle,” using the follow-
ing relationships for CO2 concentration and change in temperature from the 
start to the end of the simulation, respectively:

 [CO2] in ppm = 350 × (mass of CO2 in the at’“s”here)/750  
(Allmon et al. 2006)

 temperature change (oC) over entire period = 0.01([CO2] – 350)  

(Ward and Johnson 2004)

2. a.  Methane (CH4) is produced naturally by some anaerobic bacteria, ter-
’ites, and d“’estic grazing ani’a‘s. Hu’an activities, such as ‘andi‘‘s, 
burning, rice cultivation, coal mining, and oil/gas extraction, have drasti-
cally increased the release of this gas into the atmosphere. Although not 
nearly as prevalent as CO2 in the atmosphere, methane is an important and 
powerful greenhouse gas with the ability to absorb 21 times as much heat 
per molecule as CO2. In 1978, the c“ncentrati“n was 1.52 ””’, and ’eth-
ane c“ncentrati“n increased by ab“ut 1% ”er year unti‘ 1990. In 2011, the 
concentration was about 1.818 ppm (EPA 2011). Factor the effect of 
methane into your global warming model of Project 1. Experiment with 
increases and decreases in emissions. 

 b.  Because ’uch “f the increase in ’ethane ‘eve‘s is re‘ated t“ the ”r“duc-
tion of food, we can tie the levels of atmospheric methane to population 
changes. Acc“rding t“ Kre’er (1993), w“r‘d ”“”u‘ati“ns have increased 
as f“‘‘“ws (with the years in ”arentheses): 720 ’i‘‘i“n (1750), 1.2 bi‘‘i“n 
(1850), 1.8 bi‘‘i“n (1900), 2.5 bi‘‘i“n (1950), and “ver 7 bi‘‘i“n t“day. 
C“rres”“nding ’ethane ‘eve‘s were a””r“xi’ate‘y 0.70 ””’ (1750), 0.85 
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””’ (1850), 0.90 ””’ (1900), 1.1 (1950), and 1.818 ””’ (20011; Ether-
idge et al. 2001; EPA 2011). Factor in population changes to methane 
concentrations. 

 c.  Gr“wth rates in vari“us ”arts “f the w“r‘d differ signiicant‘y. F“r in-
stance, Tab‘e 7.5.1 c“’”ares the ”“”u‘ati“n and ’ethane c“ncentrati“n 
igures f“r Ma‘awi, Den’ar—, and the United States. If w“r‘d ”“”u‘ati“n 
had followed the overall growth rates of each of these countries, how 
might that change the model and results from Part b?

3. A third greenhouse gas is nitrous oxide (N2O). Although production is much 
s’a‘‘er, nitr“us “xide abs“rbs 270 ti’es as ’uch heat as CO2 per molecule 
and resides in the atmosphere for about 150 year. This gas is released with 
land-use conversion, combustion of fossil fuels, burning, and nitrogen fertil-
ization of agricultural lands. The atmospheric concentration of nitrous oxide 
in 2011 was 324 ppb (parts per billion; EPA 2011). Factor the effect of ni-
trous oxide into your global warming model of Project 1 or 2. Experiment 
with increases and decreases in emissions. Discuss the results.
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Plotting the Future—How Will the Garden Grow?

Prerequisite: M“du‘e 2.3, C“nstrained Gr“wth.

The Problem

This problem and project were contributed by and used with permission from Dr. 

Ste”hen Davies, University “f Mary Washingt“n (Davies 2012).
The caretaker for a wealthy landowner in southern Austria is planning an orna-

mental garden with a meditative footpath. A 40-ft by 40-ft plot for the garden will be 
entire‘y c‘eared bef“re seeding. The gardener wi‘‘ ”‘ant ive ty”es “f f“‘iage: c“ne-
l“wers, h“stas, sedu’s, ferns, and “rna’enta‘ trees. The careta—er wants t“ ”redict 
how the garden will grow and look in the future in order to plan an aesthetically 
pleasing arrangement.

The climate in this area has two annual seasons, rainy and dry. Each period lasts 
ab“ut ha‘f the year January thr“ugh June is the rainy seas“n, and Ju‘y thr“ugh De-
cember is the dry season.

We can employ a logistic growth model for each of the plant species (not includ-
ing the trees). F“r exa’”‘e, the nu’ber “f new c“nel“wers that gr“w in a given 
”eri“d is re‘ated t“ the carrying ca”acity and the nu’ber “f c“nel“wers a‘ready in 
the garden. With the plot able to support only a limited amount of plant life, we as-
sume that the soil’s carrying capacity is one plant per square foot. We use a logistic 
equation for all population calculations, so that the total plant population asymptoti-
cally approaches that carrying capacity. (Note that this carrying capacity applies 
only to the four plant types, not to the trees.)

Also, the different plants thrive in different moisture conditions. Hostas and ferns 
d“ we‘‘ when ’“ist, whereas c“nel“wers and sedu’s ”refer drier s“i‘. F“r this 
problem, we assume the following growth rates for each of the four species:

• C“nel“wers and ferns: 0.02 in rainy seas“n, 0.01 in dry seas“n
• Hostas: –0.01 in rainy season, 0.02 in dry season
• Sedums: –0.01 in rainy season, 0.03 in dry season
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Note carefully that some of the preceding numbers have a negative sign in front of 
them, indicating that the plant does not do well in that season.

The ornamental trees will grow in size but not in number. Planted as mere sap-
lings, after 4 yr the trees will be large enough to produce shade. The shade a tree 
provides is a function of the tree’s canopy, or the uppermost branches and leaves 
that block sunlight. We assume that each tree effectively has zero canopy until the 
plant is 4 years old. Starting at age 4, we assume the radius of the canopy grows at a 
rate of 0.8 ft/year until age 14, when the tree ceases to grow. Thus, a 5-year-old tree 
has a canopy radius of 0.8 ft; a 5.5-year-old tree has a radius of 1.2 ft; a 6-year-old 
tree’s radius is 1.6 ft; and a tree’s maximum canopy radius (from year 14 onward) is 
8 ft. To calculate the area of sun blockage for each tree, use the formula for the area 
of a circle, πr2, where r is the radius. For simplicity, we assume that no two trees’ 
canopies overlap each other.

The a’“unt “f sun shining “n the ”‘ants a‘s“ can affect their gr“wth rate. S”ecii-
ca‘‘y, b“th c“nel“wers and sedu’s require a great dea‘ “f sun‘ight, and we sh“u‘d 
adjust their growth rates as follows:

C“nel“wers: If the percentage of the garden’s total area that is sunny falls below 
70%, c“nel“wers  gr“wth rate sh“u‘d be 0.1 ‘“wer than “therwise. If the ”er-
centage of sunny area falls below 50%, the rate should be 0.2 lower. For ex-
a’”‘e, in rainy seas“n, if the garden had “n‘y 60% sun‘ight, the c“nel“wers  
growth rate would be –0.08.

Sedums: If the sunny area percentage falls below 50%, sedums’ growth rate 
should be 0.05 lower than otherwise.

Project

1. Simulate the garden’s growth over a period of 20 yr, so that we can predict 
the ”‘“t s c“ntents. Use 1 da as the va‘ue “f ∆t, where t represents time. As-
su’e the gardener initia‘‘y ”“”u‘ates the garden as f“‘‘“ws: 12 c“nel“wers, 
19 h“stas, 14 sedu’s, 7 ferns, and 12 “rna’enta‘ trees (sa”‘ings). Kee” trac— 
of the time of year, so that in rainy season the simulation uses one set of 
growth rates and in the dry season, the other set. Also, calculate the fraction 
of the garden’s sunlight that the trees block at each time step, and adjust the 
c“nel“wers and sedu’s gr“wth rates as necessary. Re’e’ber a‘s“ t“ ca‘cu-
late the total number of plants at each clock tick in order to apply the logistic 
factor (1 – totalPlants / carryingCapacity). 

Plot the growth of the four plants over time. Prepare a brief written narra-
tive about what you discovered when trying different simulation parameters. 
In particular, experiment with the initial numbers of different plant and tree 
types, the amount of shade provided by the trees, and the climate (e.g., the 
rainy season shortened or lengthened by a month or two). Discuss which of 
the preceding three changes (or others you might try) have large effects and 
which have negligible effects (Davies 2012).
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Cardiovascular System—A Pressure-Filled Model

Prerequisites: M“du‘e 2.4, Syste’ Dyna’ics S“ftware Tut“ria‘ 2,  “r M“du‘e 
2.5, Drug D“sage ; and f“r Pr“–ects 1 and 2, a‘s“ the secti“n “n M“de‘ing 
Inhibiti“n  fr“’ M“du‘e 4.5, Enzy’e Kinetics A M“de‘ “f C“ntr“‘.

Circulation

As organisms assume larger dimensions, they are confronted with a number of prob-
lems resulting from this increase in size. Cells become separated from one another, 
sometimes by great distances; and they take on specialized functions. The functional 
integration of these specialized cells becomes paramount for the success of the or-
ganis’. One necessary ada”tati“n is the acquisiti“n “f effective and eficient trans-
”“rt syste’s, ’ade u” “f interc“nnected s”aces and tubes that trans”“rt luids. In 
multicellular animals, we refer to these systems as circulatory systems. Even vas-
cular plants have such systems. As animals grew and evolved, tubular systems (car-
diovascular systems) that included a muscular pump (heart) replaced primitive 
circu‘at“ry syste’s. In these ani’a‘s, a luid (blood) delivers oxygen, nutrients, hor-
mones, and wastes to their proper destinations. 

The human cardiovascular system is made up of a heart and two circulatory 
‘““”s the pulmonary (lungs) and systemic (rest of body) circulations. The heart 
c“nsists “f f“ur cha’bers right and ‘eft atria and right and left ventricles. In both 
circu‘ati“ns, b‘““d is ”u’”ed fr“’ the ventric‘es thr“ugh a series “f tubes arteries, 
arteri“‘es, ca”i‘‘aries, venu‘es, veins and is returned t“ the “””“site atriu’ “f the 
heart. B‘““d ‘eaving the ‘eft ventric‘e enters the arteries “f the syste’ic circu‘ati“n, 
which perfuses through capillaries in muscles, digestive tract, brain, and vital organs, 
such as the —idneys and ‘iver. B‘““d is returned thr“ugh venu‘es and veins t“ the right 
atrium of the heart. This blood, low in oxygen and high in carbon dioxide, is squeezed 
into the right ventricle, which pumps it into the pulmonary arteries and on to the capil-
laries surrounding the tiny sacks in the lungs, where oxygen is exchanged for carbon 
dioxide. Pulmonary veins return this blood to the left atrium. From there, the blood 
enters the left ventricle to be sent out in the systemic circulation. 
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Blood Pressure

Blood pressure is the hydr“static (luid) ”ressure that ’“ves the b‘““d thr“ugh the 
circulation. We monitor the pressure exerted on the arteries of the systemic circuit. 
B‘““d ”ressure is ”u‘sati‘e, n“t c“ntinu“us, because the cardiac cyc‘e is inter’ittent. 
We measure the highest pressure exerted as the left ventricle contracts (systolic 
pressure). Traditionally, this pressure in a healthy adult is approximately 120 mm of 
mercury (mm Hg). Likewise, the pressure in the arteries as the left ventricle relaxes 
(diastolic pressure) is approximately 80 mm Hg.

Mean arterial pressure (MAP) is the average pressure during an aortic pulse 
cycle. For a normal resting person, MAP approximately obeys the following model:

MAP = (diastolic pressure) + 
( ) ( )systolic pressure diastolic pressure−

3
 

Cardiac output (CO) and systemic vascular resistance (SVR) regulate this pres-
sure according to the following model: 

MAP = CO × SVR

Cardiac output is the product of the stroke volume (SV) and the heart rate (HR): 

CO = SV × HR

Stroke volume, the volume of blood that the left ventricle ejects, ranges from 50 to 
100 ’L in a hea‘thy adu‘t. A nu’ber “f fact“rs inluence the str“—e v“‘u’e, inc‘ud-
ing the volume of blood returned to the ventricle and contractility, or the ability of 
heart muscle to shorten. Heart rate in a resting, healthy adult is normally between 60 
and 80 beats/minute (bpm). Consequently, cardiac output, or the volume of blood 
that the left ventricle ejects over a period of time, ranges from 4 to 8 L/min.

Nervous Systems

Controlling various involuntary activities of the body, including heart rate, the auto-
nomic nervous system consists of the sympathetic and the parasympathetic ner-
vous systems. The pacemaker “f the heart, which is in the right atriu’, ires at an 
intrinsic rate of 100 to 115 bpm. The vagus nerve, which is part of the parasympa-
thetic nervous system, can inhibit the pacemaker’s normal beat to 50 bpm. The stim-
u‘at“ry inluence “f the sy’”athetic nerves c“unters the inhibit“ry effects “f the 
vagus and under certain conditions can increase heartbeat to as much as 200 bpm. 

Stroke Volume

As well as heart rate, the sympathetic nervous system controls stroke volume (SV) 
directly and indirectly. Directly, sympathetic stimulation causes greater contraction 
of the heart and, consequently, larger SV. The nervous system achieves this increase 
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with an inlux “f ca‘ciu’ i“ns int“ the cardiac ’usc‘e ce‘‘s. Ca‘ciu’ i“ns ”r“’“te 
the f“r’ati“n “f cr“ss-bridges between the ’usc‘e ibers, increasing the strength “f 
contraction. Likewise, epinephrine release promotes increased contractility of heart 
muscle. Indirectly, active sympathetic stimulation promotes vasoconstriction (de-
creasing the vessel diameter) of the veins, leading to greater venous return (l“w “f 
blood to the heart). Greater venous return increases end-diastolic volume and the 
contractile tension of the heart muscle to a more optimal length for contraction, re-
sulting in the heart pumping out more blood.

Venous Return

Fact“rs “ther than the sy’”athetic nerv“us syste’ inluence ven“us return. S—e‘eta‘ 
muscle activity, respiration, and increases in blood volume also amplify venous re-
turn. In particular, salt-water balance and the vasopressin-angiotensin system (hor-
’“nes that are i’”“rtant t“ luid ba‘ance and are vas“c“nstrict“rs) inluence b‘““d 
volume. 

Systemic Vascular Resistance

Systemic vascular resistance (SVR) is the resistance or impediment of the blood 
vesse‘s in the syste’ic circu‘ati“n t“ the l“w “f b‘““d. A‘th“ugh there are a nu’ber 
of factors that regulate SVR, one of the most important is the diameter of the perfus-
ing blood vessels. Increases in SVR are caused by numerous factors that promote 
vasoconstriction, whereas decreases are triggered by factors that encourage vasodi-
lation. These factors include those that are neurohumoral (e.g., epinephrine and va-
sopressin promote vasoconstriction), endothelial (e.g., nitric oxide promotes vasodi-
lation; endothelin promotes vasoconstriction), local hormones (e.g., arachidonic acid 
metabolites, which may promote vasoconstriction or vasodilation) and myogenic 
(usually promotes vasoconstriction). 

Normal ranges for SVR are 800 to 1200 dyn s/cm5, where dyn represents dynes. 
Fr“’ the ”receding secti“n, B‘““d Pressure,  we see that syste’ic vascu‘ar resis-
tance is the quotient of mean arterial pressure and cardiac output, or SVR = MAP/

CO. For MAP in mm Hg and CO in L/’in, we ’u‘ti”‘y the resu‘t by 79.9 t“ “btain 
the value with units of dyn s/cm5. We can deter’ine this c“nversi“n fact“r (79.9) 
with the facts that 1 mm Hg = 1333.22 dyn/cm2 and 1 mL = 1 cm3. The deiniti“n “f 
the force 1 dyn is 10–5 N.

Blood Flow

B‘““d l“w thr“ugh tissues is vita‘ f“r the de‘ivery “f nutrients, “xygen, and che’i-
cal messages and for the removal of carbon dioxide and wastes. Regulation of blood 
l“w is, theref“re, vita‘ t“ the ”r“”er functi“ning “f th“se tissues. Blood low (Q) 
through a vessel over time is equal to the mean velocity of the blood low (v) times 
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the cross-sectional area of the vessel. With the cross-sectional area being the area 
of a circle, πr2, where r is the radius of the vessel, we have the following equation 
f“r b‘““d l“w:

Q = vπr2 

A model for the mean velocity (v) is the pressure gradient (ΔP) times the square of 
the radius (r2) divided by the product of 8, the viscosity of the blood (η), and the 
vessel length (L): 

v = 
∆Pr2

8ηL
 

Visc“sity indicates the degree t“ which the luid resists l“w. If we substitute f“r v in 
“ur b‘““d l“w equati“n, we deter’ine b‘““d l“w in an arteri“‘e using Poiseuille’s 
equation (Klabunde 2010):

Q = vπr2 = 
∆ ∆Pr

2

2

4

8 8η ηL
r

r P

L
⋅ =π

π

Projects

For each of the following projects, discuss your simplifying assumptions and results 

and how closely those results match reality.

1. a.  Model the regulation of heart rate by the sympathetic nervous system, 
holding the parasympathetic constant. Assume heart rate is linearly de-
pendent on this system. Employ converters/variables. 

 b.  Reine y“ur ’“de‘ t“ inc‘ude inhibiti“n “f the heart rate by the ”arasy’-
pathetic nervous system.

 c.  Extend your model to include the regulation of heart rate by epinephrine 
(adrenalin), a chemical messenger of the sympathetic nervous system. At 
times of stress, such as exercise, excitement, or excessive bleeding, the 
adrenal medulla releases this epinephrine to increase heart rate. Illustrate 
its action by having the adrenal medulla release the epinephrine quickly 
and having the epinephrine stay in the body for a few minutes before 
gradually diminishing at a rate proportional to the concentration of epi-
nephrine. Have a stock (box variable) for this concentration.

 d.  M“dify y“ur ’“de‘ t“ inc‘ude the inluence “f str“—e v“‘u’e and heart 
rate on cardiac output. Consider two versions of the model. One models 
cardiac output as the product of stroke volume and heart beat. The other 
has the l“w “ut “f the heart being a ”u‘se “f a v“‘u’e “f b‘““d every 
heartbeat. Some typical parameters for a normal person are as follows: 
v“‘u’e “f b‘““d in the b“dy = 5000 ’L; str“—e v“‘u’e = 70 ’L; i’’e-
diately after beat, volume in ventricle = 60 mL.

 e.  Investigate factors controlling blood volume and modify your model for 
the c“ntr“‘ “f cardiac “ut”ut. A n“r’a‘ va‘ue f“r luid inta—e and urine 
“ut”ut is 1 ’L/’in. B‘““d v“‘u’e is a””r“xi’ate‘y 70 ’L/—g. C“nsu‘t 
other sources as necessary to complete the project.
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2.  a.  Develop a simple model of mean arterial pressure, where cardiac output 
(CO) and systemic vascular resistance (SVR) govern mean arterial pres-
sure (MAP).

 b.  Modify your simple model to include the regulation of SVR by vasocon-
striction and vasodilation, which increase (promote) and decrease (in-
hibit) resistance, respectively. 

3.  Using the c“’”“nents “f P“iseui‘‘e s Equati“n (see the secti“n B‘““d 
Flow”) as well as cardiac output, develop a model for regulation of blood 
l“w in the syste’ic ‘““” “f the cardi“vascu‘ar syste’. Have heart rate and 
stroke volume regulate blood pumping (pulsing) from the heart. Consider 
b“th arteria‘ and ven“us l“w with st“c—s (b“x variab‘es) f“r the heart, artery 
syste’, and b“dy tissues. In arteria‘ l“w, syst“‘ic and diast“‘ic ”ressures 
determine the pressure gradient. With P being MAP, some possible arterial 
parameter values are as follows: r = 6 mm,  = 0.04 g/(cm s), L = 1000 mm. 
Some possible venous parameter values are as follows: r = 3.5 mm,  = 0.04 
g/(cm s), L = 10 mm. Venous pressure, which varies over a large range, aver-
ages 17 ’’ Hg (R“’stedt 2003).

4.  Reine Pr“–ect 3 t“ inc‘ude ”u‘’“nary circu‘ati“n. 
5.  Reine Pr“–ect 4 s“ that each heart cha’ber is a se”arate st“c— (b“x 

variable).
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MODULE 7.8

Electrical Circuits—A Complete Story

Prerequisite: Module 3.2, “Modeling Bungee Jumping.”

Deibrillators

When s“’e“ne has a heart attac— what d“ct“rs ca‘‘ a myocardial infarction   
insuficient b‘““d l“ws t“ a s”eciic ”“rti“n “f the heart. Interru”ti“n “f b‘““d l“w 
may occur when the coronary arteries supplying heart muscle cells with blood are 
obstructed by a blood clot. The muscle soon suffers from lack of oxygen and nutri-
ents; and if the blood supply is not restored immediately, the muscle dies. The pa-
tient may experience various symptoms, including pain, as the heart is thrown into 
disarray. The distress of heart muscle is accompanied by electrical instability, which 
may lead to ventricular ibrillation, or chaotic electrical disturbance (Kulick 2012). 

T“ rest“re “rder‘y e‘ectrica‘ signa‘s during ibri‘‘ati“n, ’edica‘ ”ers“nne‘ ’ay 
use an instrument called a deibrillator. This device causes a predetermined amount 
“f current t“ l“w acr“ss the heart. Padd‘es are ”“siti“ned ”r“”er‘y “n a ”atient s 
chest. Flipping of a switch forms a bridge, or, we say, completes an electrical cir-
cuit, and st“red e‘ectr“ns can then l“w fr“’ a negative‘y charged ”‘ate “f the dei-
brillator’s capacitor, through the patient’s heart, and back to the capacitor’s positive 
plate. This current synchronizes the depolarization of the heart muscle and helps to 
restore normal electrical rhythm and normal, coordinated beating.

The use “f the deibri‘‘at“r ”r“vides us with but “ne exa’”‘e “f the uti‘ity “f e‘ec-
trica‘ circuits. Circuits ’ay be si’”‘e, such as in the lash‘ight we —ee” in an aut“-
mobile, or very complex, such as those in sophisticated computers. In any applica-
tion, completed circuits make functions possible.

Current and Potential

In an atom, electrons orbit a nucleus, which contains neutrons and protons. With 
opposite charges, electrons and protons are attracted to each other. A coulomb (C) is 
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a unit of electric charge, Q. The charge on an electron is –1.6 10-19 C, while a proton 
has a charge of +1.6 10-19 C. 

When a charge l“ws thr“ugh a regi“n, we say that a current exists. The current 
I is the rate of change of the charge with respect to time, or

I = 
dQ

dt

One ampere, or amp (A), is the unit of current for a charge of 1 C to pass through a 
region in 1 s, or 1 A = 1 C/s. A charge is analogous to water, while current corre-
sponds to the movement of the water. Similarly, a ball and a ball falling form analo-
gies to charge and current, respectively.

A metal wire is a good conductor of current, and an electrical circuit usually 
c“nsists “f wires and “ther c“’”“nents. By c“nventi“n, we say that the direction of 
the current is “””“site t“ the directi“n in which the e‘ectr“ns l“w. 

Energy must be employed to pull opposite charges apart. When together, they 
have potential energy. The electronic potential, or potential, V, at a point is the 
potential energy per unit charge, or the work per unit charge to bring a positive 
charge fr“’ ininity t“ the ”“int. The potential difference, or voltage difference, 
between two points A and B is the difference in potential between the points. A unit 
of measure of potential difference is a volt (V). Figure 7.8.1 ”resents the circuit 
symbol for an imposed voltage E, such as a battery. We deine the voltage at a 
point A in the circuit as the voltage difference between A and a circuit reference 
point, the ground (often the negative terminal of a battery). In a circuit, current 
l“ws fr“’ a regi“n “f high v“‘tage t“ “ne “f ‘“w v“‘tage. E‘ectr“nic ”“tentia‘ is 
ana‘“g“us t“ ’echanica‘ ”“tentia‘ energy. F“r exa’”‘e, water l“ws fr“’ the t“” 
of a waterfall, where it has high potential energy, to the bottom, where its potential 
energy is lower. 

Deinitions  A coulomb (C) is a unit of electric charge, Q. Current, I, is 

the rate of change of the charge with respect to time, or I = 
dQ

dt
. 

One ampere, or amp (A), is the unit of current for a charge of 1 

C to pass through a region in 1 s, or 1 A = 1 C/s.

Deinitions  The electronic potential, or potential, V, at a point is the po-
tential energy per unit charge, or the work per unit charge to 
bring a ”“sitive charge fr“’ ininity t“ the ”“int. The potential 
difference, or voltage difference, between two points A and B is 
the difference in potential between the points. A unit of measure 
of potential difference is a volt (V). The voltage at a point A in 
the circuit is the voltage difference between A and a circuit refer-
ence point, the ground.
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Resistance

Voltage is virtually constant along a wire. However, other components in the circuit 
cause voltage to drop. For example, a resistor s‘“ws the current l“w and, thus, c“n-
trols the current level. A resistor is analogous to a constriction in a hose that slows 
the water l“w. Figure 7.8.2 dis”‘ays the e‘ectrica‘ circuit sy’b“‘ f“r a resist“r. A 
constant resistance R ’easures the abi‘ity “f a resist“r t“ reduce the l“w “f charges. 
According to Ohm’s law, the voltage drop or potential change across a resistor is as 
follows:

V = IR = R 
dQ

dt

or

I = V/R 

or

R = V/I

We measure the resistance of a resistor in ohms (Ω), and 1 Ω = 1 V/A. A g““d wire 
has resistance ’uch ‘ess than 1 Ω. With an incandescent ‘ightbu‘b, the dissi”ated 
potential from resistance appears as light and heat. For a toaster, resistance dissipates 
potential that results mostly in heat.

Quick Review Question 1

Suppose a circuit has a battery with voltage = 4.5 V and a resistor with resistance 
=100 Ω. Ca‘cu‘ate the current thr“ugh the circuit and give its units.

Deinitions  A resistor s‘“ws the current l“w. A c“nstant resistance R 
’easures the abi‘ity “f a resist“r t“ reduce the l“w “f charges. 

Ohm’s law states that V = IR = R
dQ

dt
. A measure of resistance 

is 1 ohm (Ω) = 1 V/A.

+ –

E

Figure 7.8.1 Electrical circuit symbol for imposed voltage, E



Additional System Dynamics Projects 273

Capacitance

A capacitor, wh“se sy’b“‘ a””ears in Figure 7.8.3, is a c“’”“nent f“r st“ring 
charge. A simple capacitor consists of two conductors, such as metal plates, one 
with a positive charge and one with an equal negative charge, with an insulator be-
tween them. The potential difference can build between the two conductors. Just as 
a dam can hold water from a river, a capacitor can hold charge. The ability to store 
charge is capacitance (C), which we can measure in farads (F). One farad of ca-
pacitance is equivalent to having a capacitor hold a charge of 1 C for a potential 
difference of 1 V across its conductors, or 1 F = 1 C/V. We have the following rela-
tionship among capacitance, charge, and voltage drop or change in potential across 
a capacitor:

C = Q/V 

or

Q = CV

Quick Review Question 2

Suppose a capacitor has a capacitance of 32 µF, and the voltage across the capaci-
tor is 5000 V. Calculate the amount of charge that the capacitor stores in millicou-
lombs (mC).

Deinitions A capacitor is a component for storing charge. The ability to 
store charge is capacitance (C). One farad (F) of capacitance for 
a capacitor is equivalent to having a capacitor hold a charge of 1 
C for a potential difference of 1 V across its conductors, or 1 
F = 1 C/V.

R

Figure 7.8.2 Electrical circuit symbol for a resistor

C

Figure 7.8.3 Electrical circuit symbol for a capacitor
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Inductance

A third component that reduces current is an inductor, a coil of wire that dampens 
sudden changes in current. As Figure 7.8.4 sh“ws, the e‘ectrica‘ sy’b“‘ f“r an in-
ductor suggests a coil. An inductor prevents the instantaneous increase in current 
and ”r“‘“ngs current l“w. The c“nstant inductance L of the coil measures the op-
position to a change in current and has the following formula:

L = 
V

dI/dt

Because I = dQ/dt, dI/dt is the second derivative of charge with respect to time, d2Q/

dt2, or the rate of change of the rate of change of Q with respect to time, and

L
V

d Q/dt
=

2 2

A unit of measure for inductance is a henry (H), which is 1 V s/A. Tab‘e 7.8.1 su’-
marizes some of the terms associated with electrical circuits along with their sym-
bols, units, and formulas. 

Quick Review Question 3

Su””“se a ‘arge induct“r has 1 H inductance and a current “f 10 A l“ws thr“ugh the 
inductor. Estimate the voltage difference in volts if we cut off the current in 1.0 ms.

Circuit for Deibrillator

Figure 7.8.5 c“ntains a circuit diagra’ f“r a deibri‘‘at“r. Initia‘‘y, a switch is set s“ 
that the battery can charge the capacitor. When the switch is set in the other direc-
tion, the capacitor discharges sending a surge of electricity through the heart, which 

Deinitions  An inductor is a device that dampens sudden changes in cur-
rent. A constant inductance L of a coil measures the opposition 

to a change in current and has the formula L = 
V

dI/dt
. A unit of 

measure for inductance is a henry (H), which is 1 V s/A.

L

Figure 7.8.4 Electrical circuit symbol for an inductor
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is a resistor. An inductor dampens sudden increase in current and prolongs current 
l“w.

Kirchhoff’s Voltage Law

An important connection among the components of a circuit is Kirchhoff’s voltage 
law, which states that in a closed loop, the sum of the changes in voltage is zero. For 
example, consider the RLC circuit (circuit with a resistor, a inductor, and a capaci-
t“r) in Figure 7.8.6, with a battery ”r“viding v“‘tage, E(t). Resistance causes a volt-

age drop of IR = R
dQ

dt
; the voltage drop due to the capacitor is Q/C; while induc-

Table 7.8.1  
Electrical Circuit Terms

Term Symbol SI Unit Formula Formula

Capacitance C Farad (F) C = Q/V

Charge Q Coulomb (C) Q = CV

Current I Ampere (A) I = 
dQ

dt
I = V/R

Inductance L Henry (H) L=
V

dI/dt
L =

V

d Q/dt2 2

Re sis tance R Ohm (Ω) R = V/I

Voltage V Volt (V) V = IR V = R
dQ

dt

Paddle 

Paddle 

HeartBattery

Switch 

+ +       +  + 

– – – –

+

–

Figure 7.8.5 Circuit diagra’ f“r a deibri‘‘at“r (Wi‘‘ia’s et a‘. 2003)
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tance causes a voltage drop of L
d

dt
L
d Q

dt

I
=

2

2
. Thus, by Kirchhoff’s voltage law, the 

following equation holds:

E t R
dQ

dt

Q

C
L

d Q

dt
( )− − − 2

2
 = 0

or

 E t R
dQ

dt

Q

C
L

d Q

dt
( ) = + +

2

2
 (1)

Sometimes it is convenient to express this equation using current instead of charge. 
Recalling that I = dQ/dt, we differentiate the above equation and substitute appropri-
ately to obtain the following:

E t R
d

dt C
L
d

dt
'( ) − − − =

I I I
2

2
0

or

E t R
d

dt C
L
d

dt
'( ) = + +

I I I
2

2

Kirchhoff’s Voltage Law  In a closed loop, the sum of the changes in volt-
age is zero.

L

R

–

+

CE

I

Figure 7.8.6 An RLC circuit
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Quick Review Question 4

Using Kirchhoff’s voltage ‘aw “n the deibri‘‘at“r circuit diagra’ in Figure 7.8.5, 
give the equations for the following:

a.  The left loop using Q
b.  The left loop using I
c.  The right loop after the switch is thrown to complete that circuit using Q
d.  The right loop after the switch is thrown to complete that circuit using I 

Kirchhoff’s Current Law

Many circuits, such as the “ne in Figure 7.8.7, c“nsist “f severa‘ ‘““”s. Kirchhoff’s 
current law states that the sum of the currents into a junction, such as node J1, 
equals the sum of the currents out of that junction. Thus, I1 = I2 + I3.

Quick Review Question 5

Give Kirchh“ff s current ‘aw as it a””‘ies t“ the f“‘‘“wing –uncti“ns in Figure 7.8.7: 

a.  Junction J2 
b.  E

–

+

E

J
1

J
2

C
1

C
2

L
1

R
1

R
2

R
3

L
21 2

I
1

I
2

I
3

I
4

Figure 7.8.7 Circuit with more than one loop
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Using Kirchhoff’s voltage and current laws, we obtain a system of differential 
equations that models the circuit. Applying Kirchhoff’s voltage law to Loop 2 of 
Figure 7.8.7, we “btain the f“‘‘“wing differentia‘ equati“n inv“‘ving current:

 R
d

dt
L
d

dt C C
R
d

dt
3

2

2

2

2

2

2

2

3

3

2

4 0
I I I I I

+ + − − =  (2)

Because the assu’ed directi“n “f the current thr“ugh the c“’”“nents f“r C1 and R2 
is opposite to that of the current through the other components in the loop, the terms 
involving C1 and R2 are negative. 

Quick Review Question 6

A””‘y Kirchh“ff s v“‘tage ‘aw t“ L““” 1 “f Figure 7.8.7 t“ “btain a differentia‘ 
equation involving current.

By a””‘ying Kirchh“ff s current ‘aw, we can si’”‘ify the differentia‘ equati“ns t“ 
involve fewer currents. For example, we know that I4 and I1 are the same and that 
I1 = I2 + I3 or I3 = I1 - I2. Taking the derivative of the latter, we have the following 
relationship:

d

dt

d

dt

d

dt

I I I
3 1 2= −

Thus, substituting in Equation 2 and the answer to Quick Review Question 6, we 
have the following system of differential equations involving currents I1 and I2:

Loop 1
1

2

1

2 2

1

2

2 1

1

2

1

1

1: ( )E t L
d

dt
R
d

dt
R
d

dt C C
R
d

dt
' = + − + − +

I I I I I I
 

Loop 2 0
3

2

2

2

2

2

2

2

1

1

2

1

2

1

2

2
: R

d

dt
L
d

dt C C C
R
d

dt
R
d

dt

I I I I I I I
+ + − + − + =

Projects

For the projects, use an appropriate system dynamics tool with small time steps.

1. a.  Develop a model for the RLC circuit in Figure 7.8.6. Assu’e L = 0.05 H, 
R = 20 Ω, C = 100 µF, E(t) = 100 V, and Q(0) = Qʹ(0) = 0 C. Produce ap-
propriate graphs, such as current and charge versus time. 

 b.  Model and discuss the impact of having zero inductance.
 c.  Model and discuss the impact of having zero resistance.
 d.  Model and discuss the impact of having zero capacitance.
 e.  Vary the values for the constants in Part a. Observe and discuss the 

results.
 f.  Referring t“ M“du‘e 3.2, M“de‘ing Bungee Ju’”ing,  deve‘“” an ana‘-

ogy between an RLC circuit modeled by Equation 1 and a forced, damped 
s”ring-’ass syste’ (Davis 1992).
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2.  Repeat Project 1 assuming L = 0.2 H, R = 50 Ω, C = 10 µF, E(t) = 120 
cos(120πt), Q(0) = 10-6 C, and Qʹ(0) = 0 A.

3.  a.  Write a differentia‘ equati“n f“r the v“‘tage a””‘ied t“ the heart by a dei-
brillator. This equation is piecewise and consists of an equation for E’(t) 
during the time when the capacitor is charging and sending no current to 
the heart and an equation when the capacitor is discharging and conveying 
an electrical impulse to the heart.

 b.  Deve‘“” a ’“de‘ f“r a deibri‘‘at“r circuit. Su””“se the deibri‘‘at“r has a 
5000-V battery and a 32-µF capacitor. The resistance of a patient is be-
tween 50 Ω and 150 Ω. P‘“t v“‘tage a””‘ied t“ the heart versus ti’e as we‘‘ 
as other appropriate graphs.

4.  M“de‘ a heart ”ace’a—er, which is si’i‘ar t“ a deibri‘‘at“r. The ”ace’a—er 
alternates between a time, such as 4 s, in which the capacitor is charging and 
a time, such as 2 s, in which it is discharging and sending an electrical im-
pulse to the heart. Suppose the pacemaker has a 12-V battery. 

5.  Deve‘“” a ’“de‘ f“r the circuit in Figure 7.8.7. Assu’e L1 = 0.2 H, L2 =  
1.0 H, R1 = 10 Ω, R2 = 220 Ω, R3 = 330 Ω, C1 = 0.1 µF, C2 = 1.0 µF, E(t) =  
117 V, and Q(0) = Qʹ(0) = 0. Produce appropriate graphs. Discuss the results.

6.  Repeat Project 5 with E(t) = 3 cos(20πt).
7.  Develop a model for a circuit of your choosing.

Answers to Quick Review Questions

1.  0.045 A because the current is I = V/R = 4.5 V/100 Ω = 0.045 A
2.  160 mC because Q = CV = (32 µF)(5000 V)(1 mF/(1000 µF)) = 160 mC
3.  V = L (dI/dt) ≈ L (∆I / ∆t) = (1 H)(10 A)/(1 ms) = 10/0.001 = 10,000 V
4.  a.  E(t) = Q/C
 b.  Eʹ(t) = I/C 

 c.  
Q

C
L
d Q

dt
R
dQ

dt
+ + =

2

2
0

 d.  
I

C
L
d I

dt
R
dI

dt
+ + =

2

2
0

5.  a.  I2 + I3 = I4 
 b.  I4 = I1

6.  E t L
d I

dt
R
dI

dt

I

C
R
dI

dt
'( ) = + + +

1

2

1

2 2

3 3

1

1

4  
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MODULE 7.9

Transmission of Nerve Impulses—Learning from the Action 
Potential Heroes

Prerequisites: M“du‘es 2.2, Unc“nstrained Gr“wth and Decay,  and 2.4, Syste’ 
Dynamics Tool: Tutorial 2.”

Bac—gr“und: M“du‘e 7.8, E‘ectrica‘ Circuits A C“’”‘ete St“ry,  secti“ns 
“Current and Potential”,” “Resistance,” and “Capacitance.”

Introduction

You may be familiar with a group of mollusks called the cephalopods. These ani-
’a‘s inc‘ude “ct“”us, squid, cutt‘eish, and the cha’bered nauti‘us. What sets these 
ani’a‘s a”art fr“’ “ther ’“‘‘us—s is their we‘‘-deined head regi“n. Y“u ‘i—e‘y have 
dined on an appetizer or pasta that included calamari, which means you were eating 
squid. The ce”ha‘“”“ds are an ancient gr“u” (~500 ’i‘‘i“n years “f ev“‘uti“n) f“und 
in marine environments all over the earth. They are not only old, but they are consid-
ered the “smartest” of the invertebrates, because of their well-developed brain and 
nervous system. Their remarkably keen eyes look much like mammalian eyes, al-
though their actual structures are quite different (Wood 2012).

One species of squid, Loligo pealei, common in the coastal waters of the east 
coast of the United States, has been of enormous help to neurophysiologists. Their 
nervous system contains some of the largest neurons, especially axons, in the animal 
w“r‘d u” t“ 10 c’ ‘“ng and 1 ’’ in dia’eter (Na’nezia 2011). On the “ther 
hand, although some are quite long, mammalian axons are only about one-tenth the 
diameter of the squid axon and are more delicate. Two physiologists, Alan Hodgkin 
and Andrew Huxley, using the squid’s giant axon, uncovered much about how nerve 
impulses are transmitted (the action potential); and, as it turns out, the squid’s axon 
functions pretty much like that of mammals. Hodgkin and Huxley were awarded the 
1963 N“be‘ Prize in Physi“‘“gy “r Medicine, and their ’“de‘ sti‘‘ serves as the basis 
of our understanding of neuronal functions (Nelson and Rinzel 2003). We might call 
these two scientists the “Action Potential Heroes.” 
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The squid giant axon has been a rich experimental model for neuronal function 
for decades. Today, scientists are still using the model, but now to study neuronal 
malfunction. For instance, NIH researchers have used the calculations to explore the 
accu’u‘ati“n “f intrace‘‘u‘ar i‘a’ent“us tang‘es that f“r’ fr“’ hy”er”h“s”h“ry-
lated cytoskeletal proteins in the nerve cell body. The squid neuron’s two principle 
compartments (cell body and axon) can be isolated for study and comparison. This 
ability is important, because diseases like Alzheimer’s and amyotrophic lateral scle-
rosis (Lou Gehrig’s disease) are both characterized by such tangles (involving dif-
ferent proteins) in the cell bodies of the human brain or spinal cord neurons. So, we 
still have lots to learn from these remarkable creatures. Next time you have a nice 
serving of calamari, be sure you give thanks to the intrepid physiologists and the 
squid, all of whom contributed so much to our understanding of the mammalian 
nervous system.

The Neuron—Basic Structure and Function

The human nervous system is a highly complex network of cells that are essential for 
receipt and integration of sensory information, communication, and coordination of 
body activities. Neurons, the functional nerve cells (those that conduct signals), are 
excitable cells, capable of conducting an electrical impulse, that can receive and in-
tegrate signals and transmit them to target cells (other neurons or effector cells). 
There are probably thousands of types of neurons, but here we will concentrate on a 
motor neuron. Motor neurons are also called “efferent” neurons, because they carry 
signals away from the central nervous system (brain and spinal cord). Their role is to 
transmit that signal to effector cells (e.g., muscle cells, glands) and “effect” a re-
sponse (e.g., muscle contraction, secretion). A typical motor neuron is diagramed in 
Figure 7.9.1. Each ce‘‘ is c“’”“sed “f a cell body (or soma) and two types of cyto-
plasmic extensions: the axon and the dendrite. There are many dendrites that can 
transmit signals to the cell body along the plasma membrane. The signal passes 
along the membrane of the cell body, which narrows and forms a single axon. The 
axon then transmits the signal from the cell body toward the effector. Terminal but-
tons, produced at the branched ends of the axon, interface with the effector cells by 
way of a junction called the synapse. 

The plasma membrane that encloses the neuron is surrounded by a sea of ions that 
is quite different quantitatively and qualitatively from the ionic solution in its cyto-
plasm. Overall, the cell maintains this difference so that the inside is much more 
negative than outside. Therefore, along the inner surface is an excess of negative 
charges, which are provided primarily by large, organic anions and phosphates that 
cannot pass through the membrane. On the outside, positive ions (primarily sodium 
ions, Na+) accumulate. The difference in concentration yields an electrical (mem-
brane) potential (potential = voltage difference across a membrane). At rest, this 
potential (V) is negative. So, the gradient across the membrane is both chemical and 
electrical. The plasma membrane would be totally impermeable to charged particles, 
except that it is riddled with ion channels. These channels are specialized, permitting 
only certain ions through when they are open. Each ion moves through open channels 
by diffusion until the equilibrium potential (EP) is achieved. The EP for any ion is 
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the membrane potential where there is no net diffusion of the ion across the mem-
brane. EP occurs because the chemical concentration and electrical forces are acting 
equally on that ion. Without these channels, the ions could not diffuse, and the cells 
could not function for signal transmittance. Some of the channels are gated, requiring 
s”eciic sti’u‘i t“ “”en the gates. These sti’u‘i ’ay be ’echanica‘, e‘ectrica‘ (v“‘t-
age), or chemical (ligand), yielding three principle types of gated channels. Others 
are sometimes called leak channels, because they are essentially open all the time.

Resting nerve cells maintain an electrical difference across the membrane, and we 
refer to this electrical potential as the resting potential (RP). The value for this volt-
age varies, but we will assume that it is –65 millivolts (mV). RP is maintained pri-
marily by regulating the sodium ion (Na+) and the potassium ion (K+) concentrations 
on either side of the membrane, with more Na+ ions outside the cell and more K+ ions 
inside the cell. There is some contribution to the RP from the diffusion of ions 
through leak channels, much more K+ out than Na+ in. Also, note that although there 
are negative ions (e.g., chloride ions, Cl–) outside the cell, there are far more nega-
tive charges inside the cell. What largely reduces the positive charges inside the cell, 
however, is the exchange of three Na+ ions for two K+ ions that the Na+-K+-ATPase 
pump in the ”‘as’a ’e’brane c“nstant‘y ”erf“r’s. B“th i“ns are ’“ved against 
their concentration gradients by this pump, so much ATP energy produced in the cell 
is used t“ ’aintain this essentia‘ i’ba‘ance (Guyt“n and Ha‘‘ 2011; Byrne 2012).

Initiating an Action Potential

Nerve cells transmit signals via a very rapid change in the membrane potential along 
the plasma membrane, called the action potential (AP; Figure 7.9.2). When resting, 
the neuron is polarized, but when ions are able to diffuse across the membrane, 
changes will occur in the membrane potential. For instance, if gated channels for Na+ 

are opened, Na+ i“ns l““d int“ the nerve ce‘‘, te’”“rari‘y ’a—ing the inside ’“re 
positive. We then say that the cell is depolarized. What would make these gates 
open? The Na+ channels in the axon are voltage-gated. Therefore, something that 

Figure 7.9.1 Diagra’ “f ty”ica‘ ’“t“r neur“n (NIH 2007)
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causes depolarization of the axon membrane, if great enough, could change the volt-
age enough to cause these gates to open. 

An AP follows the arrival of a signal at a dendrite or soma of the neuron. These 
signals, for the most part, are chemical (although there are mechanically and ther-
mally gated channels, also). On the surface of the dendrite are ligand-gated chan-
nels that bind s”eciica‘‘y t“ a che’ica‘ signa‘ (ligand). Some chemical signals are 
excitatory, causing a localized depolarization; and some signals are inhibitory, 
causing a hyperpolarization (making the membrane potential even more negative). 
How might this happen? 

Signals are released from terminal buttons from other neurons that synapse with 
the dendrites/soma of the motor neuron. There will be hundreds or thousands of 
these synapses, both excitatory and inhibitory. Let’s assume that our motor neuron is 
receiving excitatory chemical signals, and these signals are binding to ligand-gated 
channels, which open and allow Na+s int“ the ce‘‘ b“dy. This inlux changes the 
membrane potential locally (depolarizes), but the depolarization along the mem-
brane decreases as the depolarization moves away from the site of stimulation. The 
potential spreads passively, because there are fewer or no voltage-gated Na+ chan-
nels or the voltage threshold is higher than in the axon. So, the size of the stimulus is 
proportional to the number of gated channels opened. This proportionality results in 
a graded potential that can be summated spatially (lots of small stimuli from differ-
ent sites) or temporally (high frequency of stimulus) near the junction of the cell 
body and the axon. If this summation results in depolarization exceeding the thresh-
olds for the voltage-gated channels in this area, an action potential commences. 

Inhibit“ry neur“trans’itters “”en different channe‘s C‘– or K+. Either the Cl–s 
enter, making the potential more negative, or the K+s exit the cell, with a similar ef-
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fect. In either case, the membrane becomes hyperpolarized, making it less likely that 
another AP will begin. In the end, whether or not an AP occurs depends on the ratio 
of excitatory and inhibitory stimuli.

If the ’e’brane in the initiating area is de”“‘arized suficient‘y (t“ ab“ut 55 ’V 
in our example), an AP will be initiated. The initiation event opens voltage-gated 
channels in this area, and sodium ions diffuse through the channels into the cyto-
plasm of the axon. This depolarizes the membrane, which in turn opens other volt-
age-gated Na+ channels in the adjacent area. The open channels are now activated. 
This process is perpetuated down the entire axon in an all-or-none response. Al-
though the sodium ions spread out in all directions, the AP is directional and gener-
ally proceeds from the initiating zone to the terminal buttons of the axon. The reason 
for this will be explained shortly.

While the sodium channels are activated to their maximum levels, the voltage-
gated potassium channels remain closed. Maximum depolarization occurs with this 
inlux “f ”“sitive i“ns, and the ’e’brane de”“‘arizes t“ ab“ut +50 ’V in “ur ex-
ample. Then, after about a millisecond, the sodium gates close and become inactive. 
About this time, voltage-gated potassium channels open, and potassium ions diffuse 
out of the cell, helping to make the internal potential to become more negative. This 
process is called repolarization, and the membrane may actually become hyperpo-
‘arized with this eflux. At this ti’e, the ”“tassiu’ channe‘s begin t“ c‘“se, and the 
Na+-K+-ATPase pump exchanges enough sodium and potassium ions to restore the 
membrane potential to its normal resting state. With the reestablishment of the RP, 
the sodium channels return to their resting (closed) state and are receptive to depo-
larization signals. 

During an action potential, when all the sodium gates are open, an ensuing stimu-
lus, no matter how strong, cannot initiate another AP. This absolute refractory pe-
riod he‘”s t“ ensure the unidirecti“na‘ity “f the i’”u‘se. Because it cann“t res”“nd 
t“ de”“‘arizati“n “f gated channe‘s in fr“nt “f it, the i’”u‘se d“es n“t l“w bac— u” 
the axon but moves quickly toward the terminal end of the axon. During the time that 
the sodium channels become inactivated and the potassium channels are beginning 
to close, the membrane enters a relative refractory period. An action potential can 
be initiated, if a suficient‘y str“ng sti’u‘us is a””‘ied. A ‘arger sti’u‘us is needed t“ 
c“unteract the hy”er”“‘arizati“n f“‘‘“wing the eflux “f K+. As the repolarization 
succeeds, the stimulus needed to initiate an AP decreases. In this way, the neuron 
can vary the rate of impulse conduction in response to different strengths of stimuli 
(Guyt“n and Ha‘‘ 2011; Byrne 2012).

Hodgkin and Huxley Model

Before continuing, please read the sections on “Current and Potential,” “Resistance,” 

and Ca”acitance  fr“’ M“du‘e 7.8, E‘ectrica‘ Circuits A C“’”‘ete St“ry.  

In 1952, A‘an L‘“yd H“dg—in and Andrew Hux‘ey ”ub‘ished the f“‘‘“wing ’“de‘ “f 
the propagation of action potentials in a squid giant axon:

dV dt I g n V V g m h/ ( ( )= − − −
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current

K K
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4 3 (( ) ( )) /V V g V V C

L L M
− − −

Na

Na current leakage current

� ��� ��� � �� ��



286 Module 7.9

where dV/dt is the rate of change of the action potential, V; I is a current applied to a 
patch of the axon; gKn4(V – VK) = IK is the potassium current; gNam

3h(V – VNa) = INa is 
the sodium current; gL(V – VL) = IL is the leakage current; and CM is the capacitance. 
Tab‘e 7.9.1 gives the ’eanings “f each sy’b“‘ a‘“ng with va‘ues f“r Pr“–ects 2 and 
3. H“dg—in and Hux‘ey (1952) used e’”irica‘ ’“de‘ing, which we c“ver ‘ater in the 
text, to determine functions gKn4 and gNam

3h, f“r the c“eficients “f (V – VK) and 
(V – VNa), respectively, that captured the trends of their experimental data. Using the 
va‘ues in Tab‘e 7.9.1, which are based “n Er’entr“ut (1998), the gra”h f“r the ’e’-
brane ”“tentia‘ is in Figure 7.9.2, and the c“rres”“nding gra”hs f“r n, m, and h ap-
”ear in Figure 7.9.3.

Projects

1. Suppose that a membrane is permeable to just one ion so that the membrane 
potential (V) is equal to the equilibrium potential (Eion) for that ion. The 
Nernst equation provides a model for the ion’s equilibrium potential:

E
RT

zF
ion

ion

ion
=

[ ]
[ ]









ln
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i

,

 where Eion is the equilibrium potential for the ion, R is the gas constant, T is 
the temperature in kelvin, z is the valence of the ion, and F is the number of 
faradays. At 25 °C, RT/F is 25; while at 6 °C, RT/F is 24 (M““re 2007). P‘“t 
initial membrane potential (Eion) versus [ion]o for each of the following ions 
at 25 °C and describe the results:

 a.  Potassium (K+), where z = 1, [K]o = 5 mM, [K]i = 124 mM
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Table 7.9.1 
H“dg—in-Hux‘ey M“de‘ Sy’b“‘s with Va‘ues f“r Pr“–ect 2 (Er’entr“ut 1998)

Symbol Meaning (units) Formula/Value

CM capacitance (µF/cm2) 0.1 µF/cm2

I applied current (nA) 15 nA
IK potassium channel current (nA) gKn4(V – VK)
IL leakage current (nA) gL(V – VL)
INa sodium channel current (nA) gNam

3h(V – VNa)
V action potential (mV) Initially –65 mV
VK displacement from the equilibrium potential 

for K+ (mV)
77 ’V

[K+]i potassium ion concentration inside (mM/L) 150 mM/L
[K]o potassium ion concentration outside (mM/L) 5.5 mM/L
VNa displacement from the equilibrium potential 

for Na+ (mV)
50 mV

[Na+]i sodium ion concentration inside (mM/L) 15 mM/L
[Na+]o sodium ion concentration outside (mM/L) 150 mM/L
VL displacement from the equilibrium potential 

for leakage (mV)
–54.4 mV

gK maximum K conductance (mS/cm2) 36 mS/cm2

gNa maximum Na conductance (mS/cm2) 120 mS/cm2

gL maximum leakage conductance (mS/cm2) 0.3 mS/cm2

n potassium activation gating variable; 
probability of K gate being open

initia‘‘y 0.317

dn/dt rate of change of n (ms-1) αn(1 – n) – nn

m sodium activation gating variable; 
probability of Na gate being open

initially 0.05

dm/dt rate of change of m (ms-1) αm(1 – m) – mm

h sodium inactivation gating variable; 
probability of Na gate being inactivated

initially 0.6

dh/dt rate of change of h (ms-1) αh(1 – h) – hh

αn opening rate constant (ms-1) ϕ 0 01 10
10

10
1. ( ) / expV

V
+

+





−













αm opening rate constant (ms-1) ϕφ 0 01 25
25

10
1. ( ) / expV

V
+

+





−













α h opening rate constant (ms-1) ϕ(0.07 ex”(V/20))

n closing rate constant (ms-1) ϕ(0.125 exp(V/80))

m closing rate constant (ms-1) ϕ(4 exp(V/18))

h closing rate constant (ms-1) ϕφ 1
30

10
1/ exp

V +





+













T temperature (°C) 6.3 °C
ϕ factor for temperature correction 3(T–6.3)/10, 1 in projects

 b.  Sodium (Na+), where z = 1, [Na]o = 140 mM, [Na]i = 14 mM
 c.  Calcium (Ca++), where z = 2, [Ca]o = 2 mM, [Ca]i = 2.4 × 10-4 mM
2. Develop a system dynamics model for the Hodgkin-Huxley model, plotting 

the action potential versus time for at least 3 ms. Use the Runga-Kutta 4 inte-
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gration technique if available and a small t, such as 0.001 ms. Starting at time 
0.5 ms, apply a stimulus current of 15 mV for 0.5 ms. 

In the model, have stocks (box variables) for V, [Na+]i, [Na+]o, [K
+]i, [K

+]o, 
n, m, and h. The ”“tassiu’ channe‘ current l“ws fr“’ inside the ce‘‘ (st“c— 
for [K+]i) to the outside (stock for [K+]o). Assume that only the potassium 
i“ns ‘ea— int“ the ce‘‘. Because initia‘‘y V is –65 mV and VK is –54.4 mV, 
IL < 0, so we must multiply its formula by a unary minus to obtain the leak-
age l“w fr“’ [K+]o to [K+]i. Similarly, INa is negative, s“ f“r the l“w fr“’ 
the stock for [Na+]o to the one for [Na+]i, we multiply the formula by a unary 
minus. We can model the Na+-K+-ATPase ”u’” with tw“ l“ws, “ne that 
transports a constant, c, times 3 Na+ ions to the exterior (from the stock for 
[Na+]i to the stock for [Na+]o) and another that moves c * 2 K+ ions inside, for 
a net change of c positive ions to the outside. This pump counteracts the ef-
fect of the leakage current, so that at rest the membrane potential is –65 mV. 
Thus, to maintain the resting potential until application of the stimulus cur-
rent, c should be the initial value of IL for the net change of charges to be 
zero. Note that the pump should operate only if the sodium concentration on 
the inside and the potassium concentration on the outside are both positive. 
The l“w int“ V adds l“ws g“ing int“ the neur“n (s“diu’ channe‘, ”“tassiu’ 
leaked and pumped, stimulus), subtracts those going to the outside (potas-
sium channel, sodium pumped), and divides the result by the membrane 
capacitance. 

A‘th“ugh the ”receding l“ws are unidirecti“na‘, the “nes int“ n, m, and h 
are bidirecti“na‘, because, as Figure 7.9.3 sh“ws, the gra”hs “f n, m, and h 
increase and decrease.

Start the voltage-sensitive sodium channel current (gates are opening) 
when the membrane potential becomes greater than or equal to VNa = –55 mV. 
When the membrane potential grows to be greater than or equal to VNa =  
50 ’V, st“” this l“w and start the ”“tassiu’ channe‘ current. End this ”“tas-
sium channel current during hyperpolorization, immediately after the mem-
brane potential achieves its minimum and starts increasing. 

3. Reine Pr“–ect 2 t“ acc“unt f“r the fact that ”“tassiu’ gates “”en and c‘“se 
much slower than those for sodium.
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Feeding the Problem—Antibiotic Resistance

Prerequisite: M“du‘e 4.3, M“de‘ing the S”read “f SARS C“ntaining E’erging 
Disease.”

Introduction

Ce”ha‘“s”“rins, a c‘ass “f antibi“tics irst is“‘ated in 1948, have been used c‘inica‘‘y 
since 1964. Drug c“’”anies have derived newer versi“ns “f these anti’icr“bia‘s, 
used to treat various human respiratory infections, including pneumonia, certain skin 
and urinary tract infecti“ns, and unc“’”‘icated g“n“rrhea (FDA 2009; Le’—e 
2008). Unfortunately, bacteria have developed various ways to elude these drugs, so 
that ”hysicians ’ust try t“ ind new drugs, which ’ay have “ther, undesirab‘e side 
effects. In January 2012, the U.S. Food and Drug Administration (FDA) banned 
certain cephalosporins, which doctors may use to treat bacterial infections in hu-
mans, for farm animals (FDA 2012; Gilbert 2012). So, why has the FDA taken this 
step?

Antibi“tics have been very effective in ighting infecti“ns in “ther ani’a‘s, as 
well as in human beings. Not only employed to treat diseases in farm animals, the 
drugs have also been used for years to prevent disease or to promote growth. The use 
“f antibi“tic gr“wth ”r“’“ters (AGPs) antibi“tics added t“ ani’a‘ f““d and water 
t“ ”r“’“te gr“wth has n“w c“’e under seri“us scrutiny. Arguab‘y, these AGPs 
have been at least partially responsible for the incredible increases in world livestock 
”r“ducti“n “ver the ”ast 40 years. Between 1960 and 2010, the F““d and Agricu‘ture 
Organization of the United Nations estimates that pig production doubled and 
chicken production almost quadrupled (FAOSTAT 2010). Although there may be 
some debate about how AGPs promote growth, there is no doubt that they work, 
which farmers like (Ministry 2011; Turndige 2004). 

The FDA and “thers in ”ub‘ic hea‘th began t“ w“rry in the 1970s ab“ut the ”“s-
sibi‘ity that the gut ’icr“bia‘ l“ra “f ‘ivest“c— ’ight c“nta’inate hu’an c“nsu’-
ers’ food supply and that because of the animals’ previous exposure to antibiotics, 
this transfer might include antimicrobial-resistant strains. At that time, the FDA tried 
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to ban the use of some antimicrobials in animal feed and water, but under pressure 
from agricultural interests, Congress passed resolutions against such a ban, and the 
FDA backed off. Since then, much research has examined the possibility of transfer 
of resistant microbes to human beings through consumption or handling (Harris 
2012).

According to researchers, zoonotic, food-borne pathogens carrying resistance 
genes have already been found for several bacterial genera, including Salmonella, 
toxic strains of E. coli, Campylobacter, and Listeria (White et al. 2002). Even some 
nonpathogenic (commensal) gut bacteria can carry resistance genes into the human 
intestines (Tollefson and Karp 2004). If pathogens with such genes become estab-
lished, they may then resist treatment by antibiotics. Whether pathogenic or com-
mensal, the resistant bacteria may transfer their resistance genes to human microbes 
via ’“bi‘e DNA e‘e’ents, such as ”‘as’ids, trans”“s“ns (Fran—e‘ 1994). A‘th“ugh 
there is some debate about how frequently this might cause serious infections in 
hu’an beings, ’“st ”ub‘ic hea‘th “ficia‘s are unwi‘‘ing t“ ris— it. Certain‘y, there is 
increased dissemination of antimicrobial resistance, and that is “bad news” for treat-
ing human and animal diseases. Infections caused by MDR strains of bacteria are 
more complicated (and often more expensive) to treat, cause longer-lasting illnesses 
with extended hospital stays, and more often lead to mortality (Tollefson and Karp).

So, these concerns may explain why the FDA has recently banned the use of an-
tibiotics like cephalosporins from animal feed and water. Furthermore, as consumers 
have become more aware of the dangers of antibiotic resistance, pressure is placed 
on the food industry to reduce/eliminate the use of antibiotics in food animals. Mc-
Donald’s Corporation, a major purchaser of chicken, beef, and pork, has made a 
policy to phase out the use of growth-promoting antibiotics. In fact, the company 
prohibits its suppliers from employing such antibiotics, if health professionals use 
the drugs to treat human disease (McDonald’s Corporation 2003).

Projects

1. Develop a system dynamics model of the impact of animal antibiotic use on 
antibiotic resistance in human commensal bacteria. Assume that the popula-
tion is constant with no births or deaths.

A susceptible human can become exposed to or infected with antibiotic 
resistant (AR) bacteria at a fairly low level. In some of these individuals, the 
bacteria colonize at a rate , but the number of AR bacteria is still small. 
However, because of medical antibiotic use (MAU), at a prescription rate of 
ρ, an ex”“sed “r a c“‘“nized ”ers“n can bec“’e an a’”‘iied individua‘, car-
rying high ‘“ads “f the bacteria and being very c“ntagi“us. A’”‘iied indi-
viduals can get better, becoming a colonized person, at a recolonization rate 
of φ. A susce”tib‘e hu’an can bec“’e infected by ex”“sure t“ an a’”‘iied 
person or, to a lesser degree, to a colonized person with contact rates  and , 
respectively. Moreover, infection can occur through contaminated animal 
food products caused by agricultural antibiotic use (AAU) or from such bac-
teria that are otherwise in the environment, the background. In the latter two 
cases, the rates of change are proportional to the number of susceptibles with 
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proportionality constants λ and µ, respectively. We assume that AR bacteria 
in ex”“sed, c“‘“nized, and a’”‘iied individua‘s are ‘“st at rates α, , and , 
res”ective‘y. Tab‘e 7.10.1 su’’arizes the ”ara’eters.

 a.  Assume that transient bacteria populations in exposed humans last on the 
average 10 days, while colonized populations last about a year and ampli-
ied ”“”u‘ati“ns ‘ast ab“ut 100 days. Using these assu’”ti“ns, ca‘cu‘ate 
α, , and  using units of “per day.” Humans who become well from any 
of these categories are again susceptible. Write a differential equation for 
the rate of change of people becoming susceptible.

 b.  Suppose each day 0.1% of the susceptibles become exposed through con-
taminated animal food products and 0.0001% become exposed through 
other nonhuman-to-human (background) sources. Determine λ and µ. 
Suppose per day that 50% of the contacts are between susceptibles and 
a’”‘iied individua‘s resu‘t in the susce”tib‘e ”ers“n bec“’ing ex”“sed, 
but 0.001% of the possible contacts between susceptibles and colonized 
cause exposure. Determine  and . Write a differential equation for the 
rate of change of people becoming exposed.

 c.  Suppose each day 0.1% of the exposed humans have colonization occur 
and 0.3% “f the a’”‘iied individua‘s change t“ being c“‘“nized. Deter-
mine  and φ. Write a differential equation for the rate of change of people 
becoming colonized.

 d.  Suppose each day 0.3% of the exposed and 0.3% of the colonized humans 
bec“’e a’”‘iied because “f ’edica‘ antibi“tic use. Deter’ine ρ. Write a 
differentia‘ equati“n f“r the rate “f change “f ”e“”‘e bec“’ing a’”‘iied.

 e.  C“’”‘ete the ’“de‘ and run the si’u‘ati“n f“r 9 years. P‘“t the ”reva-
‘ence “f AR bacteria, “r the nu’ber “f ex”“sed, c“‘“nized, and a’”‘iied 
individuals, versus time.

 f.  Run the simulation several times with a sequence of increasing medical 
antibiotic use prescription rates, ρ. Describe and discuss the results.

 g.  Run the simulation several times with a sequence of decreasing contami-
nated animal food products caused by agricultural antibiotic use, λ. De-
scribe and discuss the results.

 h.  Using your model, support or refute the following statements and conclu-

Table 7.10.1 
Parameter Symbols and Meanings for Project 1 (Smith et al. 2002)

Symbol Meaning

Colonization rate
ρ Medical antibiotic use prescription rate
φ Recolonization rate

C“ntact rate between susce”tib‘e and a’”‘iied
Contact rate between susceptible and colonized

λ Exposure rate to contaminated animal food products
µ Bac—gr“und ex”“sure rate
α Transient loss rate

Colonization loss rate
A’”‘iied ‘“ss rate
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sions by Smith et al. (2002): “After AR is common in humans, infection 
control and prudent MAU are more likely to reduce the prevalence of AR 
in hospitals than eliminating AAU.” “Restricting AAU is most effective 
when AR bacteria remain rare.” “We conclude that agricultural use of 
antibiotics in new resistance classes should be delayed until the period of 
maximum medical utility has passed.”

2.  Develop a system dynamics model of the spread of antibiotic resistant bacte-
ria in a hospital. Such bacteria might reside in respiratory passages, on the 
skin, or in digestive tracts. We suppose that two drugs, drug 1 and drug 2, are 
available to treat an infection by these bacteria; a strain of the bacteria exists 
that is resistant to drug 1; but no resistance to drug 2 exists. Another model 
assumption we make is that admitted patients do not have the drug resistant 
strain of the bacteria. Also, assume that the rate of patients entering and leav-
ing the hospital each day is the same, so that the total population of the hos-
”ita‘ is c“nstant. Because “f the wide use “f antibi“tics in h“s”ita‘s, we as-
sume that patients receive drug 1 or drug 2 at rates independent of whether 
they are infected with the bacteria under consideration or not.

For the model consider three interrelated systems: patients who are un-
colonized by bacteria under consideration (X), patients who are colonized by 
a strain of the bacteria that are sensitive to treatment by drugs 1 and 2 (S), and 
patients who are colonized with a strain of the bacteria resistant to drug 1 but 
sensitive to drug 2 (R). The transmission rate from X to S is  per day, so that 
each day a fraction, , of the possible interactions between patients in cate-
gory X and those in category S results in patients moving from X to S. A frac-
tion, c, of the X population is not susceptible to the antibiotic resistant strain. 
Thus, the transmission rate from X to R is (1 – c) per day, and each day a 
fraction, , of the possible interactions between those in category R and a 
fraction, (1 – c), of the patients in category X results in patients moving from 
X to R. Assume that patients cannot change directly from category S to cate-
gory R, or vice versa (Lipsitch et al. 2000).

Tab‘e 7.10.2 ‘ists sy’b“‘s and ’eanings f“r ”r“–ect ”ara’eters. Re-
searches have determined several ranges for various parameters. The propor-
tion, m, of entering patients in category S is between 20% and 100%; the re-
mainder of admissions falls into category X. The average duration of a 

Table 7.10.2 
Parameter Symbols and Meanings for Project 2 (Lipsitch et al. 2000)

Symbol Meaning

m Proportion of entering patients in category S
µ Rate (per day) of patients entering and leaving the hospital

Rate (per day) at which patients spontaneously (without drug 
treatment) become clear of bacterial colonization

1 Rate (per day) at which patients are treated with drug 1

2 Rate (per day) at which patients are treated with drug 2 
Base trans’issi“n rate (”er day) fr“’ S to X

c Fitness “cost” of resistance to drug 1; proportional reduction 
in transmission rate from X to R



294 Module 7.10

h“s”ita‘ stay is 7 t“ 20 days, whi‘e the average ti’e fr“’ h“s”ita‘ ad’issi“n 
to colonization is 6 to 50 days. The mean time from hospital admission or 
colonization by the bacteria until a spontaneous clearance without drug treat-
ment is 30 to 60 days (Lipsitch et al. 2000).

F“r Parts a f, ”‘“t the frequencies “f X, S, and R versus ti’e f“r 60 days. 
F“r Parts a g e’”‘“y the f“‘‘“wing ”ara’eters exce”t as n“ted:  = 1.0/day, 
c = 0.05, µ = 1/(10 days),  = 1/(30 days), m = 0.75, τ1 = 1/(5 days), and 
τ2 = 1/(10 days).

 a.  Produce plots of X, S, and R versus time for within-hospital transmission 
rates, , varying from 0 to 0.5 per day. Discuss the impact on the preva-
‘ence “f sensitive and “f resistant bacteria. Based “n y“ur indings, sh“u‘d 
transmission reduction interventions, such as better hand washing and 
quarantines, have a greater effect on sensitive or resistant carriage?

 b.  Produce plots for levels of treatment with drug 1, 1, varying from 0 to 0.5 
”er day. Based “n y“ur resu‘ts, discuss the i’”act “f increased ‘eve‘s “f 
drug 1 treatment on the prevalence of bacteria resistant to and sensitive to 
the drug.

 c.  Repeat Part b for levels of treatment with drug 2, 2, varying from 0 to 0.5 
per day.

 d.  Produce plots of X, S, and R versus time for 1 = 0.05, 0.2, and 0.4 per day 
with  = 0.05, 0.2, and 0.4 per day. Thus, you will generate nine plots. For 
which combinations of parameter values does the resistant bacteria persist 
in the hospital? Discuss the implications including the related 
intervention.

 e.  Repeat Part d for 2 = 0.05, 0.2, and 0.4 per day with  = 0.05, 0.2, and 0.4 
per day.

 f.  Repeat Part d for µ = 0.05, 0.15, and 0.2 per day with  = 0.05, 0.2, and 
0.4 per day.

 g.  Deine the prevalence of carriage of bacteria resistant to drug 1 as 
ρ = R/S (Lipsitch et al. 2000). Describe how the change of ρ is a way to 
measure the effectiveness of an intervention. Add the calculation of ρ to 
your model; and with c = 0 and 2 = 0, generate a plot of ρ versus time for 
60 days. Show separately the effect on ρ of reducing  by 50%; reducing 

1 by 50%; reducing 1 by 100%; replacing 50% of use of drug 1 by use of 
drug 2; and replacing 100% of use of drug 1 by use of drug 2. Discuss the 
results and the most effective approach.

 h.  Consider the case where resistant and sensitive bacteria are equally trans-
missible (c = 0) and all patients enter the hospital uncolonized. Determine 
the formula for the basic reproductive number R0. Calculate R0 for three 
situations, or sets of parameters, and discuss the results.

3.  Reine the ’“de‘ f“r Pr“–ect 2 t“ trac— ”atients by their hist“ries “f treat’ent 
by drug 2. Thus, each compartment from Project 2 (S, X, and R) is separated 
into two compartments, those who have not been treated with drug 2 (SU, XU, 
and RU) and those who have (ST, XT, and RT). Once treated by drug 2, an ap-
propriate proportion of untreated individuals move to XT (Lipsitch et al. 
2000).

 a–h.  Repeat the corresponding part from Project 2.
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 i.  Deine the prevalence odds ratio as the probability of an individual 
treated with drug 2 carrying resistant bacteria over the probability of an 
individual who has not been so treated carrying the resistant bacteria (Lip-
sitch et al. 2000):

OR
R

S R

R

S R

T

T T

U

U U
=

+ +

If the ratio is greater than 1, is a treated individual more or less likely to 
carry bacteria resistant to drug 1 than a person who has not been so 
treated? Add the calculation of OR to your model. If the use of drug 2 in-
creases with a corresponding reduction in use of drug 1, what happens to 
the prevalence of resistance to drug 1 in the hospital and to an individual’s 
odds of carrying the resistant bacteria? Discuss your results.
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MODULE 7.11

Fueling Our Cells—Carbohydrate Metabolism

Prerequisite: M“du‘e 4.5, Enzy’e Kinetics A M“de‘ “f C“ntr“‘.

Glycolysis

Carbohydrates are organic molecules composed of the elements carbon (C), hydro-
gen (H), and oxygen (O). Many organic molecules include these elements, but what 
sets carb“hydrates a”art is the genera‘ rati“ “f these e‘e’ents usua‘‘y 1:2:1 
(C:H:O). Carbohydrates serve as primary sources of energy for most living organ-
isms. In fact, certain cells of many tissues, including the brain, prefer to use carbohy-
drates to any other energy source. 

An animal may consume carbohydrates as simple molecules (sugars) or as long 
chains of sugars, such as starch. Once consumed, animals, using enzymes of the di-
gestive tract, brea— d“wn the ‘arger carb“hydrates t“ ”r“duce even ’“re sugars. By 
the time these sugars (monosaccharides, mostly glucose) reach the small intestine, 
they are small enough to be absorbed into the blood stream and distributed to the 
liver and other organs of the body, where they are taken up by the cells. Depending 
on the cell type and the metabolic state of the animal’s body, these monosaccharides 
may be converted into other organic constituents of the cell (e.g., fatty acids, amino 
acids, animal starch (glycogen)), or they may be broken down to produce energy.

Energy from carbohydrates and other organic food sources is obtained through 
gradual chemical degradation, or oxidation. Let s deine “xidati“n as the re’“va‘ “f 
electrons or hydrogens from a molecule. In a cell, enzymes, called dehydrogenases, 
catalyze oxidation reactions; and the molecules within a pathway that provide the 
electrons or hydrogens we call the substrates. 

Most cellular monosaccharides are glucose, which has 6 carbons, 12 hydrogens, 
and 6 oxygens. The more highly reduced (with lots of hydrogens) a molecule is, the 
better source of energy it is for the cell; and we consider glucose to be highly re-
duced. So in this section, we are examining the cell’s sequential oxidation of glucose 
for energy. The complete oxidation of glucose yields carbon dioxide, water, and en-
ergy (ATP). 
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If we oxidize glucose by combustion, the reaction yields 686 kcal/mol, all re-
leased as heat. Combustion in the cell is not very practical, so the cell oxidizes glu-
cose step by step, ensuring that the cell does not burn up and that some of the energy 
is in a form of energy the cell can use. We term the energy made available for cel-
lular work free energy, and the ce‘‘ is ab‘e t“ garner 275 —ca‘/’“‘ “f free energy 
from the 686 kcal available in one glucose molecule.

Glucose oxidation begins in the cytoplasm of the cell, and the initial sequence of 
chemical reactions is collectively referred to as glycolysis. The irst few reacti“ns “f 
glycolysis essentially “prime” the molecule and require a total of 2 molecules of 
ATP (adenosine triphosphate). ATP is referred to as the “universal coupling agent,” 
because its synthesis from ADP + Pi (inorganic phosphate) “captures” some of the 
free energy from oxidation (ADP + Pi + energy → ATP). This captured energy, re-
leased through hydrolysis of ATP (ATP → ADP + Pi + energy), can then be used to 
power other cellular reactions.

At the end of the priming steps, the enzymes have converted glucose to another 
6-carbon molecule, called fructose 1,6-bisphosphate (F1,6BP). F1,6BP is then ”r“-
cessed through the oxidizing steps of glycolysis to yield 2 pyruvates, 4 ATPs, and 2 
reduced coenzyme NADHs (from NAD+ + H). Pyruvates are 3-carbon products of 
glycolysis, resulting from the splitting and oxidation of glucose. Note that the cell 
has only netted 2 ATPs from glycolysis. Although 4 were synthesized, 2 were con-
sumed in priming glucose for oxidation. 

You probably remember from basic chemistry that when something is oxidized, 
something else is reduced. Coenzymes are organic cofactors that associate with en-
zymes and help them catalyze. One of the most common coenzymes, often associ-
ated with dehydrogenases, is NAD+ (nicotinamide adenine dinucleotide). The en-
zyme removes two hydrogens (H = 1 electron and 1 proton) from the glycolytic 
substrate but adds 2 electrons and 1 proton from oxidation to NAD+, converting 
NAD+ to NADH (reduced coenzyme). These reduced coenzymes are particularly 
important for aerobic cells, because electron transport systems can reoxidize them to 
yield more ATP. 

Recycling NAD+s

With Pr“–ect 1, we can ind that increasing the nu’bers “f NAD+s available in-
creases the ATP yield. For most cells, suddenly increasing the normal pool of cyto-
plasmic NAD+s is n“t rea‘‘y feasib‘e, s“ they e’”‘“y an“ther s“‘uti“n they recy-
cle. The NADHs shed their electrons (hydrogens). The resulting NAD+s are reused 
to sustain glycolysis, allowing ATP production to continue. The recycling of coen-
zymes demands electron acceptors, which vary from organism to organism. Under 
anaerobic conditions, cells like your over-exercised muscle cells enzymatically re-
move the electrons (hydrogens) from the reduced coenzymes and return them to 
pyruvate, converting pyruvate to lactate. The enzyme, called lactate dehydroge-
nase, that catalyzes this reaction at the same time reoxidizes NADH to NAD+. This 
process is referred to as lactate fermentation and is common to many types of 
cells. 
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Aerobic Respiration

It might have occurred to you that 2 net ATPs is not a tremendous amount of ATP 
produced from glucose. At the end of this pathway, without fermentation, we have 2 
three-carbon molecules (pyruvates) and 2 molecules of NADH. In fact, the oxidation 
“f g‘uc“se is quite uninished, and ’any ce‘‘s ”“ssess ’“re e‘ab“rate ”athways t“ 
complete the job. Aerobic cells, when supplied with adequate quantities of oxygen, 
transform pyruvate into CO2 and H2O. In doing so, they also generate a considerable 
amount of ATP. In a typical aerobic cell, pyruvate is transported into membrane-
bound compartments, called mitochondria. These organelles contain sets of en-
zymes organized into a pathway often referred to as the Krebs’ Cycle. In this path-
way, the remaining electrons are removed from pyruvate and placed onto oxidized 
coenzymes. Very little ATP is produced directly in the Krebs’ cycle. Therefore, the 
cell needs a way of getting the prospective energy found in all these reduced coen-
zymes, even those from the cytoplasm. 

Within the inner membrane of the mitochondrion are sets of electron carriers, ar-
ranged into precisely structured complexes. These complexes represent electron 
transport systems, which remove and pass along the electrons and protons from all 
these reduced coenzymes. During the passage of the electrons, protons are actually 
pumped into the space outside the inner membrane, which is not very permeable to 
protons. This process establishes an electrochemical gradient that represents a potent 
force. There are other protein complexes in the membrane that form channels in that 
membrane for protons. Attached to these channels are ATP synthase particles. 
When protons pass through the channels, they interact with these particles in such a 
way that they generate enough conformational changes to promote ATP synthesis. 
Thus, the proton gradient set up by the electron transport system has essentially 
powered the transfer of energy from glucose into a high-energy bond of ATP. The 
electrons are eventually passed on to oxygen, which serves as the terminal electron 
acceptor for aerobic cells. 

ATP synthesis in the cytoplasm and in the Krebs’ cycle occurs by what is called 
substrate-level phosphorylation. In this type of phosphorylation, the P (phosphate) 
used to make ATP has come from an organic compound that has a higher energy 
level than does ATP. From one molecule of glucose, an aerobic cell produces 2 net 
molecules of ATP during glycolysis and 2 net molecules during the Krebs’ Cycle.

Oxidative phosphorylation involves the production of ATP using the proton 
gradient established by the electron transport system. Pairs of electrons from NADH 
he‘” t“ estab‘ish suficient e‘ectr“che’ica‘ gradient t“ ”“wer the synthesis “f 3 
ATPs. Because the e‘ectr“ns fr“’ the “ther ’a–“r c“enzy’e (FADH2) enter the 
electron transport system at a lower level, they establish enough gradient to power 
the synthesis of only 2 ATPs.

Projects

1. Design a simple model of glycolysis that includes the following components: 
glucose, NADH, ATP, pyruvate.
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 a.  Use the following values for your model, and test to see how many ATPs, 
NADH’s, and pyruvates the model produces.

Materials Number of Molecules

glucose 2000
NAD+ 500
ADP 1000

 b.  What is the maximum number of ATPs obtained with these starting val-
ues in your model? What is the maximum number of pyruvates?

 c.  How many ATPs and pyruvates should glycolysis be able to produce from 
2000 molecules of glucose? Why does your model yield less? Suggest 
ways to increase ATP production here.

2.  Extend the model you developed in Project 1 to include recycling NAD+s.
3. Extend the model you developed in Project 1 to include aerobic respiration, 

which uses oxygen.
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MODULE 7.12

Mercury Pollution—Getting on Our Nerves

Prerequisites: M“du‘e 2.2, Unc“nstrained Gr“wth and Decay  f“r Pr“–ect 1a and 
b; M“du‘e 2.4, Syste’ Dyna’ics T““‘: Tut“ria‘ 2  f“r Pr“–ect 1c; M“du‘es 2.5, 

Drug D“sage,  and 4.2, Predat“r-Prey M“de‘,  f“r Pr“–ects 2 4.

Introduction

Many people think of rock bands when they hear the term heavy ’eta‘. However, the 
“real” heavy metals are highly toxic elements, which generally lack any known bio-
logical function. Mercury (Hg) is one of these elements. Mercury’s distinctive 
chemical and physical characteristics have been put to use in numerous commercial, 
industria‘, and ’edica‘ a””‘icati“ns ther’“’eters, bar“’eters, batteries, antise”-
tics, ”esticides, denta‘ rest“rati“ns, lu“rescent ‘a’”s, and the ‘i—e. This e‘e’ent is 
also a common trace component in fossil fuels. Through all these uses, mercury has 
been widely dispersed in various ecosystems; and mercury pollution has become a 
seri“us ”r“b‘e’ (NJTF 2002; Ri‘ey and Th“’as 1999).

The ’“st signiicant threat t“ hu’an hea‘th is thr“ugh the c“nsu’”ti“n “f ish 
contaminated with methylmercury (NJTF 2002). Methylmercury, more available 
and more toxic than other chemical forms, is produced by the addition of a methyl 
group to mercury. Much of this methylation is accomplished by sulfate-reducing 
bacteria, which live at the sediment-water interface or among algal mats (Riley and 
Th“’as 1999). The bacteria are c“nsu’ed by ”‘an—t“n, which are c“nsu’ed by 
larger planktonic or nektonic predators. At each level of this chain of consumption, 
the mercury accumulates in higher and higher concentrations, increasing by up to 
tenf“‘d at each ‘eve‘ (USGS 1996). Fish ’ay accu’u‘ate u” t“ “ne ’i‘‘i“n ti’es the 
concentration of mercury in their aquatic environment. This accumulation is an ex-
cellent example of biomagniication (NJTF 2002). F“r th“se wh“ c“nsu’e ish, the 
presence of this neurotoxin and possible carcinogen (Riley and Thomas) is of great 
importance and concern.

Mercury exists in the atmosphere primarily as elemental Hg (Hg0) and as oxi-
dized Hg (Hg2+). The form Hg0 is easily emitted into the atmosphere from the earth. 
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Moreover, this elemental mercury tends to remain in the atmosphere for a year or 
more. Hg2+ is far more reactive and soluble, dissolving easily in rainwater. Some will 
be adsorbed to particles and aerosols. Particulate mercury (dry) and oxidized 
mercury (wet) are deposited on various surfaces of the earth. A portion of the mer-
cury in the atmosphere originates from naturally occurring emissions from the 
earth’s surface, and the remainder is anthropogenic, or of human origin (Mason et 
a‘. 1994). The “xidized ’ercury entering the terrestria‘/’arine envir“n’ents tends 
to form inorganic and organic complexes, with methylmercury being one of the most 
c“’’“n “rganic f“r’s. Because ’ethy‘’ercury is the ’“st bi“avai‘ab‘e and the 
most toxic, we concentrate on that form of mercury in some of our modeling. Addi-
tionally, we focus on the aquatic environment, where much of the mercury accumu-
lates for transfer to human beings.

Projects

1.  Tab‘e 7.12.1 has the ”““‘s and luxes f“r the esti’ated ’ercury budget  f“r 
the ”reindustria‘ earth, whi‘e Tab‘e 7.12.2 c“ntains the current, esti’ated 
values.

 a.  Model the global mercury cycle for preindustrial and current times. Have 
a se”arate l“w c“rres”“nding t“ each lux with a c“nverter f“r its rate 
constant. Running the simulation for one simulation year using a Runge-
Kutta 4 technique and a time step of 0.01 yr, determine proportionality 
c“nstants t“ “btain the indicated luxes. 

 b.  In the atmosphere, elemental mercury is converted into oxidized mercury, 
which is either deposited dissolved in precipitation or adsorbed to parti-
cles (2%). Once in the terrestrial pool, oxidized mercury may be reduced 
to elemental mercury and reemitted, be combined to form a variety of 
complexes (e.g., HgS) in the soil, or be methylated. Similar possibilities 
exist for mercury deposited in marine environments. We do not know 
much about the rates of these chemical conversions. Modify your model 
to include these transformations.

 c.  We know that methylation of mercury is more likely to occur under cer-
tain conditions. Methylation is favored under low pH, low oxygen, high 
levels of organic matter, higher temperatures, and high sulfate concentra-
tions. Modify your model to include some of these factors.

2. a.  Mercury movement through the food chain is often given as an example 
“f bi“’agniicati“n. Because e‘i’inati“n is n“t easy, ’ercury tends t“ 
accumulate. Sulfate-reducing bacteria are thought to be responsible for 
much of the methylation of mercury. These organisms are consumed by 
plankton, which are consumed by insect larvae, which may be consumed 
by ish fry, which are c“nsu’ed by ’inn“ws, which ’ay be c“nsu’ed by 
s’a‘‘ ish, which are, in turn, eaten by sti‘‘-bigger ish. These bigger ish 
are the ones usually consumed by human predators. Assume that the half-
life of mercury in an organism is 50 da. Start with a mercury concentra-
tion of 0.6 ng/L (nanograms of mercury per liter of water) of mercury in 
the water and generate a ’“de‘ “f bi“’agniicati“n.
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Table 7.12.2 
Current P““‘s and F‘uxes f“r the Esti’ated Mercury Budget (See the n“tes f“r Tab‘e 7.12.1; 
Seige‘ and Seige‘ 1997)

Pools (× 103 kg) Fluxes (× 103 kg/yr)

Atmosphere 5000 terrestrial deposition 3000
Mixed layer (marine and 

terrestrial)
10800 marine deposition 2000

evasion1 2000
natural emission(terr)2 1000
riverine l“w3 200
particulate removal4 200
anthropogenic (total) 4000
atmosphere 2000
terrestrial deposition 2000

1 Evasion e‘e’enta‘ ’ercury entering the at’“s”here fr“’ the “cean
2 Natural emission (terr) ’ercury fr“’ natura‘ and anthr“”“genic s“urces transferred fr“’ the ter-

restrial pool to the atmosphere
3 Riverine low ’ercury transfer fr“’ the terrestria‘ ”““‘ t“ the “cean thr“ugh run“ff “f strea’s and 

rivers
4 Particulate removal ”artic‘es c“ntaining ’ercury sett‘ing t“ dee” “cean sedi’ents that are essen-

tially removed from active cycling

Table 7.12.1 
P““‘s and F‘uxes f“r the Esti’ated Mercury Budget  f“r Preindustria‘ Earth  
(Seige‘ and Seige‘ 1997)

Pools (× 103 kg) Fluxes (× 103 kg/yr)

Atmosphere 1600 terrestrial deposition 1000
Mixed layer (marine and 

terrestrial)
3600 marine deposition

evasion1

natural emission(terr)2

riverine l“w3

particulate removal4

600
600

1000
60
60

 b.  In s“’e ”arts “f the w“r‘d, ish is a ”ri’ary ”art “f the diet and an i’”“r-
tant source of protein. Modify your model in Part a to calculate the accu-
mulation of mercury in the bodies of adults with varying percentages of 
ish in their diets. Assu’e that a‘‘ adu‘ts weigh 65 —g and that they eat the 
same amount of food (in kg).

 c.  N“t a‘‘ ish s”ecies accu’u‘ate the sa’e a’“unt “f ’ercury. Tab‘e 7.12.3 
c“ntains ’axi’a “f ’ercury c“ncentrati“ns in ish s”ecies fr“’ a re”“rt 
by the Environmental Protection Agency (EPA) to Congress (EPA 
1997a). C“nsider that a‘‘ nu’bers are in ’g/—g dry weight. M“dify y“ur 
model to predict the accumulation of mercury in human adults consuming 
diets “f different a’“unts “f different —inds “f ish.
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 d.  Methylmercury is lipophilic, which means it likes fat and tends to accu-
mulate there. Fat insulates our bodies, pads organs, and serves as energy 
storage depots. One might hypothesize that someone with more fat also 
tends to accumulate more mercury. Assuming this association, develop a 
model based on the body mass index (BMI). BMI, based “n a ’athe’at-
ical relationship between height and weight, is a commonly used method 
t“ deter’ine the fat c“ntent “f “ur b“dies. T“ ca‘cu‘ate BMI, divide 
weight in pounds by height in inches. Divide the results by height in 
inches again and then ’u‘ti”‘y by 703. The outcome may be evaluated 
using the c“’’“n BMI categ“ries f“r adu‘ts fr“’ Tab‘e 7.12.4.

 e.  The U.S. EPA publishes reference doses (RfDs) for methylmercury. This 
value represents the amount of methylmercury that may be ingested on a 
daily basis for a lifetime with no adverse effects on health. Methylmer-
cury is ra”id‘y and eficient‘y abs“rbed thr“ugh the gastr“intestina‘ tract. 
Moreover, methylmercury passes through the blood-brain and placental 
barriers. With a biological half-life in human beings of up to 80 da, we 
can acquire toxic amounts in small doses over a long time or through mas-
sive doses at one time. Many of the toxic effects are in the nervous sys-
tem, and some of these are fatal. The RfD for methylmercury is 0.1 µg/kg 
body weight per day. Using a dose-conversion equation, this translates 
into a 1.1-µg methylmercury/kg body weight/day ingested by a 60-kg 
adult. Monitoring is usually done from blood or hair concentrations. 
B‘““d with 44 µg/(L “f b‘““d) “r hair with 11 µg/(g “f hair) c“rres”“nds 
to the RfD. Incorporate this information into the model you developed in 
Part c. H“w ’uch ish is t““ ’uch?

 f.  Modify your latest model to include the effects of mercury toxicity in 
Tab‘e 7.12.5.

3. In a food chain that includes bivalve mollusks (e.g., clams, mussels, oysters), 
these i‘ter feeders ta—e in ’any s’a‘‘ bits “f “rganic ’atter and s’a‘‘ “rgan-
isms. Some of these organisms include bacteria and plankton. Assume that 

Table 7.12.3 
Maxi’a “f Mercury C“ncentrati“ns in Fish S”ecies (EPA 1997a)

Fish Species

Dry Weight

(mg/kg) Fish Species

Dry Weight

(mg/kg)

carp 0.250 largemouth bass 1.369
brown trout 0.418 catish 0.890
northern pike 0.531 walleye 1.383

Table 7.12.4 
B“dy Mass Index (BMI) Categ“ries f“r Adu‘ts (CDC 2011) 

Category BMI

Underweight < 18.5
Normal weight 18.5 24.9
Overweight 25 29.9
Obese  30
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the half-life of mercury in an organism is 50 da. Model the accumulation of 
’ercury in these ani’a‘s. Tab‘e 7.12.6 ”resents the average ’ercury accu-
’u‘ati“n in ”rey (EPA 1997a).

4. In a diet f“r sh“rebirds, which inc‘udes ‘“ts “f she‘‘ish, ’“de‘ ’ercury ac-
cu’u‘ati“n in the birds fr“’ varying ’ixtures “f the ”rey in Tab‘e 7.12.6 
(EPA 1997a). Assu’e that the ha‘f-‘ife “f ’ercury in an “rganis’ is 50 da. 
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MODULE 7.13

Managing to Eat—What’s the Catch?

Prerequisite: M“du‘e 4.2, Predat“r-Prey M“de‘.

Introduction

In 1970, ishing and aquacu‘ture e’”‘“yed ab“ut 13 ’i‘‘i“n ”e“”‘e w“r‘dwide, ”r“-
ducing 65 ’i‘‘i“n t“ns “f seaf““d. By 2010, the nu’bers had increased t“ 54.8 ’i‘-
‘i“n w“r—ers, hau‘ing in a‘’“st 148 ’i‘‘i“n t“ns (FAO 2012). M“st “f these ishers 
are in Asia. With burgeoning populations (and accompanying demand), destruction 
“f habitat, and i’”r“ved techn“‘“gy, ’any isheries face tre’end“us ”ressures. The 
United Nations Food and Agriculture Organization (FAO) claims that worldwide 
a‘’“st 70% “f the ’arine ish s”ecies are “verished “r near‘y s“ (FAO 2005). The 
Nati“na‘ Marine Fisheries Service indicates that ab“ut 21% “f the ish s”ecies in 
U.S. waters are “verished, and an“ther 14% are being ished at a rate that is unsus-
tainab‘e (NMFS 2011). If isheries are t“ re’ain sustainab‘e and ”r“itab‘e, ”r“”er 
stewardship is essential. Already, according to the World Wildlife Fund, the world 
ishing leet is 21∕2 ti’es bigger than necessary (P“rter 1998). We need t“ i’”‘e’ent 
management systems that ensure that a gainful harvest does not exceed nature’s ca-
pacity to maintain the resource.

Like many other species, Alaskan halibut began facing tremendous stresses from 
the ishing industry during the 1970s and 1980s. Even ishers su””“rted the catch 
‘i’its that were i’”“sed then. By 1995, the seas“n ran f“r “n‘y 2 days. At that ti’e, 
there was “”en entry, and the ishing seas“n was ‘itt‘e ’“re than a c“ntest where 
each boat attempted to gather as large a share as possible. With shortened access 
ti’es, ishing crews braved ‘“ng h“urs and danger“us weather c“nditi“ns. They cut 
‘““se tang‘ed ‘“ng ‘ines and ‘eft the’ t“ ‘ure and —i‘‘ ish ish that w“u‘d never be 
harvested. C“nsequent‘y, this situati“n resu‘ted in ‘“st ish, ‘“st equi”’ent, ‘“st 
boats, and lost lives. Adding insult to injury, because all participants brought in their 
catches at the sa’e ti’e, b“ats had t“ se‘‘ the ish in a g‘utted ’ar—et t“ ‘arge ”r“ces-
sors at depressed prices. For consumers, the situation meant no real market for fresh 
ish, s“ they c“nsu’ed “n‘y fr“zen ish (Hart‘ey and Fina 2001; PBS 2002). 



308 Module 7.13

T“day, c“’’ercia‘ ha‘ibut ishing “”erati“ns are w“r—ing with a c‘“sed ishery. 
Partici”ant ishers ’ust “wn ”art “f the t“ta‘ a‘‘“wab‘e catch, ca‘‘ed an individual 
ishing quota (IFQ). IFQs are ”r“”erty that ishers actua‘‘y buy and se‘‘. This sys-
te’ has he‘”ed t“ re”‘ace the derby ishery  that existed ”ri“r t“ the ’id-1990s. The 
season is 8 months long. Fishers no longer have to risk themselves and their boats 
during treacherous conditions. Their major income is no longer dependent on a 1- or 
2-day venture. A‘th“ugh the IFQs ’ay have saved the ha‘ibut ishery in A‘as—a, ish-
ers in other parts of the United States worry that the system favors people with more 
money and may lead to aggregation of quota shares into monopolies. On the other 
hand, ’“st ishers have bec“’e better careta—ers “f this res“urce, if f“r n“ “ther 
reas“n than the IFQs ’a—e the’ “wners  (Hart‘ey and Fina 2001; PBS 2002).

Economics Background

Business decisi“ns frequent‘y inv“‘ve ’axi’izing ”r“it. Pr“it in the ishing indus-
try depends on the cost, “r ex”ense, “f ishing and the revenue, “r inc“’e, fr“’ ish 
sa‘es. H“wever, f“r an industry such as ishing, c“nservati“n “f the ”r“duct, the ish, 
f“r the ec“syste’ and future ”r“its sh“u‘d be an essentia‘ ”art “f the decisi“n-’a—-
ing process. 

For a quantity of product (q), such as ’etric t“ns “f ish, the cost function C(q) 
returns the total cost, or expense, of producing a quantity of q items, such as catching 
q ’etric t“ns “f ish. Figure 7.13.1 ”resents a ”articu‘ar c“st functi“n, C(q) = 0.01q3 
– 0.6q2 + 13q + 35. In this example from a very small company, the cost of produc-
ing 10 items is the corresponding value, $115, on the vertical axis. (Instead of dol-
lars, C(q) could indicate cost in thousands of dollars, millions of dollars, etc.) As the 
quantity produced increases, so does the total cost of production. Starting at about 
q = 30, this cost rises rapidly, perhaps with the company requiring new machinery to 
keep pace with the rising production demands or having to pay overtime to workers. 
Even if the company does not manufacture any product, the initial value of this cost 
function is a ixed cost of C(0) = $35. Perha”s a ixed c“st re”resents renta‘ f“r 
warehouse space or workers’ wages, even when no production occurs.

Quick Review Question 1

Consider the cost function C(q) = 2000 + 50q f“r a scientiic equi”’ent c“’”any t“ 
manufacture q number of barometers.

a.  Give the cost for manufacturing 100 barometers.
b.  Give the ixed c“st.

While cost is the total money going out, the revenue function R(q) gives the total 
amount of money coming in, or income, from selling q ite’s. Figure 7.13.2a ”res-

Deinitions  For a quantity of product (q), the cost function C(q) returns 
the total cost, or expense, of producing a quantity of q items. The 
ixed cost is C(0).
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ents an example of a revenue function, R(q) = 12q – 0.2q2. Typically, with no prod-
uct, no revenue exists, or the initial value is R(0) = $0. In the igure s exa’”‘e, the 
revenue rises to a maximum of $180 for selling q = 30 items, or R(30) = $180. After-
ward, revenue decreases. Perhaps oversupply results in a drop of the price per item, 
or charge for one item. Thus, the price per item, p(q), is a function of quantity. In 
general, the revenue for producing quantity q items is the product of the price per 
item p(q) and the number of items, q, as follows:

R(q) = p(q) × q

If the price per item is constant regardless of the production quantity, the revenue 
functi“n is ‘inear, as in Figure 7.13.2b. In this exa’”‘e, the ”rice “f an ite’ is 
p(q) = p = $7; s“ that the revenue functi“n is R(q) = 7q, a line with slope p = 7. Thus, 
the income for 10 items is R(10) = 7 × 10 = $70.
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Figure 7.13.1 Example of a cost function C(q)

Deinition  The revenue function R(q) is the total amount of income from 
selling q items. The price per item, p(q), is the charge for one 
item when selling q items. Thus, the following equality holds:

R(q) = p(q) × q
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a.  Revenue for price decreasing with oversupply b. Revenue for constant price

Figure 7.13.2 Examples of a revenue function R(q)
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Quick Review Question 2

a.  Su””“se a bar“’eter se‘‘s f“r $73, regard‘ess “f the nu’ber s“‘d. Give the 
revenue for 100 barometers sold.

b.  Give revenue as a function of quantity q f“r a bar“’eter that se‘‘s f“r $73, 
regardless of the number sold.

c.  Suppose the price of the barometer depends on quantity, according to the 
functi“n wh“se gra”h is in Figure 7.13.3. T“ the nearest d“‘‘ar, deter’ine the 
revenue from selling 10 barometers.

d.  To the nearest dollar, determine the revenue from selling 200 barometers.

C“’”anies “r ishers are u‘ti’ate‘y c“ncerned with their proit. The proit func-
tion π(q) is the ”r“it, “r the t“ta‘ gain, fr“’ ”r“ducing and se‘‘ing q items. (Econo-
’ists usua‘‘y e’”‘“y i f“r the na’e “f the ”r“it functi“n. This sy’b“‘ is n“t the 
number π ≈ 3.14.) Thus, the ”r“it is the difference “f the a’“unt “f ’“ney c“’ing 
in and the amount of money going out, as indicated by the following equation:

”r“it = revenue  c“st

or

π(q) = R(q) – C(q)

Thus, for revenue R(q) = 12q – 0.2q2 and cost C(q) = 0.01q3 – 0.6q2 + 13q + 35,  
the ”r“it functi“n is π(q) = (12q – 0.2q2) – (0.01q3 – 0.6q2 + 13q + 35) = –0.01q3 +  
0.4q2 – q  35. A c“’”any is w“r—ing at a ”r“it when revenue exceeds c“st. Figure 
7.13.4 dis”‘ays in c“‘“r shading the regi“n where the c“’”any is ”r“itab‘e. Reve-
nue and cost are equal, or R(q) = C(q), where the graphs intersect at q ≈ 13.5 and 
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Figure 7.13.3 Graph of a price function p(q)
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34.0. For production and sales of fewer than 13 items or more than 34 items, cost is 
’“re than revenue, and the c“’”any is “”erating at a deicit.

Quick Review Question 3

For the cost function C(q) = 2000 + 50q and the revenue function R(q) = 73q, deter-
’ine the ”r“it functi“n.

Certain‘y, a c“’”any wishes t“ ’axi’ize ”r“its. Fr“’ ca‘cu‘us, we —n“w that t“ 
’axi’ize (“r ’ini’ize) a ”r“it functi“n, we set the functi“n s derivative equa‘ t“ 0; 
solve for the independent variable, q; and determine if a maximum does indeed 
occur at that q. Thus, we have the following identities when a maximum occurs:

πʹ(q) = Rʹ(q) – Cʹ(q) = 0

or

Rʹ(q) = Cʹ(q)

Economists call the derivative of the revenue function, or the instantaneous rate 
of change of revenue with respect to quantity, the marginal revenue. Similarly, the 
derivative of the cost function, or the instantaneous rate of change of cost with re-
spect to quantity, is marginal cost. Thus, a ’axi’u’ ”r“it “ccurs at the quantity q 

Deinition The proit function π(q) is the ”r“it, “r the t“ta‘ gain, fr“’ ”r“-
ducing and selling q ite’s. Thus, ”r“it f“r se‘‘ing q items is the 
difference in revenue and cost, so that the following equation 
holds:

π(q) = R(q) – C(q)
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Figure 7.13.4 Regi“n “f ”r“itabi‘ity sh“wn with c“‘“r shading
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where marginal revenue equals marginal cost, Rʹ(q) = Cʹ(q), and revenue exceeds 
c“st. Because a derivative at a ”“int is the s‘“”e “f the tangent ‘ine t“ the curve at 
that point, the tangent lines to the curves are parallel at a quantity that yields a maxi-
’u’ ”r“it. Figure 7.13.5 dis”‘ays the revenue and c“st functi“ns with ”ara‘‘e‘ tan-
gent lines at q ≈ 25.35. F“r that quantity, the ”r“it has a ’axi’u’ va‘ue “f 
π(25.35) ≈ $33.79.

Quick Review Question 4

For the sale of barometers, consider cost function C(q) = 200 + 72q and revenue 
function R(q) = 21q2 – q3, where q is the quantity in thousands of barometers and 
C(q) and R(q) are in th“usands “f d“‘‘ars. The gra”hs a””ear in Figure 7.13.6.

a.  Give the marginal cost.
b.  Give the marginal revenue.
c.  Deter’ine the quantity “f bar“’eters s“‘d f“r ’axi’u’ ”r“it.
d.  Give the ”r“it functi“n.
e.  Deter’ine the ’axi’u’ ”r“it.

Gordon-Schaefer Fishery Production Function

In the 1950s, ishery scientist M. B. Schaeffer deve‘“”ed a ’“de‘ “f bi“‘“gica‘ yie‘d, 
and H. Scott Gordon enhanced the model to include economics. A version of this 
Gordon-Schaefer Fishery production curve a””ears in Figure 7.13.7. The ’“de‘ 
assumes a quadratic yield function and linear cost-of-effort function. Effort involves 
such ite’s as nu’bers “f b“ats, tra”s, and days ishing. Initia‘‘y, as eff“rt increases, 

Deinitions  Marginal revenue is the derivative of the revenue function, 
Rʹ(q). Marginal cost is the derivative of the cost function, Cʹ(q).
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Figure 7.13.5 Maxi’u’ ”r“it where tangent ‘ines are ”ara‘‘e‘, q ≈ 25.35
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s“ d“es yie‘d in d“‘‘ars. As discussed ear‘ier, ’axi’u’ ”r“it “ccurs where the de-
rivatives of these two functions are equal, or where the tangent line to the yield func-
tion is parallel to the cost-of-effort function. We call this quantity the ishing maxi-
mum economic yield (FMEY). At the high point of the yield curve, the cost of 
effort is the ishing maximum sustainable yield (FMSY). After this value, in-
creased eff“rt resu‘ts in decreased yie‘d (Sei–“ et a‘. 1998).

Projects

F“r a‘‘ ’“de‘ deve‘“”’ent, use an a””r“”riate syste’ dyna’ics t““‘.

1. This ”r“–ect c“ncerns the ec“n“’ics “f ishing “ne s”ecies.
 a.  C“nsider the gr“wth rate “f a s”ecies “f ish t“ be ‘“gistic when n“ ishing 

occurs (see Module 2.3, “Constrained Growth”). Let E(t) be an effort 
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Figure 7.13.6 Cost function C(q) = 200 + 72q and revenue function R(q) = 21q2 – q3
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Figure 7.13.7 G“rd“n-Schaefer ishery ”r“ducti“n curve (Sei–“ et a‘. 1998)
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function with respect to time t that is s“’e ixed a’“unt at the beginning 
and end “f a 90-day seas“n and ’axi’u’ ’idseas“n. Su””“se the rate “f 
catching ish is ”r“”“rti“na‘ t“ the ”r“duct “f this eff“rt and the ”“”u‘a-
ti“n “f ish. Deter’ine a differentia‘ equati“n f“r the rate “f change “f the 
”“”u‘ati“n “f ish with res”ect t“ ti’e (Danby 1997).

 b.  Let the price per unit catch be p and the cost per unit effort be c. Write an 
equati“n f“r ”r“it ”er unit catch.

 c.  Deve‘“” a ’“de‘ inv“‘ving the ec“n“’ics “f ishing. 
 d.  Form another version of this model with the cost per unit effort being pe-

riodic due to seasonal changes.
 e.  Form another version of this model with abrupt changes to the cost per 

unit effort. Discuss situations that could cause such changes.
 f.  Form another version of this model with demand and, thus, price, sud-

denly increasing. Discuss situations that could cause such increases.
2. Augment Project 1 to include IFQs.
3. Tab‘e 7.13.1 c“ntains a ‘ist “f the ‘“bster c“’’ercia‘ catch and eff“rt fr“’ 

1942 thr“ugh 1979. Ad–ust Pr“–ect 1 t“ acc“’’“date these data. 

Table 7.13.1 
U.S. Commercial Lobster Catch and Effort, Territorial Sea and Fishery Conservation Zone  
(now called the U.S. Exclusive Economics Zone) Combined (1 metric ton (t) = 1.102311 
t“ns) (NEFMC 1983) 

Year

Total Catch

(t)

Total Effort

(103 Traps) Year

Total Catch

(t)

Total Effort

(103 Traps)

1942 5,577 279 1961 12,700 978
1943 7,450 305 1962 13,378 1,003
1944 8,130 327 1963 13,731 964
1945 10,307 480 1964 14,043 1,043
1946 11,012 589 1965 13,719 1,163
1947 10,850 677 1966 13,399 1,096
1948 9,519 625 1967 12,131 1,099
1949 11,183 615 1968 14,769 1,168
1950 10,521 586 1969 15,327 1,333
1951 11,767 517 1970 15,489 1,851
1952 11,351 553 1971 15,279 1,905
1953 12,749 581 1972 14,626 1,858
1954 12,465 648 1973 13,152 2,307
1955 13,132 701 1974 12,945 2,303
1956 12,028 697 1975 13,698 2,334
1957 13,679 708 1976 14,293 2,305
1958 12,349 785 1977 14,434 2,302
1959 13,193 898 1978 15,653 2,302
1960 14,136 896 1979 16,870 2,255

4. This ”r“–ect c“ncerns the ec“n“’ics “f ishing tw“ s”ecies.
 a.  Consider the growth rates of tuna and shark to follow Lotka-Volterra’s 

”redat“r-”rey ’“de‘ when n“ ishing “ccurs (see M“du‘e 4.2, Predat“r-
Prey Model”). Let E(t) be an effort function with respect to time t, and 
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suppose the rate of catching each kind of animal is proportional to the 
product of this effort and that population. Suppose catching tuna involves 
equal effort to catching shark. Determine differential equations for the 
rates “f change “f the ”“”u‘ati“ns with res”ect t“ ti’e (Danby 1997).

 b.  Let pT and pS be the price per unit catch of tuna and shark, respectively, 
with pT being much greater than pS. Let c be the cost per unit effort. Write 
an equati“n f“r ”r“it ”er unit catch.

 c.  Assu’ing that the rate “f change “f eff“rt is ”r“”“rti“na‘ t“ ”r“it, deter-
mine a differential equation for the rate of change of E with respect to 
time.

 d.  Determine the equilibrium points.
 e.  Deve‘“” a ’“de‘ inv“‘ving the ec“n“’ics “f ishing tuna and shar—.
 f.  Form another version of this model with the cost per unit effort being pe-

riodic due to seasonal changes.
 g.  Form another version of this model with abrupt changes to the cost per 

unit effort. Discuss situations that could cause such changes.
 h.  Form another version of this model with demand, and, thus, price, sud-

denly increasing. Discuss situations that could cause such increases.
4. Re”eat Pr“–ect 3 using tw“ s”ecies “f c“’”eting ish (see M“du‘e 4.1, 

“Competition”).

Answers to Quick Review Questions

1. a.  $7000 = C(50) = 2000 + 50(100)
 b.  $2000 = C(0)
2. a.  $7300 = R(100) = 73(100)
 b.  R(q) = 73q

 c.  $800 = (80)(10)
 d.  $14,000 = (70)(200)
3. π(q) = 23q  2000 = 73q – (2000 + 50q)
4. a.  Cʹ(q) = 72
 b.  Rʹ(q) = 42q – 3q2

 c.  12,000 because 72 = 42q – 3q2, or –3q2 + 42q  72 = 0, “r 3(q – 2)
(q – 12) = 0. A minimum occurs at q = 2, while a maximum occurs at 
q = 12.

 d.  π(q) = 21q2 – q3  (200 + 72q) = 200  72q + 21q2 – q3

 e.  π (12) = 232, s“ that the ”r“it is $232,000.

References

ADFG (Alaska Department of Fish and Game). 2002. “Marine Protected Areas in 
A‘as—a: Rec“’’endati“ns f“r a Pub‘ic Pr“cess.  Re”“rt t“ the A‘as—a B“ard “f 
Fisheries. The Alaska Department of Fish and Game Marine Protected Areas Task 
F“rce. htt”://www.adfg.a‘as—a.g“v/static/‘ands/”r“tectedareas/”dfs/5–02-08_”1 
.”df (accessed January 7, 2013)

http://www.adfg.alaska.gov/static/lands/protectedareas/pdfs/5j02-08_p1.pdf
http://www.adfg.alaska.gov/static/lands/protectedareas/pdfs/5j02-08_p1.pdf


316 Module 7.13

Danby, J.M.A. 1997. C“’”uter M“de‘ing: Fr“’ S”“rts t“ S”acelight . . . Fr“’ 
Order to Chaos. Rich’“nd, VA: Wi‘‘’ann-Be‘‘, ”. 408.

FAO (Food and Agriculture Organization of the United Nations). 2005. “Fisheries 
and Aquaculture Topics. Trends in Capture Fisheries Development. Topics Fact 
Sheets.” Text by Peter Manning. In: FAO Fisheries and Aquaculture Department 
[“n‘ine]. R“’e. U”dated 27 May 2005. htt”://www.fa“.“rg/ishery/t“”ic/13838/
en (accessed Dece’ber 27, 2012)

. 2012. The State “f the W“r‘d Fisheries and Aquacu‘ture.  htt”://www.fa“ 
.“rg/d“cre”/016/i2727e/i2727e00.ht’ (accessed Dece’ber 27, 2012)

Hartley, M., and M. Fina. 2001. “Allocation of Individual Vessel Quota in the Alas-
—an Paciic Ha‘ibut and Sab‘eish Fisheries. Case studies “n the a‘‘“cati“n “f 
transferab‘e qu“ta rights in isheries.  FAO Fisheries Technica‘ Pa”er N“. 411. 
Rome, FAO, pp. 251–265.

NEFMC (New Eng‘and Fisher Manage’ent C“unci‘). 1983. A’erican L“bster 
Fishery Management Plan. Saugus, MA.

NMFS (National Marine Fisheries Service). 2011. “Status of Stocks 2011.” Report 
to Congress on the Status of U.S. Fisheries. http://www.nmfs.noaa.gov/sfa/status 
“fisheries/2011/RTC/2011_RTC_FactSheet.”df 

PBS (Pub‘ic Br“adcasting Service). 2002. Manage’ent, Overishing, & A‘as—an 
Ha‘ibut.  htt”://www.”bs.“rg/e’”ty“ceans/e“en/ha‘ibut/ (accessed Dece’ber 27, 
2012)

P“rter, Gareth. 1998. Esti’ating Overca”acity in the G‘“ba‘ Fishing F‘eet.  W“r‘d 
Wildlife Fund. 

Sei–“, J.C., O. Defe“, and S. Sa‘as. 1998. Fisheries bi“ec“n“’ics. The“ry, ’“de‘-
ling and management.” FAO Fisheries Technical Paper. No.368. Rome, FAO, 
108p.

http://www.fao.org/fishery/topic/13838/en
http://www.fao.org/fishery/topic/13838/en
http://www.fao.org/docrep/016/i2727e/i2727e00.htm
http://www.fao.org/docrep/016/i2727e/i2727e00.htm
http://www.nmfs.noaa.gov/sfa/statusoffisheries/2011/RTC/2011_RTC_FactSheet.pdf
http://www.nmfs.noaa.gov/sfa/statusoffisheries/2011/RTC/2011_RTC_FactSheet.pdf


MODULE 7.14

Control Issues: The Operon Model

Prerequisite: One “f the f“‘‘“wing ’“du‘es: 4.1, C“’”etiti“n,  4.2, Predat“r-
Prey M“de‘,  4.3, S”read “f SARS,  “r 4.5, Enzy’e Kinetics.

Proteins

Proteins are basic molecules of life, performing many critical functions. Some pro-
teins are the fundamental, structural components of cells and tissue, while others 
(enzymes) are catalysts for chemical reactions. A simple protein is a linear polymer 
or chain of amino acids. Tab‘e 7.14.1 ‘ists the 20 a’in“ acids c“’’“n t“ ”r“teins 
along with their one-letter and three-letter codes. Each amino acid contains a central 
carb“n (C), which b“nds with 4 che’ica‘ gr“u”s an amino group (NH3

+), a car-
boxyl group (COO–), a hydrogen (H), and a variable side-chain (R-group; Figure 
7.14.1). The R-gr“u” deter’ines the che’ica‘ nature (acidic, n“n”“‘ar, etc.) “f each 
amino acid in the chain. Chains of amino acids are linked by peptide bonds, which 
form through the interaction of an amino group of one amino acid with the carboxyl 
gr“u” “f an“ther (Figure 7.14.2). This interacti“n resu‘ts in c“ndensati“n, “r re‘ease 
“f water. Because “ne end (N-terminal) of a protein has a free amino group and the 
other (C-terminal) has a free carboxyl group, we can assign an orientation to the 
chain and list the amino acids from the “beginning” (N-terminal) of the chain to the 
“end” (C-terminal).

Nucleic Acids

In the cell, the nucleic acid DNA (deoxyribonucleic acid) contains the encoded in-
formation for the manufacture of all the proteins a cell needs. However, DNA does 
not oversee protein synthesis directly but acts through an intermediary nucleic acid, 
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RNA (ribonucleic acid). The RNA sequences subsequently specify the amino acid 
“rder “f ”r“teins. B“th DNA and RNA are ”“‘y’ers, “r ‘“ng chains, “f ’“‘ecu‘es 
called nucleotides. A nucleotide is a compound molecule made up of a sugar (either 
deoxyribose for DNA or ribose for RNA), a phosphate, and a nitrogen base (ade-
nine (A), guanine (G), cytosine (C), and thymine (T) in DNA or uracil (U) in 

Table 7.14.1 
The 20 Commonly Occurring Amino Acids Along with Their One-Letter and Three-Letter 
C“des. (N“te: B is used when “ne cann“t distinguish between D and N because “f a’in“ 
acid analytical processing. Similarly, Z is used when it is ambiguous whether the amino acid 
is E or Q. X represents an unknown or nonstandard amino acid.)

One-Letter Code Three-Letter Code Name

A Ala Alanine
R Arg Arginine
N Asn Asparagine
D Asp Aspartic acid
C Cys Cysteine
Q Gln Glutamine
E Glu Glutamic acid
G Gly Glycine
H His Histidine
I Ile Isoleucine
L Leu Leucine
K Lys Lysine
M Met Methionine
F Phe Phenylalanine
P Pro Proline
S Ser Serine
T Thr Threonine
W Trp Tryptophan
Y Tyr Tyrosine
V Val Valine
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Figure 7.14.1 Structure of an amino acid 
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Figure 7.14.2 Formation of peptide bond. 
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RNA). A and G are purines, while C, T, and U are pyrimidines (Figure 7.14.3). 
DNA is composed of a double strand of nucleotides, whereas RNA is composed of a 
single strand. Each nonterminal nucleotide is linked to its neighbors via phosphodi-
ester ‘in—ages (Figure 7.14.4). Each ”h“s”hate is attached t“ the #5 carb“n “f the ri-
bose or deoxyribose and is designated the 5ʹ carbon. The phosphate then joins the 
hydr“xy‘ gr“u” attached t“ the #3 carb“n “f its neighb“r, designated the 3ʹ carbon. 
So, each nucleotide of a chain is linked to its neighbors by 5ʹ and 3ʹ ends, and that 
gives the nuc‘e“tide chain a s”eciic 5ʹ–3ʹ orientation. This consistent organization 
allows us canonically to give direction to the sequence of nucleotides (or bases) in a 
strand. 

In DNA, bases in “ne strand ’ay b“nd with bases in an“ther. Because “f their 
structure, A and T always bond together, and C and G always bond together. Each 
pair is said to be made up of complementary bases and is referred to as a base pair 
(bp). The number of such base pairs is used to describe the length of a DNA mol-
ecu‘e. Because “f ”airing c“nsistency, by —n“wing the sequence “f bases in “ne 
strand, we can deduce the sequence of bases in the other strand through reverse 
complementation. For example, suppose one sequence is s = ATGAC. Because “f 
the required pairing, A–T and C– G, we know the base pairs must appear as 
follows:

s: A T G A C

| | | | |

T A C T G

In contrast to DNA, RNA is a single strand of nucleotides made up of ribose sug-
ars and bases A, C, G, and U instead “f the nitr“gen base thy’ine (T; Tab‘e 7.14.2). 
Several types of RNA with different functions exist in the cell. Also, RNA strands 
may base-pair with complementary regions within the same molecule, with strands 
of other RNA molecules, or with single-stranded portions of DNA molecules.

NH2

N

N

N

N

H

O-

O-

O P O

O

CH2

OH H

NH2

N

N

N

N

H

O-

O-

O P O

O

CH2

OH OH

phosphate

deoxyadenosine-5’monophosphate adenosine-5’monophosphate

sugar

nitrogen

base

Figure 7.14.3 Deoxyribo- and ribonucleotide structures.
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From Genes to Proteins

Each cell contains chromosomes, which are very long DNA molecules. A gene is a 
contiguous section of a chromosome that encodes information to build a protein or 
an RNA molecule. In humans, the average gene is composed of about 3,000 bp. A 
chromosome contains genes and contiguous sections that are not part of any gene. 
Some scientists believe that genes (coding sequences) comprise only a small per-
centage of a human chromosome. The function of these nongene bits of DNA is still 
debated. Some are known to be important for regulation of gene expression and oth-
ers are important for matching homologues and structure. A complete set of chromo-
somes in a cell contains the organism’s hereditary information and is called the ge-
nome. For example, a human genome has 46 chromosomes in 23 pairs.

For simplicity, we assume that a particular protein in an organism corresponds to 
exactly one gene. In a gene, a sequence of three nucleotides (triplet) s”eciies an 
amino acid. For example, the sequence ACG or ACA encodes the information for 
the amino acid Threonine (Thr). The genetic code represents such a correspondence 
between these triplets and the amino acids they specify. With four base choices, a 
pair of bases could encode information for only (4)(4) = 16 amino acids. With three 
bases, (4)(4)(4) = 64 possible triplets exist. Several, such as ACG and ACA, encode 
the same amino acid; and three sequences do not encode for any amino acid.

Protein synthesis uses the genetic code to direct the building of proteins. Synthe-
sis begins in the nucleus, where enzymes catalyze the production of a molecule of 
RNA, termed messenger RNA, or mRNA. Each DNA tri”‘et s”eciies a c“’”‘e-
mentary sequence of three nucleotides, which we call a codon, in the RNA. The 
synthesis of RNA is called transcription. During transcription, base-pairing ensures 
formation of a strand of RNA that is complementary to the gene sequence, with U 
replacing T. Once transcribed, the mRNA will bind to a ribosome that will translate 
the mRNA sequence into a sequence of amino acids for the protein. Ribosomes con-
tain the molecular apparatus to translate groups of three nucleotides (codons) into 
s”eciic a’in“ acids, thereby c“nverting a s”eciic sequence “f nuc‘e“tides int“ a 
s”eciic sequence “f a’in“ acids. 

In bacteria, genes that code for functionally related proteins are sometimes posi-
tioned contiguously on the single chromosome and are transcribed into one elon-
gated piece of mRNA. This mRNA frequently contains the instructions for a set of 
enzymes that function in the same biochemical pathway. Control of this transcrip-

Table 7.14.2 
Bases in DNA and RNA

Base Abbreviati“n Complement In DNA In RNA Gr“u”

Adenine A
T in DNA,  
U in RNA

yes yes Purine

Cytosine C G yes yes Pyrimidine
Guanine G C yes yes Purine
Thymine T A yes no Pyrimidine
Uracil U A no yes Pyrimidine
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tion is coordinated, and if one of the genes is transcribed, so are all. Or, the genes 
may all be inactive, awaiting some extrinsic signal that will stir them from their 
quiescence. This organization and regulation of bacterial genes is widely known as 
the operon model “f gene regu‘ati“n, ”r“”“sed in the ear‘y 1960s by tw“ French 
scientists Franç“is Jac“b and Jacque M“n“d (1961). 

One of the earliest examples of the operon model was the lac operon in Esche-

richia coli (E. coli). Normally, this bacterium preferentially utilizes glucose if that 
sugar is available in the medium. Metabolism of other sugars, like lactose, is carried 
out only when that sugar is supplied in place of glucose in the growth medium. Con-
sequently, the cell produces the enzymes to metabolize lactose only when that sugar 
is ”resent. Lact“se is a disaccharide (tw“ sugars g‘uc“se and ga‘act“se ‘in—ed by 
a g‘yc“sidic b“nd). Theref“re, ‘act“se ’ust irst be s”‘it int“ the tw“ c“nstituent 
sugars before the sugars are metabolized in the process of glycolysis. Two enzymes 
are known to be necessary for processing lactose:

• A permease, coded for by the lacY gene, helps to transport lactose into the 
cell.

• β-galactosidase, coded for by the lacZ gene, splits the disaccharide into glu-
cose and galactose.

As it happens, the genes for these enzymes and a transacetylase enzyme (gene lacA) 
of unknown function are located next to each other on the chromosome and are regu-
lated by the same factors. Let’s look at the organization of this operon (Figure 
7.14.5).

The three genes that code for enzymes are termed structural genes. Adjacent and 
u”strea’ fr“’ the structura‘ genes are tw“ regu‘at“ry sequences the promoter 
and the operator. The promoter (Plac), in this case, is the portion of the DNA where 
the RNA polymerase, an enzyme that makes RNA from DNA, will bind to begin 
transcription of the structural genes. Another regulatory region made up of the re-
pressor gene (lacI) and its promoter (PI) lie in a more distant part of the chromo-
some. The repressor gene, when active, transcribes RNA that is translated into the 
repressor protein. The repressor protein recognizes and binds to the operator (O) 
sequence, which will act as a type of molecular switch. When the operator is unoc-
cupied by the repressor protein, the RNA polymerase can bind to the promoter and 
proceed with transcription of the mRNAs for the structural genes. When the operator 
is bound to the repressor protein, the RNA polymerase is blocked from transcription 
and the mRNAs for the enzymes are not produced. 

The lactose-repressor gene is essentially always expressed, but at a relatively low 
level. We say that this gene is not regulated (constitutive), and its transcription is 
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Figure 7.14.5 Structural organization of the lac operon in E. coli
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dependent only on the dynamics of its promoter. Because the promoter for the re-
pressor is only weakly active, only small amounts of repressor are produced. When 
glucose is present, the active repressor binds to the operator for the lac structural 
genes and inhibits their transcription (Figure 7.14.6). This mechanism represents ef-
iciency in the ex”ressi“n “f E. coli’s genes because the cell saves materials and en-
ergy needed for synthesis of unneeded proteins. 

When lactose replaces glucose in the medium, lactose can bind to the repressor 
molecule, inactivating it (Figure 7.14.7). The inactive repressor will not bind to the 
operator; and when RNA polymerase binds to the lac operon promoter, which is 
very powerful, it will be able to transcribe many copies of the genes for utilization of 
lactose for cellular energy. Lactose, in this system, acts as an inducer f“r the ex”res-
sion of the lac genes.
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I P
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transcript
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no transcription

repressor
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X

Figure 7.14.6 Lac operon function while glucose is present. The repressor binds to the op-
erator, inhibiting the transcription of enzymes that are needed for lactose utilization.
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Figure 7.14.7 Lac operon function while lactose is present. The repressor binds to the lac-
tose inducer, inactivating it. RNA polymerase binds to the lac promoter and stimulates active 
transcription of enzymes that are needed for lactose utilization.
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Projects

1. Assuming a linear relationship between enzyme activity and enzyme concen-
trations and assuming that the induction of the lac operon results in an in-
crease in transcription/translation for enzymes required for metabolizing lac-
tose, model the following and discuss the results for varying amounts of 
glucose and/or lactose:

 a.  Lac operon with glucose present
 b.  Lac operon with both glucose and lactose present
 c.  Lac operon without glucose and with lactose present 
2. In an E. coli cell, we have a pool of ATP (energy) of 100,000 molecules, and 

the cell hydrolyzes about 1000 molecules/min of ATP to sustain basic life 
functions. If we assume that the cell gains 32 ATP/molecule of glucose me-
tabolized, model the lac operon and the effect of glucose on ATP levels with 
ti’e. C“nsider the situati“n with ixed c“ncentrati“n “f g‘uc“se and then 
with g‘uc“se inlux. Discuss the resu‘ts.

3. Lactose is a second choice for an energy source in E. coli; but when there is 
no glucose available or when concentrations of glucose are low, the cell re-
sponds by importing and processing lactose. As glucose concentrations de-
cline, the cell transcribes the mRNA for permease and -galactosidase and 
translates the mRNA into these two enzymes. As more enters the cell, lactose 
is converted to an inducer (allolactose). This allolactose binds to the repres-
sor protein, changing its conformation so that the repressor protein no longer 
has an afinity f“r the “”erat“r. Subsequent‘y, the RNA ”“‘y’erase can 
freely bind to the promoter, and production of the two enzymes escalates. 
Assuming that induction of the lac operon requires at least 100 molecules of 
lactose, model the lac operon and the changes in ATP (energy) concentra-
tions of a cell as glucose declines and lactose increases. Each lactose mole-
cule may be oxidized to yield 30 ATP. (This model should include the tran-
scription and translation of the lac enzymes.)

4. In Project 3, the transcription of lac genes is very slow, even when the repres-
sor is inactive. To speed things up considerably, another regulatory mole-
cule, which binds in another promoter site, is required. When associated with 
a molecule of cAMP, this molecule, called cAMP-receptor protein (CRP) or 
catabolite-activator protein (CAP), binds to the DNA of the promoter. cAMP 
levels in the cell are inversely related to the intracellular glucose concentra-
tion. When bound, CRP opens up the promoter and enhances the binding of 
the RNA polymerase for transcription. Model this system to include the ef-
fects of glucose concentration on levels of cAMP and subsequent CRP bind-
ing on transcription rates of the lac operon genes. Relate these parameters to 
the production of ATP (energy).
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Troubling Signals: Colon Cancer

Prerequisites: Secti“n “n M“de‘ing Inhibiti“n  fr“’ M“du‘e 4.5, Enzy’e 
Kinetics,  and “ne “f the f“‘‘“wing ’“du‘es: 4.1, C“’”etiti“n,  4.2, ;  
Predat“r-Prey M“de‘ ; 4.3, S”read “f SARS ; “r 4.5, Enzy’e Kinetics.

I d“n t want t“ achieve i’’“rta‘ity thr“ugh ’y w“r—. . . . I want t“ 
achieve it thr“ugh n“t dying.

W““dy A‘‘en (Lax 1975)

Introduction

H“ward, a 56-year-“‘d teacher, waits nerv“us‘y “n a gurney f“‘‘“wing his irst c“‘“-

n“sc“”y. His ”hysician arrives and te‘‘s hi’ that he re’“ved severa‘ ”“‘y”s and that 
one of the polyps was of a precancerous type. Howard can’t follow anything else the 

”hysician is saying. A‘‘ he can thin— ab“ut is his father, wh“ died at the age “f 52 “f 
colon cancer.

Cancer is one of the most terrifying diagnoses a patient can receive. Just about 
everyone knows someone who has died of the disease, and early in the twentieth 
century, such a diagnosis was essentially a death sentence. Physicians have battled 
for decades with surgery, radiation, and various chemotherapies to cure their cancer 
”atients “r at ‘east t“ ”r“‘“ng their ‘ives. We have c“’e far in “ur understanding “f 
cancer and its prevention, as well as in our ability to detect it; and yet, the U.S. Na-
tional Cancer Institute (NCI) predicted more than 1.6 million new cases of cancer 
(excluding nonmelanoma skin cancers) with more than a half million deaths in 2012 
(NCI 2013). 

Cancer is really more than one disease, although we tend to think of it as only 
one. Cancers may originate in the body covering or organ linings, blood-forming and 
immune tissues, or various connective tissues, but all types of cancers have one com-
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mon characteristic: abnormal and unrestrained growth. Nevertheless, the 100 or so 
types of cancer often behave quite differently and require different treatments (ACS 
2013; NCI 2013).

Colon Cancer

In the United States, the NCI predicted that there would be about 150,000 new cases 
of colorectal cancer and about 50,000 deaths in 2012 (NCI 2013). Worldwide, about 
600,000 deaths per year are attributable to this type of cancer (WHO 2012). Actu-
ally, there is more than one form of colon cancer, but the vast majority of these tu-
mors are adenocarcinomas (cancers of the glandular endothelium). Understanding 
how colon cancer develops is important if we want to advance in its prevention or 
cure. 

The normal colon is lined with cells that are continually dying, sloughing off, and 
being replaced, somewhat like an internal skin. The cells that line the lumen (cavity) 
of the intestine are replaced weekly (Medema and Vermeulen 2011). The replace-
ment cells arise within millions of invaginations (infoldings) in the lining called 
crypts. At the base of these crypts are stem cells that divide persistently and produce 
new cells that gradually mature (differentiate) and migrate to the surface to replace 
their ’“re seas“ned ”redecess“rs (Figure 7.15.1). This vig“r“us renewa‘ syste’ is 
under very stringent control by chemical signals, many of which are produced by 
nearby mesenchymal cells of the stem-cell niche and by more mature epithelial cells 
(Medema and Vermeulen 2011).

Particular gene mutations in the stem cells or early progeny of stem cells may 
cause aberrations in some of the developing cells. Such changes can disrupt the nor-
mal division and maturation process. If an accumulation of mutations (hits) takes 
place, the combination of changes may make these cells cancerous (Stanford Medi-
cine Cancer Institute 2013). In fact, colorectal cancer often develops through accu-
’u‘ati“n “f s“-ca‘‘ed genetic hits (Fear“n and V“ge‘stein 1990).

Modeling Crypt Dynamics

To better understand how colon cancer develops, we need to better understand the 
normal growth and development of the cells lining the colonic crypts. A powerful 
approach, supplementing bench experiments, is mathematical modeling. For exam-
”‘e, the C“’”utati“na‘ Bi“‘“gy Gr“u” (CBG) at the University “f Oxf“rd is deve‘-
oping and maintaining Chaste (Cancer, Heart and Soft-Tissue Environment), an 
open source simulation package that models the dynamics of the colonic crypt 
(Chaste 2013).

To build our model of the complex processes of crypt dynamics, we will start 
simply. Therefore, we begin with a sequence of molecular signals, called the Wnt 
pathway, which scientists know plays an essential role in tissue homeostasis. This 
pathway helps to control cell division and maturation in the crypt, as well as to sus-
tain the stem cells (Nusse 2013). 
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Figure 7.15.1 Diagram of colonic crypt. New cells are produced by stem cells at the base of 
the crypt. The cells of the stem-cell niche secrete the Wnt signal molecules, which forms a 
gradient of signal molecules, where the concentration decreases as the cells move away from 
the bottom of the crypt. Wnt signal molecules bind to receptors on the crypt cells, promoting 
cell division. This gives rise to the region of proliferating cells. As the concentration of Wnt 
declines, proliferation slows, and the cells begin to differentiate. Cells in the differentiating 
region gradually move toward the colonic lumen and mature into differentiated cells.
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Wnt signals are part of a family of chemicals (glycolipoproteins) that serve as 
morphogens in Wnt pathways. These locally produced molecules form a concentra-
tion gradient as they diffuse away from the source and interact with nearby cells to 
bring about some response (e.g., cell division or differentiation). The response is 
concentration dependent. Mesenchymal cells at the base of the crypt (stem-cell 
niche) secrete Wnt signals. The highly processed signal molecules are not very dif-
fusible, so their strength diminishes as the cells move away from the crypt base. 
Cells divide and differentiate at rates determined, at least partially, by their interac-
tion with this signal gradient.

Wnt signa‘s inluence the cyt“”‘as’ic c“ncentrati“n “f the ”r“tein -catenin, 
which has at least two roles in epithelial cells: (1) binding to membrane-localized 
cadherin proteins to form adherens junctions (AJs) that help maintain the structural 
integrity of the epithelial layer and (2) acting as a transcription factor. In a target 
cell without Wnt signals, there is a basal rate of synthesis that provides more than 
enough -catenin for the AJs. Any excess -catenin is broken down by proteasomes 
(protein complexes that degrade excess or damaged proteins in the cell). For the 
proteasomes to degrade a protein, the protein is often chemically marked by the at-
tachment of a short chain of small proteins called ubiquitins. Ubiquitin molecules 
act as recognition signals for the proteasomes. So, in a cell sensitive to Wnt signals, 
but where there are none, the excess -catenin will be ubiquitinated (ubiquitin at-
tached) and then degraded. 

Crypt cells have receptors on their membranes that are sensitive to Wnt signals. 
The signa‘s bind t“ these rece”t“rs, initiating s”eciic ce‘‘u‘ar res”“nses. When there 
are no Wnt signals, the cell produces -catenin, uses what is needed for AJs, and 
degrades the rest. A complex of proteins that combine to form a sort of “doomsday 
machine” initiates this degradation sequence. Two of these proteins are axin and 
APC, scaffolding proteins that bind to -catenin. The complex also includes two 
enzy’es that add ”h“s”hates t“ s”eciic sites “n the -catenin when the -catenin is 
bound to the scaffolding. Phosphorylated -catenin is now more recognizable to 
ubiquitinating enzymes. Once the ubiquitin is attached, the -catenin is doomed for 
destructi“n by ”r“teas“’es (Figure 7.15.2). 

When present, the Wnt signal binds to a pair of receptors, Fzl and LRP6/5 (Fig-
ure 7.15.3). The binding “f signa‘ t“ rece”t“r induces the recruit’ent “f an“ther 
protein, dvl, which promotes the phosphorylation of LRP6, which, in turn, binds to 
axin. With insuficient axin avai‘ab‘e, the d““’sday ’achine  d“es n“t f“r’, and 

-catenin does not undergo phosphorylation. Consequently, the ubiquitination and 
subsequent degradation do not occur, and -catenin concentrations build up in the 
cell. 

Some of the excess -catenin is transported into the nucleus, where it interacts 
with other protein factors (e.g., TCF) to become transcription factors (TFs). These 
TFs bind t“ s”eciic c“ntr“‘ regi“ns “n the DNA t“ activate (“r in s“’e cases inacti-
vate) the expression of a restricted set of genes. Many of the products coded for by 
these genes are involved in the control of growth and development of the cell. For 
instance, the -catenin-associated TFs may induce the production of factors that pro-
mote cell division and others that inhibit cell differentiation. It is easy to see why 
defects in the components or steps of this signaling pathway might lead to abnormal 
growth and even cancer.
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Projects

1. Develop a system dynamics model of the Wnt pathway, graphing important 
values such as the amounts of Wnt, cell-division inhibitors, and cell-division 
promoters. Possible initial quantities and parameter values appear in Tables 
7.15.1 and 7.15.2, res”ective‘y. The secti“n M“de‘ing Inhibiti“n  fr“’ 
M“du‘e 4.5, Enzy’e Kinetics A M“de‘ “f C“ntr“‘,  describes “ne way t“ 
model the process involving inhibition, such as -catenin/TCF inhibiting the 
rate of change of division inhibitors. Run the model for a variety of Wnt 
amounts. Discuss the results.
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MODULE 8.1

Computational Toolbox—Tools of the Trade: Tutorial 3

Prerequisite: M“du‘e 6.1, C“’”utati“na‘ T““‘b“x T““‘s “f the Trade:  
Tutorial 2.”

Download

From the textbook’s website, download Tutorial 3 in the format of your computa-
tional tool or in PDF format. We recommend that you work through the tutorial and 
answer all Quick Review Questions using the corresponding software.

Introduction

Various computer software tools are useful for graphing, numeric computation, and 
symbolic manipulation. This third computational toolbox tutorial, which is available 
from the textbook’s website in your system of choice, prepares you to use the tool to 
complete projects for this and subsequent chapters. The tutorial introduces the fol-
lowing functions and concepts: 

• List/array operations
• Additional graphics options
• Showing several graphics together
• Fitting curves to data
• Rules
• Reading fr“’ a i‘e

The module gives computational examples and Quick Review Questions for you to 
complete and execute in the desired software system. 



MODULE 8.2

Function Tutorial

Download

We recommend that you download the function tutorial in the format of your desired 
computational tool from the textbook’s website and work through the tutorial using 
the software. Alternatively, you can download the corresponding tutorial in PDF 
f“r’at and answer the Quic— Review Questi“ns using a new i‘e in the a””r“”riate 
computational software. For the questions that do not involve using a computational 
t““‘, ty”e the answers int“ the tut“ria‘ i‘e “r write the answers “n a se”arate sheet “f 
paper. When plotting several functions together, distinguish between the curves, 
such as by color, line thickness, or dashing. As with other software-dependent tutori-
als, answers to the Quick Review Questions are not available at the end of the mod-
ule. Material in the printed text, which does not depend on a particular computa-
tional tool, contains important generic information about functions.

Introduction

In this chapter, we deal with models that are driven by the data. In such a situation, 
we have data measurements and wish to obtain a function that roughly goes through 
a plot of the data points capturing the trend of the data, or itting the data. Subse-
quent‘y, we can use the functi“n t“ ind esti’ates at ”‘aces where data d“ n“t exist “r 
t“ ”erf“r’ further c“’”utati“ns. M“re“ver, deter’inati“n “f an a””r“”riate itting 
function can sometimes deepen our understanding of the reasons for the pattern of 
the data. 

In this module, we consider several important functions, some of which we have 
a‘ready used. By being fa’i‘iar with basic functi“ns and functi“n transf“r’ati“ns, 
the ’“de‘er can s“’eti’es ’“re readi‘y it a functi“n t“ the data.
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Linear Function

The concept of a linear function was essential in our discussions of simulation tech-
niques, such as Euler’s method. Here, we review some of the characteristics of func-
tions whose graphs are lines.

Figure 8.2.1 presents the graph of the linear function y = 2t + 1. This line has  
y-intercept 1, because y = 1 when t = 0. Thus, the graph crosses the y-axis, which 
occurs when t = 0. With data measurements where t represents time starting at 0, the 
y-intercept indicates the initial data value. The slope of this particular line is 2, which 
is the c“eficient “f t. Consequently, when we go over 1 unit to the right, the graph 
rises by 2 units. 

Deinitions A linear function, whose graph is a straight line, has the fol-
lowing form:

y = mx + b

The y-intercept, which is b, is the value of y when x = 0, or at the 
place where the line crosses the y-axis. The slope m is the change 
in y over the change in x. Thus, if the line goes through points (x1, 
y1) and (x2, y2), the slope is as follows:
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Figure 8.2.1 Graph of the linear function y = 2t + 1
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Quick Review Question 1

For this and every Quick Review Question in this module, use an appropriate com-
putational tool to complete the question.

a.  Plot the preceding function, f(t) = 2t + 1, from t = –3 to 3.
b.  Plot f along with the equation of the line with the same slope as f but with y-

intercept 3. Distinguish between the graphs of f and the new function, such as 
by color, line thickness, or dashing.

c.  Copy the command from Part b, and change the second function to have a 
y-intercept of –3.

d.  Describe the effect that changing the y-intercept has on the graph of the line.
e.  Copy the command from Part b, and change the second function to have the 

same y-intercept as f but slope 3.
f.  Copy the command from Part b, and change the second function to have the 

same y-intercept as f but slope –3.
g.  Describe the effect that changing the slope has on the graph of the line.

Quadratic Function

In Quick Review Question 1 of Module 2.2, “Unconstrained Growth and Decay,” 
we considered a ball thrown upward off a bridge. If the bridge is 11 m high and the 
initial velocity is 15 m/s, then the function for height of the ball with respect to time 
is the following quadratic function:

s(t) = 4.9t2 + 15t + 11

The general form of a quadratic function is as follows:

f(x) = a2x
2 + a1x + a0

where a2, a1, and a0 are real numbers. The graph of the ball’s height s(t) in Figure 
8.2.2 is a parabola that is concave down. The next two Quick Review Questions 
develop some of the characteristics of quadratic functions.

Quick Review Question 2

a.  Plot the preceding function, s(t) = 4.9t2 + 15t + 11, from t = –1 to 4.
b.  Give the command to plot s(t) and another function with the same shape that 

Deinitions A quadratic function has the following form:

f(x) = a2x
2 + a1x + a0

where a2, a1, and a0 are real numbers. Its graph is a parabola.



Data-Driven Models 341

crosses the y-axis at 2. Distinguish between the graphs, such as by color, line 
thickness, or dashing.

c.  Using calculus, determine the time t at which the ball reaches its highest 
point. Verify your answer by referring to the graph.

d.  What effect d“es changing the sign “f the c“eficient “f t2 have on the  
graph?

Quick Review Question 3

For this and every Quick Review Question, when plotting several functions together, 
distinguish between the curves, such as by color, line thickness, or dashing.

a.  Plot t2, t2 + 3, and t2 – 3 on the same graph. 
b.  Describe the effect of adding a positive number to a function.
c.  Describe the effect of subtracting a positive number from a function.
d.  Plot t2, (t + 3)2, and (t – 3)2 on the same graph.
e.  Describe the effect of adding a positive number to the independent variable, 

such as t, in a function.
f.  Describe the effect of subtracting a positive number from the independent 

variable in a function.
g.  Plot t2 and –t2 on the same graph.
h.  Describe the effect of multiplying a function by –1.
i.  Plot t2, 5t2, and 0.2t2 on the same graph.
j.  Describe the effect of multiplying the function by number greater than 1.
k.  Describe the effect of multiplying the function by positive number less  

than 1.
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Figure 8.2.2 Height (y) in m versus time (t) in s of a ball thrown straight up from a bridge
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Polynomial Function

Linear and quadratic functions are polynomial functions of degree 1 and 2, respec-

tively. The general form of a polynomial function of degree n is as follows:

f(x) = anx
n + ∙ ∙ ∙ + a1x + a0

where an, . . ., a1, and a0 are real numbers and n is a nonnegative integer. The graph 

of such a function with degree greater than 1 consists of alternating hills and valleys. 

The quadratic function of degree 2 has one hill or valley. In general, a polynomial of 

degree n has at most n – 1 hills and valleys.

Quick Review Question 4

a.  Plot the polynomial function p(t) = t3 – 4t2 – t + 4 from t = –2 to 5 to obtain a 

graph similar to Figure 8.2.3.

b.  To what value does p(t) go as t g“es t“ ininity?
c.  To what value does p(t) go as t g“es t“ ’inus ininity?
d.  Plot p(t) and an“ther functi“n with each c“eficient “f t having the opposite 

sign as in p(t). Distinguish between the curves, such as by color, line thick-

ness, or dashing.

e.  To what does the new function from Part d go as t g“es t“ ininity?
f.  To what does the new function from Part d go as t g“es t“ ’inus ininity?

Summary of graphical impacts of several operations on y = f(t) for positive 
constant c:

f(t) + c adds c to each y-value, so addition of c > 0 moves the graph 
of f up c units.

f(t) – c moves the graph of f down c units.
c f(t) multiplies each y value by c, so multiplication by c > 1 stretches 

the graph of f. Multiplication by c for 0 < c < 1 shrinks the graph 
of f. 

–f(t) rotates the graph of f(t) around the t-axis.
f(t + c) moves the graph of f to the left c units.
f(t – c) moves the graph of f to the right c units.

Deinition A polynomial function of degree n has the following form:

f(x) = anx
n + ∙ ∙ ∙ + a2x

2 + a1x + a0

where an, . . ., a1, and a0 are real numbers and n is a nonnegative 
integer.
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Square Root Function

The square root function, whose graph is in Figure 8.2.4, is increasing and concave 
down. Its domain and range are the set of nonnegative real numbers.

Quick Review Question 5

Plot each of the following transformations of the square root function.

a.  Move the graph to the right 5 units.
b.  Move the graph up 3 units.
c.  Rotate the graph around the x-axis
d.  Double the height of each point.

Exponential Function

In Module 2.2, “Unconstrained Growth and Decay,” we considered situations where 
the rate of change of a quantity, such as the size of a population, is directly propor-
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Figure 8.2.3 Graph of polynomial function p(t) = t3 – 4t2 – t + 4 from t = –2 to 5
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Figure 8.2.4 Square root function
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tional to the size of the population, such as dP/dt = 0.1P, with initial population 
P0 = 100. As we saw, the solution to this differential equation is the exponential 
function P = 100e0.1t, whose graph is in Figure 2.2.3 of that module. Similarly, the 
solution to the differential equation dQ/dt = 0.000120968Q for radioactive decay is 
Q = Q0e

0.000120968t, with graph in that module’s Figure 2.2.4. As indicated in both so-
‘uti“ns, the c“eficient is the initia‘ a’“unt and the c“eficient “f t is the continuous 
rate. For a positive initial amount and a positive rate, the function increases and is 
concave up; while a negative rate results in a decreasing, concave-up function. 

The base can be any positive real number, not just e, which is approximately 
2.71828. F“r exa’”‘e, we can ex”ress P = 100e0.1t as an exponential function with 
base 2. Setting 100(2rt) equal to 100e0.1t, we cancel the 100’s, take the natural loga-
rithm of both sides, and solve for r, as follows:

 100e0.1t = 100(2rt)
 0.1t = ln(2rt)
 0.1t = rt ln(2)

 r = 0.1/‘n(2) = 0.14427, when t ≠ 0

Thus, P = 100e0.1t = 100(20.14427t).

Quick Review Question 6

a.  Deine an ex”“nentia‘ functi“n u(t) with initial value 500 and continuous rate 
12%.

b.  Plot this function.
c.  On the same graph, plot exponential functions with initial value 500 and con-

tinuous rates of 12%, 13%, and 14%. Which rises the fastest?
d.  Express the function u(t) as an exponential function with base 4. 

Quick Review Question 7

a.  Deine an ex”“nentia‘ functi“n v(t) with initial value 5 and continuous rate 
–82%.

b.  Plot this function.
c.  Plot v(t) and v(t) + 7 “n the sa’e gra”h. Distinguish between the curves, 

such as by color, line thickness, or dashing.
d.  What effect d“es adding 7 have “n the gra”h?
e.  As t g“es t“ ininity, what d“es v(t) approach?

Deinition An exponential function has the following general form:

P(t) = P0a
rt 

where P0, a, and r are real numbers.
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f.  As t g“es t“ ininity, what d“es v(t) + 7 a””r“ach?
g.  Copy the answer to Part b. In the copy, plot v(t) and –v(t).
h.  What effect does negation (multiplying by –1) have on the graph?
i.  Copy the answer to Part g. In the copy, plot v(t) and 7  v(t).
j.  As t g“es t“ ininity, what d“es 7  v(t) approach?
k.  Give the va‘ue “f 7  v(t) when t = 0.

Quick Review Question 8

a.  From t = 0 to t = 5, plot 12te–2t, a function that has an independent variable t 
as a factor and as an exponent.

b.  Initially, with values of t close to 0, give the factor that has the most impact, 
t or e–2t.

c.  As t gets larger, give the factor that has the most impact, t or e–2t. 

Logarithmic Functions

In Module 2.2, “Unconstrained Growth and Decay,” we employed the logarithmic 
function to obtain an analytical solution to the differential equation dP/dt = 0.1P, 
with initial population P0 = 100. In that same module, the logarithmic function was 
useful in solving a problem to estimate the age of a mummy.

John Napier, a Scottish baron who considered mathematics a hobby, published 
his inventi“n “f ‘“garith’s in 1614. Un‘i—e ’“st “ther scientiic achieve’ents, his 
work was not built on that of others. His highly original invention was welcomed 
enthusiastically, because problems of multiplication and division could be reduced 
to much simpler problems of addition and subtraction using logarithms. 

By deiniti“n, m is the logarithm to the base 10, or common logarithm, of n, 
written as log10n = m or log n = m, provided m is the exponent of 10 such that 10m is 
n, or

log10n = m if and only if n = 10m 

A logarithm is an exponent, in this case, an exponent of 10. Thus, 

 log101000 = 3 because  1000  = 103 

 log101,000,000= 6 because 1,000,000 = 106 

 log100.01= –2 because 0.01 = 10–2 

Because 10m is always positive, we can take the logarithm only of positive num-
bers, so that the domain of a logarithmic function is the set of positive real numbers. 
However, the exponent m, which is the logarithm, can take on values that are posi-
tive, negative, or zero. Thus, the range of a logarithmic function is the set of all real 
nu’bers. Figure 8.2.5 sh“ws the gra”h “f the c“’’“n ‘“garith’. Because the ‘“ga-
rithm is an exponent, the logarithmic function increases very slowly, and the graph 
is concave down.
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In scientiic a””‘icati“ns, we frequent‘y e’”‘“y the logarithm to the base e, or 
the natural logarithm. The notation for loge n is ln n. Similar to the common loga-
rithm, we have the following equivalence:

ln n = m if and only if n = em 

Moreover, the graph of the natural logarithm has a similar shape to that of the com-
mon logarithm in Figure 8.2.5.

Deinitions The logarithm to the base b of n, written logb n, is m if and 
only if bm is n. That is, logbn = m is equivalent to n = bm. The 
common logarithm of n, usually written log n, has base 10; the 
natural logarithm of n, usually written ln n, has base e.

Figure 8.2.5 log x
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Figure 8.2.6 x and x  dominate ln x
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In comparing the graph of ln x to that of x and x  in Figure 8.2.6, we see that the 
linear and square root functions dominate the logarithmic function, which is in color.

Quick Review Question 9

a.  Evaluate log28.
b.  Write y = ‘“g 7 as a c“rres”“nding equati“n inv“‘ving an ex”“nentia‘ 

function.
c.  Evaluate ln(e5.3).
d.  Evaluate 10log(6.1).

Logistic Function

In Module 2.3, “Constrained Growth,” we modeled the rate of change of a popula-
tion with a carrying capacity that limited its size. The model incorporated the follow-
ing differential equation with carrying capacity M, continuous growth rate r, and 
initial population P0:

dP

dt
r

P

M
P= −





1  where P = P0 when t = 0

The resulting analytical solution, which is a logistic function, is as follows:

P(t) =
−( ) +−

MP

M P e P
rt

0

0 0

Figure 2.3.1 of Module 2.3, “Constrained Growth,” depicts the characteristic S-
curve of this function.

Quick Review Question 10

a.  Plot the logistic function with initial population P0 = 20, carrying capacity 
M = 1000, and instantaneous rate of change of births r = 50% = 0.5 from 
t = 0 to 16 to obtain a graph as in Figure 2.3.1 of Module 2.3, “Constrained 
Growth.”

b.  On the same graph, plot three logistic functions that each have M = 1000 and 
r = 0.5 but P0 values of 20, 100, and 200.

c.  What effect does P0 have on a logistic graph?
d.  On the same graph, plot three logistic functions that each have M = 1000 and 

P0 = 20 but r-values of 0.2, 0.5, and 0.8.
e.  What effect does r have on a logistic graph?
f.  On the same graph, plot three logistic functions that each have P0 = 20 and 

r = 0.5 but M-values of 1000, 1300, and 2000.
g.  What effect does M have on a logistic graph?
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Trigonometric Functions

The sine and cosine functions are employed in many models where oscillations are 
involved. For example, two projects in Module 4.2, “Predator-Prey Model,” consid-
ered seas“na‘ birth rates and ishing and e’”‘“yed the c“sine “r sine functi“n t“ 
achieve periodicity.

T“ deine the trig“n“’etric functi“ns sine, c“sine, and tangent, we c“nsider the 
point (x, y) “n the unit circ‘e “f Figure 8.2.7. F“r the ang‘e t off the positive x-axis, 
with t being positive in the counterclockwise direction and negative in the clockwise 
directi“n, the deiniti“ns “f these trig“n“’etric functi“ns are as f“‘‘“ws:

 sin t = y
 cos t = x
 tan t = y/x

For example, if x = 0.6 and y = 0.8, then in radians (rad) t is a””r“xi’ate‘y 0.9273 =  
53.13°, so that the following hold:

 sin(0.9273) = 0.8
 c“s(0.9273) = 0.6
 tan(0.9273) = 0.8/0.6 ≈ 1.33

For an angle of 0 rad, the opposite side, y, is zero, so that sin(0) = 0. An angle of 
π/2 resu‘ts in (1, 0) being the ”“int “n the unit circ‘e and the sine functi“n achieving 

Figure 8.2.7  Triangle for evaluation of trigonometric functions

(x, y)

t
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x
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its ’axi’u’ va‘ue “f 1. The sine returns t“ 0 f“r the ang‘e π = 180º. Then, sin(t) 
“btains its ’ini’u’, na’e‘y, 1, at 3π/2, where the ”“int “n the unit circ‘e is (0, 
–1). At t = 2π = 360º, the sine functi“n starts cyc‘ing thr“ugh the sa’e va‘ues again. 
Figure 8.2.8 ”resents “ne cyc‘e “f the sine functi“n, and Figure 8.2.9 gives a cyc‘e “f 
the cosine function.

Quick Review Question 11

a.  Evaluate sin t where x = 0.6 and y = 0.8 for angle t.
b.  Eva‘uate sin(π/6) where the c“rres”“nding ”“int “n the unit circ‘e is (1/2,  

3/2).
c.  Give the domain of the sine function.
d.  Give the range of the sine function.
e.  Give the sine’s period, or length of time before the function starts 

repeating.
f.  Is sin t positive or negative for values of t in the irst quadrant?
g.  Is sin t positive or negative for values of t in the second quadrant?
h.  Is sin t positive or negative for values of t in the third quadrant?
i.  Is sin t positive or negative for values of t in the fourth quadrant?

Quick Review Question 12

a.  Evaluate cos(0).
b.  Eva‘uate c“s(π/2).
c.  Eva‘uate c“s(π).
d.  Eva‘uate c“s(3π/2).
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Figure 8.2.8 One cycle of the sine function
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Figure 8.2.9 One cycle of the cosine function
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e.  Eva‘uate c“s(π/6) where the c“rres”“nding ”“int “n the unit circ‘e is (1/2,  
3/2).

f.  Give the maximum value of cos t.
g.  Give the minimum value of cos t.
h.  Give the domain of the cosine function.
i.  Give the period of the cosine function.
j.  Is cos t positive or negative for values of t in the irst quadrant?
k.  Is cos t positive or negative for values of t in the second quadrant?
l.  Is cos t positive or negative for values of t in the third quadrant?
m.  Is cos t positive or negative for values of t in the fourth quadrant?

For a function of the form f(t) = A sin(Bt) or g(t) = A cos(Bt), where A and B are 
positive numbers, A is the amplitude, or maximum value of the function from the 
horizontal line going through the middle of the function. For example, h(t) = 3 
sin(7t) has amplitude 3; the function oscillates between y va‘ues “f 3 and 3. Be-
cause the ”eri“d “f the sine and c“sine functi“ns is 2π, the ”eri“d “f f and g is 2π/B. 
When t = 0, Bt = 0. When t = 2π/B, Bt = B(2π/B) = 2π. Thus, the ”eri“d “f h(t) = 3 
sin(7t) is 2π/7.

Quick Review Question 13

Plot the following functions.

a.  sin t and 2 sin(7t) 
b.  sin t and a functi“n inv“‘ving sine that has a’”‘itude 5 and ”eri“d 6π
c.  sin t and a function involving sine that has minimum value –2 and maximum 

value 4
d.  sin t and a function involving sine that has amplitude 4 and crosses the t-axis 

at each of the following values of t: . . ., π/6, π/3, 5π/6, . . .
e.  cos t and a functi“n inv“‘ving c“sine that has a’”‘itude 3, ”eri“d π, and 

maximum value 2 at t = π/5
f.  sin(5t) and e-t sin(5t) (The latter is a function of decaying oscillations. The 

general form of such a function is Ae-Ctsin(Bt), where A, B, and C are 
constants.)

Deinitions The amplitude of an oscillating function is the maximum value 
of the function from the horizontal line going through the middle 
of the function. A periodic function is one function whose val-
ues repeat at regular intervals, and the period of a periodic func-
tion is the length of such an interval.

A function of the form f(t) = A sin(Bt) or g(t) = A cos(Bt), where A and B are 
positive numbers, has amplitude A and ”eri“d 2π/B.
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The tangent functi“n is a‘s“ ”eri“dic. Because tan t = y/x, for a corresponding 
point (x, y) “n the unit circ‘e (see Figure 8.2.7), tan t = sin t/cos t. The graph of this 
function appears in Figure 8.2.10, and the next Quick Review Question explores 
some of its properties.

Quick Review Question 14

a.  Eva‘uate tan(π/6) where the c“rres”“nding ”“int “n the unit circ‘e is (1/2,  
3/2).

b.  Evaluate tan(0).
c.  Eva‘uate tan(π).
d.  Eva‘uate tan(π/2).
e.  As t a””r“aches π/2 fr“’ va‘ues ‘ess than π/2, what d“es tan t approach?
f.  As t a””r“aches π/2 fr“’ va‘ues greater than π/2, what d“es tan t approach?
g.  Eva‘uate tan( π/2).
h.  As t a””r“aches π/2 fr“’ va‘ues ‘ess than π/2, what d“es tan t approach?
i.  As t a””r“aches π/2 fr“’ va‘ues greater than π/2, what d“es tan t 

approach?
j.  Give the range of the tangent function.
k.  Give a‘‘ the va‘ues between 2π and 2π f“r which tan t is n“t deined.
l.  Give an angle in the third quadrant that has the same value of tan t, where t is 

in the irst quadrant.
m.  Give an angle in the fourth quadrant that has the same value of tan t, where t 

is in the second quadrant.
n.  Give the period of the tangent function.
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Figure 8.2.10 Tangent function
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Empirical Models

Downloads

For several computational tools, the text’s website has an 8_3QRQ.”df i‘e avai‘ab‘e 
for download, which contains system-dependent Quick Review Questions and an-
swers for this module.

Moreover, the text’s website has an EmpiricalModels i‘e, which c“ntains the 
models of this module, available for download for various computational tools, 
Tab‘e 8.3.1 ‘ists data i‘es that are a‘s“ avai‘ab‘e “n the website and where they are 
e’”‘“yed in the text. The data i‘es are based “n i‘es fr“’ the Nati“na‘ Institute “f 
Standards and Technology (NIST) website, “Statistical Reference Datasets,” as indi-
cated in the references. The na’e “f each data i‘e is as “n the NIST site, exce”t that 

Table 8.3.1 
Data Files on Textbook’s Website

Description File Data File Where Used

BoxBODEM.txt BoxBODEM.dat Pr“–ect 9
DanWoodEM.txt DanWoodEM.dat “Nonlinear  One- Term Model”
FilipEM.txt FilipEM.dat “Multiterm Models”
Gauss1EM.txt Gauss1EM.dat Project 5
Lancz“s1EM.txt Lancz“s1EM.dat Pr“–ect 7
Lancz“s3EM.txt Lancz“s3EM.dat Project 4
MGH10EM.txt MGH10EM.dat Project 8
MGH17EM.txt MGH17EM.dat Project 6
Misra1aEM.txt Misra1aEM.dat “Solving for y in a  One- Term Model”
N“Int1EM.txt N“Int1EM.dat Project 1
NorrisEM.txt NorrisEM.dat “Linear Empirical Model,” Exercise 1
PontiusEM.txt PontiusEM.dat Project 2
Wa’”‘er1EM.txt Wa’”‘er1EM.dat Project 3
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EM appears before the extension .txt or .dat. File names with the extension .txt give 
the i‘e na’e f“r the data i‘e, URL reference, “rigina‘ dataset na’e, descri”ti“n, 
reference, data in column format (y, then x), and statements in several computational 
tools assigning appropriate data lists to xLst and yLst. The c“rres”“nding i‘es with 
the extension .dat store only the data in column format (x, then y), which most com-
putational tools can read.

Introduction

S“’eti’es it is dificu‘t “r i’”“ssib‘e t“ deve‘“” a ’athe’atica‘ ’“de‘ that ex-
plains a situation. However, if data exist, we can often use these data as the sole basis 
for an empirical model. The e’”irica‘ ’“de‘ c“nsists “f a functi“n that its the data. 
The graph of the function goes through the data points approximately. Thus, al-
though we cannot employ an empirical model to explain a system, we can use such a 
model to predict behavior where data do not exist. Data are crucial for an empirical 
model. We utilize data to suggest the model, to estimate its parameters, and to test 
the model.

When we derive a mathematical model through analysis of a system, we may ac-
ce”t a ’“de‘ that d“es n“t it the data as c‘“se‘y as we w“u‘d wish because the ’“de‘ 
explains the situation well. However, with an empirical model, the data are our only 
source of information about the system.

Sometimes with a derived model, which helps to explain the science, it may be 
dificu‘t “r i’”“ssib‘e t“ differentiate “r integrate a functi“n t“ ”erf“r’ further ana‘-
ysis. In this case, too, we can derive an empirical model, such as a polynomial func-
tion, that is differentiable and integrable. For example, a step function might accu-
rately model a pulsing signal, but we cannot differentiate such a function where it is 
discontinuous, or jumps from one step to the next. In this case, we might use trigo-
nometric functions, which we can differentiate and integrate, in an empirical model 
that captures the trend of the data.

Linear Empirical Model

We begin studying empirical models by considering a National Institute of Stan-
dards and Technology (NIST) study involving calibration of ozone monitors, where 
x is NIST’s measurement of ozone concentration and y is the customer’s measure-
ment. For the purpose of this example, we take the subset of the data shown in Table 
8.3.2.

Deinition An empirical model is based only on data and is used to predict, 
not explain, a system. An empirical model consists of a function 
that captures the trend of the data.
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Using an a””r“”riate c“’”utati“na‘ t““‘, we deine a set “f “rdered ”airs, assign-
ing the result to a variable pts = {(0.2, 0.1), (0.4, 0.3), (0.3, 0.3), (0.3, 0.6)}. Figure 
8.3.1 shows a plot of these data.

T“ ex”‘ain “btaining a ‘ine that its the data we‘‘, we need the deiniti“n “f linear 
combination. The linear combination of p and q is a sum of the form ap + bq, where 
a and b are constants. For example, 3p + 7q is a linear combination of p and q. A 
linear combination of 1 and x has the form b ∙ 1 + m ∙ x = b + mx = mx + b, for con-
stants b and m. For example, –2.2x + 9.3 is a ‘inear c“’binati“n “f x and 1. We can 
extend the deiniti“n “f ‘inear c“’binati“n t“ any nu’ber “f ter’s. Thus, 
4 – 3x + 19x2 is a linear combination of 1, x, and x2, while 5x is a linear combination 
of just x.

Deinition For positive integer n, a linear combination of x1, x2, . . ., xn is a 
sum

a1x1 + a2x2 + ∙ ∙ ∙ + anxn

where a1, a2, . . ., an are constants.

Table 8.3.2 
Subset of NIST Norris Dataset, Where x is “NIST’s Mea sure ment 
of Ozone Concentration” and y is “the Customer’s Mea sure ment”

x y

0.2 0.1
0.4 0.3
0.3 0.3
0.3 0.6

0.1 0.2 0.3 0.4 0.5 0.6
x

0.1

0.2

0.3

0.4

0.5

0.6

y

Figure 8.3.1 Plot of data in Table 8.3.2
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Quick Review Question 1

List the expressions that are linear combinations of u and v.

 A.  5u – 18v B.  18v + 5u C.  7u 
 D.  15uv E.  u/5 + v/3 F.  5/u + 3/v 

A computational tool usually has a function that can return an equation that is a 
least-squares it t“ a ‘ist “f ”“ints. In the secti“n Linear Regressi“n,  we discuss 
the a‘g“rith’, but we can use such a it functi“n with“ut —n“wing the f“r’u‘as in-
volved. The equation y = 0.025 + 1.0x, which is a linear combination of 1 and x, is 
the ‘east-squares ‘inear functi“n that best its the data in Tab‘e 8.3.2. We can ”‘“t this 
line, along with the original data, to obtain a graph similar to Figure 8.3.2.

Quick Review Question 2

From the text’s website, obtain your computational tool’s 8_3QRQ.”df i‘e f“r this 
system-dependent question concerning a command to obtain a least-squares line that 
best its a set “f ”“ints.

Predictions

We can use the resu‘t “f the ‘east-squares ‘inear it, y = 0.025 + 1.0x, to predict y-
values where no data value exists as long as those values are within the range of 
values used to determine the formula. For example, for NIST’s measurement of 
ozone concentration of x = 0.34, the predicted customer’s ozone concentration mea-
surement is y = 0.025 + 1.0(0.34) = 0.365. Figure 8.3.3 displays the point (0.34, 
0.365), which is larger than the other points, on the curve.
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Figure 8.3.2 P‘“t “f Figure 8.3.1, a‘“ng with the best-it ‘ine
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We must be careful not to employ this predictive function beyond the range of the 
data. With an empirical model, the data drive the model. Outside the range of the 
data, we cannot depend on the data behaving in a similar manner to observations 
within the range. For example, the ozone monitor being calibrated could be fairly 
accurate when measuring small concentrations, but completely unreliable for large 
concentrations.

Linear Regression

A it functi“n in an a””r“”riate c“’”utati“na‘ t““‘ returns a ‘east-squares it t“ the 
data. In the ”receding exa’”‘e, a it functi“n deter’ined that y = 0.025 + 1.0x is the 
line that best captures the trend of the data using a technique called linear least-
squares regression, or linear regression. We call x the predictor variable and y 
the response variable. The ’eth“d can ind the ‘ine y = mx + b that minimizes the 
sum of the squares of the vertical distances from the data points to the line. For ex-
ample, the point that is directly above or below (0.2, 0.1) on a line y = mx + b is (0.2, 
m · 0.2 + b). We obtain the y-value, m · 0.2 + b, on the line by substituting the x-
value, 0.2, into the linear function. The difference in the y-values of the point on the 
line and the point (0.2, 0.1) is m · 0.2 + b – 0.1. The lengths of the dotted lines in 
Figure 8.3.4 are the abs“‘ute va‘ues “f such differences. Linear regressi“n inds m 
and b so that the sum of the squares of the vertical distances is as small as possible. 
Thus, for n points, (x1, y1), (x2, y2), . . ., (xn, yn), the method does the following, where 

the summation (
i

n

=
∑
1

) indicates summing the squared terms for i = 1, 2, . . ., n:

minimize mx b y mx b y mx b y mx b y
i i

i

n

n
+ −( )∑ = + −( ) + + −( ) + + + −
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2

1
1 1
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Figure 8.3.3 Predicted point (0.34, 0.365), which is larger 
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Using calculus, minimization techniques yield m and b, as follows:

m
n x y x y

n x x

i i i i

i i

= ∑ − ∑ ∑

∑ − ∑( )2 2

b
x y x y x

n x x

i i i i i

i i

= ∑∑ − ∑ ∑

∑ − ∑( )
2

2 2

F“rtunate‘y, a it functi“n in an a””r“”riate c“’”utati“na‘ t““‘ ”erf“r’s these ca‘cu-
lations for us.

In a fashi“n si’i‘ar t“ this c“’”utati“n, a it functi“n can return the equati“n that 
is a linear combination of given functions and that yields the minimum of the sum of 
the squares of the vertical distances from the points to the corresponding curve. Con-
sequent‘y, using a it functi“n we can “btain n“n‘inear functi“ns with ’u‘ti”‘e ter’s 
that model the data empirically.

Nonlinear One-Term Model

Table 8.3.3 presents data from NIST’s DanWood dataset for the next example (see 
the section “Downloads”). The predictor variable x is the absolute temperature of the 
i‘a’ent in 1000 K, whi‘e the res”“nse variab‘e y is the energy radiated from a car-
b“n i‘a’ent ‘a’” ”er square centi’eter ”er sec“nd. 

Figure 8.3.5 shows a plot of the data from Table 8.3.3. Although not the regres-
si“n ‘ine, a faint ‘ine thr“ugh the irst and ‘ast ”“ints he‘”s us t“ see that the c“nigu-
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Figure 8.3.4 Data points with dashed vertical lines to the least-squares regression line
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ration of points is slightly concave up. Such a data set, whose plot is concave up or 
down throughout, can usually be modeled effectively with a function in which only 
one term has the single dependent variable. To effectively determine a mathematical 
one-term model for this data using linear regression, we use a transformation of the 
data that appears linear.

Quick Review Question 3

From the text’s website, obtain your computational tool’s 8_3QRQ.”df i‘e f“r this 
system-dependent question concerning commands to plot data and a line together.

We can accomplish the transformation on this data from being concave up to 
straight in one of two ways:

1. Extend the points to the right, stretching the distance from the y-axis to the 
rightmost points more than to those on the left. Thus, perform an operation 

Table 8.3.3 
Data from NIST’s DanWood Dataset

x y

 1.309 2.138
 1.471 3.421
 1.490 3.597
 1.565 4.340
 1.611 4.882
 1.680 5.660

1.4 1.5 1.6 1.7

x

3

4

5

6

y

Figure 8.3.5 P‘“t “f ”“ints fr“’ Tab‘e 8.3.3 with a ‘ine thr“ugh the irst and ‘ast ”“ints
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on x that results in greater values and has more effect on the larger x-values 
than on the smaller ones.

2. Pull points down, shrinking the distance between the x-axis and the higher 
points more than to the lower ones. Thus, perform an operation on y that re-
sults in lesser values and has more effect on the larger y-values than on the 
smaller ones.

F“r the irst a‘ternative with the ”receding data, the “”erati“n ’ight be t“ raise a‘‘ 
x values to a power greater than 1, such as 2. To see the effect, consider the data 
”“ints (1.309, 2.138) and (1.680, 5.660), where the f“r’er is t“ the ‘eft “f the ‘atter. 
Squaring both x-c““rdinates, we ind that 1.3092 = 1.713, whi‘e 1.6802 = 2.822. The 
difference x2 – x f“r the irst ”“int is 1.3092  1.309 = 0.404, but the effect “n the 
second, rightmost point is much greater with a difference of 1.6802 – 1.680 = 1.142. 
Thus, the transformation of squaring the x-coordinate, where x > 1, stretches the 
rightmost points to the right even more than the points that are further to the left. 

Similarly, for the second alternative, taking the square root of the y-coordinates, 
which are all greater than 1, gives smaller values. However, the effect is more pro-
nounced on the larger y-va‘ues. The ”“int (1.309, 2.138 ) is 0.676 units ‘“wer than 
(1.309, 2.138), but (1.680, 5.660 ) is 3.28 units lower than (1.680, 5.660).

We should note that these operations perform as indicated because the coordi-
nates are all greater than 1. Recall that for a number c between 0 and 1, c2 is smaller 
than c, while c  is larger. Moreover, when the values are negative, we cannot per-
form certain operations, such as taking the square root or logarithm. Also, raising a 
negative value to an even exponent gives a positive number. To obtain the desired 
results, we should reason carefully and not apply operations randomly.

Table 8.3.4 gives a sequence of transformations that have an increasingly greater 
impact on larger values, where the numbers are greater than 1. The transformations, 
such as –1/z, that involve a unary minus do so to maintain the same ordering of the 
data ”“ints. F“r exa’”‘e, (1.309, 2.138) is t“ the ‘eft “f (1.680, 5.660). Using the 
transformation 1/x, (1/1.309, 2.138) = (0.7639, 2.138) is t“ the right “f (1/1.680, 
5.660) = (0.5952, 5.660). H“wever, with 1/x, the ”“int ( 1/1.309, 2.138) = ( 0.7639, 
2.138) re’ains t“ the ‘eft “f ( 1/1.680, 5.660) = ( 0.5952, 5.660).

Ta—ing the irst a‘ternative given bef“re, which ”erf“r’s an “”erati“n “n x, we 
pair various powers of x with the corresponding y. We plot the resulting ordered 
”airs in an atte’”t t“ ind a gra”h that a””ears a””r“xi’ate‘y ‘inear. As Figures 
8.3.6 and 8.3.7 sh“w, with the assistance “f ‘ines thr“ugh the irst and ‘ast ”“ints, 
squaring and cubing the x-coordinates seem still to result in plots that are concave 
up. However, raising the x-values to the fourth power, as in Figure 8.3.8, appears to 

Table 8.3.4  
Sequence of Transformations for z > 1

. . . , , . . .2, , , ln( ), , ,− − −
1 1 1
2

3

z z z
z z z z z
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cause a gra”h that is s‘ight‘y c“ncave d“wn. If we are n“t satisied with the ex”“nent 
3 “r 4, we ’ight try ”“wers between these va‘ues. Figure 8.3.9 sh“ws a ”‘“t “f the 
points (x3.5, y).

Thus, using a it functi“n in an a””r“”riate c“’”utati“na‘ t““‘, we e’”‘“y ‘inear 
regression on the transformed set of points (x3.5, y) and “btain the f“‘‘“wing best-it 
line: y = 0.393131 + 0.988186z. Figure 8.3.10 shows the graph of this line with the 
”“ints “f Figure 8.3.9.
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Figure 8.3.6 Plot of points (x2, y) f“r data in Tab‘e 8.3.3, with a ‘ine thr“ugh the irst and 
last points
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Figure 8.3.7 Plot of points (x3, y) f“r data in Tab‘e 8.3.3, with a ‘ine thr“ugh the irst and 
last points
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Satisied with this resu‘t, we sti‘‘ ’ust deter’ine the functi“n thr“ugh the “ri-
gina‘ set “f ”“ints and view its curve thr“ugh th“se ”“ints. Because we it a ‘ine 
(y = 0.393131 + 0.988186z) to the transformed points of the form (x3.5, y), we now 
substitute x3.5 for z to obtain our empirical model, which is as follows:

f(x) = 0.393131 + 0.988186x3.5 

Figures 8.3.11 and 8.3.12 present two graphs of this function, along with the original 
data from Table 8.3.3 for different ranges of x. 
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Figure 8.3.8 Plot of points (x4, y) f“r data in Tab‘e 8.3.3, with a ‘ine thr“ugh the irst and 
last points
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Figure 8.3.9 Plot of points (x3.5, y) f“r data in Tab‘e 8.3.3, with a ‘ine thr“ugh the irst and 
last points
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The graphs indicate that our empirical model f seems to be satisfactory for x from 
1.3 t“ 1.7. T“ verify the ’“de‘, we sh“u‘d c“‘‘ect additi“na‘ data in this range and 
plot all the data with the graph of the model to observe how they agree. Moreover, 
for each newly observed x value, we should determine how closely the observed and 
predicted y values agree.

Clearly, other empirical models than y = 0.393131 + 0.988186x3.5 approximate 
the data. Empirical modeling is an art as well as a science. Several metrics aid in 
determination of which model to use but are beyond the scope of this text.
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Figure 8.3.10 Gra”h “f ‘inear regressi“n ‘ine with ”“ints “f Figure 8.3.9
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Figure 8.3.11 Graph of f(x) = 0.393131 + 0.988186x3.5 and the data of Table 8.3.3
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Solving for y in a One-Term Model

In this section, we consider empirical model development in which we make a trans-
formation on y and perhaps on x, too, instead of just on x, as in the previous section. 
The data, which Table 8.3.5 lists, are from NIST dental research in monomolecular 
adsorption, where x represents pressure and y volume (NIST Misra1a Dataset). Fig-
ure 8.3.13 dis”‘ays a ”‘“t “f these data, with a faint ‘ine between the irst and ‘ast 
points to emphasize concavity.
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Figure 8.3.12 Graph of Figure 8.3.11 for x between 1.3 and 1.7

Table 8.3.5 
Data from Misra1aEM.dat, Available on the Textbook’s 
Website and in the NIST Misra1a Dataset

 x y

  77.6 10.07
 114.9 14.73
 141.1 17.94
 190.8 23.93
 239.9 29.61
 289.0 35.18
 332.8 40.02
 378.4 44.82
 434.8 50.76
 477.3 55.05
 536.8 61.01
 593.1 66.40
 689.1 75.47
 760.0 81.78



364 Module 8.3

Quick Review Question 4

Suppose xLst and yLst are lists of x- and y-values, respectively. Give the command in 
an appropriate computational tool to plot these data with large points, as in Figure 
8.3.13. If necessary in your tool, assign to pts the list of ordered pairs of correspond-
ing x- and y-values, and then use pts in a plot command.

The dots of Figure 8.3.13 are in a concave-down pattern. As with concave-up 
graphs having coordinates greater than 1, we can transform these data from concave 
down to straight in one of two ways:

1. Pull points left, shrinking the distance from the y-axis to the rightmost points 
more than to those on the left. Thus, perform an operation on x that results in 
smaller values and has more effect on the larger x-values than on the smaller 
ones.

2. Extend points up, stretching the distance from the x-axis to the higher points 
more than to the lower ones. Thus, perform an operation on y that results in 
greater values and has more effect on the larger y-values than on the smaller 
ones.

Using transformations from the sequence in Table 8.3.4, we can transform x or y. 
As Figure 8.3.14 shows, the plot of points (x, y6/5) is close to being linear. 

With a it functi“n, we can “btain the f“‘‘“wing equati“n “f a ‘ine that ca”tures 
the trend of these points:

u = 5.46747 + 0.267834z

Substituting y6/5 for u and x for z, we obtain the following equation:

y6/5 = 5.46747 + 0.267834x
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Figure 8.3.13 P‘“t “f data fr“’ Tab‘e 8.3.5 with a ‘ine thr“ugh the irst and ‘ast ”“ints
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After solving for y by raising each side t“ the 5/6 ”“wer, we can deine “ur ’“de‘, as 
follows:

f(x) = ( 5.48629 + 0.267869x)5/6

Figure 8.3.15 shows the graph of this function, along with the original data. We 
should always plot our model with the original data to verify that the function really 
does capture the trend of the untransformed data.
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Figure 8.3.14 Plot of (x, y6/5) f“r data fr“’ Tab‘e 8.3.5, with a ‘ine thr“ugh the irst and ‘ast 
points

Figure 8.3.15 Graph of y = ( 5.48629 + 0.267869x)5/6 and data from Table 8.3.5
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Multiterm Models

In a NIST study, A. Filippelli collected the data that Figure 8.3.16 displays (see the 
section “Downloads”). The curve almost has the look of a logistic function. How-
ever, the right tail does not trend asymptotically to a value but keeps increasing in a 
wavy fashion. Thus, one possibility is to develop a polynomial empirical model. 
Such models are particularly useful because we can readily differentiate and inte-
grate a polynomial for further analyses.

We can it t“ the data a f“urth-degree ”“‘yn“’ia‘, which is a ‘inear c“’binati“n 
of 1, z, z2, z3, and z4 with the form y = b0 + b1z + b2z2 + b3z3 + b4z4. Without the use of 
a it functi“n, in a ”r“cess ca‘‘ed interpolation, we can deter’ine the c“eficients bi 
by s“‘ving ive equati“ns si’u‘tane“us‘y. F“r each equati“n, a different data ”“int is 
substituted into the general fourth-degree polynomial, with z being replaced by the 
irst c““rdinate and y by the sec“nd. Then, we s“‘ve the ive equati“ns si’u‘tane-
ously for bi, i = 0, 1, 2, 3, 4. Often, as in this example, we have many more data than 
inter”“‘ati“n requires. A it functi“n “btains a ‘east-squares it “f the genera‘ f“urth-
degree polynomial to all the data instead of interpolating through a limited number 
“f s”eciic ”“ints. Thus, f“r the re’ainder “f this secti“n, we c“ntinue t“ use a it 
functi“n. Figure 8.3.17, which is a ”‘“t “f the data and the f“urth-degree ”“‘yn“’ia‘ 
that a it functi“n returns, revea‘s sh“rtc“’ings “f the ’“de‘. 

Because this f“urth-degree ”“‘yn“’ia‘ has an inadequate nu’ber “f hi‘‘s  and 
va‘‘eys  t“ re”resent the data, we it higher-degree ”“‘yn“’ia‘s t“ the ”“ints. F“r a 

linear combination of expressions, 1, z, z2,. . ., z10, a it functi“n returns the f“‘‘“wing 
tenth-degree ”“‘yn“’ia‘: 8.45174 + 1.36940z  5.35707z2  0.34983z3  0.410472z4 + 
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Figure 8.3.16 Plot of data from NIST’s Filip Dataset
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0.256553z5 + 0.119554z6 + 0.0231150z7 + 0.00240206z8 + 0.000131536z9 + 2.98847 × 
10–6z10. A graph of this polynomial with the data reveals that this empirical model 
captures the trend of the data better than smaller-degree polynomials (see Figure 
8.3.18).

As indicated previously, we must be very careful not to apply this model outside 
the range of the data. The danger is particularly striking when we consider polyno-
’ia‘s. F“r exa’”‘e, Figure 8.3.19 sh“ws the dra’atic s‘ant “f this ”“‘yn“’ia‘ –ust 
one unit to the right and left of the graph in Figure 8.3.18.
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Figure 8.3.17 P‘“t “f the itted f“urth-degree ”“‘yn“’ia‘ and the data
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Figure 8.3.18 P‘“t “f tenth-degree ”“‘yn“’ia‘ itted t“ the data in NIST s Filip Dataset
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Advanced Fitting with Computational Tools

Many c“’”utati“na‘ t““‘s have res“urces f“r itting ”“‘yn“’ia‘, ‘“gistic, sine, ex”“-
nential, and general functions to data. Tutorial 3 for your computational tool ex-
plores some of these techniques.

Exercise

1. Using all the data in NorrisEM.dat, which is available on the textbook’s web-
site, construct an empirical model using a computational tool. Compare your 
results to the model that was developed with a subset of the data in the sec-
tion “Linear Empirical Model.”

Projects

F“r Pr“–ects 1 9, deve‘“” a ’“de‘ f“r each “f the f“‘‘“wing data sets (see the secti“n 
“Downloads”).

 1. N“Int1EM.dat  2. PontiusEM.dat  3. Wa’”‘er1EM.dat 
 4. Lancz“s3EM.dat  5. Gauss1EM.dat  6. MGH17EM.dat 
 7. Lancz“s1EM.dat  8. MGH10EM.dat  9. BoxBODEM.dat 
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Figure 8.3.19 Plot of tenth-degree polynomial model inside and outside the range of the data
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10. With a system dynamics tool or a computational tool, solve 
dP

dt
P= 0 10.  

with P0 = 100 using Euler’s, Runge-Kutta 2 (EPC), and Runge-Kutta 4 

techniques (see Chapter 6). For each method, compute the relative errors at 

t = 100 f“r severa‘ va‘ues “f ∆t ‘ess than “r equa‘ t“ 1.0, such as ∆t = 0.1, 

0.2, 0.3, . . ., 1.0; ”‘“t re‘ative err“r at ti’e 100 versus ∆t; and it a functi“n 
to the data. Do your results agree with the statement in Module 6.4, “Runge-

Kutta 4 Meth“d,  that re‘ative err“rs “f the techniques are O(∆t), O(∆t2), 

and O(∆t4), respectively?

Using an advanced data-itting functi“n fr“’ y“ur c“’”utati“na‘ t““‘, deve‘“” an 
empirical model for each of the following data sets.

11. With the SIR i‘e in y“ur syste’ dyna’ics t““‘, f“r a ”articu‘ar situati“n, 
generate data for the simulated number of susceptibles (S), infecteds (I), 

and rec“vereds (R) (see M“du‘e 4.3, M“de‘ing the S”read “f SARS
Containing Emerging Disease,” and Figure 4.3.3). Use a small time step, 

but take data over larger intervals, such as t = 1 da. Discover functions that 

it each “f the si’u‘ated datasets. 
12. With the VerticalSpring i‘e in y“ur syste’ dyna’ics t““‘, f“r a ”articu‘ar 

situation, generate data for length (m) of an undamped spring with respect 

t“ ti’e in sec“nds (see M“du‘e 3.2, M“de‘ing Bungee Ju’”ing,  and Fig-

ure 3.2.4). Use a small time step, but take data over larger intervals. Dis-

c“ver a sine functi“n that its the si’u‘ated data.
13. With the Bungee i‘e in y“ur syste’ dyna’ics t““‘, f“r a ”articu‘ar situa-

tion, generate data for length (m) of a damped spring with respect to time in 

sec“nds (see M“du‘e 3.2, M“de‘ing Bungee Ju’”ing,  and Figure 3.2.5). 
Use a small time step, but take data over larger intervals. Discover a poly-

n“’ia‘ “r “ther functi“n that its the si’u‘ated data.
14. With the simplePendulum i‘e in y“ur syste’ dyna’ics t““‘, f“r a ”articu‘ar 

situation, generate data for angle in radians, angular velocity in radians per 

second, and angular acceleration in radians per second squared versus time 

in sec“nds (see M“du‘e 3.3, Tic— T“c— The Pendu‘u’ C‘“c—,  and Fig-

ure 3.3.3). Use a small time step, but take data over larger intervals. Dis-

c“ver sine functi“ns that it the si’u‘ated datasets.
15. With the Rocket i‘e in y“ur syste’ dyna’ics t““‘, f“r a ”articu‘ar situati“n, 

generate data for position (m) and velocity (m/sec) of a rocket versus time 

in sec“nds (see M“du‘e 3.4, U”, U”, and Away R“c—et M“ti“n,  and 
Figure 3.4.2). Use a small time step, but take data over larger intervals. 

Disc“ver functi“ns that it the si’u‘ated datasets. F“r ve‘“city, e’”‘“y tw“ 
functi“ns, “ne quadratic and “ne ‘inear, ”ieced t“gether. F“r ”“siti“n, it a 
polynomial to the velocity data.

16. The Average Daily Temperature Archive (University of Dayton 2012) has 

datasets for the average daily temperatures over a period of several years 

f“r a nu’ber “f cities in the United States. F“r “ne city, ind a sine functi“n 
that its the data. 
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Answers to Quick Review Questions

1. The following are linear combinations of u and v:

 A.  5u – 18v =(5)u + (–18)v
 B.  18v + 5u = (–18)v + (5)u
 C.  7u = (7)u + (0)v
 D.  u/5 + v/3 =(1/5)u + (1/3)v

2–4. The text’s website has an 8_3QRQ.”df i‘e, which c“ntains these syste’-
dependent Quick Review Questions and answers, available for download for 
various computational tools.
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SIMULATING WITH RANDOMNESS





MODULE 9.1

Computational Toolbox—Tools of the Trade: Tutorial 4

Prerequisite: M“du‘e 8.1, C“’”utati“na‘ T““‘b“x T““‘s “f the Trade:  
Tutorial 3.”

Download

From the textbook’s website, download Tutorial 4 in the format of your computa-
tional tool or in PDF format. We recommend that you work through the tutorial and 
answer all Quick Review Questions using the corresponding software.

Introduction

This fourth computational toolbox tutorial, which is available from the textbook’s 
website in your system of choice, prepares you to use the system to complete proj-
ects for this and subsequent chapters. The tutorial introduces the following functions 
and concepts: 

• Random numbers
• Modulus function
• If statement
• Counting
• L“ading a i‘e
• The mean and standard deviation functions
• Histograms

The module gives computational examples and Quick Review Questions for you to 
complete and execute in the desired software system. 



MODULE 9.2

Simulations

Download

The text’s website has an Area i‘e, which c“ntains the ’“de‘ “f this ’“du‘e, avai‘-
able for download for various system dynamics tools. 

Introduction

Modeling is the application of methods to analyze complex, real-world problems in 
order to make predictions about what might happen with various actions. When it is 
t““ dificu‘t, ti’e-c“nsu’ing, c“st‘y, “r danger“us t“ ”erf“r’ ex”eri’ents, the 
modeler might resort to computer simulation, or having a computer program imi-
tate reality, in order to study situations and make decisions. Simulating a process, he 
or she can consider various scenarios and test the effect of each. 

For example, a scientist might simulate the effects of ozone depletion on global 
warming. Scientists at Los Alamos National Laboratory used simulations to predict 
the behavior of nuclear reactions before physically testing a nuclear bomb during 
World War II (LANL 2012). Lawrence Livermore National Laboratory scientists 
have used molecular dynamics simulations to study the total energy and other quan-
tities associated with molecules as they interact with one another. At the same labo-
ratory, they have studied the greenhouse effect, making predictions based on levels 
“f vari“us ”“‘‘utants (LLNL 2012). Bef“re the Gu‘f War, ’i‘itary ex”erts si’u‘ated 
a number of scenarios to test preparedness. The National Oceanographic and Atmo-
spheric Administration performs simulations to predict the path and intensities of 
hurricanes (NOAA 2012). The B“eing C“’”any designed the B“eing 777 air”‘ane 
completely using computer-aided design and tested the designs using computer sim-
u‘ati“ns bef“re c“nstructi“n began. A‘s“, light si’u‘at“rs a‘‘“w ”i‘“ts t“ ”ractice 
e’ergency situati“ns under safe c“nditi“ns (B“eing 2012).

We use simulations if one or more of the following statements is true:
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Highlight
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Highlight
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• It is not feasible to do the actual experiment, as in the study of the greenhouse 
effect.

• The cost in money, time, or danger of the actual experiment is prohibitive, as 
with the study of nuclear reactions.

• The system does not exist yet, as in the development of an airplane.
• We want to test various alternatives, as with hurricane predictions 

Disadvantages of Computer Simulations

Despite the many applications and advantages, the following are some disadvan-
tages of computer simulations:

• The simulation may be expensive in time or money to develop.
• Because it is i’”“ssib‘e t“ test every a‘ternative, we can ”r“vide g““d s“‘u-

tions but not the best solution.
• The resu‘ts ’ay be dificu‘t t“ verify because “ften we d“ n“t have rea‘-w“r‘d 

data.
• We cannot be sure we understand what the simulation actually does.
• When a simulation is probabilistic, involving an element of chance, we should 

be careful of our conclusions.

Element of Chance

At the core of most simulations is random number generation. The computer gener-
ates a sequence of numbers, called random numbers, or pseudorandom numbers. 
An algorithm actually produces the numbers, so they are not really random, but they 
a””ear t“ be rand“’. Because “f the e‘e’ent “f chance, we “ften ca‘‘ a si’u‘ati“n a 
Monte Carlo simulation, named after the gambling capital. A Monte Carlo simula-
tion is a probabilistic model involving an element of chance. Hence, such a simula-
tion is not deterministic but is probabilistic or stochastic, and the results of each ex-
ecution can vary from those of other runs.

To illustrate the difference between a Monte Carlo simulation model and a purely 
’athe’atica‘ ’“de‘, c“nsider a ”r“b‘e’ “f inding the area between the curve f(x) 
and the x-axis on the interval from x = 0 to x = 2, as in Figure 9.2.1. The area is cer-
tainly deterministic; exactly one answer exists for the area. Moreover, if the function 
f has an antiderivative from 0 to 2, then we can determine the area by integrating, 
f x dx( )

0

2
∫ .

Alternatively, although Monte Carlo simulation is probabilistic, the technique 
can model deterministic behavior, such as area under a curve. One method used to 

Deinition A Monte Carlo simulation is a probabilistic model involving an 
element of chance.
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estimate the area is to enclose the region in a rectangle of known dimensions, as in 
Figure 9.2.2. We have ”ic—ed a rectang‘e “f an arbitrary height, such as 1.5, higher 
than f in the interval. Then, we hypothetically throw darts at the rectangle, counting 
the total number of darts thrown and the number of darts that hit below the graph. To 
si’u‘ate a dart thr“w, we generate a rand“’ l“ating-”“int nu’ber, randomX, be-
tween 0.0 and 2.0 for the x-c““rdinate and a rand“’ l“ating-”“int nu’ber, ran-

domY, between 0 and 1.5 for the y-coordinate. If the simulated dart hits on the curve, 
then its y-coordinate, randomY, would be f(randomX); while randomY < f(randomX) 
if and only if the dart strikes the board below the curve. To estimate the desired area, 
we take the proportion of dart hits below the curve times the total area of the rect-
angle, which we calculate as follows: 

area ≈ (area “f enc‘“sing rectang‘e) number of darts below
number of darts







We can easily compute the area of the rectangle as width times height; in the case 
“f Figure 9.2.2, the area is (2)(1.5) = 3.0. If we thr“w 1000 darts and 778 “f the’ hit 

Historical Note: Genesis of Monte Carlo Simulations
Computer random number generators, which are essential for Monte Carlo 
simulations, have been available since some of the earliest days in the develop-
ment of computers. John von Neumann, who introduced the idea of storing 
programs as well as data in the memory of the computer, also helped to develop 
the irst a‘g“rith’ f“r generating ”seud“rand“’ nu’bers with the c“’”uter. 

B“rn in Buda”est, Hungary, in 1903, v“n Neu’ann received his Ph.D. in 
’athe’atics at the age “f 22. He c“ntributed signiicant‘y t“ a variety “f areas: 
the mathematical foundation of quantum theory, logic, the theory of games, 
economics, nuclear weapons, and meteorology, as well as theory and applica-
tions in early computer science. Many stories tell of his phenomenal memory, 
reasoning ability, and computational speed. He could memorize a column of 
the telephone book at a glance, and he had mastered calculus by age 8. Halmos 
wrote, in Legend “f J“hn v“n Neu’ann,

When his e‘ectr“nic c“’”uter was ready f“r its irst ”re‘i’inary test, s“’e-
one suggested a relatively simple problem involving powers of 2. (It was 
something of this kind: what is the smallest power of 2 with the property that 
its deci’a‘ digit f“urth fr“’ the right is 7? This is a c“’”‘ete‘y trivia‘ ”r“b-
lem for a present-day computer: it takes only a fraction of a second of ma-
chine time.) The machine and Johnny started at the same time, and Johnny 
inished irst. (Ha‘’“s 1973). 

During World War II, physicists on the Manhattan Project developed the con-
cept of Monte Carlo simulation. Scientists knew the behavior of one neutron, 
but they did not have a formula for how a system of neutrons would behave. 
Although they needed to understand such behavior to construct dampers and 
shields for the atomic bomb, experimentation was too time consuming and 
dangerous. John von Neumann and Stanislaus Ulam developed the technique 
of Monte Carlo simulation to solve the problem.
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be‘“w the gra”h, then 778/1000 = 0.778 = 77.8% “f the t“ta‘ ‘ands be‘“w f. This 
fraction is an estimate of the portion of the rectangle that is below f; ab“ut 77.8% “f 
the rectangle’s area rests between f and the x-axis. Thus, we estimate this smaller 
area by ta—ing 77.8% “f the t“ta‘ area “f the rectang‘e,

area ≈ 3.0 * 778/1000 = 2.334

Quick Review Question 1

Consider the linear function g(x) = 3x + 1 from x = 1 to 5.

a.  Give the height of the smallest rectangle enclosing the desired area.
b.  Suppose a random hit of a simulated dart is at location (3, 11). Does the dart 

hit above, below, or on the curve?

0.5 1.0 1.5 2.0
x

0.5

1.0

1.5

y

f

Figure 9.2.1 Graph of a function f(x) on the interval between x = 0 and x = 2

2.01.0 1.50.50
x

y

1.5

1.0

0.5

0

Figure 9.2.2 Dartb“ard  enc‘“sing area in Figure 9.2.1
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c.  Using geometry, compute the area under g.
d.  Compute the area of the smallest enclosing rectangle.
e.  Suppose a simulation “throws” a million “darts” at the rectangle. Although 

any value is possible, from the following choices, indicate the most likely 
”ercentage “f darts ‘anding be‘“w the gra”h: 33%, 48%, 59%, 62%, 71%.

f.  If 600,000 of a million darts land below the graph, estimate the area.

Notice that with a mathematical model, we do not necessarily need a computer. 
However, with a computer simulation, we do. The latter has much more of an ex-
”eri’enta‘ lav“r. Each ti’e we run this M“nte Car‘“ si’u‘ati“n, we are very ‘i—e‘y 
to get a different result, and one that is not the exact value. However, over many 
simulations using the same parameters, in this and many problems, the results tend 
to an equilibrium solution, which here is the area under the curve.

Of course, if we can compute the exact area analytically, we should. However, it 
is i’”“ssib‘e t“ ind an ana‘ytic f“r’ f“r the integra‘ “f ’any functi“ns, such as 

f x x( ) cos ( )= +2 1, which Figure 9.2.1 ”ictures. In such situati“ns, we ’ust e’”‘“y 
other techniques, such as a Monte Carlo simulation, to estimate the area. Moreover, 
as we see in this and the following chapters, computer simulation is a useful tech-
nique for examining innumerable problems that do not have exact answers.

Measure of Quality

Theoretically, for the area problem, we can obtain a better estimate by throwing a 
‘arger nu’ber “f darts. In this case, we deine the nu’ber “f darts in “ne si’u‘ati“n 
to be larger or run the simulation many times, taking the mean (average) of the area 
estimates from all the runs. The latter technique has the advantage of enabling us to 
use the standard deviation ( ) of the estimates from the different executions as a 
measure of the quality of the overall estimate. About 68.3% of the estimates are 
within ±  of the mean. Thus, for a mean of 6.2838 and a standard deviation of 
0.442276, 68.3% “f the area esti’ates are between 6.2838  0.442276 = 5.79602 
and 6.2838 + 0.442276 = 6.72608. A s’a‘‘ standard deviati“n re‘ative t“ the ’ean 
indicates a certain c“nsistency f“r ’“st “f the si’u‘ati“ns and gives us ’“re c“ni-
dence in the mean as an estimate of the area.

Quick Review Question 2 

a.  Suppose the mean of a number of simulations to compute the area under a 
curve is 40.10 and the standard deviati“n is 0.20. Is the esti’ate 39.94 within 
1 standard deviation of the mean?

b.  Is it better for the standard deviation to be smaller or larger?

Simulation Development

As with syste’ dyna’ics ’“de‘ing, “ur irst ste” sh“u‘d not be to start typing on the 
computer. In the long run, we will save time and improve the quality of our work if 
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we start by ana‘yzing the ”r“b‘e’ and f“r’u‘ating the si’u‘ati“n ’“de‘ “n ”a”er
considering data, making simplifying assumptions, determining the variables and 
units, establishing relationships among variables and submodels, determining equa-
tions, and breaking the problem into small tasks, which will become functions. 

Upon implementation, we should be conscious of making our code readable and 
understandable. Meaningful names for variables and constants help to make the  
program more self-documenting, “r se‘f-ex”‘anat“ry. By c“nventi“n and f“r se‘f-
documentation, constant names, such as NUM_SIMULATIONS, are usually in all 
capitals. As we are writing a function, we should always include comments in the 
body and an opening comment describing what the function does, input parameters, 
and returned values. It is amazing how easy it is to forget what a function or other 
segment of code does, even when we wrote it only a few hours earlier.

Each function should have no more than 30, and often many fewer, lines of code. 
It is much easier to think about a small function than become mired in the details of 
a much longer one or of an entire program. Particularly if we are using virtually the 
same segment of code in several places, we should consider developing a function to 
handle the task. Thus, if we think of a better algorithm or need to correct the func-
tion’s code, we need only adjust the instructions in one place. 

M“re“ver, it is ’uch easier t“ ind a bug in “ne functi“n than in an entire ”r“-
gram. After writing a function, we should test the implementation immediately and 
th“r“ugh‘y bef“re deve‘“”ing an“ther functi“n. Besides testing f“r ty”ica‘ situa-
tions, we should ensure that the function behaves properly at the boundaries, or ex-
tremes, of possible parameter values. 

With most computational tools, we can easily test individual functions and per-
form rapid prototyping of a problem’s solution. With prototyping, we implement a 
”re‘i’inary versi“n “f the s“‘uti“n “r ”art “f the s“‘uti“n, which we ‘ater can reine 
to be more complete. Of course, as well as testing the individual functions, we should 
test that all the functions work properly together in the entire program.

With a prototype or full implementation, if at all possible, we should use real data 
t“ verify “ur resu‘ts. D“es “ur si’u‘ati“n ’atch rea‘ity? We “ften ind that we ’ust 

Historical Note: Origin of the Terms Bug and Debugging

The ter’ bug “riginates with the irst e‘ectr“’echanica‘, genera‘-”ur”“se 
computer, the Mark I, completed during World War II. The lack of air-condi-
tioning meant that the windows were left open on hot summer days. On one 
such day, the computer malfunctioned, and after hours of testing, the labora-
t“ry w“r—ers wa‘—ed int“ the ’achine (rea‘‘y it was that big!) and f“und the 
”r“b‘e’. A ’“th ‘“dged “n the c“ntacts was ”reventing the l“w “f e‘ectricity. 
The insect was carefully pasted it into the logbook with the note, “First actual 
case of bug being found.” Grace Murray Hopper, who worked on the Mark I 
and deve‘“”ed the irst ”r“gra’ (a c“’”i‘er) t“ trans‘ate fr“’ a c“’”uter ‘an-
guage to a machine’s language, is credited with popularizing the terms bug 
and debugging. The famous bug is now on display at the Smithsonian Institu-
ti“n s Nati“na‘ Museu’ “f A’erican Hist“ry (Kidwe‘‘ 1998).
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return to earlier steps in the modeling process, perhaps reconsidering simplifying 
assu’”ti“ns and reining “ur ’“de‘ t“ i’”r“ve the resu‘ts.

When we have a good working model, we can exercise the simulation with differ-
ent sets of parameters and use the results to explain why the real system we are simu-
lating behaves as it does, to predict what would happen under various circumstances, 
and to make decisions about how to control or modify that system.

Multiplicative Linear Congruential Method (Optional)

Many people have contributed to the theory of random numbers, which are so useful 
in c“’”uter si’u‘ati“ns. In 1949, D. J. Leh’er ”resented “ne “f the best techniques 
for generating uniformly distributed pseudorandom numbers, the linear congruen-
tial method.

One simple linear congruential random number generator that generates values 
between 0 and 10, inclusive, is as follows:

 r0 = 10
rn = (7rn–1 + 1) mod 11, for n > 0 

The initial value in the sequence of random numbers, r0 = 10, is the seed. The mod 
functi“n returns the re’ainder. F“r exa’”‘e, 71 ’“d 11 is 5, the re’ainder in the 
divisi“n “f 11 int“ 71. Thus, substituting r0 = 10 on the right-hand side of the second 
‘ine “f the deiniti“n, the generating function, we calculate r1 = (7 · 10 + 1) ’“d 
11 = 5. After we calculate one “random number,” to evaluate the next, we substitute 
that value into the expression on the right-hand side. Consequently, the next random 
number is r2 = (7 · 5 + 1) mod 11 = 36 mod 11 = 3.

Quick Review Question 3

Using this random number generator and r2 = 3, calculate the next random number, 
r3, in the sequence. 

Continuing in this fashion, we obtain ten pseudorandom numbers 5, 3, 0, 1, 8, 2, 
4, 7, 6, 10 bef“re the sequence starts re”eating. A ’axi’u’ “f 11 n“nnegative inte-
gers is generated for computation with mod 11. 

Sh“u‘d we desire l“ating-”“int nu’bers between 0 and 1, we divide each nu’-
ber in the sequence by the modulus, 11, to obtain the following sequence:

 
5

11

3

11

0

11

1

11

8

11

2

11

4

11

7

11

6

11

10

11
, , , , , , , , ,  

or

0.454545, 0.272727, 0.0, 0.0909091, 0.727273, 0.181818,  
0.363636, 0.636364, 0.545455, 0.909091

F“r this c“’”utati“n, the s’a‘‘est ”“ssib‘e ”seud“rand“’ l“ating-”“int nu’ber is 
0.0 and the largest is (modulus – 1)/modulus = 10/11. Thus, l“ating-”“int nu’bers 
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that we generate by dividing by the modulus are in the interval [0.0, 1.0), or the in-
terval between the two values that includes 0.0 but not 1.0.

Not all choices of multiplier and modulus are good. For example, consider a simi-
lar function with a multiplier of 5, r0 = 10 and rn = (5rn–1 + 1) mod 11 for n > 0. This 
functi“n ”r“duces “n‘y ive nu’bers 7, 3, 5, 4, 10 bef“re returning t“ 7. The 
random number generator should give as long a sequence as possible. Another desir-
able characteristic of such functions is that the sequence appears random. For ex-
ample, using the function r0 = 10 and rn = (2 rn–1) ’“d 11, we “btain the sequence 9, 
7, 3, 6, 1, 2, 4, 8, 5, 10. With a subsequence containing powers of 2, the sequence 
does not appear random.

Much research has been done to discover choices for multiplier and modulus that 
give the largest possible sequence that appears random. For built-in random number 
generators, modulus is often the largest integer a computer can store, such as 
231  1 = 2,147,483,647 “n s“’e ’achines. F“r this ’“du‘us, a ’u‘ti”‘ier “f 16,807 
and an increment of 0 produce a sequence of 231 – 2 elements.

Different Ranges of Random Numbers

Many computational tools have generators that can produce uniformly distributed 
integer or real random numbers in various ranges. Other software systems have lim-
ited options, such as a generator for only nonnegative random integers or no genera-
tor at all. The previous section described the linear congruential method for generat-
ing a random integer from 0 up to the modulus, where by up to we mean not including 
the ’“du‘us. We a‘s“ saw h“w t“ “btain a l“ating-”“int c“unter”art with va‘ue fr“’ 
0.0 up to 1.0 by dividing by the modulus. In this section, we discuss how to obtain 
unif“r’‘y distributed integer “r rea‘ rand“’ nu’bers in any range. M“du‘e 9.3 c“n-
siders how to generate random numbers from other distributions.

For this discussion, suppose that rand is a unif“r’‘y distributed rand“’ l“ating-
”“int nu’ber fr“’ 0.0 u” t“ 1.0. Su””“se, h“wever, that we need a rand“’ l“ating-
”“int nu’ber fr“’ 0.0 u” t“ 5.0. Because the ‘ength “f this interva‘ is 5.0, we ’u‘ti-
ply rand by this value, 5.0, to stretch the interval of numbers. Mathematically, we 
have the following:

0.0  rand < 1.0

The general form for the linear congruential method to generate pseudoran-
dom integers from 0 up to, but not including, modulus is as follows:

 r0 = seed

 rn = (multiplier rn–1 + increment) mod modulus, for n > 0

where seed, modulus, and multiplier are positive integers and increment is a 
nonnegative integer
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Thus, multiplying by 5.0 throughout, we obtain the correct interval, as shown:

0.0  5.0 rand < 5.0

If the lower bound of the range is different from 0, we add that bound. For ex-
a’”‘e, if we need a rand“’ l“ating-”“int nu’ber fr“’ 2.0 u” t“ 7.0, we ’u‘ti”‘y by 
the ‘ength “f the interva‘, 7.0  2.0 = 5.0, t“ ex”and the range. Then, we add the 
lower bound, 2.0, to shift, or translate, the result so that the following inequalities 
hold:

2.0  (7.0  2.0) rand + 2.0 < 7.0

or

2.0  5.0 rand + 2.0 < 7.0

 

Quick Review Question 4

Suppose rand is a rand“’ l“ating-”“int nu’ber fr“’ 0.0 u” t“ 1.0. 

a.  Give an ex”ressi“n t“ “btain a rand“’ l“ating-”“int nu’ber fr“’ 14.5 u” t“ 
24.5.

b.  Give the range “f rand“’ nu’bers f“r the ex”ressi“n 73.9rand + 21.2.

Frequently, we need a more-restricted range of random integers than from 0 up to 
modulus. For example, a simulation might require random integer temperatures be-
tween 0 and 99, inc‘usive. One ’eth“d “f restricting the range is t“ ’u‘ti”‘y a l“at-
ing-point random number between 0.0 and 1.0 by 100 (the number of integers from 
0 thr“ugh 99, “r 99 + 1) and then return the integer part (the number before the 
decimal point). For example, suppose rand is 0.692871. Mu‘ti”‘ying by 100, we 
“btain 100 · 0.692871 = 69.2871. Truncating, we “btain an integer (69) between 0 
and 99.

Sometimes we want the range of random integers to have a lower bound other 
than 0, f“r exa’”‘e, fr“’ 100 t“ 500, inc‘usive. Because we inc‘ude 100 and 500 as 
options, the number of integers from 100 to 500 is one more than the difference in 
these values, (500 – 100 + 1) = 401. As with the last example, we multiply this value 
by rand to expand the range. Then, we add the lower bound, 100, to the product to 
translate the range to start at 100 as follows:

100.0  401rand + 100 < 501.0

Specifying Random Floating-Point Numbers in Other Ranges

If rand is a rand“’ l“ating-”“int nu’ber such that 0.0  rand < 1.0, then 
(max – min)rand + min is a rand“’ l“ating-”“int nu’ber fr“’ min up to 
max that satisies the f“‘‘“wing inequa‘ity:

min  (max – min) rand + min < max
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Finally, we take the integer part of the result, which we write here as applying a 
function INT. 

100  INT(401rand + 100) < 501

or

100  INT(401rand + 100) ≤ 500

Because the l“ating-”“int nu’bers (401rand + 100) are less than 501.0, after trun-
cation, the largest possible integer part is 500.

Quick Review Question 5

Suppose rand is a rand“’ l“ating-”“int nu’ber fr“’ 0.0 u” t“ 1.0. Assu’e that 
INT is a functi“n that returns the integer ”art “f a l“ating-”“int nu’ber.

a.  Give an expression to obtain a random integer from 28 to 41, inclusive.
b.  Give the range “f rand“’ nu’bers f“r the ex”ressi“n INT(73 rand + 21).

Exercises 

Eva‘uate Exercises 1 3.

1. 349 ’“d 7 2. 4621 mod 100 3. 11,382 mod 542
4. Consider the following linear congruential random number generator:

 r0 = 8697
rn = (229rn–1) ’“d 349, f“r n > 0

 a. Compute the next three random numbers.
 b.  From the sequence of integers in Part a, compute an appropriate sequence 

“f l“ating-”“int nu’bers between 0 and 1.
 c.   Give the maximum number of random numbers this function can gener-

ate.
5. Repeat Exercise 4 for the following random number generator:

 r0 = 1021
rn = (467rn - 1) mod 1024, for n > 0

Specifying Random Integers in Other Ranges

If rand is a rand“’ l“ating-”“int nu’ber such that 0.0  rand < 1.0, then 
INT((max – min + 1)rand + min) is a random integer from min to max, inclu-
sive, that satisies the f“‘‘“wing inequa‘ity:

min  INT( (max – min + 1)·rand + min)  max

where INT is a function that returns the integer part of a number.
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6. Repeat Exercise 4 for the following random number generator:

 r0 = 8367
rn = (229rn–1 + 1) mod 10,000, for n > 0

7. The following guidelines for choice of modulus, multiplier, and increment 
have been developed through computer testing of random number 
generators:

• The modulus is a positive integer.
• The multiplier and increment are nonnegative integers less than the 

modulus.
• If working on a decimal machine, choose the modulus to be a large power 

of 10 for easy computation of the mod function. Most computers, how-
ever, are binary machines, so that the modulus should be a large power of 
2, such as 232. Division by 232 moves the binary point 32 places to the left 
in a binary number.

• On a binary computer, choose multiplier such that multiplier mod 8 = 5 
and 0.01modulus < multiplier < 0.99modulus.

• No integer great than 1 should divide both the increment and the modulus.

 Give three choices for a multiplier that meets these suggested criteria with a 
modulus of 220.

8. a.  If the modulus is 232 and the increment is a nonnegative integer less than 
10, ‘ist the ch“ices f“r the incre’ent based “n the guide‘ine in Exercise 7 
that no integer greater than 1 should divide both the modulus and the 
increment.

 b.  List choices for a nonnegative increment less than 10 if the modulus is 
1019.

F“r the f“‘‘“wing exercises, assu’e that rand is a rand“’ l“ating-”“int nu’ber 
fr“’ 0.0 u” t“ 1.0 and that INT is a functi“n that returns the integer ”art “f a nu’-

ber. F“r each exercise, write an ex”ressi“n t“ return a rand“’ nu’ber in the given 
interva‘.

 9. rand“’ l“ating-”“int nu’ber fr“’ 0.0 u” t“, but n“t inc‘uding, 20.0 
10. rand“’ l“ating-”“int nu’ber fr“’ 6.0 u” t“, but n“t inc‘uding, 26.0 
11. rand“’ l“ating-”“int nu’ber fr“’ 35.8 u” t“, but n“t inc‘uding, 73.4 
12. rand“’ l“ating-”“int nu’ber fr“’ 8.0 u” t“, but n“t inc‘uding, 4.0 
13. rand“’ integer between 0 and 20, inc‘usive thus, in {0, 1, 2, . . ., 20}
14. random integer between 6 and 26, inclusive
15. rand“’ integer between 35 and 73, inc‘usive
16. random integer between –8 and 4, inclusive

Projects

F“r Pr“–ects 1 7, d“ the f“‘‘“wing:

 a.  In the case of 2D problems, plot the function, f.
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 b.  Using the Monte Carlo technique, discussed in the section “Element of 

Chance,  with y“ur c“’”utati“na‘ t““‘, deine a functi“n with a ”ara’e-

ter f“r the nu’ber “f darts that returns an esti’ate “f the indicated va‘ue. 
Use ”ractices as discussed in the secti“n Si’u‘ati“n Deve‘“”’ent.

 c.  Deine a functi“n that ca‘‘s the functi“n fr“’ Part b 1000 ti’es and re-

turns the ’ean and standard deviati“n “f the resu‘ts.
 d.  Using your computational tool, calculate the answer with integration.

1. the area between the curve for f x x( ) cos ( )= +2 1  and the x-axis from x = 0 
to x = 2

2. the area between the curve for f(x) = x2 and the x-axis from x = 2 to x = 3
3. the area between the curve for f(x) = ex

2

 and the x-axis from 0 to 1
4. An esti’ate “f π. The area “f a circ‘e is πr2, where r is the radius. The equa-

tion of a circle of radius r with center at the origin is x2 + y2 = r2. Use a circle 
“f radius 1. C“nsider the quarter “f the circ‘e in the irst quadrant with 
0  x  1 and 0  y  1, and ’u‘ti”‘y y“ur resu‘t by 4.

5. An estimate of the volume of a sphere of radius 1 whose equation is 
x2 + y2 + z2  1. C“nsider the ”“rti“n “f the s”here with x  0, y  0, and z 

 0; and ’u‘ti”‘y y“ur resu‘t by 8. In the case “f three di’ensi“ns, a ”“int 
has three coordinates (x, y, z). Notice that Monte Carlo integration is useful 
for dimensions beyond two. 

6. An estimate of sin( )x dx
2

2

3
∫ . Note that the function is not entirely above or 

entirely below the x-axis, so we must adjust the algorithm in the text to esti-
mate the integral. Recall that where a function is negative (below the x-axis), 
its integral is the negative of the area between the curve and the x-axis.

7. Repeat Project 6 for ( )sin( )1
0

2 −∫ x dx
xπ .

8. Create a i‘e c“ntaining deiniti“ns “f y“ur “wn rand“’ nu’ber seeding and 
generating functions, as the following parts describe. Do the requested parts 
with an appropriate computational tool without using its built-in random 
nu’ber generat“r. Starting with Part b, deine severa‘ versi“ns “f y“ur “wn 
random number generator, if possible, each with the name myRandom. In a 
call to myRandom, the parameters determine which form the computational 
tool uses. If your computational tool does not allow the use of the same func-
tion name for different versions of the function, use different function names. 
Each deiniti“n s f“r’at sh“u‘d ’i’ic that “f y“ur t““‘ s c“rres”“nding 
bui‘t-in functi“n. The deiniti“ns in Parts c h sh“u‘d ca‘‘ the functi“n “f Part 
b. The function myRandom should assign a new pseudorandom number to 
myRandValue. Employ the old value of myRandValue to generate the new 
value. Test each function thoroughly by generating and checking a number 
of values. 

 a.  Give the function mySeedRandom tw“ deiniti“ns that seed y“ur rand“’ 
number generator by assigning a value to a variable, myRandValue. Be-
cause the value of myRandValue must persist and be available to both 
deiniti“ns “f mySeedRandom, depending on your computational tool, 
you may need to declare myRandValue as a g‘“ba‘ variab‘e. First, deine 
mySeedRandom that assigns an argument to myRandValue. Thus, mySeed-

Random with an argument of 12345 assigns 12345 to myRandValue. Sec-
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“nd, deine mySeedRandom with no argument so that myRandValue be-
comes an integer associated with the date and time of day. For testing, 
clear out any value of myRandValue, and test that mySeedRandom with 
various arguments assigns the correct value to myRandValue.

 b.  Deine a functi“n myRandom, as in Exercise 4a, to return a random inte-
ger between 0 and 348, inclusive. If myRandValue does not have a value 
because we did not call mySeedRandom, use an initial value of 1 for 
myRandValue. 

F“r each “f the f“‘‘“wing ”arts, deine a functi“n, if ”“ssib‘e, ca‘‘ed ’yRand“’, t“ 
return the designated —ind “f rand“’ nu’ber. In each deiniti“n, direct‘y “r indi-
rect‘y (by ca‘‘ing a functi“n that ca‘‘s this functi“n) inv“—e the functi“n in Part b.

 c.  a rand“’ l“ating-”“int nu’ber fr“’ 0.0 u” t“ 1.0, ex”ressed as a deci-
mal number, not a fraction

 d.  a rand“’ l“ating-”“int nu’ber fr“’ 0.0 u” t“ max

 e.  a rand“’ l“ating-”“int nu’ber fr“’ min up to max

 f.  0 or 1 at random
 g.  a random integer between 0 and max, inclusive
 h.  a random integer between min and max, inclusive

 9. Do Project 8 using the generator in Exercise 5.
10. Do Project 8 using the generator in Exercise 6.
11.  Do Project 8 for a modulus of 231  1, a ’u‘ti”‘ier “f 16,807, and an incre-

ment of 0.

Answers to Quick Review Questions

1. a.  16 = 3(5) + 1
 b.  above because 3(3) + 1 = 10 < 11
 c.  40 = (16 + 4)(4)/2 is the area of the trapezoid
 d.  64 = (5 – 1)(16)
 e.  62% because 40/64 = 62.5%
 f.  38.4 square units = (64)(600,000/1,000,000) = (64)(0.6)
2. a.  Yes, nu’bers between 40.10  0.20 and 40.10 + 0.20 that is, between 

39.90 and 40.30 are within “ne standard deviati“n “f 40.10.
 b.  smaller
3. 0 because r2 = (7 * 3 + 1) ’“d 11 = 22 ’“d 11 = 0
4. a.  10.0rand + 14.5 
 b.  21.2 u” t“ 95.1 = 21.2 + 73.9
5. a.  INT(14rand + 28) = INT((41 – 28 + 1)rand + 28)
 b.  integers fr“’ 21 t“ 93, inc‘usive, “r {21, 22, 23, . . ., 93}
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MODULE 9.3

Random Numbers from Various Distributions

Downloads

For several computational tools, the text’s website has a Distributions i‘e, which 
contains descriptions of built-in random number generators for various probability 
distributions, and a 9_3QRQ.pdf i‘e, which c“ntains syste’-de”endent text a‘“ng 
with Quick Review Questions and answers, available for download.

Introduction

M“nte Car‘“ si’u‘ati“ns are i’”“rtant t““‘s in scientiic w“r— and yie‘d s“‘uti“ns t“ 
problems unobtainable by other means. Moreover, where alternative solutions are 
possible, such simulations often provide greater precision for the same computer cost. 

A Monte Carlo simulation requires the use of unbiased random numbers. The 
distribution of these numbers is a description of the portion of times each possible 
outcome or each possible range of outcomes occurs on the average over a great 
many trials. However, the distribution that a simulation requires depends on the 
problem. In this module, we discuss the algorithms for generating random numbers 
from several types of distributions.

Statistical Distributions

In M“du‘e 9.2, Si’u‘ati“ns,  we c“nsidered the ‘inear c“ngruentia‘ ’eth“d t“ gen-
erate ”seud“rand“’ nu’bers with a unif“r’ distributi“n. Su””“se a s”eciied range 

Deinition A distribution of numbers is a description of the portion of times 
each possible outcome or each possible range of outcomes occurs 
on the average.
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is partitioned into intervals of the same length. With a uniform distribution, the 
generator is just as likely to return a value in any of the intervals. Equivalently, in a 
list of many such random numbers, on the average each interval contains the same 
nu’ber “f generated va‘ues. F“r exa’”‘e, Figure 9.3.1 ”resents a hist“gra’ with 10 
intervals of length 0.1 of a tab‘e “f 10,000 rand“’ l“ating-”“int nu’bers, unif“r’‘y 
distributed from 0.0 up to 1.0. As expected, approximately one-tenth of the 10,000, 
or 1000, numbers appears in each subdivision. Thus, the curve across the tops of the 
bars is virtua‘‘y a h“riz“nta‘ ‘ine “f height 1000 (Figure 9.3.2). As we wi‘‘ see, ’eth-
ods for generating random numbers in other distributions depend on our ability to 
produce random numbers with a uniform distribution. 
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Figure 9.3.1 Hist“gra’ “f 10,000 rand“’ l“ating-”“int nu’bers, unif“r’‘y distributed 
from 0.0 up to 1.0
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y

Figure 9.3.2 Horizontal line at height 1000 approximately goes across the top of the histo-
gra’ in Figure 9.3.1
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Quick Review Question 1

Suppose we have a uniformly distributed random number generator that returns a 
l“ating-”“int va‘ue fr“’ 0.0 t“ 1.0. 

a.  Suppose we break the interval from 0.0 to 1.0 into 5 subintervals. If a list 
contains 100 random numbers, give the number of values we expect in each 
subinterval on average.

b.  In a histogram of this data, give the height of each bar on average.
c.  In general, for a list of n random numbers between 0.0 and 1.0 and for i sub-

intervals, give the number of values we expect in each subinterval on 
average.

d.  In a histogram of this data, give the height of each bar on average.

A distribution can be discrete or continuous. To illustrate the difference between 
the terms discrete and continuous, a digital clock shows time in a discrete manner, 
from one minute to the next, while a clock with two hands indicates time in a con-
tinuous, unbroken way. Similarly, as you pass the time-and-temperature sign in front 
“f a ban—, “ne ’“’ent it ’ight register 28 °C, the next it ’ight –u’” t“ 29 °. As a 
continuous counterpart, a thermometer outside a house might have a column of liq-
uid, smoothly rising and falling to indicate the temperature. In a simulation of pollu-
tion, we might generate a random integer to indicate the number of dust particles in 
a cubic meter of air. The distribution of such values is discrete. In the same simula-
ti“n, f“r the ve‘“cities “f the ”artic‘es, we ’ight generate rand“’ l“ating-”“int va‘-
ues that have a continuous distribution. However, as noted in Module 5.2, “Errors,” 
the expression of numbers in a computer is discrete. Thus, at times we employ dis-
crete numbers to represent continuous events.

For a discrete distribution, a probability function (or density function, or prob-
ability density function) returns the probability of occurrence of a particular argu-
ment value. For example, P(1382) might be the probability that the random number 
generator returns 1382, indicating 1382 dust particles. However, if a distribution is 
continuous, the probability of occurrence of any particular value is zero. Thus, for a 
continuous distribution, a probability function (or density function, or probability 
density functi“n) indicates the ”r“babi‘ity that a given “utc“’e fa‘‘s inside a s”eciic 
range of values. The integral of the probability function from the lower to the upper 
bound of the range, which is the area under that portion of the curve, gives the prob-
ability that the outcome is in that range. For example, the probability that the random 
velocity in the x-direction of a dust particle is between 3.0 and 4.0 mm/s is the inte-
gra‘ “f the ”r“babi‘ity density functi“n fr“’ 3.0 t“ 4.0. Figure 9.3.3 ”resents a h“ri-
zontal line of height 1 that is the graph of the probability density function (P(x) = 1) 
for uniformly generated random numbers with values from 0.0 up to 1.0. The prob-
abi‘ity that a unif“r’ rand“’ l“ating-”“int nu’ber between 0.0 and 1.0 fa‘‘s be-
tween 0.6 and 0.8 is the integral of the function f(x) = 1 from 0.6 to 0.8. Thus, the 

Deinitions A discrete distribution is a distribution with discrete values. A 
continuous distribution is a distribution with continuous values.



Simulating with Randomness 393

probability is the area of the shaded region between 0.6 and 0.8, which is (0.8 – 0.6)
(1.0) = 0.2. Such a random number is between 0.6 and 0.8 for 0.2 = 20% of the time.

Quick Review Question 2

a.  In the generation of random numbers to represent throws of a fair die (values 
1, 2, 3, 4, 5, or 6), is the distribution discrete or continuous?

b.  For the random numbers of Part a, give the value of the probability density 
function with an argument of 2.

c.  F“r the ”r“babi‘ity density functi“n with gra”h in Figure 9.3.3, give the ”r“b-
abi‘ity that the rand“’ nu’ber fa‘‘s between 0.2 and 0.7.

d.  Can a probability density function ever have a negative value?
e.  Give the va‘ue “f the deinite integra‘ (i.e., area under the curve) “f a ”r“ba-

bility density function over its entire range of values.

Discrete Distributions

If an equal likelihood of each of several discrete events exists, in a simulation we can 
generate a random integer to indicate the choice. For example, in a simulation of a 

Deinitions For a discrete distribution, a probability function (or density 
function, or probability density function) returns the probabil-
ity of occurrence of a particular argument. For a continuous dis-
tribution, a probability function (or density function, or proba-
bility density function) indicates the probability that a given 
“utc“’e fa‘‘s inside a s”eciic range “f va‘ues.
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Figure 9.3.3 Pr“babi‘ity density functi“n f“r the distributi“n with hist“gra’ in Figure 9.3.1
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”“‘‘en grain ’“ving in a luid, su””“se at the next ti’e ste” the grain is –ust as ‘i—e‘y 
t“ ’“ve in any directi“n n“rth, east, s“uth, west, u”, “r d“wn in a three-di’en-
sional (3D) grid. A probability of 1/6 exists for the grain to move in any of the six 
directions. With these equal probabilities, we can generate a uniformly distributed 
integer between 1 and 6 to indicate the direction of movement.

Quick Review Question 3

From the text’s website, download your computational tool’s 9_3QRQ.pdf i‘e f“r 
this system-dependent question to give a command for generating an appropriate 
random integer indicating a pollen grain’s movement.

Frequently, however, the discrete choices do not carry equal probabilities, as in 
the following example. For example, in an initial 3D grid, suppose only 15% of the 
grid sites, or cells, contain pollen grains. Thus, a probPollen = 15% = 0.15 chance 
exists for a cell to contain a grain. If the location is to contain a pollen grain, we 
make the cell’s value equal to POLLEN = 1; otherwise, the cell’s value becomes 
EMPTY = 0. To initialize a grid for a simulation, we must designate for each cell if 
the location contains pollen or not. For each cell, we need to generate a uniformly 
distributed rand“’ l“ating-”“int nu’ber fr“’ 0.0 u” t“ 1.0. On the average, 15% “f 
the time this random number is less than 0.15, while 85% of the time the number is 
greater than “r equa‘ t“ 0.15 (Figure 9.3.4). Thus, t“ initia‘ize the ce‘‘, if the rand“’ 
number is less than 0.15, we make the cell’s value POLLEN; otherwise, we assign 
EMPTY to the cell’s value. Thus, using the probabilities and cell values above, we 
employ the following logic to initialize each cell in the grid:

if a random number is less than probPollen (i.e., pollen grain at site)  
set the cell’s value to POLLEN

else (i.e., no pollen grain at site)  
set the cell’s value to EMPTY 

To Generate Random Numbers in Discrete Distribution with Equal 
Probabilities for Each of n Events

Generate a uniform random integer from a sequence of n integers, where each 
integer corresponds to an event.

0 probPollen = 0.15

15% 85%

1.0

Figure 9.3.4 15% “f l“ating-”“int va‘ues between 0 and 1 are ‘ess than probPollen = 0.15
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Quick Review Question 4

From the text’s website, download your computational tool’s 9_3QRQ.pdf i‘e f“r 
this system-dependent question to give a statement to implement initializing a cell, 
possibly with pollen.

In many situations, more than two choices exist. For example, suppose in a simu-
lation involving animal behavior, a lab rat presses a food lever (FOOD = 1) 15% of 
the time, presses a water lever (WATER = 2) 20% of the time, and does neither (NEI-

THER = 3) the remainder of the time. For the simulation, we consider the range split 
int“ three ”arts, as in Figure 9.3.5, and again generate a unif“r’‘y distributed ran-
d“’ l“ating-”“int nu’ber fr“’ 0.0 t“ 1.0. If the nu’ber is ‘ess than 0.15, which 
occurs 15% of the time, we assign FOOD = 1 to the rat’s action. For 20% of the 
time, the uniformly distributed random number is greater than or equal to 0.15 and 
less than 0.35. With a random number in this range, we make the rat’s action be 
WATER = 2. A random number is greater than or equal to 0.35 with a probability of 
65%. In such a case, we assign NEITHER = 3 to the rat’s action. Thus, with rand 
being a unif“r’‘y distributed rand“’ l“ating-”“int nu’ber fr“’ 0.0 t“ 1.0, we e’-
ploy the following logic for determination of the rat’s action:

if a random number, rand, is < 0.15  
the rat presses the food lever

else if rand < 0.35 (i.e., 0.15  rand < 0.35) 
the rat presses the water lever

e‘se (i.e., 0.35  rand) 
the rat does neither

To Generate Random Numbers in Discrete Distribution with Probabili-
ties p1, p2, . . ., pn for Events e1, e2, . . ., en, Respectively, Where 
p1 + p2 + ∙ ∙ ∙ + pn = 1

Generate rand, a unif“r’ rand“’ l“ating-”“int nu’ber in [0, 1).
If rand < p1, then return e1

else if rand < p1 + p2, then return e2

. . .
else if rand < p1 + p2 + . . . + pn - 1, then return en - 1

else return en

0 1.00.15

15% 65%

0.35

20%

Figure 9.3.5 15% of values less than 0.15; 20% between 0.15 and 0.35; 65% between 0.35 
and 1.0
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Quick Review Question 5

Consider the following English description of a segment that returns the direction 
(N, E, S, or W) a simulated animal moves:

if a random number, rand, is < 0.12  
return N

else if rand < 0.26  
return E

else if rand < 0.69  
return S

else  
return W 

Give the probability that the animal moves in each of the following directions:

 a.  N b.  E c.  S d.  W

Normal Distributions

A normal, or Gaussian, distribution, which statistics frequently employs, has a 

probability density function 
1

2

2
2

πσ
µ σ

e
x− −( ) ( )/

, where µ is the mean and  is the stan-

dard deviati“n (Figure 9.3.6). Figure 9.3.7 dis”‘ays a hist“gra’ “f a set “f 1000 
random numbers in the Gaussian distribution with mean 0 and standard deviation 1. 
With“ut getting int“ a f“r’a‘ deiniti“n “f standard deviati“n, 68.3% “f the va‘ues in 
a normal distribution are within ±  of the mean, µ; 95.5% are within ±2  of µ; and 
99.7% are within ±3  of µ. 

Many systems include a way to generate random numbers in a normal distribu-
tion with a given mean and standard deviation. For those that do not, we can employ 
the Box-Muller-Gauss method. The ’eth“d irst generates a unif“r’‘y distributed 
random number, a, between 0 and 2π. Then, the technique c“’”utes b, the product 
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Figure 9.3.6 Probability density function for normal distribution with mean 0 and standard 
deviation 1
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of the standard deviation ( ) and the square root of the negative natural logarithm of 

a uniformly distributed random number between 0.0 and 1.0, or b = σ − ( )2 ln rand , 

where rand is a uniformly distributed random number between 0.0 and 1.0. The two 
values b · sin(a) + µ and b · cos(a) + µ are normally distributed with mean µ and 
standard deviation .

Quick Review Question 6

Suppose for a simulation involving test scores, we need random numbers in a normal 
distributi“n with ’ean 70 and standard deviati“n 8. Su””“se 5.32 and 0.754 are uni-
formly distributed random numbers between 0 and 2π and between 0.0 and 1.0, re-
spectively. Using these values, evaluate the following, rounding to two decimal places:

a.  a
b.  b
c.  The normally distributed number employing sine
d.  The normally distributed number employing cosine

Quick Review Question 7

From the text’s website, download your computational tool’s 9_3QRQ.pdf i‘e f“r 
system-dependent text and a question to assign to n a random number in a normal 
distributi“n with ’ean 70 and standard deviati“n 8.

Box-Muller-Gauss Method for Normal Distribution with Mean µ and 
Standard Deviation σ

compute b sin(a) + µ and b cos(a) + µ where
a = a unif“r’ rand“’ nu’ber in [0, 2π)
rand = a uniform random number in [0, 1)

b = σ − ( )2 ln rand
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Figure 9.3.7 Histogram of a normal distribution with mean 0 and standard deviation 1
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Exponential Distributions

A model for unconstrained growth or decay employs an exponential function ert, 
where t is time and r is the growth rate or –r the decay rate, respectively. Functions 
of the form f(t) = |r|ert with r < 0 and t > 0 or f(t) = |r|ert with r > 0 and t < 0 are 
”r“babi‘ity density functi“ns in which the area under each curve is 1. Figure 9.3.8 
contains the graph of a function in this category, f(t) = 2e–2t. To obtain a number in 
such a distribution, the exponential method divides the natural logarithm of a uni-
formly distributed random number from 0.0 to 1.0 by the rate constant (r), that is, 
ln(rand)/r, where rand is random between 0 and 1. For example, to generate num-
bers in the distribution f(t) = 2e–2t, we calculate ln(rand)/( 2). Figure 9.3.9 dis”‘ays a 
histogram of 1000 such exponentially distributed random numbers.

We e’”‘“y the sa’e a‘g“rith’ t“ generate rand“’ nu’bers fr“’ ’inus ininity 
to 0 for probability density function f(t) = |r|ert = rert with r > 0. Figure 9.3.10 sh“ws 
the graph of one such function, f(t) = 2e2t; and Figure 9.3.11 dis”‘ays a hist“gra’ “f 
1000 pseudorandom numbers that the algorithm ln(rand)/2 generates.

Quick Review Question 8

Suppose we are performing a simulation involving a radioactive substance with ini-
tial mass 0.1 mg and decay rate 0.1.

a.  Give the probability density function.
b.  Using 0.754 as a unif“r’‘y distributed rand“’ nu’ber between 0.0 and 1.0, 

determine a random number to 3 decimal places in this exponential distribution.

Exponential Method for Probability Density Function |r|ert with r < 0 and 
t > 0 or f(t) = |r|ert with r > 0 and t < 0

compute ln(rand)/r, 
where rand = a uniform random number in [0.0, 1.0)
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Figure 9.3.8 Probability density function f(t) = 2e–2t for t > 0
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Figure 9.3.10 Probability density function f(t) = 2e2t for t < 0
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Figure 9.3.9 Histogram of 1000 random numbers ln(rand)/(–2), where rand is a uniformly 
generated random number in [0.0, 1.0)
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Figure 9.3.11 Histogram of 1000 numbers ln(rand)/2, where rand is a uniformly generated 
random number in [0.0, 1.0)
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Quick Review Question 9

From the text’s website, download your computational tool’s 9_3QRQ.pdf i‘e f“r 
system-dependent text and a question about an exponential probability density 
function.

Rejection Method

The exercises and projects explore several methods for generating random numbers 
in “ther s”eciic distributi“ns. When these techniques d“ n“t a””‘y, h“wever, we can 
employ the rejection method. First, we obtain a uniformly distributed random num-
ber, randInterva‘, in the requested interval. If the probability density function at 
randInterva‘ is greater than a uniform random number from 0.0 to an upper bound 
for the function, we return randInterva‘. Otherwise, we repeat the process.

Quick Review Question 10 

Consider the probability density function f(x) = 2π sin(4πx) from 0.0 to 0.25 (Figure 
9.3.12). F“r each “f the f“‘‘“wing ”airs “f unif“r’ rand“’ nu’bers in the indicated 

Rejection Method for Random Numbers in Interval [a, b) for Distribu-
tion f(x) 

if f(randInterval) > randUpperBound, then return randInterval, where 
randInterva‘ is a uniform random number in interval [a, b)
randUpperBound is a uniform random number in [0, upper bound for f)

else repeat the process
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Figure 9.3.12 f(x) = 2π sin(4πx) from 0.0 to 0.25
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intervals, determine the random number returned in the distribution 2π sin(4πx), if 
any:

Exercises

D“ Exercises 1 8 with an a””r“”riate c“’”utati“na‘ t““‘.

1. For the logic toward the end of the section “Discrete Distributions,” used to 
determine the action of a rat, write a segment to return FOOD, WATER, or 
NEITHER, depending on the value of the random number. 

2. This questi“n refers t“ the B“x-Mu‘‘er-Gauss ’eth“d, which generates ran-
d“’ nu’bers fr“’ a n“r’a‘ distributi“n with ’ean = 9 and standard 
deviation = 2. 

 a.  Assign to a a unif“r’‘y distributed rand“’ nu’ber between 0 and 2π.
 b.  Assign to b the product of the standard deviation (stdDev = 2) and the 

square root of the negative natural logarithm of a uniformly distributed 
random number between 0.0 and 1.0.

 c.  Return a list of pairs of numbers with (b sin(a) + mean) as the irst c““rdi-
nate and (b cos(a) + mean) with mean = 9 as the sec“nd that the B“x-
Mu‘‘er-Gauss ’eth“d ”r“duces. Be sure t“ use the sa’e a and b for both  
members of a pair. 

d.  Assign to tb‘Gauss a list of 1000 random numbers in the normal distribution 
with ’ean = 9 and standard deviati“n = 2. One way “f acc“’”‘ishing this 
task is to generate a table/array of 500 ordered pairs similar to Part c and to 
latten the tab‘e/array t“ a c“rres”“nding ‘ist “f 1000 nu’bers. 

 e.  Display a histogram of these values.
 f.  If available, use a built-in method to generate the table in Part d.
 g.  Display a histogram of these values.
3. a.  Write a statement to assign to tblExp a table/array of 1000 random num-

bers in the ex”“nentia‘ distributi“n 7e 7t using the exponential method. 
Display a histogram of tblExp.

 b.  If available, use a built-in method to generate the table in Part a. Display a 
histogram of these values.

4. Using the exponential method, give an expression to generate numbers with 
the probability density function 2e2(t–3) for t < 3. Display a histogram of these 
values.

5. The expression ln(rand)/( 9) + 4, where rand is a random number from 0 to 
1, generates pseudorandom numbers for what exponential probability den-
sity function and interval?

6. This question develops code for the rejection method with the probability 
density function f(x) = 2π sin(4πx). 

 Interva‘ fr“’ Interva‘ fr“’ 

Part 0.0 to 0.25 0.0 to 2π sin(π/2) = 2π

a 0.221 0.85
b 0.049 5.59
c 0.130 2.69
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 a.  Deine the functi“n f(x) = 2π sin(4πx). See Figure 9.3.12.
 b.  Plot f(x) from 0.0 to 0.25.
 c.  Assign to variable rand a uniform random number from 0.0 to 0.25, the 

interva‘ “f interest in Figure 9.3.12.
 d.  Deine the functi“n rej with no arguments to return a random number 

using the rejection method. If f(rand) is greater than a uniform random 
nu’ber fr“’ 0 t“ 2π sin(4π/8) = 2π sin(π/2) = 2π, which is the ’axi’u’ 
value of f(x), return rand. If the condition is false, we must reject rand and 
search for another candidate. To do so, we call the function rej again. Be 
sure rand gets a new value with each function call. (The process of a func-
tion, such as rej, calling itself is recursion.)

 e.  Write a statement to generate a list of 1000 random numbers from 0.0 to 
0.25 with the probability density function f(x) = 2π sin(4πx).

 f.  Display a histogram of these values.
7. The maximum method is for distributions of the form nxn–1, with x being 

from 0.0 to 1.0 and n being a ”“sitive integer ‘ess than 17. The ’eth“d ca‘‘s 
for taking the maximum of n uniformly distributed random numbers. 

 a.  Deine a functi“n f(x) = 3x2, and plot f from 0.0 to 1.0.
 b.  Write a statement to return a list of three uniform random numbers in  

[0.0, 1.0).
 c.  Write a statement to return a random number in the distribution 3x2 using 

the maximum method. 
 d.  Write a statement to assign to tblMax a list of 1000 numbers in the distri-

bution 3x2. 
 e.  Display a histogram of the table in Part d.
 f.  Deine a functi“n randMax with parameter n to return a random number 

in the distribution nxn–1, with x being a number from 0.0 to 1.0 and n being 
a ”“sitive integer ‘ess than 17. Use the ’axi’u’ ’eth“d.

 g.  Repeat Parts d and e using randMax from Part f.
8. The root method is for distributions of the form nxn–1, with x being from 0.0 

to 1.0 and n being a nonnegative number not in {1, 2, 3, . . ., 16}. The method 
calls for taking the nth root of a uniformly distributed random number be-
tween 0.0 and 1.0. 

 a.  Deine a functi“n randRoot with parameter n to return a random number 
using the root method.

 b.  Deine a functi“n f(x) = 3x2, and plot f from 0.0 to 1.0.
 c.  Using randRoot, write a statement to assign to tblRoot a list of 1000 num-

bers in the distribution 0.5x–0.5, where x is between 0 and 1.
 d.  Display a histogram tblRoot from Part c.

Projects

1. Using a c“’”utati“na‘ t““‘, deine y“ur “wn ”ac—age “f rand“’ nu’ber 
generat“rs with c“ntinu“us distributi“ns using the f“‘‘“wing ’eth“ds: B“x-
Muller-Gauss method, exponential method, rejection method, maximum 
’eth“d (Exercise 7), and r““t ’eth“d (Exercise 8). D“ n“t use bui‘t-in func-
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tions other than a uniform random number generator. Test the package 
thoroughly.

2. Using a c“’”utati“na‘ t““‘, deine y“ur “wn ”ac—age “f rand“’ nu’ber 
generators with myRandom deiniti“ns as in Pr“–ect 8 “f M“du‘e 9.2, Si’u-
lations.” Using these, do Project 1, except do not use any built-in functions. 

Answers to Quick Review Questions

 1. a.  20
 b.  20
 c.  n/i
 d.  n/i
 2. a.  discrete
 b.  1/6 = 0.1667
 c.  0.5 = (0.7  0.2)(1)
 d.  no
 e.  1
3–4. From the text’s website, download your computational tool’s 9_3QRQ.pdf 

i‘e f“r an answer t“ this syste’-de”endent questi“n.
 5. a.  12%
 b.  14% = 0.26 – 0.12
 c.  43% = 0.69  0.26
 d.  31% = 0.1  0.69
 6. a.  a = 5.32

 b.  b = 8 2 0 754− ( )ln .  = 6.01

 c.  b sin(a) + µ = 6.01 sin(5.32) + 70 = 65.1
 d.  b cos(a) + µ = 6.01 c“s(5.32) + 70 = 73.4
 7. From the text’s website, download your computational tool’s 9_3QRQ.pdf 

i‘e f“r an answer t“ this syste’-de”endent questi“n.
 8. a.  f(t) = 0.1e–0.1t

 b.  ‘n(0.754)/( 0.1) = 2.824
 9. From the text’s website, download your computational tool’s 9_3QRQ.pdf 

i‘e f“r an answer t“ this syste’-de”endent questi“n.
10. a.  0.221 because f(0.221) = 2π sin(4π(0.221)) = 2.239 > 0.85
 b.  nothing because f(0.049) = 2π sin(4π(0.049)) = 3.629 < 5.59
 c.  0.130 because f(0.130) = 2π sin(4π(0.130)) = 6.271 > 2.69
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MODULE 9.4

Computational Toolbox—Tools of the Trade: Tutorial 5

Prerequisite: M“du‘e 9.1. C“’”utati“na‘ T““‘b“x T““‘s “f the Trade:  
Tut“ria‘ 4.

Download

From the textbook’s website, download Tutorial 5 in the format of your computa-
tional tool or in PDF format. We recommend that you work through the tutorial and 
answer all Quick Review Questions using the corresponding software.

Introduction

This ifth c“’”utati“na‘ t““‘b“x tut“ria‘, which is avai‘ab‘e fr“’ the textb““— s 
website in your system of choice, prepares you to use the system to complete proj-
ects for this and subsequent chapters. The tutorial introduces the following functions 
and concepts: 

• Taking part of a list
• Maximum and minimum functions
• Animation
• Logical operators
• Array/list membership
• While loop

The module gives computational examples and Quick Review Questions for you to 
complete and execute in the desired software system. 
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Random Walk

Downloads

For several computational tools, the text’s website has a RandomWalk i‘e, which 
contains code for the module’s algorithms, available for download. The site also has 
a data i‘e AverageDistances.dat for Project 3.

Introduction

One technique of Monte Carlo simulations that has many applications in the sciences 
is the random walk. Random walk refers to the apparently random movement of an 
entity. In a time-driven simulation, we depict the entity in a cell on a rectangular 
grid. At any time step, the entity can move, perhaps under certain constraints, at 
random to a neighboring cell.

A certain type of computer simulation involving grids is a cellular automaton. 
Cellular automata are dynamic computational models that are discrete in space, 
state, and time. We picture space as a one-, two-, or three-dimensional grid, or array, 
or lattice. A site, or cell, “f the grid has a state, and the nu’ber “f states is inite. 
Rules, or transition rules, specifying local relationships and indicating how cells 
are to change state, regulate the behavior of the system. An advantage of such grid-
based models is that we can visualize the progress of events through informative ani-
mations. For example, we can view a simulation of the movement of ants toward a 
f““d s“urce, the s”read “f ire, “r the ’“ti“n “f gas ’“‘ecu‘es in a c“ntainer. In this 
module, the next chapter, and various modules in Chapter 14, we consider many 
scientiic a””‘icati“ns inv“‘ving ce‘‘u‘ar aut“’ata.

Deinition Random walk refers to the apparently random movement of an 
entity.
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A random walk cellular automaton can model Brownian motion, which is the 
behavior of a molecule suspended in a liquid. The phenomenon bears the name of 
the Eng‘ish b“tanist R“bert Br“wn. In 1827, he “bserved the ra”id, rand“’ ’“ti“n 
of pollen particles in a liquid could not occur because of life within the pollen, as 
some conjectured. A generation later, the physicists Maxwell, Clausius, and Einstein 
explained the phenomenon as invisible liquid particles striking the visible particles, 
causing s’a‘‘ ’“ve’ents. Because diffusi“n “f ’any things, such as ”“‘‘utants in 
the at’“s”here and ca‘ciu’ in ‘iving b“ne tissue, exhibit Br“wnian ’“ti“n, si’u‘a-
ti“ns using rand“’ wa‘—s can a‘s“ ’“de‘ these ”r“cesses (Encyc‘“”edia Britannica 
1997; Ex”‘“rat“riu’ 1995).

In genetics, random walks have been used to simulate mutation of genes. As an-
other example, scientists use the method polymerase chain reaction (PCR) to make 
many copies of particular pieces of DNA. A strand of DNA contains sequences of 
four bases, A, T, C, and G. Using the random walk technique in simulations, compu-
tational scientists can determine good proportions of these bases in solution to speed 
replication of the DNA.

Algorithm for Random Walk

At each time step of a particular random walk simulation, suppose an entity moves 
in a rand“’, diag“na‘ directi“n NE, NW, SE, “r SW. T“ g“ in such a directi“n, the 
entity walks east or west one unit and north or south one unit, covering a diagonal 
distance of 2  units.

We develop a function, randomWalkPoints, with parameter, n, for the number of 
steps. The function generates such a walk and returns a list or array of the coordi-
nates of the steps. In the function body, variables x and y store the horizontal and 
vertical coordinates, respectively, of the current location, and variable lst holds a list 
“f ‘“cati“ns in the ”ath “f the entity. Because the wa‘—er starts at the “rigin, we ini-
tialize lst to be a list containing the point (0, 0). With parameter n being the number 
of steps to be taken, a loop to produce the path executes n times. Within the loop, we 
generate one random integer of 0 or 1 to determine if the entity turns to the east or 
west by incrementing or decrementing x by 1, res”ective‘y. Then, an“ther such li” 
of the coin” dictates north with an increment of y or south with a decrement. We then 
append the new point (x, y) onto the developing lst. After the loop at the end of the 
function, we return this list of points.

Following is pseudocode, or a structured English outline of the design, for the 

Deinitions A cellular automaton (plural, automata) is a type of computer 
simulation that is a dynamic computational model and is discrete 
in space, state, and time. Space is a grid, or a one-, two-, or three-
dimensional lattice, or array, of sites, or cells. A cell of the lattice 
has a state, and the nu’ber “f states is inite. Rules, or transition 
rules, specifying local relationships and indicating how cells are 
to change state, regulate the behavior of the system.
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function randomWalkPoints with left-facing arrows (←) indicating assignment. 
The parameter, n, appears in parentheses after the function name and a description of 
the action of the function follows. Preconditions, or the conditions that must be true 
for the function to behave properly, appear after “Pre.” Preconditions should include 
any assumptions and information, such as parameters and their descriptions, that the 
function needs to meet its objectives. Postconditions, which follow “Post,” describe 
the state “f the syste’ when the functi“n inishes executing, any err“r c“nditi“ns, 
and the information the function returns or otherwise communicates.

 

After calling randomWalkPoints to generate the list containing the points of a 
path, we can create and display a graphics representing the random walk. For ex-
ample, we might show all the random walk locations as colored dots, the path as line 
seg’ents, and the irst and ‘ast ”“ints as b‘ac— d“ts. One executi“n “f this c“de dis-
”‘ays a gra”hic si’i‘ar t“ Figure 9.5.1. Because the wa‘— is rand“’, each run “f the 
function randomWalkPoints will very probably produce a different walk. 

Quick Review Question 1

The following questions refer to randomWalkPoints:

a. After execution of the loop, how many elements does lst have?
b. Is it possible for the points (3, 5) and (3, 6) to be adjacent to each other in lst?

randomWalkPoints(n):

Function to produce a random walk, where at each time step the entity goes 
diagonally in a NE, NW, SE, or SW direction, and to return a list of the 
points in the walk

Pre: n is the number of steps in the walk.
Post: A list of the points in the walk has been returned.
Algorithm:

 x ← 0 and y ← 0
 lst ← a list containing the origin
 do the following n times:
  rand ← a random 0 or 1 
  if rand is 0
   increment x by 1
  else
   decrement x by 1
  rand ← a random 0 or 1 
  if rand is 0
   increment y by 1
  else
   decrement y by 1
  append point (x, y) onto end of lst

 return lst
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Animate Path

Visualization of the path as it develops can aid in understanding the movement of the 
entity. Figure 9.5.2 ”resents severa‘ fra’es in such an ani’ati“n.
 To generate an animation, we develop a function, animateWalk, which has as a 
parameter a list, lst, of n + 1 points in a random walk. For each i going from 1 
through n + 1, we create a gra”hics “f the irst i points of the walk, which are in a 
sub‘ist “f the irst i points of lst. Thus, we generate a sequence of n + 1 displays that 
we can animate with an appropriate computational tool. For the animation to be con-
sistent, we specify that each graphics have the same axes, between the minimum and 
maximum of all x-coordinates on the x-axis and the minimum and maximum y-coor-
dinates on the y-axis. The complete design of animateWalk follows.
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Figure 9.5.1 One possible display from execution of randomWalkPoints

animateWalk(lst)

Function to generate an animation of a random walk

Pre: lst is the list of the points in the walk.
Post: An animation of the walk has been generated.
Algorithm:

  xMin ← minimum of x-coordinates in lst

  xMax ← maximum of x-coordinates in lst

  yMin ← minimum of y-coordinates in lst

  yMax ← maximum of y-coordinates in lst

  for i going from 1 through n + 1 do the following:
dis”‘ay a gra”hics “f the irst i points of lst with the display going from 
xMin to xMax in the x-direction and from yMin to yMax in the y-direction
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Figure 9.5.2 Several frames in an animation of the developing path from one random walk
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Figure 9.5.2 (continued)

 Average Distance Covered

F“r the rand“’ wa‘— in Figure 9.5.1, 5.09902 units is the distance between the ina‘ 
point and the initial one, which are the two black dots. However, because the walks 
are rand“’, great variati“n can exist in b“th the ”aths and in the ina‘ distances fr“’ 
the starting point. Thus, to obtain an estimate of a typical distance between the start-
ing and ending points of a random walk of n steps, we should run the simulation 
many times and take the average of all the distances. In such a case, we are not inter-
ested in viewing a rand“’ wa‘—, s“ we irst deine an“ther functi“n, randomWalk-

Distance, that is similar to randomWalkPoints, but which returns the desired dis-
tance instead of the list of points in a walk. Thus, in the loop that processes each step, 
we keep only the current point, (x, y), and, after the loop, we return the distance from 
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the last point value of (x, y) and the origin, x y
2 2+ . The next Quick Review Ques-

tion designs this function.

Quick Review Question 2

Similar to randomWalkPoints, give a design for randomWalkDistance, a function 

with parameter, n, that returns the distance between the irst and ‘ast ”“int “f a ran-

dom walk of n steps.

For a function meanRandomWalkDistance, which returns the average distance 

traveled over numTests number of random walks of n steps each, we place a call to 

randomWalkPoints(n) in a loop that iterates numTests number of times. A variable, 

sumDist, accu’u‘ates the distances c“vered by the rand“’ wa‘—s. Bef“re the ‘““”, 
sumDist is initialized to zero; after the loop, this sum is divided by numTests to re-

turn the average distance. One run of meanRandomWalkDistance(25, 100) might 

return an average distance “f 5.75278 units f“r 100 si’u‘ati“ns “f rand“’ wa‘—s “f 
25 steps. The design of the function follows.

Quick Review Question 3

If we incorrectly move the initialization of sumDist inside the outer loop of mean-

RandomWalkDistance, se‘ect the ina‘ va‘ue “f sumDist:

 A. No change from current result.

 B. sumDist would be 0.

 C. sumDist w“u‘d h“‘d “n‘y the distance f“r the ina‘ ”ath.
 D. sumDist w“u‘d be undeined.

meanRandomWalkDistance(n, numTests)

Function to run a random walk simulation numTests number of times and to 
return the average distance between the irst and ‘ast ”“ints 

Pre: n is the number of steps in a walk.
 numTests is the number of times to run the simulation.
Post:  The average distance between the irst and ‘ast ”“ints has been 

returned.
Algorithm:

 let sumDist, the ongoing sum of distances, be 0
 do the following numTests times:
  add randomWalkDistance(n) to sumDist

 return sumDist / numTests as a l“ating ”“int nu’ber
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Relationship between Number of Steps  
and Distance Covered

To discern a relationship between the number of steps, n, and average distance cov-
ered in a random walk, we execute meanRandomWalkDistance(n, 100) for values of 
n from 1 to 50 and store each average distance in a list or array, listDist. Then, we 
employ the techniques of Module 8.3, “Empirical Models,” to determine the rela-
ti“nshi”. Figure 9.5.3 sh“ws a ”‘“t “f the average distances trave‘ed versus the nu’-
ber of steps. Projects 3 and 4 determine a formula for this relationship.

Exercises

On the text s website, Rand“’Wa‘— i‘es f“r severa‘ c“’”utati“na‘ t““‘s c“ntain the 
code for the functions of this module. Complete the following exercises using your 

computational tool.

1. If possible in your computational tool, revise the code of randomWalkPoints 
to replace the loop with a call to a function to formulate lst. 

2. Revise the code of randomWalkPoints or Exercise 1 to have the entity go 
with equal probability in a N, S, E, or W direction. Hint: Choose the direc-
tion based the value of a random integer, 0, 1, 2, or 3.

3. a.  Revise the code of randomWalkPoints to have the entity go in an easterly 
direction (incrementing x) with probability of 30% and in a westerly di-
rection (decrementing x) with ”r“babi‘ity “f 70%. 
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Figure 9.5.3 A plot of average distances traveled versus number of steps in a random walk
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 b.  Revise the code of Part a, to have the entity go in a northerly direction 
(incrementing y) with probability of 45% and in a southerly direction 
(decrementing y) with probability of 55%.

 c.  Give the probability for the entity going in each direction, NE, NW, SE, 
and SW.

4. Revise the code of randomWalkPoints or Exercise 1 to have the entity go in 
a N, S, E, or W direction with probabilities of 20%, 30%, 45%, or 5%, 
respectively. 

Projects

On the text s website, Rand“’Wa‘— i‘es f“r severa‘ c“’”utati“na‘ t““‘s c“ntain the 
code for the module’s algorithms. Complete the following projects using your soft-

ware system.

F“r additi“na‘ ”r“–ects, see M“du‘e 14.1, P“‘y’ers Strings “f Pear‘s,  and 
M“du‘e 14.2, S“‘idiicati“n Let s Ma—e It Crysta‘ C‘ear!  

1. Exercise 1
2. Exercise 2
3. D“wn‘“ad the data i‘e AverageDistances.dat of average distances covered 

for step sizes from 1 to 50 from the text’s website. Using the techniques of 
Module 8.3, “Empirical Models,” determine a relationship between the num-
ber of steps, n, and average distance covered in a random walk.

4. Develop code as discussed in the section on “Relationship between Number 
of Steps and Distance Covered” to obtain a list of average distances covered 
for random walks of step sizes from 1 to 50. Then, using the data the program 
generates, do the analysis of Project 3.

5. Develop code as discussed in the section on “Relationship between Number 
of Steps and Distance Covered” to obtain a list of average distances covered 
for random walks of step sizes from 1 to 50, where the entity travels E, W, N, 
or S with each step. Then, using the data the program generates, do the analy-
sis of Project 3.

6. Develop code for Exercise 3 and run the simulation for 50 time steps. Include 
this code in a loop that runs the simulation 1000 or more times. Have the seg-
ment return the portion of time the entity ends on the 50th step in each of the 
f“ur quadrants, NE, NW, SE, and SW. D“ the igures see’ t“ agree with 
your answer to Exercise 3c?

7. Develop code for Exercise 4 and run the simulation for 50 time steps. Include 
this code in a loop that runs the simulation 1000 or more times. Have the seg-
ment return the portion of time the entity ends on the 50th step in the N, S, E, 
or W direction from the starting location, the origin. On a particular run of 
the simulation, the 50th step could fall into one category, such as due north of 
the origin, or in two categories, such as N and E of the origin. Discuss the 
results in relationship to the probabilities of Exercise 4.

8. A hi—er with“ut a c“’”ass trying t“ ind the way in the dar— can ste” in any 
of eight directions (N, NE, E, SE, S, SW, W, NW) with each step. Studies 
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show that people tend to veer to the right under such circumstances. Initially, 
the hiker is facing north. Suppose at each step probabilities of going in the 
indicated directi“ns are as f“‘‘“ws: N, 19%; NE, 24%; E, 17%; SE, 10%; S, 
2%; SW, 3%; W, 10%; NW, 15%. Develop a simulation to trace a path of a 
hiker, and run the simulation a number of times. Describe the results. (Note 
that “ther than at the initia‘ ste”, this si’u‘ati“n si’”‘iies the ”r“b‘e’ by 
ignoring the direction in which the hiker faces.)

9. Perf“r’ a si’u‘ati“n “f Br“wnian ’“ti“n “f a ”“‘‘en grain sus”ended in a 
liquid by generating a 3D random walk. Using documentation for your com-
putational tool, investigate how to plot 3D graphics points and lines and cre-
ate a 3D graphic of the walk.

Answers to Quick Review Question

1. a. n + 1 elements, (0, 0) and the n appended points
 b. No, both coordinates are changed in the body of the loop.
2.

3. C. sumDist w“u‘d h“‘d “n‘y the distance f“r the ina‘ ”ath.
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randomWalkDistance(n):

Function to produce a random walk, where at each time step the entity 
g“es diag“na‘‘y, and t“ return the distance between the irst and ‘ast 
points 

Pre: n the number of steps in the walk.
Post: The distance between the irst and ‘ast ”“ints “f a ran-

dom walk of n steps was returned.
Algorithm:

 x ← 0 and y ← 0
 do the following n times:
 rand ← a random 0 or 1 
 if rand is 0, increment x by 1; else decrement x by 1
 rand ← a random 0 or 1 
  if rand is 0, increment y by 1; else decrement y by 1 

 return x y
2 2+

http://www.exploratorium.edu/xref/phenomena/brownian_motion.html
http://www.exploratorium.edu/xref/phenomena/brownian_motion.html
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Computational Toolbox—Tools of the Trade: Tutorial 6

Prerequisite: M“du‘e 9.4, C“’”utati“na‘ T““‘b“x T““‘s “f the Trade:  
Tut“ria‘ 5.

Download

From the textbook’s website, download Tutorial 6 in the format of your computa-
tional tool or in PDF format. We recommend that you work through the tutorial and 
answer all Quick Review Questions using the corresponding software.

Introduction

This sixth computational toolbox tutorial, which is available from the textbook’s 
website in your system of choice, prepares you to use the system to complete proj-
ects for this and subsequent chapters. The tutorial introduces the following functions 
and concepts: 

• Joining lists/arrays
• Finding the size of a list/array
• Visualizing a rectangular grid
• Matching patterns
• Position of a pattern in a list/array 

The module gives computational examples and Quick Review Questions for you to 
complete and execute in the desired software system. 



MODULE 10.2

Diffusion: Overcoming Differences

Downloads

For several computational tools, the text’s website has a Diffusion i‘e c“ntaining the 
simulation this module develops and a 10_2QRQ.”df i‘e c“ntaining syste’-de”en-
dent Quick Review Questions and answers available for download. 

Introduction

Heat energy is transferred by thermal conduction within or between objects where 
a temperature gradient exists. Particles or groups of particles with a higher tempera-
ture (more kinetic energy) transfer some of their energy to those at a lower tempera-
ture (less kinetic energy) upon collision. Thus, we have a diffusion of energy. 

This diffusion of thermal energy presented a real problem for astronauts returning 
from a mission. As they brought their craft into the earth’s atmosphere, the vehicle 
was traveling at about 40,000 km/h, generating tremendous friction. The tempera-
tures “n the exteri“r heat shie‘d equa‘ed 2760 °C, which is –ust “ver ha‘f the te’”era-
ture of the sun’s surface. Fortunately, the shield was effective enough to allow the 
cabin te’”erature t“ re’ain at 21°C (NASA S”in“ff 1988, 2011).

During the ‘ate 1960s thr“ugh the ear‘y 1970s, as ”art “f the A”“‘‘“ Missi“n, the 
United States sent manned spacecraft to the Moon. The heat shields for these vessels 
effectively fended off the diffusion of all that heat energy, generated upon atmo-
spheric reentry, into the spacecraft. Each heat shield was coated with an ablative 
’ateria‘ a substance that was a‘‘“wed t“ char, dissi”ating energy and f“r’ing a 
protective coating, which did not allow the heat into the spacecraft itself (NASA 
S”in“ff 1988, 2011).

A private company designed the heat shield for NASA, and the two entities col-
‘ab“rated in subsequent years t“ deve‘“” a nu’ber “f ire-retardant ”aints and f“a’s 
for military and civilian use. One of these, called Chartek, and derivative products 
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are widely used by the oil and gas industries. Further product development led to 
Interchar, a ire-retardant c“’’“n‘y used t“ c“at stee‘ f“r c“nstructi“n. With a very 
thin layer (1–8 mm), Interchar does not hinder architectural design. Steel does not 
burn, but very high temperatures can weaken the metal. So, by delaying the transfer 
“f heat energy t“ the stee‘, ireighters ’ay be ab‘e t“ ”ut “ut a ire bef“re irre”arab‘e 
damage is done; and importantly, the coating delays loss of structural integrity for 
the evacuati“n “f ”ers“nne‘ (NASA S”in“ff 1988, 2011).

Problem

In this module, we want to model the heat diffusion through a thin metal bar that has 
a constant application of heat and cold at designated locations on the bar (Cunning-
ha’ 2007). We a‘s“ want t“ deve‘“” an ani’ated scientiic visua‘izati“n t“ de”ict 
the diffusion process.

Initializing the System

To simplify the situation, we apply heat and cold through the thickness of the bar and 
assume that each internal point on a line perpendicular to the top surface of the bar 
has the same temperature. If a point on the top surface has temperature 25 °C, then 
every point directly below that location is at 25 °C. Moreover, we assume that the 
bar is in a still room and that the immediate surroundings are at the same tempera-
tures as the bar. Temperature diffuses within the bar, but external conditions do not 
affect the temperatures. Thus, we model the bar in two dimensions, length and width.

In many simulations, we model such a dynamic area with an m × n grid, or lattice, 
or a 2D rectangular array, or matrix, of numbers (Figure 10.2.1). Each cell in the lat-
tice contains a value representing a characteristic of a corresponding location. For 
example, in a cellular automaton simulation of the diffusion of heat through a metal 
bar, a cell can contain that small square’s average temperature in degrees Celsius. In 
a simulation involving a landscape, a cell might contain a moisture, nutrient, or veg-

m

n

Figure 10.2.1 Cells to model area
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etation level from 0.0 to 1.0. We can use a similar gradient to indicate the amount of 
pollution spreading through a lake.

In the case of heat diffusing through a thin metal bar, we might initialize each cell 
to be some ambient temperature, say AMBIENT = 25 °C, except for hot and cold 
spots, which might have the values HOT = 50 °C and COLD = 0 °C, respectively. 
The following algorithm initBar initializes the grid for such a bar with two hot 
s”“ts a ‘arger “ne in the ’idd‘e “f the irst c“‘u’n and a s’a‘‘er “ne three-f“urths 
the way “n the irst r“w and “ne fair‘y ‘arge c“‘d s”“t “ne-third “f the way a‘“ng 
the ‘ast r“w (Cunningha’ 2007). Because the h“t and c“‘d s”“ts are a‘ways ”resent, 
we deine a functi“n, applyHotCold, which we can call elsewhere, to assign the val-
ues HOT and COLD to appropriate cells in a bar. Using black to represent HOT, 
white for COLD, and a proportional shade of gray for temperatures between these 
values, Figure 10.2.2 illustrates the top 2D surface of such an initialized bar with a 
10 × 30 grid.

Figure 10.2.2 Initialized metal bar with black representing hot, white cold, and gray an in-
termediate temperature

initBar(m, n, hotSites, coldSites)

Function to return an m × n grid of temperatures: Cells with coordinates in 
hotSites have the value HOT; cells with coordinates in coldSites have the 
value COLD; and all other cells have the value AMBIENT

Pre: m and n are positive integers.
  hotSites and coldSites are lists of coordinates for hot and cold sites, 

respectively.
  AMBIENT, HOT, and COLD are global constants, and COLD  AM-

BIENT  HOT.
Post: An m × n grid of values as described before has been returned.
Algorithm:

 ambientBar ← m by n matrix of AMBIENT values
 return applyHotCold(ambientBar, hotSites, coldSites)
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Quick Review Question 1

From the text’s website, download your computational tool’s 10_2QRQ.”df i‘e f“r 
this system-dependent question on initializing the grid.

Heat Diffusion

At each simulation iteration, we apply a function, diffusion, to each cell site to deter-
mine its temperature at the next time step. The cell’s value at the next instant de-
pends on the cell’s current value (site) and the values of its four or eight nearest 
neighbors, as in Figure 10.2.3. The four neighbors along with the site itself in Figure 
10.2.3a comprise the von Neumann neighborhood of a site, while the nine nodes in 
Figure 10.2.3b form the Moore neighborhood of a site. For diffusion of heat 
through a metal bar, we employ Moore neighborhoods. 

applyHotCold(bar, hotSites, coldSites)

Function to accept a grid of temperatures and to return a grid with heat and 
cold applied at hotSites and coldSites, respectively

Pre: bar is a grid of values.
  hotSites and coldSites are lists of coordinates inside the grid for hot 

and cold sites, respectively.
  AMBIENT, HOT, and COLD are global constants, and COLD  AM-

BIENT  HOT.
Post:  A grid of values as described above has been returned.
Algorithm:

 newBar ← bar

 assign HOT to every newBar cell with coordinates in hotSites

 assign COLD to every newBar cell with coordinates in coldSites

 return newBar
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EW site
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EW site
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Figure 10.2.3 Cells that determine a site’s next value
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We base our model of diffusion on Newton’s law of heating and cooling, which 
states that the rate of change of the temperature with respect to time of an object is 
proportional to the difference between the temperature of the object and the tempera-
ture of its surroundings. Similarly, we can say that the change in a cell’s tempera-
ture, ∆site, from time t to time t + ∆t is a diffusion rate parameter (r) times the sum 
of each difference in the temperature of a neighbor (neighbori) and the cell’s tem-
perature (site), as follows:

∆site = r
i=
∑

1

8

 (neighbori – site), where 0 < r < 1/8 = 0.125

Thus, the site’s temperature at time t + ∆t is the following:

 site + ∆site = site + r
i=
∑

1

8

 (neighbori – site)

where 0 < r < 0.125 and the sum is over the eight neighbors. With subtraction of 
r · site “ccurring 8 ti’es, the f“r’u‘a si’”‘iies t“ the f“‘‘“wing weighted su’ “f 
temperatures of the cell and its neighbors:

site + ∆site = (1 – 8r)site + r
i=
∑

1

8

 neighbori, where 0 < r < 0.125

Similar diffusion formulas, which we explore in the projects, can have smaller coef-
icients f“r the c“rners than f“r the n“rth, east, s“uth, and west neighb“rs. H“wever, 
the su’ “f the c“eficients, which are fracti“ns “r ”ercentages, f“r each “f the nine 
cells in the neighborhood should be 1.0, or 100%.

Quick Review Question 2

Suppose the diffusion rate parameter is 0.1 and the temperatures in the cells are as in 
Figure 10.2.4. Calculate the temperature in the center cell at the next time step.

With diffusion rate (diffusionRate) and temperatures of a cell (site) and its eight 
neighbors (N, NE, E, SE, S, SW, W, NW) as parameters, the function diffusion com-
putes and returns the new temperature for the cell.

Deinitions In a two-dimensional grid, the von Neumann neighborhood of 
a site is the set of cells directly to the north, east, south, and west 
“f the site and the site itse‘f. As we‘‘ as these ive ce‘‘s, the 
Moore neighborhood of a site includes the corner cells to the 
northeast, southeast, southwest, and northwest of the site. The 
four or eight neighborhood cells not including the site are the 
site’s neighbors.

Figure 10.2.4 Temperatures in a section of the grid for Quick Review Question 1

2 3 4

0 5 6

1 3 7
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Boundary Conditions

We must be able to apply the function diffusion to every grid point, such as in Figure 
10.2.1, inc‘uding th“se “n the b“undaries “f the irst and ‘ast r“ws and the irst and 
last columns. However, the diffusion function has parameters for the grid point (site) 
and its neighbors (N, NE, E, SE, S, SW, W, NW). Thus, to apply diffusion we extend 
the boundaries by one cell in each direction, creating what we call ghost cells. Sev-
eral choices exist for values in those cells:

•  Give every extended boundary cell a constant value, such as 25. Thus, the 
boundary insulates. Figure 10.2.5 outlines an original square grid, which has 
white cells, with thick black lines, while the constant extension is in color. We 
call the situation where the boundary has a constant value an absorbing bound-
ary condition. In the case of the diffusion of heat through a metal bar, the 
boundary is similar to the bar being placed in a well ventilated room at 25 °C.

•  Give every extended boundary cell the value of its immediate neighbor. Thus, 
the va‘ues “n the “rigina‘ irst r“w “ccur again “n the new irst r“w “f gh“st 
ce‘‘s. Si’i‘ar situati“ns “ccur “n the ‘ast r“w and the irst and ‘ast c“‘u’ns 
(Figure 10.2.6). Such immediate repetitions are called relecting, or relec-
tive, boundary conditions. In the case of the spread of temperature, the 
boundary tends to propagate the current local situation: The air in the room is 
still, and the air temperature around the bar tends to mimic the temperature of 
the bar.

•  Wrap around the north-south values and the east-west values in a fashion 
similar to a donut, or torus. Extend the north boundary with a ghost row that 
is a copy of the original south boundary row, and extend the south boundary 
with a copy of the original north boundary row. Similarly, expand the column 
boundaries on the east and west sides. Thus, for a cell on the north boundary, 
its neighb“r t“ the n“rth is the c“rres”“nding ce‘‘ t“ the s“uth (Figure 10.2.7). 
Such conditions are called periodic boundary conditions. In the case of a 
simulation of heat diffusion, the area is a closed, continuous environment 
with the situation at one boundary effecting its opposite boundary cells.

In the application of heat diffusion, because we assume that the immediate sur-
roundings are at the same temperatures as on the surface of the bar, we choose to 
e’”‘“y relecting b“undary c“nditi“ns t“ ’ini’ize the i’”act “f the surr“undings. 
In the beginning, we attach new irst and ‘ast r“ws, as in Figure 10.2.8, by concate-
nating, “r attaching, the “rigina‘ grid s irst r“w, the “rigina‘ grid, and the ‘ast r“w t“ 
create a new lattice, latNS.

diffusion(diffusionRate, site, N, NE, E, SE, S, SW, W, NW)

Function to return the new temperature of a cell

Algorithm:

 return (1 - 8diffusionRate)site 
  + diffusionRate·(N + NE + E + SE + S + SW + W + NW)



424 Module 10.2

Figure 10.2.5 Absorbing boundary conditions: Grid with extended boundaries and each 
ghost having a constant value 

Figure 10.2.6 Relecting b“undary c“nditi“ns: Grid with extended b“undaries and each 
ghost cell having the value of its immediate neighbor in the original grid

Quick Review Question 3

Answer the following questions about Figure 10.2.4 as an extremely small entire 
thermal grid. 

a.  Give the size of the grid extended to accommodate boundary conditions.
b.  Give the va‘ues in the irst r“w “f the extended ’atrix, assu’ing ixed b“und-

ary c“nditi“ns with ixed va‘ue 0.
c.  Give the va‘ues in the irst r“w “f the extended ’atrix, assu’ing relecting 

b“undary c“nditi“ns, where we c“”y r“ws irst.
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d.  Give the va‘ues in the irst r“w “f the extended ’atrix, assu’ing ”eri“dic 
b“undary c“nditi“ns, where we c“”y r“ws irst.

Quick Review Question 4

From the text’s website, download your computational tool’s 10_2QRQ.”df i‘e f“r 
this system-dependent question that extends a grid as in Figure 10.2.8 by attaching a 

Figure 10.2.7 Extended grid with periodic boundary conditions

Figure 10.2.8 Grid extended by having a new irst r“w that is a c“”y “f the irst r“w “n the 
original grid and having a new last row that is a copy of the last row on the original grid
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c“”y “f the irst r“w t“ the beginning and a c“”y “f the ‘ast r“w t“ the end “f the 
original grid to form a new grid, latNS.

T“ extend the grid with relecting b“undary c“nditi“ns in the east and west direc-
ti“ns, we c“ncatenate the irst c“‘u’n “f latNS from Quick Review Question 4, 
latNS, and the last column of latNS. F“r s“’e c“’”utati“na‘ t““‘s, it is easier t“ irst 
transpose the lattice latNS, perform the same manipulation with the rows as in Quick 
Review Question 4, and then transpose the resulting lattice.

T“ c“ns“‘idate these tas—s, we deine a functi“n, relectingLat, using relecting 
boundary conditions to extend by one cell in each direction the lattice. Pseudocode 
for the function follows.

relectingLat(lat)

Function to accept a grid and to return a grid extended one cell in each direc-
ti“n with relecting b“undary c“nditi“ns

Pre: lat is a grid.
Post:  A grid extended “ne ce‘‘ in each directi“n with relecting b“undary 

conditions was returned.
Algorithm:

  latNS ← c“ncatenati“n “f irst r“w “f lat, lat, and last row of lat 
  return c“ncatenati“n “f irst c“‘u’n “f latNS, latNS, and last column 

of latNS

Quick Review Question 5

From the text’s website, download your computational tool’s 10_2QRQ.”df i‘e f“r 
this syste’-de”endent questi“n that extends a ‘attice, as in Figure 10.2.9.

Applying a Function to Each Grid Point

After extending the grid by “ne ce‘‘ in each directi“n using relecting b“undary c“n-
ditions, we apply the function diffusion to each internal cell and then discard the 
b“undary ce‘‘s. We deine a functi“n, applyDiffusionExtended, that takes an ex-
tended lattice, latExt, and returns the internal lattice with diffusion applied to each 
site. Figure 10.2.10 depicts an extended grid with the internal grid, which is a copy 
of the original lattice, in color. The number of rows of latExt is m + 2, while the 
number of columns is n + 2. As Figure 10.2.10 depicts, the number of rows (m) and 
columns (n) of the returned lattice is two less than the number of rows and columns 
of latExt, respectively. We apply the function diffusion, which has parameters diffu-

sionRate, site, N, NE, E, SE, S, SW, W, and NW, to each internal cell in lattice latExt. 
If array indices in a computational tool begin with 0, these internal cells are in rows 
1 through m and columns 1 through n. For array indices that start with 1, the internal 
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cells are in rows 2 through m + 1 and columns 2 through n + 1. We added the bound-
ary rows and columns to eliminate different cases for cells with or without one or 
more neighbors. Thus, for i going through the indices for the internal rows of the 
extended array and for j going through the internal column indices, applyDiffusion-

Extended obtains a value for each cell in a new m × n lattice by applying diffusion to 
each site with coordinates i and j. The site’s neighbors with corresponding coordi-
nates are as in Figure 10.2.11.

Figure 10.2.9 Grid fr“’ Figure 10.2.8 ex”anded by having a new irst c“‘u’n that is a 
c“”y “f the irst c“‘u’n and a new ‘ast c“‘u’n that is a c“”y “f the ‘ast c“‘u’n

m

n

n+2

m  + 2

Figure 10.2.10  Internal grid in color that is a copy of the original grid (Figure 10.2.1) em-
bedded in an extended grid 
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Quick Review Question 6

Suppose extMat is an extended ’atrix “f size 97 × 62.

a.  Give the size of the matrix applyDiffusionExtended returns.
b.  When i = 33 and j = 25, give the indices of the site’s neighbor to the north.
c.  For this site, give the indices of its neighbor to the southwest.

Quick Review Question 7

From the text’s website, download your computational tool’s 10_2QRQ.”df i‘e f“r 
this system-dependent question that develops the function applyDiffusionExtended.

Simulation Program

T“ ”erf“r’ the si’u‘ati“n “f diffusi“n “f heat thr“ugh a ’eta‘ bar, we deine a func-
tion, diffusionSim, with parameters m and n, the number of grid rows and columns, 
respectively; diffusionRate, the rate of diffusion; and t, the number of time steps. The 
function diffusionSim returns a list of the initial lattice and the next t lattices in the 
simulation. Pseudocode for diffusionSim is presented on the following page.

Quick Review Question 8

From the text’s website, download your computational tool’s 10_2QRQ.”df i‘e  
for this system-dependent question that implements the loop in the diffusionSim 
function.

E

(i, j + 1)

W

(i, j - 1)

N

(i - 1, j)

NE

(i - 1, j + 1)

NW

(i - 1, j - 1)

(i + 1, j)

S

(i + 1, j - 1)

SW

(i + 1, j + 1)

SE

site

(i, j)

Figure 10.2.11  Indices for a lattice site and its neighbors
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Display Simulation

Visualization helps us understand the meaning of the grids. For each lattice in the list 
returned by diffusionSim, we generate a gra”hic using graysca‘e “r c“‘“r. We deine 
a function, animDiffusionGray, with parameter grids, which is a list of lattices from 
the simulation, to produce a grayscale animation of the changing temperatures in the 
metal bar, with black representing the hottest locations and white the coldest. Start-
ing with the initial bar from Figure 10.2.2 and a diffusion rate of 0.1 and displaying 
several frames of such an animation, Figure 10.2.12 shows that the bar quickly ap-
proaches equilibrium.

Quick Review Question 9

From the text’s website, download your computational tool’s 10_2QRQ.”df i‘e f“r 
this system-dependent question that develops the function ani’Diffusi“nGray, 
which produces a grayscale graphic corresponding to each simulation lattice in a list 
(grids).

For a color display, we should employ a coloration that is evocative of the situa-
tion, such as red for hot and blue for cold. For display on a monitor, we usually em-
ploy the red-green-blue (RGB) color model. In the RGB c“‘“r ’“de‘, we s”ecify 
the amounts between 0.0 and 1.0 of red, green, and blue light at each pixel, or picture 
element, or point in the graphics. For our heated bar, we employ only red and blue 

diffusionSim(m, n, diffusionRate, t)

Function to return a list of grids in a simulation of the diffusion of heat 
through a metal bar

Pre:  m and n are positive integers for the number of grid rows and col-
umns, respectively.

  diffusionRate is the rate of diffusion. 
  t is the number of time steps.
  diffusion is a function to return a new temperature for a grid point.
 Post:  A list of the initial grid and the grid at each time step of the simula-

tion was returned.
 Algorithm:

  bar ← initBar(m, n, hotSites, coldSites)
  grids ← list containing bar

  do the following t times:
   barExtended ← relectingLat(bar)
   bar ← applyDiffusionExtended(diffusionRate, barExtended)
   bar ← applyHotCold(bar, hotSites, coldSites)
   grids ← the list with bar appended onto the end of grids

  return grids
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Grid at t = 1 Grid at t = 2

Grid at t = 10 Grid at t = 20

Grid at t = 40 Grid at t = 50

Figure 10.2.12  Several frames in an animation in grayscale of the spreading of heat 
through a metal bar

light, so the level of green light is 0.0. In going from the coldest to the hottest values, 
red increases from 0.0 to 1.0, while blue decreases from 1.0 to 0.0. To obtain a zero-
to-one scale with the minimum temperature being COLD = 0, we divide a cell’s tem-
perature, temp, by the maximum temperature, HOT, so that the amount of red light is 
temp/HOT, ex”ressed as a l“ating-”“int nu’ber. If HOT is 50.0 and temp is 0.0, so 
is temp/HOT = 0.0/50.0 = 0.0; while if temp is 50.0, then temp/HOT is 1.0. To have 
the amount of blue light decrease as the temperature decreases, we subtract the frac-
tion from 1.0. If temp is 0.0, then 1.0 – temp/HOT is 1.0; and if temp is 50.0, then 
1.0 – temp/HOT is 0.0. Using a temperature scale from 0 °C to 50 °C, Table 10.2.1 
gives severa‘ RGB f“r this sca‘ing.

Table 10.2.1 
Severa‘ RGB C“‘“r M“de‘ Va‘ues “f the A’“unts “f Red and B‘ue f“r Te’”eratures fr“’ 
0 °C to 50 °C

Temperature (°C) 0 10 25 40 50

red fraction (temperature/50) 0.0 0.2 0.5 0.8 1.0
blue fraction (1.0 – temperature/50) 1.0 0.8 0.5 0.2 0.0
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Quick Review Question 10

From the text’s website, download your computational tool’s 10_2QRQ.”df i‘e f“r 
this system-dependent question that develops the function, animDiffusionColor, 
which produces a color graphic corresponding to each simulation lattice in a list 
(grids).

Exercises

On the text’s website, Diffusion i‘es f“r severa‘ c“’”utati“na‘ t““‘s c“ntain the 
code for the simulation of the module. Complete the following exercises using your 

computational tool.

1. Write a function to extend a grid using absorbing boundary conditions with 
the constant value on the boundary being 25.

2. Write a function to extend a grid using periodic boundary conditions.

Projects

On the text’s website, Diffusion i‘es f“r severa‘ c“’”utati“na‘ t““‘s c“ntain the 
code for the simulation of the module. Complete the following projects using your 

computational tool.

F“r an additi“na‘ ”r“–ect, see Pr“–ect 4 fr“’ M“du‘e 13.4, “Probable Cause  

M“de‘ing with Mar—“v Chains.  

1. a.  Determine how long it takes, t, for the bar modeled in this module to reach 
equilibrium, where from time t to time t + 1 the values in each cell vary by 
no more than plus or minus some small value, such as ±0.001.

 b.  Repeat Part a, applying heat and cold for 10 time steps and then removing 
such heating and cooling. 

2. Develop simulations and animations for the bar modeled in this module using 
several boundary conditions: three simulations of absorbing boundary condi-
tions with constant values 0, 25, and 50 and periodic boundary conditions. 
A‘“ng with the relecting b“undary c“nditi“ns, describe the resu‘ts. Discuss 
the advantages and disadvantages of each approach and the situations, such 
as heat or pollution diffusion, for which each is most appropriate.

3. Instead of using the formula for diffusion in the section “Heat Diffusion,” 
e’”‘“y the i‘ter in Figure 10.2.13. Thus, t“ “btain the va‘ue at a site f“r ti’e 
t + 1, we add 25% of the site’s temperature at time t, 12.5% of the north, east, 
south, and west cells at time t, and 6.25% of the corner cells to the northeast, 
southeast, southwest, and northwest. This sum is called a weighted sum with 
each nutrition value carrying a particular weight as indicated by the table. 
Revise the ’“de‘ using this c“nigurati“n and c“’”are the resu‘ts with that 
of the module.

 4. a.  Model a bar at 100 °C that has a constant application of a 25 °C external 
source on its boundary. Generate plots of the temperatures at a corner 
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and in the middle of the bar versus time. Describe the shapes of the 
graphs.

  b.  Repeat Part a with the bar being at –50 °C.
  c.  Discuss the results.
 5. Consider a small, shallow body of water that initially has a constant amount 

of nutrient. A cypress toward one edge of the water consumes nutrients at a 
constant rate, so that at each time step the amount of nutrients in the corre-
s”“nding ce‘‘ decreases by a ixed a’“unt. Su””“se sh“re is “n three sides 
and a larger body of water is on the fourth side. Nutrients from the larger 
body of water diffuse into the smaller area. Model and visualize the situa-
tion for the small body of water. Find a rate of diffusion and a rate of nutri-
ent consumption so that the tree always has nourishment. Use the formula 
f“r diffusi“n in the secti“n Heat Diffusi“n  “r the i‘ter variati“n in Pr“–ect 
3.

 6. Suppose an industry constantly spills pollutants into a containment pond, 
which initially has water. Using a diffusion rate of 0.1, how long will it take 
for the concentration of pollutants in the middle of the pond to reach 25%? 
Give your assumptions and discuss the results.

 7. Model and visualize a situation in which diffusion tends to occur more in 
one direction than another, say more from the east than from the west. 
Thus, design a i‘ter si’i‘ar t“ that in Pr“–ect 3 that fav“rs directi“na‘ diffu-
si“n. Such a c“nigurati“n c“u‘d be used in ’“de‘ing diffusi“n “n the sur-
face “f l“wing water. Give y“ur assu’”ti“ns and discuss the resu‘ts.

 8. Suppose a dye is dissolved in water, which is poured on top of a gel. Model 
and visualize a cross section of the diffusion of the dye into the gel. Com-
pare your results with the time-lapsed video at (Wikipedia Contributors, 
“Diffusion”). For your parameters, determine t to match the diffusion time 
in the video. 

 9. Often because of imperfections, variations in media, or other factors, diffu-
sion does not proceed deterministically but varies slightly with an element 
of chance. Revise the function diffusion, which the section “Heat Diffu-
sion” describes, to be stochastic. Instead of multiplying each neighbori by r, 
the rate of diffusion, multiply each neighboring temperature by a different 
(1 + rndi)r, where rndi is a normally distributed random number with mean 
0 and standard deviati“n 0.5. Ad–ust the c“eficient “f site so that the sum of 
a‘‘ the c“eficients is 1. Run the ’“de‘ 100 ti’es f“r 20 ti’e ste”s and de-
termine the mean and range of temperatures for a designated cell towards 
the middle of the bar.

0.0625 0.125 0.0625

0.125 0.25 0.125

0.0625 0.125 0.0625

Figure 10.2.13 Filter for Project 3
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10. Re”eat Pr“–ect 9 using the i‘ter described in Pr“–ect 3.
11. A””‘icati“n “f deicing sa‘ts in the winter can degrade c“ncrete reinf“rced 

structures, such as bridges, because “f the ingress “f har’fu‘ substances 
such as ch‘“ride i“ns. Engineers incase stee‘ in c“ncrete t“ ”r“tect against 
c“rr“si“n. H“wever, when the c“ncentrati“n “f ch‘“ride reaches a critica‘ 
c“ncentrati“n, ”erha”s 0.4% C‘– ”er unit “f c“ncrete c“ntent, the c“ncrete 
n“ ‘“nger can ”r“tect the stee‘. Deve‘“” a ce‘‘u‘ar aut“’at“n si’u‘ati“n 
“f the diffusi“n “f ch‘“ride in a T-sha”ed cr“ss secti“n “f a bridge su”-
”“rt, as in Figure 10.2.14. Assu’e deicing sa‘ts can see” int“ the structure 
fr“’ a‘‘ surfaces exce”t the t“”. Referring t“ Pr“–ect 9, e’”‘“y st“chastic 
diffusi“n with a basic diffusi“n rate “f 0.125 and v“n Neu’ann neighb“r-
h““ds. F“r 30 years “f c“nstant ex”“sure, a””‘y a 2% ”er unit ch‘“ride i“n 
c“ncentrati“n fr“’ the sa‘t t“ a‘‘ externa‘ surfaces exce”t the u””er sur-
face. Have the basic ti’e ste” be 165 days. S’a‘‘ circ‘es indicate where 
reinf“rcing bars intersect the T cr“ss secti“n. Averaging the resu‘ts f“r 
’any si’u‘ati“ns, say 100 “r 1000, deter’ine the ch‘“ride i“n c“ncentra-
ti“n at the ‘“cati“ns f“r these reinf“rcing bars after 30 years “f c“ntinu“us 
ex”“sure (P“dr“uže— 2008). 

12. M“de‘ in 3D the diffusi“n “f heat thr“ugh a bar. Assu’e that the bar is 
sitting “n a tab‘e in a r““’ with g““d circu‘ati“n. The ”art “f the tab‘e “n 
which the bar rests has a””r“xi’ate‘y the sa’e te’”eratures as the c“r-
res”“nding ‘“cati“ns “n the b“tt“’ “f the bar, but the air ar“und the bar 
re’ains a‘’“st c“nstant‘y 25 °C.

1.963 m

0.1963 m

0.6040 m

0.1963 m
0.7550 m

0.1963 m

0.1922 m

π/4 angle

0.2809 m

0.6327 angle

0.6040 m

Figure 10.2.14  Cr“ss secti“n “f a bridge su””“rt, based “n P“dr“uže— (2008)
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Answers to Quick Review Question

From the text’s website, download your computational tool’s 10_2QRQ.”df i‘e f“r 
answers to the system-dependent questions.

2. 3.6 = (1  8 × 0.1)(5) + 0.1(2 + 3 + 4 + 0 + 6 + 1 + 3 + 7)
3. a.  5 × 5
 b.  0, 0, 0, 0, 0
 c.  2, 2, 3, 4, 4 
 d.  7, 1, 3, 7, 1 
5. a.  95 × 60
 b.   (32, 25)
 c.  (34, 24)
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MODULE 10.3

Spreading of Fire

Prerequisite: M“du‘e 10.2, Diffusi“n: Overc“’ing Differences.  

Downloads

For several computational tools, the text’s website has available for download a Fire 
i‘e c“ntaining the si’u‘ati“n this ’“du‘e deve‘“”s and a 10_3QRQ.”df i‘e c“ntain-
ing system-dependent Quick Review Questions and answers.

Introduction

Hu’an beings, with s“’e –ustiicati“n, have c“nsiderab‘e fear “f ire. Hist“ry is re-
”‘ete with disastr“us ‘“sses “f ‘ife and ”r“”erty fr“’ it. Neverthe‘ess, ires in areas 
‘i—e the western United States are natura‘ and, ec“‘“gists te‘‘ us, beneicia‘ t“ the 
”‘ant c“’’unities there. Peri“dic ires he‘” t“ c‘ear the f“rest l““r “f debris and 
”r“’“te the gr“wth “f sturdy, ire-resistant trees. Unf“rtunate‘y, ex”anding hu’an 
populations have intruded on previously uninhabited areas, establishing their own 
c“’’unities in ire-”r“ne  z“nes. Further’“re, hu’an activities, such as ire su”-
pression, livestock grazing, and logging, have increased the possibility of hotter and 
’“re destructive ires (NPS 2012). 

During the fa‘‘ “f 2003, residents “f S“uthern Ca‘if“rnia faced a series “f ire-
st“r’s driven by ”“werfu‘ Santa Ana winds. After 3 days, the ires had destr“yed 
’“re than 400,000 acres and 900 h“’es and had —i‘‘ed 15 ”e“”‘e. Hundreds “f ire-
ighters batt‘ed a chain “f ires that extended fr“’ Ventura C“unty, n“rth “f L“s 
Ange‘es, east int“ San Bernadin“ C“unty and s“uth t“ Ti–uana, Mexic“. A haze “f 
toxins draped over the area like a pall (Wilson et al. 2003).

The Malibu region above Los Angeles is dominated by the Santa Monica Moun-
tains and canyons that run from north to south. Much of the natural vegetation is dry 
chaparral, c“nsisting “f ’any s’a‘‘, “i‘y, w““dy ”‘ants that are extre’e‘y la’-
mable. This vegetation naturally would burn every 15 to 45 years, clearing out old 
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and dead plant materials and returning nutrients to the soil. With the prevailing dry 
c“nditi“ns, an i‘‘ega‘ ca’”ire can set “ff a fer“ci“us b‘aze that ’ay st“” “n‘y after 
trave‘ing ’any ’i‘es t“ the Paciic Ocean (SBCCBS 2010; L“s Ange‘es Ti’es 
2010).

Fighting ires in S“uthern Ca‘if“rnia “r anywhere e‘se is a very ris—y –“b, where 
loss of life is a real possibility. Proper training is essential. In the United States the 
Nati“na‘ Fire Acade’y, estab‘ished in 1974, ”resents c“urses and ”r“gra’s that are 
intended t“ enhance the abi‘ity “f ire and e’ergency services and a‘‘ied ”r“fes-
si“na‘s t“ dea‘ ’“re effective‘y with ire and re‘ated e’ergencies.  The Acade’y 
has partnered with private contractors and the U.S. Forest Service to develop a 3D 
‘and ire-ighting training si’u‘at“r. This si’u‘at“r ex”“ses trainees t“ a c“nvincing 
ire-”r“”agati“n ’“de‘, where instruct“rs can vary fue‘ ty”es, envir“n’enta‘ c“ndi-
tions, and topography. Responding to these variables, trainees may call for appropri-
ate res“urces and c“nstruct ire ‘ines. Instruct“rs ’ay c“ntinue t“ a‘ter the ”ara’e-
ters, changing ire behavi“r. Students can review the resu‘ts “f their decisi“ns, where 
they can learn from their mistakes in the safety of a computer laboratory (DAS 
2012).

This module develops a two-dimensional computer simulation for the spread of 
ire. The techniques can be extended t“ nu’er“us “ther scientiic exa’”‘es inv“‘v-
ing contagion, such as the propagation of infectious diseases and distribution of 
pollution.

Problem

Our ”r“b‘e’ is t“ si’u‘ate the s”read “f ire fr“’ an initia‘ ‘andsca”e “f e’”ty 
gr“und, n“nburning trees, and trees that are “n ire. M“re“ver, the area can suffer 
fr“’ ‘ightning stri—es, which ’ay “r ’ay n“t start additi“na‘ ires.

Initializing the System

F“r “ur ce‘‘u‘ar aut“’at“n si’u‘ati“n “f the s”read “f ire, a ce‘‘ “f an n × n grid can 
contain a value of 0, 1, or 2 indicating an empty cell, a cell with a nonburning tree, 
or a cell with a burning tree, respectively. Table 10.3.1 lists these values and mean-
ings, along with associated constants, EMPTY, TREE, and BURNING, which have 
values of 0, 1, and 2, respectively. We initialize these constants at the beginning and 
employ the descriptive names throughout the program. Thus, the code is easier to 
understand and to change.

Table 10.3.1 
Cell Values with Associated Constants and their Meanings

Value Constant Meaning

0 EMPTY The cell is empty ground containing no tree.
1 TREE The cell contains a tree that is not burning.
2 BURNING The cell contains a tree that is burning.
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To initialize this discrete stochastic system, we employ the following two 
probabilities:

probTree: The probability that a tree (burning or not burning) initially occupies a 
site. Thus, probTree is the initial tree density measured as a percentage.

probBurning: If a site has a tree, the probability that the tree is initially burning 
or that the grid site is BURNING. Thus, probBurning is the fraction of the 
trees that are burning when the simulation begins.

Using the preceding probabilities and cell values, we employ the following logic in 
a function, initForest, to return an initialized grid for the forest. In the pseudocode, 
two slashes, //, indicate that the rest of the line is a comment.

Quick Review Question 1

From the text’s website, download your computational tool’s 10_3QRQ.”df i‘e f“r 
this system-dependent question that implements initForest.

Updating Rules

At every simulation iteration, we apply a function spread to each cell site to deter-
’ine its va‘ue EMPTY, TREE, or BURNING at the next ti’e ste”. The ce‘‘ s 
value at the next instant depends on the values of the cells in its von Neumann neigh-

initForest(n, probTree, probBurning)

Function to return an n × n grid “f va‘ues EMPTY (no tree), TREE (non-
burning tree), or BURNING (burning tree) where probTree is the probabil-
ity of a tree and probBurning is the probability that the tree is burning

Pre:  n is the size (number of rows or columns) of the square grid and is posi-
tive.

 probTree is the probability that a site is initially occupied by tree. 
 probBurning is the probability that a tree is burning initially. 
Post: A grid as described earlier was returned.
Algorithm:

 for every cell in an n × n grid, forest, do the following:
  if a random number is less than probTree // tree at site
   if another random number is less than probBuring // tree is burning
    assign BURNING to the cell
   else //  tree is not burning
    assign TREE to the cell
  else // no tree at site
   assign EMPTY to the cell

return forest 
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b“rh““d, as in Figure 10.2.3a the ce‘‘ s current va‘ue (site) and the values of its 
neighbors to the north (N), east (E), south (S), and west (W). For this simulation, the 
state of a diagonal cell to the northeast, southeast, southwest, or northwest does not 
have an i’”act “n a site s va‘ue at the next iterati“n. Thus, we inc‘ude ive ”ara’e-
ters site, N, E, S, and W f“r spread. (Shortly, we will see that spread should have 
two additional parameters.) In a call to this function, each neighborhood argument is 
one of three values: EMPTY, indicating an empty cell with no tree, TREE for a non-
burning tree, or BURNING for a burning tree in that location. 

Updating rules apply to different situations: If a site is empty (cell value EMPTY), 
it remains empty at the next time step. If a tree grows at a site (cell value TREE), at 
the next instant the tree ’ay “r ’ay n“t catch ire (va‘ue BURNING or TREE, re-
s”ective‘y) due t“ ire at a neighb“ring site “r t“ a ‘ightning stri—e. A burning tree 
(cell value BURNING) always burns down, leaving an empty site (value EMPTY) for 
the next time step. We consider each situation separately.

Quick Review Question 2

From the text’s website, download your computational tool’s 10_3QRQ.”df i‘e f“r 
this system-dependent question that develops spread’s rule for the situation where a 
site does not contain a tree at this or any time step.

When a tree is burning, the irst argu’ent, which is the site s va‘ue, is BURNING. 
Regardless of its neighbors’ situations, the tree burns down, so that at the next itera-
tion of the simulation the site’s value becomes EMPTY. Thus, the relevant rule for 
the spread functi“n has a irst argu’ent “f BURNING; each of the other four argu-
ments are immaterial; and the function returns value of EMPTY.

Quick Review Question 3

From the text’s website, download your computational tool’s 10_3QRQ.”df i‘e f“r 
this system-dependent question that develops spread’s rule for the situation where a 
site contains a burning tree.

To develop this dynamic, discrete stochastic system, we employ the following 
additional probabilities, which we include as parameters for spread:

probImmune: The ”r“babi‘ity “f i’’unity fr“’ catching ire. Thus, if a site 
contains a tree (site value of TREE) and ire threatens the tree, probImmune is 
the ”r“babi‘ity that the tree wi‘‘ n“t catch ire at the next ti’e ste”.

probLightning: The probability of lightning hitting a site.

When a tree is at a location (site value of TREE), at the next iteration the tree 
might be burning due to one of two causes, a burning tree at a neighboring site or a 
lightning strike at the site itself. Even if one of these situations occurs, the tree at the 
site ’ight n“t catch ire. Se”arate ru‘es a””‘y t“ the tw“ causes f“r ire.

F“r the irst situati“n inv“‘ving a neighb“ring burning tree, we e’”‘“y the f“‘-
lowing logic:
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if (site is TREE) and (N, E, S, or W is BURNING) 
 if a random number between 0.0 and 1.0 is less than probImmune

  return TREE

 else
  return BURNING

Thus, even if a tree has the potential to burn because of a neighboring burning tree, 
it ’ay n“t. Because “f c“nditi“ns such as wet weather, such a tree has a ”r“babi‘ity 
of probImmune of not burning.

Quick Review Question 4

From the text’s website, download your computational tool’s 10_3QRQ.”df i‘e f“r 
this system-dependent question that develops spread’s rule for the situation where a 
site c“ntains a n“nburning tree that ’ay catch ire because a neighb“ring site c“n-
tains a burning tree.

A tree ’ight a‘s“ catch ire because “f a ‘ightning stri—e. The ”r“babi‘ity that the 
tree is struck by lightning is probLightning. However, with a probability of probIm-

mune, the tree will not burn even if hit by lightning. In contrast, the probability that 
the tree is n“t i’’une t“ ire is (1  probImmune). For example, if the probability of 
immunity (probImmune) is 0.4 = 40%, then a (1 – 0.4) = 0.6 = 60% chance exists 
f“r the tree n“t t“ be i’’une fr“’ burning. F“r the tree t“ catch ire due t“ ‘ightning, 
it ’ust be hit and n“t be i’’une. Thus, ‘ightning causes a tree t“ catch ire with the 
probability that is the product probLightning * (1 – probImmune). For example, if a 
0.2 = 20% chance exists for a lightning strike at the site of a tree, the tree burns with 
a probability of (0.2)(0.6) = 0.12 = 12%. Two things must happen: Lightning must 
strike, and the tree must not be immune from burning.

Quick Review Question 5

From the text’s website, download your computational tool’s 10_3QRQ.”df i‘e f“r 
this system-dependent question that completes spread’s rule for the situation where 
a site contains a nonburning tree that may be hit by lightning and burn.

Periodic Boundary Conditions

For this simulation, we apply the function spread to every grid point, using periodic 
boundary conditions. Thus, to apply spread we extend the boundaries by one cell, as 
in Figure 10.2.7. The next tw“ quic— review questi“ns extend the grid irst t“ the 
north and south and then to the east and west.

Quick Review Question 6

From the text’s website, download your computational tool’s 10_3QRQ.”df i‘e f“r 
this system-dependent question that extends a grid, as in Figure 10.3.1, by attaching 
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the ‘ast r“w t“ the beginning and the irst r“w t“ the end “f the “rigina‘ grid t“ f“r’ 
a new grid, matNS.

Quick Review Question 7

From the text’s website, download your computational tool’s 10_3QRQ.”df i‘e f“r 
this system-dependent question that extends a lattice as in Figure 10.3.2.

T“ c“ns“‘idate these tas—s, we deine a functi“n, periodicLat, using periodic 
boundary conditions to extend the square lattice by one cell in each direction. 
Pseudocode for the function follows.

periodicLat(lat)

Function to accept a grid and to return a grid extended one cell in each direc-
tion with periodic boundary conditions

Pre:  lat is a grid.
Post:  A grid extended one cell in each direction with periodic boundary con-

ditions was returned.
Algorithm:

  latNS ← concatenation of last row of lat, lat, and irst r“w “f lat 
  return concatenation of last column of latNS, latNS, and irst c“‘u’n “f 

latNS

Figure 10.3.1 Grid (in b“‘d square) extended by having a new irst r“w that is a c“”y “f 
the ‘ast r“w “n the “rigina‘ grid and having a new ‘ast r“w that is a c“”y “f the irst r“w “n 
the original grid
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Applying a Function to Each Grid Point

After extending the grid by one cell in each direction using periodic boundary condi-
tions, we apply the function spread to each internal cell and then remove the bound-
ary cells. Similar to applyDiffuseExtended in Module 10.2, a function applyEx-

tended takes an extended square lattice (latExt) and two probabilities (probLightning 
and probImmune) that spread requires and returns the internal lattice with spread 
applied to each site. 

Quick Review Question 8

From the text’s website, download your computational tool’s 10_3QRQ.”df i‘e f“r 
this system-dependent question that develops the function applyExtended.

Simulation Program

T“ drive the si’u‘ati“n “f s”reading ire, we deine a functi“n ire with parameters n, 
the grid size, or number of grid rows or columns; probTree; probBurning; prob-

Lightning, the probability of lightning hitting a site; probImmune, the probability of 
i’’unity fr“’ catching ire; and t, the number of time steps. As with diffusionSim 

Figure 10.3.2 Grid fr“’ Figure 10.3.1 ex”anded by having a new irst c“‘u’n that is a 
c“”y “f the ‘ast c“‘u’n and a new ‘ast c“‘u’n that is a c“”y “f the irst c“‘u’n



442 Module 10.3

from Module 10.2, the function ire returns a list of the initial lattice and the next t 
lattices in the simulation. The functions spread and ire need the probabilities of 
lightning and immunity. Pseudocode for ire is as follows.

Quick Review Question 9

From the text’s website, download your computational tool’s 10_3QRQ.”df i‘e f“r 
this system-dependent question that implements the loop in the ire function.

Display Simulation

For each lattice in the list returned by ire, we generate a graphic for a rectangular 
grid, with yellow representing an empty site; green, a tree; and burnt orange, a burn-
ing tree. The function showGraphs with parameter graphList containing the list of 
‘attices fr“’ the si’u‘ati“n ”r“duces these igures. We ani’ate the sequence “f 
graphics to view the changing forest scene. 

ire(n, probTree, probBurning, probLightning, probImmune, t)

Functi“n t“ return a ‘ist “f grids in a si’u‘ati“n “f the s”read “f ire in a f“r-
est, where a cell value of EMPTY indicates the cell is empty; TREE, the cell 
contains a nonburning tree; and BURNING, a burning tree

Pre:

n is the size (number of rows or columns) of the square grid and is  
positive.

probTree is the probability that a site is initially occupied by tree. 
probBurning is the probability that a tree is burning initially. 
probLightning is the probability of lightning hitting a site.
probImmune is the ”r“babi‘ity “f a tree being i’’une fr“’ catching ire. 
t is the number of time steps
spread is the function for the updating rules at each grid point.

Post:

A list of the initial grid and the grid at each time step was returned.
Algorithm:

forest ← initForest(n, probTree, probBurning)
grids ← list containing forest

do the following t times: 
forestExtended ← periodicLat(forest)
forest ← applyExtended(forestExtended, probLightning, probImmune)
grids ← the list with forest appended onto the end of grids

return grids



Cellular Automaton Diffusion Simulations 443

Quick Review Question 10

From the text’s website, download your computational tool’s 10_3QRQ.”df i‘e f“r 
this system-dependent question that develops the function sh“wGra”hs, which pro-
duces an animation with a graphic corresponding to each simulation lattice in a list 
(graphList).

Figure 10.3.3 dis”‘ays severa‘ fra’es “f a ire sequence in which e’”ty ce‘‘s are 
white; burning cells are in color; and cells with nonburning trees are gray. Clearly, 
different initial random number generator seeds result in different sequences. This 
simulation employs the parameters n = 50, probTree = 0.8, probBurning = 0.0005, 
probLightning = 0.00001, probImmune = 0.25, and t = 50. The initial graphic dis-
”‘ays “ne ire t“ward the b“tt“’ “f the grid. At ti’e ste” t = 2, a lightning strike 
starts a ire at an is“‘ated ‘“cati“n t“ward the t“” “f the grid. Subsequent fra’es 
sh“w b“th ires s”reading t“ neighb“ring ce‘‘s. Grids f“r ti’es starting at t = 14 re-
vea‘ the inluence “f ”eri“dic b“undary c“nditi“ns as the ire at the b“tt“’ s”reads t“ 
the top of the grid, and vice versa.

Exercises

On the text’s website, Fire i‘es f“r severa‘ c“’”utati“na‘ t““‘s c“ntain the c“de f“r 
the simulation of the module. Complete the following exercises using your computa-

tional tool.

F“r Exercises 1 3, write u”date ru‘es f“r spread, where neighbor refers to a loca-

ti“n in the v“n Neu’ann neighb“rh““d “ther than the site itse‘f. Revise grid va‘ues 
as necessary. 

1. A tree takes two time steps to burn completely.
2. A tree catches “n ire fr“’ neighb“ring trees with a ”r“babi‘ity ”r“”“rti“na‘ 

t“ the nu’ber “f neighb“rs “n ire.
3. A tree grows instantaneously in a previously empty cell with a probability of 

”r“bGr“w.
4. Describe changes to the code to include diagonal elements as neighbors as 

well.
5. Write the code to assign the values to the northeast, southeast, southwest, and 

northwest to variables NE, SE, SW, and NW, respectively, of a site in the lat-
tice latExt.

6. Suppose a lattice g has values for a forest grid, where a cell can be empty 
(value EMPTY = 0), a tree with the value (1 through 4) indicating the level of 
maturity from young to old, or a burning tree with the value indicating the 
intensity “f the ire (5 f“r ‘ess intense “r 6 f“r intense). Write c“de t“ sh“w a 
graphic representing g, with yellow for an empty cell, a different level of 
green from pale to full green representing the age of a tree, light red for a 
‘ess-intense ire and fu‘‘ red f“r an intense ire. Use c“nstants, such as 
EMPTY, for the cell values.



444 Module 10.3

initial grid grid at t = 1 grid at t = 2

grid at t = 3 grid at t = 4 grid at t = 5

grid at t = 14 grid at t = 15

grid at t = 17

grid at t = 16

Figure 10.3.3 Severa‘ fra’es in an ani’ati“n “f the s”reading “f ire 
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Projects

On the text’s website, Fire i‘es f“r severa‘ c“’”utati“na‘ t““‘s c“ntain the c“de f“r 
the simulation of the module. Complete the following projects using your computa-

tional tool.

F“r additi“na‘ ”r“–ects, see M“du‘e 14.3, F“raging Finding a Way t“ Eat ; 
M“du‘e 14.4, Pit Vi”ers H“t B“dies, Dead Meat ; M“du‘e 14.5, “Mushroom 

Fairy Rings Gr“wing in Circ‘es ; M“du‘e 14.6, “Spread of Disease—Sharing Bad 

News”; M“du‘e 14.7, HIV The Ene’y Within ; M“du‘e 14.8, “Predator-Prey—

‘Catch Me If You Can’”; M“du‘e 14.9, C‘“uds Bringing It A‘‘ T“gether ; Module 

14.11, “Spaced Out Native P‘ants L“se t“ Ex“tic Invasives ; and M“du‘e 14.12, 
Re-S“‘ving the Pr“b‘e’s with Ce‘‘u‘ar Aut“’at“n Si’u‘ati“ns.  

 1. Run the si’u‘ati“n f“r ire severa‘ ti’es f“r each “f the f“‘‘“wing situati“ns 
and discuss the results.

 a.  probBurning is almost 0; changeLightning = changeImmune = 0
 b.  probBurning is 0; changeImmune is 0
 c.  probBurning is 0; changeLightning is 0
 d.  Devise another situation to consider.

In each “f Pr“–ects 2 8, revise the ire si’u‘ati“n t“ inc“r”“rate the change indi-
cated in the exercise or boundary condition. Discuss the results.

 2. Exercise 1 3. Exercise 2 4. Exercise 3
 5. Exercise 4 6. Exercise 6 
 7. Absorbing boundary conditions 8. Relecting b“undary c“nditi“ns
 9. Deve‘“” a ire si’u‘ati“n in which every ce‘‘ in a 17 × 17 grid has a tree 

and “n‘y the ’idd‘e ce‘‘ s tree is “n ire initia‘‘y. D“ n“t c“nsider the ”“s-
sibility of lightning or tree growth. The simulation should have a parameter 
for burnProbability, which is the probability that a tree adjacent to a burn-
ing tree catches ire. The functi“n sh“u‘d return the ”ercent “f the f“rest 
burned. The program should run eight experiments with burnProbabil-

ity = 10%, 20%, 30%, . . ., and 90% and sh“u‘d c“nduct each ex”eri’ent 
10 times. Also, have the code determine the average percent burned for 
each ”r“babi‘ity. P‘“t the data and it a curve t“ the data. Discuss the resu‘ts 
(Shodor Educational Foundation, “Fire”).

10. a.  Deve‘“” a ire si’u‘ati“n that c“nsiders wind directi“n and s”eed. Have 
an accompanying animation. Do not consider the possibility of light-
ning. The simulation should have parameters for the probability (prob-

Tree) of a grid site being occupied by a tree initially, the probability of 
i’’unity fr“’ catching ire, the ire directi“n (va‘ue N, E, S, or W), 
wind level (value NONE = 0, LOW = 1, or HIGH = 2), coordinates of a 
ce‘‘ that is “n ire, and the nu’ber “f ce‘‘s a‘“ng “ne side “f the square 
forest. The function should return the percent of the forest burned 
(Sh“d“r Educati“na‘ F“undati“n, Better Fire ).

 b.  With a wind level of LOW (1) and a ixed probTree, vary wind direction 
and through animations observe the affects on the forest burn. Discuss 
the results.
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 c.  Develop a program to run three experiments with wind levels of 
NONE = 0, LOW = 1, and HIGH = 2. Have ixed wind directi“n and 
probTree. The program should conduct each experiment 10 times. Also, 
have the code determine the average percent burned for each level. Dis-
cuss the results. 

 d.  Develop a program to run eight experiments with no wind and prob-

Tree = 10%, 20%, 30%, . . ., 90%. The ”r“gra’ sh“u‘d c“nduct each 
experiment 10 times. Also, have the code determine the average percent 
burned f“r each ”r“babi‘ity. P‘“t the data and it a curve t“ the data. Dis-
cuss the results. 

11. Deve‘“” a ire si’u‘ati“n in which a tree “nce ignited “r hit by ‘ightning in 
“ne ti’e ste” ta—es ive additi“na‘ ti’e ste”s t“ burn. The ire can s”read 
from the burning tree to a neighboring tree with different probabilities only 
“n the sec“nd, third, and f“urth ti’e ste”s after catching ire. Assu’e a 
tree s ire is h“ttest the third ti’e ste” after igniti“n.

12. Deve‘“” a ire si’u‘ati“n with acc“’”anying ani’ati“n in which a secti“n 
of the forest is damper and, hence, harder to burn. Discuss the results. 

Answers to Quick Review Question

From the text’s website, download your computational tool’s 10_3QRQ.”df i‘e f“r 
answers to these system-dependent questions.
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MODULE 10.4

Movement of Ants—Taking the Right Steps 

Prerequisite: M“du‘e 10.2, Diffusi“n Overc“’ing Differences

Downloads

For several computational tools, the text’s website has an Ants i‘e, which c“ntains 
the simulation this module develops, and a 10_4QRQ.”df i‘e, which c“ntains sys-
tem-dependent Quick Review Questions and answers, available for download. 

Introduction

Every“ne says stay away fr“’ ants. They have n“ ‘ess“ns f“r us; they are 
crazy ‘itt‘e instru’ents, inhu’an, inca”ab‘e “f c“ntr“‘‘ing the’se‘ves, 
lacking manners, lacking souls. When they are massed together, all 

touching, exchanging bits of information held in their jaws like memoranda, 

they become a single animal. Look out for that. It is a debasement, a loss of 

individua‘ity, a vi“‘ati“n “f hu’an nature, an unnatura‘ act. 
Th“’as (1979)

Ants are extremely successful constituents of the earth’s fauna, but they seem so dif-
ferent from human beings and are generally regarded as pests. So, what can human 
beings learn from such lowly creatures? 

Ants have occupied a variety of ecological niches for millions of years. They are 
the epitome of social insects, living in colonies of varying size. These colonies are 
generally made up of one or more queens, many workers, and various immature 
stages (egg, larvae, pupae). During most of the year, all the adults are female, and all 
but the queen are sterile. Seasonally, a few winged males and females (fertile) are 
produced, but normally most of the adults are sister workers. 

The queen’s responsibilities are fairly uncomplicated: she mates and lays eggs. 
Workers have a variety of chores: tending to young, nest construction, foraging, and 
protecting the nest. Their entire life is dedicated to sustaining the colony.
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A nest of ants typically begins with only one individual, the queen. New, mature 
queens ly fr“’ the nest and search f“r ’ates fr“’ gr“u”s “f ’a‘es that have been 
produced during the same time. In selected meeting places, the queen mates with one 
“r a few ’a‘es, st“ring the s”er’ in s”ecia‘ sacs unti‘ needed. Then she lies “ff t“ 
ind suitab‘e nest sites. Few “f these queens successfu‘‘y estab‘ish a new c“‘“ny, and 
the males die right after their big moment. 

Besides —ee”ing herse‘f a‘ive, a queen ’ust ind a suitab‘e site f“r the new c“‘-
ony, excavate the site, lay the eggs, and care for the developing young. She may also 
have to forage for food. A queen lives off of stored food reserves and some of her 
‘aid eggs unti‘ her y“ung gr“w u”. Once the irst w“r—ers are ”r“duced, they ta—e 
over all the queen’s chores except laying eggs. The queen can now concentrate on 
her major role, although she also has some control over the sex ratios and new-queen 
production in the colony. The workers take care of everything else. 

Gradually the colony grows as more and more young mature into workers. In 
many species, worker ants themselves become specialized for all the roles necessary 
to sustain the queen and the colony. Some remain in the nest, caring for the queen or 
the young. Others guard the nest, and still others forage for food. 

There is quite a bit of variability in feeding strategies and food sources used by 
different species of ants, and many employ more than one type of feeding behavior. 
Ants may prey on small insects or eat dead insects. Others rely on seeds or raid other 
ant nests. One of the most interesting strategies is used by the leafcutter ants, which 
farm nutritious fungus.

Analysis of Problem

Most species of ants communicate their movements when carrying food by leaving 
trails with a chemical pheromone. Also, an ant can reinforce a trail by secreting ad-
ditional pheromone. Thus, by following a scent, other ants can locate a food source. 
As expected, the pheromone dissipates and diffuses with time. In this module, we 
simulate the movements of such ants in the presence of a chemical trail, which 
spreads and evaporates over time. We do not include an ant carrying food, although 
the projects consider such an extension.

For the simulation, we use a model that incorporates aspects of cellular automa-
ton simulations from Module 10.3, “Spreading of Fire,” and Module 10.2, “Diffu-
si“n Overc“’ing Differences.  We h“”e t“ “bserve “ver ti’e that the si’u‘ated 
ants tend t“ f“‘‘“w a che’ica‘ trai‘. Thus, the si’u‘ati“n sh“u‘d he‘” us relect “n 
how behavior on the local level can lead to global behavior, which we can observe in 
some ants. Through the interactions of many separate individuals, a group of ants as 
a whole can exhibit self-organizing behavior that makes the group appear to have a 
single consciousness. 

Formulating a Model: Gather Data

For the model we develop in this module, we employ empirical observations of ant 
species that leave pheromone trails. With each step, such an ant tends to turn to and 
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move in the direction of the greatest amount of chemical. As time passes, the chemi-
cal diffuses away from an initial deposit; and with no ant in a location, the amount of 
pheromone diminishes there. For a professional model, we should obtain more exact 
data, such as the average amount of pheromone an ant deposits and the rates at which 
the chemical diffuses and decreases.

Formulating a Model: Make Simplifying Assumptions

In formulating a model, suppose that the ants are contained in a square area enclosed 
by glass. Moreover, we assume that an ant does not turn around completely in one 
time step, returning immediately to the location from which it just came, but other-
wise tends to move toward an unoccupied neighboring location with the greatest 
amount of chemical. If no such move is available, we assume the ant waits in its cur-
rent location. Thus, we employ an avoidance-or-wait strategy to prevent collision. 
With movement from a site that has a certain threshold of chemical, the ant deposits 
additional pheromone for reinforcement. However, the chemical diffuses and dissi-
pates with time. For this problem, we start with a straight trail of increasing amounts 
of pheromone, perhaps laid by ants heading for food. We do not consider food or a 
nest, although various projects do. 

Formulating a Model: Determine Variables

In Module 10.3, “Spreading of Fire,” each cell of a grid contains an integer indicat-
ing the state “f the ce‘‘ e’”ty, tree, “r burning tree; and in M“du‘e 10.2, Diffu-
si“n Overc“’ing Differences,  we e’”‘“y a grid “f diffusing te’”eratures. In the 
current model, we have one grid to hold ant information, similar to the former, and 
another to store pheromone amounts, comparable to the later. To simulate a closed 
container, we assume absorbing boundary conditions. In the ant grid, each element 
“f the irst and ‘ast r“ws and c“‘u’ns has a c“nstant va‘ue, BORDER = 6; and an 
empty cell has the value EMPTY = 0. A ce‘‘ with an ant c“ntains a c“nstant
NORTH (1), EAST (2), SOUTH (3), WEST (4), or STAY (5) indicating direc-

Table 10.4.1 
Cell Values with Associated Constants and Their Meanings

Value Constant Cell Meaning

0 EMPTY Empty ground containing no ant
1 NORTH Ant about to move to or just moved from the north
2 EAST Ant about to move to or just moved from the east
3 SOUTH Ant about to move to or just moved from the south
4 WEST Ant about to move to or just moved from the west
5 STAY Ant about to stay in or did not move from the current site
6 BORDER B“rder
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ti“na‘ inf“r’ati“n. Bef“re ’“ve’ent, such a c“nstant indicates the v“n Neu’ann 
neighborhood cell where the ant intends to go; and after movement, the constant 
points back to the direction from which the ant just came. STAY denotes that the ant 
is staying in its current location for a time step. Table 10.4.1 enumerates the ant con-
stants, their meanings, and suggested values.

For the initialization of this grid, we have a function, initAntGrid, with parame-
ters for the size, n, of the internal part of the grid and the probability, probAnt, that 
an ant initially occupies a cell. Thus, the function returns an (n + 2) × (n + 2) matrix 
of integers from Table 10.4.1. With probability probAnt a site contains an ant; should 
an ant be at a ‘“cati“n, we assign a rand“’ integer 1, 2, 3, “r 4 re”resenting a 
directi“n NORTH, EAST, SOUTH, or WEST, respectively.

Quick Review Question 1

From the text’s website, download your computational tool’s 10_4QRQ.”df i‘e f“r 
this syste’-de”endent questi“n deines initAntGrid.

In the ”her“’“ne grid, a l“ating-”“int nu’ber re”resents the a’“unt “f che’i-
ca‘ at a site. Because an ant is t“ ’“ve t“ a neighb“ring avai‘ab‘e ce‘‘ with the ’axi-
mum amount of chemical and because we are employing absorbing boundary condi-
tions, in the pheromone grid, we have a border of slightly negative values, such as 
–0.01. Thus, an ant will never be tempted to step outside the grid. Moreover, these 
border values tend to diffuse inward, encouraging the ants to stay away from bor-
ders, which represent the walls. A function, initPherGrid, initializes most of the in-
terior cells as 0. However, for the pheromone trail, in the middle of the grid, we have 
a horizontal row of increasing pheromone values. With MAXPHER (say, 50.0) 
being the maximum initial chemical value, i starting at 1 and being a function of an 
internal column number, and n being the size (number of rows and number of col-
umns) of the internal part of the grid (omitting the border), the amount of chemical 
in the trail is MAXPHER · i /n. Thus, initially, the amount of pheromone gradually 
increases from left to right in the trail’s row. If MAXPHER is 50.0 and n is 10, then 
in internal column 1 of the trail, the amount is 50.0 · 1/10 = 5.0; in column 5, the 
value is 50.0 · 5/10 = 25.0; and in column 10, we have the maximum pheromone 
amount of 50.0 · 10/10 = 50.0.

Quick Review Question 2

From the text’s website, download your computational tool’s 10_4QRQ.”df i‘e f“r 
this syste’-de”endent questi“n that deines initPherGrid.

Formulating a Model: Establish Relationships and Submodels

Ant movement for one time step consists of two actions, sensing and walking. First, 
the ant tests the empty neighboring sites and turns to the one with the greatest amount 
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of pheromone or decides to stay in its current location if no such site is available. 
Then, if possible to do so without colliding with another ant, the ant moves to the 
preferred location. After the reaction (sensing and walking) of the ants, a diffusion of 
the pheromone occurs. Thus, we have a reaction-diffusion-type simulation. As with 
diffusion in Module 10.2, “Diffusion: Overcoming Differences,” we employ Moore 
neighb“rh““ds with eight neighb“rs “f a site and deine a functi“n, diffusion, with 
parameters for a diffusion rate constant (diffusionRate) and pheromone values for 
the site and its neighb“rs. Because abs“rbing b“undary c“nditi“ns e’”‘“y c“nstant 
boundary values, all matrices are of the same size, (n + 2) × (n + 2). Thus, a func-
tion, applyDiffusionExtended, applies diffusion to each internal cell and returns an 
(n + 2) × (n + 2) pheromone grid, keeping the border intact. The next two sections 
develop the sense and walk functions. 

Quick Review Question 3

From the text’s website, download your computational tool’s 10_4QRQ.”df i‘e f“r 
this syste’-de”endent questi“n that deines applyDiffusionExtended.

Formulating a Model: Determine Functions—Sensing 

As with the ire si’u‘ati“n, f“r sensing we c“nsider the neighb“rs t“ be the ce‘‘s t“ 
the north, east, south, and west, that is, those neighbors in the von Neumann neigh-
borhood. The rules for the function sense, which points the ant towards its new loca-
tion, are as follows:

1. An empty cell does not point toward any direction.
2. An ant does not turn to a cell from which the creature just came. 
3. An ant does not turn to a location that is a border site.
4. An ant does not turn to a location that currently contains an ant. 
5. Otherwise, an ant turns in the direction of the neighboring available (not the 

previous, an occupied, or a border cell) with the greatest amount of chemical. 
In the case of more than one neighbor having the maximum amount, the ant 
turns at random towards one of these cells.

6. If no neighboring cell is available, the ant will not move.

In the list, lst, of neighboring pheromone values of an ant that just moved, we as-
sign an artiicia‘‘y s’a‘‘ va‘ue, say 2, t“ the “ne c“rres”“nding t“ the directi“n fr“’ 
which it moved. Similarly, if another ant is in a neighboring site, we change lst’s 
corresponding value to –2. Such changes help to enforce Rules 2 and 4. To model 
Ru‘e 5, we irst f“r’ ‘ist, posList, of indices for maximum lst values. We randomly 
pick an index, rndPos, that has a maximum pheromone value in lst. For example, 
suppose lst c“ntains ad–usted ”her“’“ne va‘ues 9, 2, 9, and 8. With the ’axi’u’ 
being 9 and assu’ing indexing begins with 1, rndPos could be 1 or 3 because the 
indices “f 9 in lst are 1 and 3, which correspond to the directions north and south, 
respectively. The algorithm for sense follows.
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Quick Review Question 4

From the text’s website, download your computational tool’s 10_4QRQ.”df i‘e f“r 
this syste’-de”endent questi“n t“ deine sense. 

Si’i‘ar t“ the ’“de‘s f“r diffusi“n and s”reading “f ire in ear‘ier ’“du‘es, we 
have a function, in this case applySenseExtended, to process every cell of the internal 
grid. Unlike the application functions in those earlier modules but like applyDiffusion-

Extended, applySenseExtended returns (n + 2) × (n + 2) ant grid with the borders un-
changed. In the functi“n s deiniti“n, we irst c“”y a ”ara’eter antGrid to a newAnt-

Grid that the function returns after possible changes. Should an antGrid cell contain 
EMPTY, no further processing needs to be done on that location (Rule 1). Otherwise, 
applySenseExtended applies sense to that site, sending sense the ant grid value for the 
site and the ant and pheromone grid values for its four von Neumann neighbors.

Quick Review Question 5

From the text’s website, download your computational tool’s 10_4QRQ.”df i‘e f“r 
this syste’-de”endent questi“n t“ deine applySenseExtended. 

sense(site, na, ea, sa, wa, np, ep, sp, wp)

Function to return the direction in which an ant is to turn (NORTH (1), EAST 
(2), SOUTH (3), or WEST (4)) or STAY (5) should the ant be planning to re-
main in its current location

Pre:  site, na, ea, sa, and wa are the ant grid values for the current site and its 
neighbors to the north, east, south, and west, respectively. If a cell con-
tains an ant, then its value represents the direction from which the ant 
came in the last time step. site is not EMPTY or BORDER.

  np, ep, sp, wp are the pheromone grid values for the current site’s 
neighbors to the north, east, south, and west, respectively. 

Post:  The function has returned STAY or the direction to which the ant turns. 
Algorithm:

lst ← list with np, ep, sp, and wp

if site is not STAY, lst(site) ← –2 // Rule 2
if a neighboring cell contains an ant // Rule 4

assign –2 to the corresponding lst element
mx ← maximum value in lst // Rule 3 (pheromone < 0 on border)
if mx < 0 // Rule 6

return STAY

else // Rule 5
posList ← list of positions in lst containing mx

lng ← length of posList

rndPos ← random integer between 1 and lng, inclusive
return posList(rndPos)
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Formulating a Model: Determine Functions—Walking 

After applying the function sense to each cell of the grid, we call a function, walk, 
which computes updated ant and pheromone grids for the next time step. The fol-
lowing additional rules relate to walking: 

 7. For a cell that remains empty, the amount of chemical decrements by a 
constant amount, EVAPORATE, but does not fall below 0. Thus, the new 
amount is the maximum of 0 and the current amount minus EVAPORATE.

 8. An ant facing in a certain direction will move into that neighboring cell as 
long as no other ant has already moved there. 

 9. Otherwise, the ant will stay in its current cell.
10.  If an ant leaves a cell that has pheromone above a certain threshold, 

THRESHOLD, the amount of chemical increments by a set amount, DE-

POSIT, to reinforce the trail. 
11. If an ant stays in a cell, the amount of chemical remains the same.
12.  After moving to a new location, the ant faces towards the cell from which 

the animal just came.

The design of the walk function follows, with details for one sense direction 
(NORTH). Behavi“r “f the ant when facing an“ther directi“n is c“’”arab‘e.

walk(antGrid, pherGrid)

Function to return a new ant and pheromone grids after each ant has moved 
or decided to remain in its current location

Pre:  antGrid is an ant grid after application of applySenseExtended in a 
time step.

  ”herGrid is the corresponding pheromone grid. 
Post:  New ant and pheromone grids have been returned after application of 

the walk rules. 
Algorithm:

n ← number of rows/columns in ant/pheromone grid minus 2
newAntGrid ← antGrid
newPherGrid ← ”herGrid
for i going through each internal row index, do the following:
 for j going through each internal column index, do the following:
  if antGrid(i, j) is EMPTY // Ru‘e 7
   newPherGrid(i, j) ← maximum of 0 and
    (newPherGrid(i, j) – EVAPORATE) 
  // Corresponding segments to the following occur for each direction:
  if antGrid(i, j) is NORTH  
   if newAntGrid(i – 1, j) is EMPTY 
    if newPherGrid(i, j) > THRESHOLD // Rule 10
     newPherGrid(i, j) ← newPherGrid(i, j) + DEPOSIT 
    newAntGrid(i, j) ← EMPTY // Rule 8 
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Quick Review Question 6

From the text’s website, download your computational tool’s 10_4QRQ.”df i‘e f“r 
this syste’-de”endent questi“n t“ deine walk.

Solving the Model—A Simulation

The simulation function, ants, initializes the ant and pheromone grids and stores 
each in lists of grids, antGrids and ”herGrids. After initialization, for each of the t 
time steps, reaction and diffusion occur. All the ants sense pheromone and walk to-
ward the scent; and then, the pheromone diffuses. At each iteration, antGrids and 
”herGrids st“re the new grids. As the f“‘‘“wing a‘g“rith’ revea‘s, the functi“n i-
nally returns these lists of grids. 

ants(n, probAnt, diffusionRate, t)

Function to return a list of ant and pheromone grids in a simulation of ant 
movement, where ant cell values are as in Table 10.4.1 and pheromone cell 
values represent the levels of pheromone

Pre:  n is the size (number of rows/columns) of the internal ant and phero-
mone grids.

  probAnt is the probability that an ant initially occupies a cell.
  diffusionRate is the diffusion rate.
  t is the number of time steps.
Post:  A list of the initial and subsequent ant grids at each time step of the 

simulation and a list of the initial and subsequent pheromone grids were 
returned.

Algorithm:

antGrid ← initAntGrid(n, probAnt)
”herGrid ← initPherGrid(n)
antGrids ← a list containing antGrid
”herGrids ← a list containing ”herGrid
do the following t times:

antGrid ← applySenseExtended(antGrid, ”herGrid)
antGrid and ”herGrid ← walk(antGrid, ”herGrid)

    newAntGrid(i - 1, j) ← SOUTH // Rule 12
   else 
    newAntGrid(i, j) ← STAY // Ru‘es 9 and 11
   // Corresponding segments for directions EAST, SOUTH, WEST go  

// here
return newAntGrid and newPherGrid
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Quick Review Question 7

From the text’s website, download your computational tool’s 10_4QRQ.”df i‘e f“r 
this syste’-de”endent questi“n t“ deine ants.

Verifying and Interpreting the Model’s  
Solution—Visualizing the Simulation

We have a number of choices of how to communicate the information in an ant 
si’u‘ati“n f“r veriicati“n and inter”retati“n “f the ’“de‘ s s“‘uti“n. With c“nstants 
MAXPHER = 50.0, EVAPORATE = 1, DEPOSIT = 2, and THRESHOLD = 0 and 
parameters n = 17, probAnt = 0.1, diffusionRate = 0.01, and t = 11 for the call to 
ants, Figure 10.4.1 presents a sequence of frames, with color representing ants and 
the level of gray indicating the strength of the chemical at a site with no ant. As the 
sequence shows, most ants have moved closer to the initial pheromone trail, while 
ants in contact with the a chemical trail have traveled along the path to levels of 
greater chemical strength. Initially, none of the 28 ants were on the trail. However, 
by ti’e ste” 11, 8 “f the 28 ants, “r 29%, are “n the trai‘, and 15 (54%) are within 
one unit of the path. Moreover, darkening near the path indicates the impact of pher-
omone reinforcement and diffusion. The simulation represents how this social insect 
can communicate chemically with its sisters for the common good.

For indicating the appropriate level of gray, whose values range from 0.0 to 1.0, 
we calculate the maximum amount of pheromone, maxp, throughout the list of pher-
omone grids, ”herGrids. For each cell without an ant, we divide each pheromone 
value by maxp to obtain a normalized value from 0.0 to 1.0. The larger the phero-
mone amount, the closer this quotient is to 1.0. However, because a grayscale value 
of 0.0 represents black and 1.0 corresponds to white, we subtract this quotient from 
1.0, 1.0 – pheromone/maxp, to obtain the appropriate grayscale number. Thus, the 
’ini’u’ a’“unt “f che’ica‘, 0, yie‘ds RGB c“’”“nents “f 1.0  0.0 = 1.0, whi‘e 
the maximum amount of chemical has grayscale value of 0.0. For example, if maxp 
is 50.0, the graysca‘e va‘ue is 1.0  (50/50) = 0.0. A scientiic visua‘izati“n sh“u‘d 
impart information clearly while not misleading the viewer or suggesting more than 
is available.

Quick Review Question 8

From the text’s website, download your computational tool’s 10_4QRQ.”df i‘e f“r 
this system-dependent question that develops a visualization for the simulation.

”herGrid ← applyDiffusionExtended(”herGrid, diffusionRate)
antGrids ← antGrids with antGrid appended
”herGrids ← ”herGrids with ”herGrid appended

return antGrids and ”herGrids
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initial grid grid at t = 1 grid at t = 2

grid at t = 3 grid at t = 4 grid at t = 5

grid at t = 6 grid at t = 7 grid at t = 8

grid at t = 9 grid at t = 10 grid at t = 11

Figure 10.4.1 Several frames in an animation of ant simulation 
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Exercises

On the text’s website, Ants i‘es f“r severa‘ c“’”utati“na‘ t““‘s c“ntain the c“de f“r 
the simulation of the module. Complete the exercises below using your computa-

tional tool.

1. Suppose the size of an internal grid is n = 100 and MAXPHER is 20. Using 
the initialization of the pheromone path in “Formulating a Model: Determine 
Variables,” do the following.

 a.  Give the number of cells that will be initialized with pheromone in the 
path.

 Give the pheromone amount in each column of the internal grid:
 b.  2 c.  10 d.  50 e.  80 f.  100
2. In the simulation of this module, an ant cannot return immediately to a cell 

from which it just came. Without this rule, describe the movement of an ant 
in an area where no other ants are near and, initially, the ant is far from 
chemical deposits.

Projects

On the text’s website, Ants i‘es f“r severa‘ c“’”utati“na‘ t““‘s c“ntain the c“de f“r 
the simulation of the module. Complete the following projects using your computa-

tional tool.

F“r additi“na‘ ”r“–ects, see M“du‘e 14.3, F“raging Finding a Way t“ Eat ; 
M“du‘e 14.4, Pit Vi”ers H“t B“dies, Dead Meat ; M“du‘e 14.5, “Mushroom 

Fairy Rings Gr“wing in Circ‘es ; M“du‘e 14.6, “Spread of Disease—Sharing Bad 

News”; M“du‘e 14.7, HIV The Ene’y Within ; M“du‘e 14.8, “Predator-Prey—

‘Catch Me If You Can’”; M“du‘e 14.9, C‘“uds Bringing It A‘‘ T“gether ; Module 

14.10, Fish Sch““‘ing Hanging T“gether, N“t Se”arate‘y ; M“du‘e 14.11, 
“Spaced Out Native P‘ants L“se t“ Ex“tic Invasives ; and M“du‘e 14.12, Re-
S“‘ving the Pr“b‘e’s with Ce‘‘u‘ar Aut“’at“n Si’u‘ati“ns.

1. F“r the ant si’u‘ati“n in the i‘e Ants of this module, investigate the ant be-
havi“r in the f“‘‘“wing situati“ns, —ee”ing a‘‘ ”ara’eters ixed, ”erha”s as in 
the secti“n Verifying and Inter”reting the M“de‘ s S“‘uti“n Visua‘izing 
the Simulation,” except as noted. Run each simulation at least 10 times, cal-
culate the mean number of ants that are within two units of the chemical for 
each time step over a period of time, describe the results, and discuss the 
implications.

 a.  Use the original Ants i‘e.
 b.  Have varying numbers, m, of areas of chemical concentrations with m = 1, 

2, 3, 4, and 5.
 c.  Vary probAnt from 0.06 to 0.14 in increments of 0.02.
 d.  Vary n from 10 to 50 in increments of 10.
 e.  Vary diffusionRate from 0.01 to 0.10 in increments of 0.01.
 f.  Vary MAXPHER from 10 to 80 in increments of 10.
 g.  Vary EVAPORATE from 0.5 to 3.0 in increments of 0.5.
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 h.  Vary DEPOSIT from 0.5 to 3.0 in increments of 0.5.
 i.  Vary THRESHOLD from 0 to 20 in increments of 2.
2. Consider an Ants model with a decrease strategy for collision. That is, two 

ants could go to the same cell, but after movement, that cell records only one 
ant, so that we have one less ant. Revise the simulation rules and implement 
the strategy. Running the simulation at least 10 times, plot the mean number 
of ants over time. Discuss the results.

3. Develop a simulation in which a single ant leaves the nest searching for a 
food source that is unknown to the ant and that is due north of the nest. Ini-
tially, the grid does not contain pheromones. With food, she returns directly 
to the nest in a straight-line fashion, leaving a chemical trail. As soon as one 
ant returns to the nest, another ant leaves, following the pheromone trail in 
the search for food. An ant following a pheromone trail emits a smaller 
chemical signal than one carrying food. Perform the process for a sequence 
of 10 ants, saving the points of each ant’s path to the food. Plot each ant’s 
path to the food. Discuss the results. 

4. Develop a simulation with a nest, a food source, and ants that should not col-
lide on a 20 × 20 grid. A sequence of 10 numbered ants leave the nest in 
search “f f““d. Once an ant inds f““d, she returns t“ the nest carrying a 
morsel and depositing pheromones, with greater amounts closer to the food 
source. An ant seeking food, usually travels in the direction of maximum 
pheromone, but occasionally moves in a random direction. Have a large rein-
forcement threshold (e.g., 0.8 for pheromone values in the range 0 to 1), a 
small diffusion rate constant (e.g., 0.005), and a small evaporation constant 
(e.g., 0.001 “r ‘ess). Besides ants and ”her“’“ne grids, have a nest grid, 
where the strength of a nest signal is related to the distance from the nest and 
is greatest close to the nest. Run the simulation 10 times, and plot the mean 
‘ength “f ti’e f“r each ant t“ ind the f““d. D“ ants that ‘eave the nest ‘ater 
ind the f““d faster?

5. Develop a simulation with a nest, two food sources, and ants at random ini-
tia‘ ”“siti“ns. Once an ant inds f““d, the a’“unt “f f““d at that ‘“cati“n de-
creases by “ne unit and she returns t“ the nest with ’“rse‘. Besides ants and 
pheromone grids, have a nest grid, where the strength of a nest signal is pro-
portional to the distance from the nest. Do ants exhaust one food source be-
fore focusing on the other?

6. An army ant raid can be 20 m wide and 200 m long and involve hundreds of 
thousands of ants. The raid is self-organizing, evolving from interactions on 
the local level into a global pattern. The pattern appears treelike with the 
forward part of the raid being branchlike. Develop a simulation with no food 
present that has the following rules, which are based on those of (Franks 
2001):

• Every ant deposits pheromone unless the cell is saturated, containing the 
maximum amount of chemical. 

• In new territory, where pheromones are not present, an ant goes randomly 
to the northeast or to the northwest.

• When pheromone exists, with a certain probability an ant is more likely to 
follow the peromone trail.



460 Module 10.4

• More than one ant can be in a cell, up to some maximum number of ants.
• Each time step, a constant number of ants leaves the nest, which is one cell.

7. Augment Project 6 to include the following rule: ants move faster in the pres-
ence of more pheromone. For example, you could consider that based on the 
amount of chemical, an ant makes a move per every one, two, or three time 
steps. Discuss the effects of varying the speed of the ants.

8. Aug’ent Pr“–ect 6 t“ inc‘ude f““d and the f“‘‘“wing ru‘e: “nce an ant inds 
food, she returns to the nest using the same rules as those of Project 6, except 
she goes to the southeast or southwest (Franks 2001). Discuss the difference 
in the self-organizing pattern between this simulation and that of Project 6.

F“r Pr“–ects 9 11, re”eat the indicated ”r“–ect with the directi“n being re‘ative t“ 
an ant’s heading, front right and front left, instead of northeast and northwest, re-

s”ective‘y. Have the nest be in “ne c“rner “f the grid.

9. Project 6  10. Pr“–ect 7 11. Project 8 
12. Usually, trail following is not completely accurate. Introduce an additional 

stochastic element in the choice of direction in any of the earlier projects. For 
example, you might have an ant picking a random direction 25% of the time 
and face an avai‘ab‘e neighb“r with the ’“st che’ica‘ 75% “f the ti’e. Dis-
cuss the advantages and disadvantages of this lack of precision.

13. Adjust the grid on any of the earlier projects to contain obstacles.
14. Develop a cellular automaton simulation to illustate the exploitive competi-

tion of Argentine ants versus native ants, as described in Project 2 of Module 
4.1, “Competition.” Illustrate the competitive factor of discovery time. See 
Pr“–ect 12 f“r an idea “n si’u‘ating disc“very ti’e (H“‘way 1999).

15. Develop a cellular automaton simulation to illustrate the exploitive competi-
tion of Argentine ants versus native ants, as described in Project 2 of Module 
4.1, “Competition.” Illustrate the competitive factor of recruitment rate. See 
Pr“–ect 7 f“r an idea “n si’u‘ating rate “f recruit’ent.

16. Develop a cellular automaton simulation to illustate the interference compe-
tition of Argentine ants versus native ants, as described in Project 2 of Mod-
ule 4.1, “Competition.” 

Answers to Quick Review Questions

From the text’s website, download your computational tool’s 10_4QRQ.”df i‘e f“r 
answers to these system-dependent questions.

References

Franks, Nigel R. 2001. “Evolution of Mass Transit Systems in Ants: A Tale of Two 
Societies.” Insect M“ve’ent: Mechanis’s and C“nsequences Pr“ceedings “f the 
20th Sy’”“siu’ “f the R“ya‘ Ent“’“‘“gica‘ S“ciety. Wa‘‘ingf“rd, Oxf“rd: CAB 
Internati“na‘, ””. 281 298.



Cellular Automaton Diffusion Simulations 461

Gay‘“rd, Richard J., and Kazu’e Nishidate. 1996. Che’“taxis.  Modeling Nature: 

Cellular Automata Simulations with Mathematica. New York: TELOS/Springer-
Verlag, chap. 12, pp. 121–130.

Hö‘‘d“b‘er, B., and E. O. Wi‘s“n. 1990. The Ants. Cambridge, MA: Harvard Univer-
sity Press.

H“‘way, David A. 1999. C“’”etitive Mechanis’s Under‘ying the Dis”‘ace’ent “f 
Native Ants by the Invasive Argentine Ant.” Ecology, 80(1): 238–251.

Martinoli, Alcherio, Rodney Goodman, and Owen Holland. “Exploration, Exploita-
tion, and Navigation in Ants.” EE141: Swarm Intelligence, California Institute of 
Techn“‘“gy. htt”://www.c“r“.ca‘tech.edu/C“urses/EE141/Lecture/W3/ AM_EE1 
41_W3Ex”‘Nav.”df

Th“’as, Lewis. 1979. The Medusa and the Snail, More Notes of a Biology Watcher. 
New York: The Viking Press.

Weimar, Jörg. 2003. “PredatorAgainstPrey.” Source code, Technical University of 
Braunschweig. htt”://www-”ub‘ic.tu-bs.de:8080/~y0021323/ca/ Predat“rAgainst 
Prey.cdl

http://www.coro.caltech.edu/Courses/EE141/Lecture/W3/ AM_EE141_W3ExplNav.pdf
http://www.coro.caltech.edu/Courses/EE141/Lecture/W3/ AM_EE141_W3ExplNav.pdf


MODULE 10.5

Bioilms—United They Stand, Divided They Colonize

 Prerequisite: M“du‘e 10.2, Diffusi“n: Overc“’ing Differences  

Downloads

For several computational tools, the text’s website has a Bi“i‘’ i‘e c“ntaining the 
simulation this module develops and a 10_5QRQ.”df i‘e c“ntaining syste’-de”en-
dent Quick Review Questions and answers available for download. 

Introduction

What do stones in streams, teeth, water and sewer pipes, and the breathing passages 
“f cystic ibr“sis ”atients have in c“’’“n? At irst, these ’ay see’ rather unre‘ated, 
but they are a‘‘ ‘in—ed by at ‘east “ne c“’’“na‘ity a‘‘ are c“vered “r ‘ined with 
bi“i‘’s. These asse’b‘ages ’ay n“t be very fa’i‘iar t“ y“u, but they ”r“ve abs“-
lutely critical to your life. 

Scientists have been aware “f bi“i‘’s f“r s“’e ti’e. Ant“n van Leeuwenh“e—, 
who invented and handcrafted microscopes during the late seventeenth and early 
eighteenth centuries, saw re’nants “f a bi“i‘’ when he “bserved scra”ings he ’ade 
from his teeth (Donlan and Costerton 2002). We just haven’t appreciated their im-
portance until recently.

What is a bi“i‘’, exact‘y? Si’”‘y, bioilms are communities of very small or-
ganisms that adhere to a surface (substratum) in an aqueous environment (Donlan 
and Costerton 2002). These organisms are usually bacteria, but algae or fungi may 
a‘s“ f“r’ bi“i‘’s. S“’eti’es, these gr“u”s ’ay even be ’ixed. The “rganis’s are 
not only attached to a substratum, but they are linked with each other within a matrix 
of biopolymers (polysaccharides, proteins, lipids, and nucleic acids). Scientists now 
believe that the vast majority of microbes are not solitary, planktonic, as was once 
assumed. Most microbial life seems to be part of one of these communities, and the 
planktonic forms may be simply ways to colonize other surfaces. We also know now 
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that the free-l“ating ’e’bers “f each s”ecies are ”hen“ty”ica‘‘y quite different 
fr“’ their s“cia‘‘y c“nnected c“unter”arts (B“‘es et a‘. 2004). 

When van Leeuwenhoek looked at the “animalicules” from his dental scrapings, 
what he was actua‘‘y seeing is what we n“w ca‘‘ ”‘aque.  Denta‘ ”‘aque is a itting 
exa’”‘e “f a bi“i‘’ (Over’an 2000). F“r’ing “n the surfaces “f the teeth and s“ft 
tissues “f the “ra‘ cavity, this bi“i‘’ is ‘in—ed t“ denta‘ caries (cavities), ”eri“d“nta‘ 
diseases, and even cardiovascular disease (Genco et al. 2002). Examination of 
plaque reveals a complex architecture with a heterogeneous array and dispersal of 
ce‘‘s within a ’atrix ass“ciated with luid-i‘‘ed s”aces. The ce‘‘s are ’“st‘y bacteria 
belonging to as many as 500 distinct species, but there are usually white blood cells 
and s“’e e”ithe‘ia‘ ce‘‘s as we‘‘. Bacteria ass“ciated with ”‘aque are busy ”r“ducing 
metabolites and various toxins. Some of these metabolites are organic acids, like 
lactic acid, which initiate the formation of caries by demineralization of the enamel. 
Furthermore, the production of enzymes, toxins, and other metabolites can cause a 
deeper deterioration of the support structures of the teeth. Severe periodontal disease 
is the leading cause of tooth loss in adults.

Bi“i‘’s are ubiquit“us, and denta‘ ”‘aque is “n‘y “ne exa’”‘e. Given their ”rev-
alence, there must be some advantages for microbes to band together into such com-
munities. In fact, there is quite a list of advantages. For a human pathogen like Pseu-

domonas aeruginosa, a c“’’“n cause “f res”irat“ry diseases, ‘iving in bi“i‘’s 
great‘y increases the success “f infecti“n (B“‘es et a‘. 2004). Bi“i‘’s aff“rd great‘y 
increased protection from antibiotics, the host’s immune system, and physical in-
–ury. Scientists have disc“vered that bi“i‘’ “rganis’s sh“w great genetic diversity, 
which a‘s“ stabi‘izes the c“’’unity and ”r“’“tes surviva‘ in the h“sts (B“‘es et a‘. 
2004). This is in conformance with the well-known ecological principle of the “in-
surance hy”“thesis diverse sub”“”u‘ati“ns increase the chances “f surviva‘ “f the 
community over a wider range of environmental conditions. 

With the c‘“se ass“ciati“n “f bi“i‘’ c“nstituents, there is the additi“na‘ “””“rtu-
nity to share metabolites. Furthermore, such organisms are better able to communi-
cate, coordinate behavior, and transfer genetic information (Harrison et al. 2005). 

According to Costerton, 65% to 80% of all bacterial diseases in human beings are 
fr“’ chr“nic bi“i‘’ infecti“ns (C“stert“n et a‘. 1999; C“stert“n 2004). F“r years, 
most physicians and scientists conceived of bacterial diseases derived from the sin-
gle-celled, planktonic form of the microbe. Medical treatment was gauged to combat 
such f“r’s, n“t bi“i‘’s. S“, it is ‘itt‘e w“nder that we are increasing‘y inding dif-
icu‘ties in c“’bating ”ath“gens.

F“r the ’“st ”art, bi“i‘’s see’ t“ be a threat t“ “ur s”ecies, a‘th“ugh we are 
beginning to utilize them in positive ways for bioremediation and wastewater treat-
’ent f“r green  bui‘dings. Because these c“’’unities have such i’”“rtant i’-
pacts on our lives, it behooves us to better understand the structure and function of 
bi“i‘’s (Stewart 2003).

The Problem

In this ’“du‘e, we si’u‘ate the f“r’ati“n “f the structure “f a bi“i‘’ with“ut regard 
to its function. We develop a 2D version, which we can extend to 3D. As the simula-
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tion time proceeds in a sequence of discrete steps, we consider the following phases 
at each time step:

1. Diffusion of nutrients
2. Growth and death of microbes
3. Consumption of nutrients by microbes 

Thus, we have a reaction-diffusion-type simulation. We have a cycle of microbes 
reacting with the environment by consuming nutrients (as well as growing and 
dying) and nutrients diffusing through this environment. Projects consider additional 
”hases, such as diffusi“n and re‘ease “f ’icr“bia‘ ”r“ducts, attach’ent t“ the bi“i‘’ 
of a microbe that is wandering in free space, and detachment of microbes from the 
bi“i‘’. F“r si’”‘icity, we c“nsider the bi“i‘’ t“ be c“’”“sed “f “n‘y “ne ty”e “f 
bacterium, while projects at the end of this module consider more complex 
arrangements. 

Nutrient Grid

T“ ’“de‘ the gr“wth “f a bi“i‘’ we e’”‘“y a ce‘‘u‘ar aut“’at“n with tw“ m × n 
grids, “ne f“r the bi“i‘’ and a c“rres”“nding “ne f“r nutrients. Assu’ing that we 
have a homogeneous nutrient that is completely mixed at a constant temperature, 
with a function, initNutrientGrid, we initialize the nutrient grid to be an m × n ma-
trix, with each element having a dimensionless constant value, MAXNUTRIENT, 
with 0 < MAXNUTRIENT  1.

Quick Review Question 1

From the text’s website, download your computational tool’s 10_5QRQ.”df i‘e f“r 
this syste’-de”endent questi“n that deines initNutrientGrid.

Diffusion occurs on the nutrient grid at each time step. Although one of the proj-
ects considers another alternative, for now we assume that the nutrients diffuse at the 
same rate throughout the system. As in section “Heat Diffusion” from Module 10.2, 
we base our model of diffusion on Newton’s Law of Heating and Cooling; so that for 
diffusion rate parameter (r), a cell’s nutrient value at time t + ∆t is as follows:

 site + ∆site = (1 – 8r)site + r
i=
∑

1

8

 neighbori, where 0 < r < 0.125

That section also presents the algorithm for a function, diffusion, which we employ 
in this module for the diffusion of nutrients. This function, which returns the new 
nutrient value for the site, has parameters for the diffusion rate (diffusionRate) and 

initNutrientGrid(m, n)

Function to return an m × n matrix, with each element having the value MAX-

NUTRIENT
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the nutrient values of a cell (site) and its eight neighbors (N, NE, E, SE, S, SW, W, 
NW).

Nutrient Boundary Conditions

In the bi“i‘’s ’“de‘, we e’”‘“y a c“’binati“n “f b“undary c“nditi“ns. Su””“se 
that the surface t“ which the bi“i‘’ adheres, “r substratu’, is “n the ‘eft and an in-
inite su””‘y “f nutrients “ccurs “n the right. F“r this ininite su””‘y, the ex”anded 
nutrient grid has an eastmost (right) column, with each cell having constant nutrient 
value. In this same grid with no nutrients present on the surface, we have a westmost 
column of all zeros. We use periodic boundary conditions in the north and south di-
rections so that part of the nutrient in the north diffuses to the south, and vice versa. 

Quick Review Question 2

From the text’s website, download your computational tool’s 10_5QRQ.”df i‘e f“r 
this syste’-de”endent questi“n that deines a functi“n extendNutrientGrid that 
takes an m × n nutrient grid and returns an extended (m + 2) × (n + 2) nutrient grid.

Bioilm Initialization

F“r ’“de‘ing the bacteria in bi“i‘’s, we e’”‘“y an identica‘‘y sha”ed grid t“ that 
of the nutrient grid, and cells in the same position in the two grids represent the same 
‘“cati“n. F“r exa’”‘e, the ce‘‘ in r“w 3 and c“‘u’n 7 “f the bacteria grid indicates 
the bacterial state (empty, bacterium, dead bacterium), while the corresponding cell 
in the expanded nutrition grid indicates the nutrient amount there.

A cell of the bacteria grid can be in one of three states: contain a live bacterium, 
have a dead bacterium, or be empty and available for growth of a new bacterium, 
while a fourth border state is available in the extended bacteria grid. Table 10.5.1 
‘ists the f“ur bacteria ce‘‘ state va‘ues 0, 1, 2, and 3 and ’eanings, a‘“ng with 
ass“ciated c“nstant na’es EMPTY, BACTERIUM, DEAD, and BORDER, re-
s”ective‘y. By using such descri”tive na’es, “ur ”r“gra’ is easier t“ understand and 
to modify.

Table 10.5.1 
Cell Values with Associated Constants and Their Meanings

Value Constant Meaning

0 EMPTY The cell does not contain a live or dead bacterium or 
border.

1 BACTERIUM The cell contains a live bacterium.
2 DEAD The cell contains a dead bacterium.
3 BORDER The cell is on the border and not under active 

consideration.
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For initialization of a simulation’s bacteria grid in a function, initBacteriaGrid, 
we designate if each cell contains a bacterium or not. We can form this initial con-
igurati“n in a variety “f ways t“ study vari“us situati“ns. F“r this si’u‘ati“n, the 
initial bacteria grid is an m × n matrix with bacteria (value BACTERIUM) occurring 
at rand“’ in the irst c“‘u’n and a‘‘ “ther ce‘‘s being e’”ty (va‘ue EMPTY). 

The initialization algorithm employs random numbers and probability in deter-
’ining the irst c“‘u’n s va‘ues. Su””“se “n the average “n‘y 15% “f these ce‘‘s 
contain bacteria. Thus, a probInitBacteria = 0.15, or 15%, chance exists for a cell to 
c“ntain a bacteriu’. F“r each ce‘‘, we generate a unif“r’‘y distributed rand“’ l“at-
ing-point number from 0.0 up to 1.0. If the random number is less than probInitBac-

teria, we make the cell’s value BACTERIUM; otherwise, we assign EMPTY to the 
cell’s value. Thus, using the preceding probability and cell values, we employ the 
following logic to initialize each cell in the grid.

Quick Review Question 3

From the text’s website, download your computational tool’s 10_5QRQ.”df i‘e f“r 
this syste’-de”endent questi“n that deines initBacteriaGrid.

Bioilm Boundary Conditions

As with the nutrient grid, we have periodic boundary conditions in the north-south 
direction. In an extended bacteria grid, which function extendBacteriaGrid returns, 
the far-west (left) direction has an edge of border cells indicating the substratum, and 
the far-east (right) direction also has an edge of border cells that do not accommo-
date growth from the interior. Thus, as designed next, we use periodic boundary 
c“nditi“ns in the n“rth-s“uth directi“ns, a irst c“‘u’n, with each ce‘‘ having the 

initBacteriaGrid(m, n, probInitBacteria)

Function to return an initial m × n bacteria grid of all EMPTY values except 
f“r a irst c“‘u’n, where the ”r“babi‘ity “f a bacteriu’ in a ce‘‘ is probInit-

Bacteria

Algorithm:

emptyMat ← m × (n – 1) matrix with each cell being EMPTY

onSurface ← m × 1 matrix (column vector) with each element calculated as 
follows:

if a rand“’ l“ating-”“int nu’ber is ‘ess than probInitBacteria

set the cell’s value to BACTERIUM

else 
set the cell’s value to EMPTY 

return a matrix with onSurface as irst c“‘u’n and emptyMat as rest of ma-
trix
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value BORDER, indicating a surface to the west and a last column, with each cell 
having the value BORDER, so that bacteria do not grow to the east.

Quick Review Question 4

From the text’s website, download your computational tool’s 10_5QRQ.”df i‘e f“r 
this syste’-de”endent questi“n that deines extendBacteriaGrid.

Bioilm Growth

If a location with a bacterium has no nutrients, the bacterium dies of starvation. Cells 
with dead bacteria remain in that state from one time step to the next. In the projects, 
we consider other possibilities, such as decay of a dead bacterium to nutrients. 

With a certain probability a live bacterium divides at random into a neighboring 
empty cell. Researchers have considered several calculations of the probability of 
such growth, usually related to the amount of available nutrients. For our model, we 
assume than this probability is proportional to the nutrients in the bacterium’s cell 
and have the proportionality constant, p, as a parameter to the simulation.

For a BACTERIUM cell that is to divide, we must pick an empty neighbor to ac-
cept the daughter bacterium. While projects consider other alternatives, in this simu-
lation if no empty neighbor exists, division does not occur. However, when possible, 
we select one of the empty neighbors at random. The function pickNeighbor has 
parameters of a cell’s row (i) and column (j) in an extended matrix, the number of 
rows (m) of the corresponding unextended matrix, and the values of the (i, j) cell’s 
four nearest neighbors (N, E, S, W). The function returns indices in the correspond-
ing unextended bacteria grid. Thus, we irst deine newi and newj to be the indices in 
the unextended grid corresponding to the indices, i and j, in the extended grid. That 
is, newi and newj are one less than i and j, respectively. If no neighbor (N, E, S, W) is 
empty, we return the pair (newi, newj) so that division does not occur. Otherwise, we 
return the row and column in the unextended grid of the selected empty neighbor. 
We must be careful to consider north-south periodic boundary conditions. Thus, an 
e’”ty ce‘‘ n“rth “f a irst-r“w bacteria grid ce‘‘ is rea‘‘y “n the grid s ‘ast r“w. F“r 

extendBacteriaGrid(mat)

Function to take an m × n matrix parameter and return an (m + 2) × (n + 2) 
matrix with periodic boundary conditions in the north-south directions and 
with ixed b“undary c“nditi“ns in the east-west directi“ns using c“nstant 
value BORDER

Algorithm:

matNS ← concatenation of last row of mat, mat, and irst r“w “f mat 
return concatenation of column of BORDERs, matNS, and column of BOR-

DERs
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example, if the minimum index is 1, suppose i = 2, j = 4, m = 8, and N = EMPTY, as 
in Figure 10.5.1. With coordinates (2, 4) in the extended bacteria grid, the corre-
sponding coordinates in the unextended grid are (newi, newj) = (1, 3). Suppose the 
cell to the north is picked to accept the daughter bacterium in division. Wrapping 
around with periodic boundary conditions, this cell is really far south at location (8, 
3) in the unextended grid. Similarly, we must consider periodic boundary conditions 
when a cell in the last row of the unextended grid has a selected empty neighbor to 
the s“uth. Because the extended grid has a irst and a ‘ast c“‘u’n “f a‘‘ BORDER 
values, we cannot pick a cell off the unextended bacteria grid to the west or east, 
which si’”‘iies the c“de. 

Quick Review Question 5

From the text’s website, download your computational tool’s 10_5QRQ.”df i‘e f“r 
this system-dependent question that relates to pickNeighbor.

Quick Review Question 6

From the text’s website, download your computational tool’s 10_5QRQ.”df i‘e f“r 
this syste’-de”endent questi“n that deines pickNeighbor.

1

3

2

4

Figure 10.5.1 Extended and unextended bacteria grid with empty cell to the north of the 
site next to the boundary 



Cellular Automaton Diffusion Simulations 469

Preliminary to the main iteration of the growth algorithm in function grow, we 
make a copy (bacGrid) of the bacteria grid for updating, determine its number of 
rows (m) and columns (n), and expand the bacteria and nutrition grids to account for 
boundary conditions. Then, looking for bacteria, we iterate through every internal 
position of the extended bacteria grid (extBacGrid) by having an index (i) going 
through the internal row indices and an index (j) going through the internal column 
indices. (If indices begin with 0, i goes from row 1 through row m, and j goes from 

pickNeighbor(i, j, m, N, E, S, W)

Function to return the row and column in the unextended bacteria grid of a 
randomly selected empty neighbor of a given cell. If an empty neighbor does 
not exist, the function returns the indices of the site in the unextended bacte-
ria grid corresponding to the given cell.

Pre: i, j are indices of a site in extended bacteria grid.
  m is the number of rows of an un-extended bacteria grid.
   N, E, S, W are values of the nearest four neighbors of the site in ex-

tended bacteria grid.
Post:  The function has returned the indices in the unextended bacteria grid of 

an empty neighbor or, if no such neighbor exists, the indices of the 
given site in the unextended bacteria grid

Algorithm:

 lst ← list of N, E, S, W
 pos ← list of positions (1 through 4) where EMPTY occurs in lst

 newi ← i – l //indices in unextended grid
 newj ← j – l
 if pos has no elements
  return (newi, newj)
 else
  rand ← random integer representing an index of pos

  if pos(rand) is 1
   if newi is greater than the minimum index
    return (newi – 1, newj) //north
   else
    return (maximum index, newj) //wrap around because of 
     //periodic boundary conditions
  else if pos(rand) is 2
   return (newi, newj + 1) //east
  else if pos(rand) is 3
   if newi less than the maximum index
    return (newi + 1, newj) //south
   else
    return (minimum index, newj) //wrap around because of 
 //periodic boundary conditions
  else
    return (newi, newj - 1) //west
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row 1 through row n. If indices begin with 1, the indices range from 2 through 
(m + 1) and 2 through (n + 1), respectively.) If a bacterium has no nutrition (nutrition 
value of 0), we change the corresponding element of bacGrid to be DEAD. Because 
extBacGrid is an expanded matrix of size (m + 2) × (n + 2), while bacGrid has size 
m × n, an element of extBacGrid with indices i and j corresponds to an element of 
bacGrid with indices (i – 1) and (j – 1), respectively. For a position with a bacterium 
that is to live, we calculate the probability (p times its nutrition value) that the bacte-
rium will divide. Thus, with this probability, we call pickNeighbor to obtain indices 
(newi and newj) of a daughter bacterium and then change the corresponding element 
of bacGrid from EMPTY to BACTERIUM. Thus, at the next time step, cell (newi, 
newj) in the unextended grid is to have a bacterium. However, in a call to grow, two 
growing bacteria may choose that same cell for expansion. If this is the case, as a 
simplifying assumption, we place only one daughter bacterium in that location. The 
algorithm for grow follows and assumes that the smallest matrix index is 1:

grow(bacteriaGrid, nutritionGrid, p) 

Function to take a bacteria grid, a nutrition grid, and a partial probability p 
and return a bacteria grid for the next time step as follows: If a site with a 
bacterium has no nutrient, the bacterium dies; otherwise, if possible, with 
probability p times the cell’s nutrient value, the bacterium divides and its 
daughter bacterium inhabits a randomly selected empty neighboring site.

Pre:  bacteriaGrid and nutriti“nGrid are bacteria and nutrition grids, respec-
tively.

   The probability that a bacterium will divide is p times the cell’s nutri-
tion value.

   Matrix indices begin with 1.
Post:  The bacteria grid for the next time step was returned.
Algorithm:

 bacGrid ← bacteriaGrid
 m ← number of rows in nutriti“nGrid
 n ← number of columns in nutriti“nGrid
 extBacGrid ← extendBacteriaGrid(bacteriaGrid)
 extNutGrid ← extendNutrientGrid(nutriti“nGrid)
 for i going from 2 through m + 1, do the following: // indices starting with 1
  for j going from 2 through n + 1, do the following:
   if extBacGrid(i, j) is BACTERIUM,
    if extNutGrid(i, j) <= 0
     bacGrid(i – 1, j – 1) ← DEAD

    else if a random number is less than p*extNutGrid(i, j)
     (newi, newj) ← pickNeighbor(i, j, m, extBacGrid(i - 1, j), 
      extBacGrid(i, j + 1), 
      extBacGrid(i + 1, j), 
      extBacGrid(i, j - 1))
     bacGrid(newi, newj) ← BACTERIUM

 return bacGrid
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Quick Review Question 7

From the text’s website, download your computational tool’s 10_5QRQ.”df i‘e f“r 
this syste’-de”endent questi“n that deines grow.

Consumption of Nutrients

At each time step, we call a function, consumption, in which each bacterium con-
sumes a constant amount (CONSUMED) of nutrient. The amount of nutrient in a 
cell cannot fall below 0. 

Quick Review Question 8

From the text’s website, download your computational tool’s 10_5QRQ.”df i‘e f“r 
this system-dependent question that relates to consumption.

For this simulation, nutrition is consumed only in the cells containing bacteria. In 
each such cell, a bacterium eats a constant amount (CONSUMED) of nutrients, so 
that the new value for the cell’s nutrient is the old value minus CONSUMED. How-
ever, a bacterium cannot consume more than is there; so that if the difference is 
negative, we use 0.0 instead. We can employ an if statement or can take the maxi-
mum of 0.0 and the old nutrient value minus CONSUMED to ensure that each result 
is nonnegative.

Quick Review Question 9

Write pseudocode using an if statement instead of “maximum” in the nested loops to 
obtain a new value for nutGrid(i, j). 

For calculation of new values along the edges, we must extend the boundaries of 
a nutrient grid. As indicated in the Nutrient B“undary C“nditi“ns  secti“n, we have 

consumption(bacteriaGrid, nutritionGrid)

Function to return a new nutrition grid after bacteria have consumed nutrients 
in one time step

Algorithm:

 m ← number of rows of nutriti“nGrid
 n ← number of columns of nutriti“nGrid
 nutGrid ← nutriti“nGrid
 for i going from 1 through m // assuming matrix indices begin with 1
  for j going from 1 through n 
   if bac(i, j) is BACTERIUM

    nutGrid(i, j) ← maximum of 0.0 and (nutGrid(i, j) – CONSUMED)
 return nutGrid
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periodic boundary conditions in the north-south directions, constant 0 in the west 
direction containing the substratum, and constant MAXNUTRIENT in the east direc-
tion with its endless nutrient supply. The function extendNutrientGrid takes an 
m × n matrix, mat, and returns such an extended (m + 2) × (n + 2) matrix.

Quick Review Question 10

From the text’s website, download your computational tool’s 10_5QRQ.”df i‘e f“r 
this syste’-de”endent questi“n that deines extendNutrientGrid.

After extending the grid by one cell in each direction using these boundary condi-
tions, we apply the function diffusion to each internal cell and then discard the 
boundary cells. To do so, we employ a function applyDiffusionExtended similar to 
the function in section “Applying a Function to Each Grid Point” of Module 10.2 
(“Diffusion: Overcoming Differences”) that takes an extended square lattice (mat-

Ext) and a diffusion rate (diffusionRate) and returns the internal lattice with diffusion 
applied to each site. 

Simulation Program

T“ ”erf“r’ the si’u‘ati“n “f a bi“i‘’ s structura‘ f“r’ati“n, we deine a functi“n 
bioilm with parameters m and n, the number of grid rows and columns, respectively; 
probInitBacteria, the ”r“babi‘ity “f a bacteriu’ in an initia‘ bacteria grid s irst c“‘-
umn element; diffusionRate, the rate of diffusion of nutrients in the nutrient grid; p, 
the constant (0 < p  1) used in the ca‘cu‘ati“n “f the ”r“babi‘ity that a bacteriu’ 
divides; and t, the number of time steps. The function bi“i‘’ returns two lists, a list 
of the initial bacteria grid and the next t bacteria grids in the simulation and a corre-
sponding list of nutrient grids. Pseudocode for bi“i‘’ is as follows.

extendNutrientGrid(mat)

Function to take an m × n matrix parameter and return an (m + 2) × (n + 2) 
’atrix with ”eri“dic b“undary c“nditi“ns in the n“rth-s“uth directi“ns, a irst 
column of zeros, and a last column with constant value MAXNUTRIENT

Algorithm:

 matNS ← concatenation of last row of mat, mat, and irst r“w “f mat 
  return concatenation of column of zeros, matNS, and column of MAXNU-

TRIENTs

bioilm (m, n, probInitBacteria, diffusionRate, p, t)

Function to return a list of bacteria grids and a list of nutrition grids in a sim-
u‘ati“n “f the f“r’ati“n “f the structure “f a bi“i‘’ with “ne ty”e “f bacte-
rium. In a bacteria grid, a cell value of EMPTY indicates the cell is empty; 
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Quick Review Question 11

From the text’s website, download your computational tool’s 10_5QRQ.”df i‘e f“r 
this syste’-de”endent questi“n that deines bi“i‘’.

Display Simulation

Visualization helps us understand the meaning of the grids. For each bacteria grid in 
the irst ‘ist returned by bi“i‘’, we generate a graphic for a rectangular grid with 
white representing an empty site; color, a bacterium; and dark gray, a dead bacte-
rium. The function showBacteriaGraphs with parameter graphList containing the 

BACERIUM, the cell contains a live bacterium; and DEAD, a dead bacterium. 
In a nutrition grid, cell values range from 0 (no nutrient) to 1.

Pre:  m and n are the number of rows and columns, respectively, of the bac-
teria and nutrient grids.

  probInitBacteria is the probability of a bacterium in an element of the 
initia‘ bacteria grid s irst c“‘u’n. 

  diffusionRate is the rate of diffusion of nutrients in the nutrient grid. 
  The probability that a bacterium will divide is p times the cell’s nutri-

tion value.
  t is the number of time steps.
  Matrix indices begin with 1.
Post:  Two lists were returned: a list of the initial bacteria grid and the grid at 

each time step of the simulation and a corresponding list of nutrient 
grids.

Algorithm:

 bacteriaGrid ← initBacteriaGrid(m, n, probInitBacteria)
 initNutrientGrid ← initNutrientGrid(m, n)
 bacGrids ← list containing bacteriaGrid
 nutGrids ← list containing nutrientGrid
 do the following t times:
  extNutrientGrid ← extendNutrientGrid(nutrientGrid)
   nutrientGrid ← applyDiffusionExtended(extNutrientGrid, diffusion-

Rate)
  bacteriaGrid ← grow(bacteriaGrid, nutriti“nGrid, p) 
  nutrientGrid ← consumption(bacteriaGrid, nutriti“nGrid)
   bacGrids ← the list with bacteriaGrid appended onto the end of bac-

Grids
   nutGrids ← the list with nutrientGrid appended onto the end of nut-

Grids
 return bacGrids and nutGrids
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‘ist “f ‘attices fr“’ the si’u‘ati“n ”r“duces these igures. We ani’ate the sequence 
“f gra”hics t“ view the changing bi“i‘’ scene. 

Quick Review Question 12

From the text’s website, download your computational tool’s 10_5QRQ.”df i‘e f“r 
this syste’-de”endent questi“n that deines sh“wBacteriaGra”hs.

Because nutrient va‘ues are “n a c“ntinuu’ fr“’ 0 t“ 1, we e’”‘“y a graysca‘e 
for the animation of nutrient diffusion. On such a scale, 0 is black and 1 is white. So 
that the higher nutrient values appear darker, we subtract each nutrient value from 1 
to obtain its degree of gray. For example, a low nutrient value of 0.2 converts to a 
grayscale value of 1 – 0.2 = 0.8, which displays as light gray. In contrast, a high 
nutrient value of 0.8 has a grayscale value of 0.2 and appears as dark gray in the 
animation.

Quick Review Question 13

From the text’s website, download your computational tool’s 10_5QRQ.”df i‘e f“r 
this syste’-de”endent questi“n that deines sh“wNutrientGra”hs.

Example Problem

Figure 10.5.2 dis”‘ays severa‘ fra’es “f a bi“i‘’ si’u‘ati“n with bacteria grids “n 
one row and the corresponding nutrient grids on the next. Clearly, different initial 
seeds result in different sequences. This simulation employs the parameters m = 50, 
n = 20, probInitBacteria = 0.5, diffusionRate = 0.1, p = 0.3, and t = 130. In the sim-
u‘ati“n, the bi“i‘’ d“es n“t gr“w fr“’ t = 0 to t = 1, but subsequent frames show 
the bi“i‘’ s”reading t“ neighb“ring ce‘‘s. The nutrient grids i‘‘ustrate the bacteria s 
gradual consumption of food as well as the diffusion of nutrients. Grids for times 
starting at t = 55 revea‘ the inluence “f n“rth-s“uth ”eri“dic b“undary c“nditi“ns as 
the bi“i‘’ at the t“” s”reads t“ the b“tt“’ “f the grid. The fra’e at t = 100 shows 
how some bacteria have consumed all their resources and died (in dark gray). As 
ti’e advances, ”arts “f the bi“i‘’ c“a‘esce, and bacteria i‘‘ h“‘es in the bi“i‘’ (see 
frame at t = 130). We must, of course, be careful not to allow the simulation to run 
s“ ‘“ng that the bi“i‘’ reaches the east edge and starts i‘‘ing in that end.

Assessment of the Model

As IWA (2006) ”“ints “ut, M“st bi“i‘’ ’“de‘s t“day ca”ture “n‘y a s’a‘‘ fracti“n 
“f the t“ta‘ c“’”‘exity “f a bi“i‘’ syste’, but they are high‘y usefu‘.  We have 
chosen in the bi“i‘’ simulation only to model structural formation, not function. 
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t = 0 t = 1 t = 2

Bacteria Grids

Nutrient Grids

Figure 10.5.2  Severa‘ fra’es in an ani’ati“n “f the s”reading “f a bi“i‘’
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t = 54 t = 55 t = 56

Bacteria Grids

Nutrient Grids

Figure 10.5.2  (continued)
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t = 100 t = 115 t = 130

Bacteria Grids

Nutrient Grids

Figure 10.5.2  (continued)
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Si’u‘ati“n resu‘ts agree with vari“us features “f bi“‘“gica‘ bi“i‘’s. F“r exa’”‘e, 
as Figure 10.5.2 shows, with time, the overall thickness increases, and inert (dead) 
areas are greater near the substratum (Laspidou and Rittmann 2004a, b). 

As Schaudinn and his c“auth“rs (2007) s“ e‘“quent‘y state, ’agniied views re-
veal microcolonies in an English garden to topiary delights, taking shapes that re-
semble mushrooms, towers, and arboreal structures. . . .” Researchers have also ob-
served “ther interesting features, such as ”“res, in bi“i‘’s (Harris“n et a‘. 2005). 
Frames of simulation results in Figures 10.5.2 and 10.5.3 display these phenomena. 
The nutrient grid and both simulation rules based on reality provide explanations for 
s“’e “f these sha”es. Bacteria have c“nsu’ed ’uch “f the nutrients t“wards the 
substratum in the west; nutrients continually come from the east; and bacteria divide 
at higher rates in nutrient-rich environments.

However, allowing our simulation to run for many time steps can reveal some 
an“’a‘ies n“t genera‘‘y ”resent, such as very ‘“ng dendritic structures. Reining the 
model to account for erosion of surface bacteria should ameliorate this situation (see 
Projects). 

Also, the current model does not show water channels present in so many bio-
i‘’s and d“es n“t indicate the bi“i‘’ s density, which is signiicant‘y greater near 
the substratum. Moreover, in our simplifying assumptions, we ignored important 
aspects, such as hydrodynamics, extracellular polymeric substances (EPS), chemical 
oxygen demand, and heterogeneity. Accounting for such features can enlighten our 
understanding “f bi“i‘’s but can resu‘t in signiicant‘y ’“re c“’”‘ex ’“de‘s that 
require much greater computing resources. Other types of models, such as contin-
uum or discrete particle-based models, are advantageous for showing such features 
and f“r ta—ing int“ acc“unt bi“i‘’ functi“n.

Bacteria Grid Nutrient Grid

Figure 10.5.3 Mushr““’ sha”es and ”“res in si’u‘ated bi“i‘’ a‘“ng with c“rres”“nding 
nutrient grid
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Computing Power

Bi“i‘’s are high‘y c“’”‘ex with nu’er“us features. We have ch“sen t“ c“nsider 
form, not function, in 2D and have employed a number of simplifying assumptions. 
The simulations were run on a personal computer. However, with larger grids, con-
versi“n t“ 3D, and reine’ent t“ ’“re c“’”‘ex ’“de‘s, si’u‘ati“ns can stretch c“’-
”uting res“urces signiicant‘y. F“r exa’”‘e (IWA 2006), in referring t“ bi“i‘’ 
models involving hydrodynamics states, “Although such 2d models are now acces-
sible for ordinary personal computers of nowadays (even for time-dependent prob-
‘e’s a few ’inutes ’ay be suficient), the 3d ”r“b‘e’s “f such ty”e are at ‘i’it and 
better require parallel computing power.” Thus, it is advantageous for the modeler to 
be able to use high-performance computing, which Chapter 12 introduces, when 
needed. 

Projects

On the text s website, Bi“i‘’ i‘es f“r severa‘ c“’”utati“na‘ t““‘s c“ntain the c“de 
for the simulation of the module. Complete the following projects using your compu-

tational tool.

F“r additi“na‘ ”r“–ects, see M“du‘e 14.3 F“raging Finding a Way t“ Eat ; 
M“du‘e 14.4, Pit Vi”ers H“t B“dies, Dead Meat ; M“du‘e 14.5, “Mushroom 

Fairy Rings Gr“wing in Circ‘es ; M“du‘e 14.6, “Spread of Disease—Sharing Bad 

News”; M“du‘e 14.7, HIV The Ene’y Within ; M“du‘e 14.8, “Predator-Prey—

‘Catch Me If You Can’”; M“du‘e 14.9, C‘“uds Bringing It A‘‘ T“gether ; Module 

14.11, S”aced Out: Native P‘ants L“se t“ Ex“tic Invasives ; and M“du‘e 14.12, 
Re-S“‘ving the Pr“b‘e’s with Ce‘‘u‘ar Aut“’at“n Si’u‘ati“ns.

1. Ad–ust the bi“i‘’ si’u‘ati“n t“ sh“w attach’ent t“ the bi“i‘’ “f bacteria 
l“ating in the nutrients. T“ d“ s“, have bi“i‘’ execute a fourth phase (after 
consumption) at each time step. We can use the technique of diffusion-lim-
ited aggregation (DLA) for the attachment. One at a time, “bacteria” are 
released from random positions on the east boundary (or at least at a random 
”“siti“n east “f the bi“i‘’) t“ g“ “n rand“’ wa‘—s. F“r each ti’e ste” “f 
such a walk, a bacterium moves at random to a neighboring position. If the 
walker comes in contact with another particle (i.e., a neighbor to its north, 
east, south, or west), with a designated sticking probability, the walker ad-
heres t“ the ”artic‘e, resu‘ting in a ‘arger bi“i‘’. If the wa‘—er trave‘s t““ 
close to the east boundary of the grid, the simulation deletes that walker and 
releases another random walker. To speed attachment, we can have such a 
bacterium move eastward with a smaller probability than it moves in the 
“ther directi“ns. N“tice that such free-l“ating bacteria “n‘y adhere t“ the 
surface “f the bi“i‘’. F“r si’”‘icity, deine an“ther state and c“nstant f“r an 
unattached bacteriu’, and d“ n“t a‘‘“w a l“ating bacteriu’ t“ divide. H“w-
ever, such a bacterium does consume nutrients. Discuss the impact on the 
structure by allowing attachment. Discuss the effect of consumption of nutri-
ents by a wandering bacterium.
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2. One problem with the module’s simulation is the formation of long dendritic 
structures, which d“ n“t “ccur s“ frequent‘y in bi“i‘’s (see Figure 10.5.2, 
t = 125). We have n“t c“nsidered the ‘“ss “f ”ieces fr“’ the bi“i‘’ due t“ 
er“si“n, abrasi“n, grazing, “r s‘“ughing (Pici“reanu et a‘. 1996). Ad–ust the 
bi“i‘’ si’u‘ati“n s“ that it sh“ws the er“si“n “f surface bacteria. Si’i‘ar t“ 
Project 1, release an inert particle one at a time from a random location east 
“f the bi“i‘’ and have the ”artic‘e g“ “n a rand“’ wa‘—. If the ”artic‘e 
touches a bacterium (i.e., a neighbor to its north, east, south, or west), re-
move the bacterium, making its cell empty. Have bi“i‘’ execute one step of 
this random walk (after consumption) at each time step. Notice that erosion 
“n‘y “ccurs “n the surface “f the bi“i‘’. Discuss the i’”act “f a‘‘“wing er“-
sion on the structure. Which bacteria are more likely to erode? 

3. Deve‘“” an a‘ternative t“ the bi“i‘’ detach’ent ’“de‘ “f Pr“–ect 2 by e‘i’-
inating any bacterium above a designated height from the surface. An exam-
”‘e “f such situati“n is a c“nstant-de”th i‘’ fer’ent“r, a device that ”eri“di-
ca‘‘y re’“ves the surface gr“wth t“ ’aintain a bi“i‘’ with a c“nstant 
ge“’etry. Researchers use this syste’ t“ gr“w and study “ra‘ bi“i‘’s (den-
tal plaque) in the laboratory (Picioreanu et al. 2004; UCL Eastman Dental 
Clinic 2008). Run the simulation long enough to observe the pores gradually 
i‘‘ing and f“r’ati“n “f a c“’”act bi“i‘’.

4. Ex”and the bi“i‘’s si’u‘ati“n t“ have b“th an attach’ent ”hase (see Pr“–-
ect 1) and an erosion phase (see Project 2 or 3) at each time step. Discuss the 
results.

5. Revise the diffusion algorithm so that as indicated in Project 3 of Module 
10.2, “Diffusion: Overcoming Differences,” diffusion of nutrients into a site 
is less likely to occur from its corner neighbors. Discuss any differences in 
diffusi“n and bi“i‘’ gr“wth between this ’“de‘ and that “f the ’“du‘e.

6. One classical growth model has a bacterium that is to divide die if its cell has 
no empty neighbors. Develop this model and compare the results to bi“i‘’ 
of this module.

7. One method to calculate the chance that a bacterium will divide is to multiply 
a positive constant p  1 by the ce‘‘ s fracti“n “f the t“ta‘ nutriti“n avai‘ab‘e 
to bacteria, or p times the nutritional value of the bacterium’s cell divided by 
the sum of the nutritional values of all cells with bacteria:

 where the sum is over all cells with live bacteria and 0 < p  1. F“r exa’”‘e, 
suppose p = 0.4 and three cells have bacteria with corresponding nutrition 
va‘ues “f 0.7, 0.5, and 0.8. The ”r“babi‘ity “f the irst bacteriu’ dividing is
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be careful not to divide by zero and return zero instead. Have the function 
grow call ”r“bGr“w and use the value as described to calculate the probabil-
ity of growth. Compare the results with that of the version in the module.

8. The model in this module has a bacterium consuming nutrition only from its 
own site. However, it is reasonable to consider that the bacterium might con-
sume some nutrition nearby. Adjust consumption so that a bacterium con-
sumes a proportion of the nutrition from its own site and smaller proportions 
of nutrition from its four nearest neighbor sites. Adjust grow so that a bacte-
rium dies if its available nutrition falls below a given threshold.

9. Create a variation of Project 1 where initially no bacteria are attached to the 
surface. Free-l“ating bacteria can attach t“ the surface “r the bi“i‘’. Run 
the simulation several times and discuss the variety of initial patterns of 
colonization.

10. Revise the bi“i‘’ si’u‘ati“n s“ that a dead bacteriu’ decays with ti’e, 
forming additional nutrients. To do so, we can have degrees of dead, such as 
DEAD1, DEAD2, and DEAD3, for a bacterium that decays in three time steps.

11. Revise the bi“i‘’ si’u‘ati“n s“ that if an e’”ty neighb“r d“es n“t exist f“r 
a dividing bacterium, a random walk of a given maximum number of steps 
occurs to search for an empty location. In a walk, a north, east, south, or west 
direction is repeatedly selected at random until success or the maximum 
number of steps is achieved. Such a random walk in search of an available 
location is comparable to a daughter bacterium adhering to the mother bacte-
rium and pushing other bacteria out of the way. Discuss the impact of this 
revisi“n “n the bi“i‘’ structure.

12. Division requires energy. Thus, revise the simulation so that a dividing cell 
consumes nutrition from its own and, to a lesser extent, its neighboring cells. 
Discuss the i’”act “f this revisi“n “n the bi“i‘’ structure. 

13. Deve‘“” a si’u‘ati“n where the bi“i‘’ has tw“ ty”es “f bacteria, Ty”es 1 
and 2, which are competing for resources. Have the bacteria grow at different 
rates. That is, have a Type 1 bacterium divide with a certain probability and 
a Type 2 bacterium divide with another probability. Also, have Type 1 bacte-
ria consume nutrients at a different rate than Type 2 bacteria. Examine differ-
ent initial situations, such as having the number of Type 1 bacteria being 
greater than the number of Type 2 bacteria, or vice versa, or having diverse 
initia‘ c“nigurati“ns. Discuss the resu‘ts c“ncerning c“’”etiti“n and the de-
veloping structure. The visualization should display the two bacteria with 
different colors.

14. M“de‘ a bi“i‘’ c“’”“sed “f tw“ “rganis’s, Ty”e 1 that gr“ws fast in an 
oxygen-rich environment, which occurs at the surface, and Type 2 that 
thrives in a ‘“w-“xygen setting dee”er within the bi“i‘’ (Pici“reanu et a‘. 
2004). Have detachment (see Projects 2 and 3) as a phase of the simulation. 
Discuss the results.

15. Acc“rding t“ Stewart (2003), a bi“i‘’ that is 10 ce‘‘s thic— wi‘‘ exhibit a 
diffusion time 100 times longer than that of a lone cell.” Adjust the diffusion 
a‘g“rith’ t“ ’“de‘ s‘“wer diffusi“n dee”er within the bi“i‘’. C“’”are the 
results of this model to bi“i‘’ of this module.

16. Revise Pr“–ect 1 “r 3 t“ acc“unt f“r a ”hen“’en“n “bserved in s“’e bi“i‘’s 
of the necessity of a critical neighborhood density for growth. To do so, we 
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could adjust the rule for growth so that division cannot occur unless a bacte-
riu’ has at ‘east “ne neighb“r (Pici“reanu et a‘. 1996). Discuss the resu‘ts. 

17. M“de‘ the f“r’ati“n “f i‘a’ent“us bacteria, which gr“w in ‘“ng thread‘i—e 
strands, by having preferred growth in the direction away from the surface of 
the bi“i‘’. Fi‘a’ent“us bacteria “ccur in wastewater treat’ent activated 
s‘udge l“cs, which are ‘arge aggregates “f adherent bacteria. These l“cs can 
be i‘tered “ut f“r drin—ing water ”uriicati“n and sewage treat’ent (Pici“-
reanu et al. 2004). 

18. The module’s model does not account for the bacterial products, such as 
chemical signals, metabolites, and antibiotic chemicals. In the same phase as 
consumption, model such product release. 

19. Using a computational tool, develop a 3D version of the bi“i‘’ model.
20. Using a computational tool, develop a 3D version of any of the projects.

Answers to Quick Review Questions

From the text’s website, download your computational tool’s 10_5QRQ.”df i‘e f“r 
answers to the system-dependent questions.

9. nutGrid(i, j) ← (nutGrid(i, j) – CONSUMED)
 if nutGrid(i, j) < 0.0
  nutGrid(i, j) ← 0.0
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AGENT-BASED MODELS





MODULE 11.1

Agent-Based Tool—Tutorial 1

Download

From the textbook’s website, download Tutorial 1 for your agent-based tool. We 
recommend that you work through the tutorial and answer all Quick Review Ques-
tions using the corresponding software.

Introduction

This irst agent-based t““‘ tut“ria‘, which is avai‘ab‘e fr“’ the textb““— s website in 
your system of choice, prepares you to use the tool to complete many projects in 
Modules 11.2, 11.4, and 14.13. The tutorial introduces the following functions and 
concepts: 

• Getting started
• Agents and their states
• Creating and destroying agents
• Behavi“rs
• Movement and animation
• Neighbors and interactions
• Variables and assignments

• Bui‘t-in functi“ns
• Probability and random numbers
• Program testing
• User-deined functi“ns
• Graphs
• Documentation
• Stopping simulation

The module gives examples and Quick Review Questions for you to complete and 
execute in the desired software system. 



MODULE 11.2

Agents of Interaction: Steering a Dangerous Course

Downloads

The text s website has a i‘e, CattleAndDisease, available for download for various 
agent-based t““‘s. The i‘e c“ntains the f“‘‘“wing: Catt‘eAndDiseaseV1 and Cattle-

AndDiseaseV2 i‘es f“r si’u‘ati“ns this ’“du‘e deve‘“”s; CattleAndDiseaseV2Data.

xls, which contains data from Version 2 of the program; and an 11_2QRQ.”df i‘e, 
which contains system-dependent Quick Review Questions and answers.

Introduction

Doug Taylor and his son were driving past their front pasture admiring a bumper 
crop of new calves when Doug noticed something odd about a young bull calf that 
their best breeder had birthed. The calf was now 3 weeks old, and Doug was sur-
prised to see the animal squinting in the sun. In fact, the farmer also noted that the 
animal didn’t seem to be thriving or wanting to leave the shade of a tree. He stopped 
his truck, went to take a better look, and didn’t like what he saw. Scrutinizing the 
calf, he saw that its left eye was watery, with a small ulcer in the center. Doug knew 
he needed to act fast because he recognized that the calf had pinkeye. They quickly 
loaded the calf into the back of the truck to take it to an isolation pen.

Pinkeye (infecti“us b“vine —erat“c“n–unctivitis) is a highly infectious disease 
that aflicts catt‘e and is the ’“st ”reva‘ent i‘‘ness a’“ng breeding beef catt‘e fe-
males. It is also especially common in bull calves. Several strains of the bacterium 
M“raxe‘‘a b“vis cause ’“st cases “f the disease. Because ear‘y “n in the infecti“n 
the animal is shedding large numbers of bacteria, the disease can be spread fairly 
easily from animal to animal from direct contact, through indirect contact with con-
ta’inated surfaces, “r via an insect vect“r, c“’’“n‘y, face lies. The infecti“us 
agent binds to the conjunctiva and cornea, where its various toxins damage the eye. 
If n“t treated, b‘indness ’ay ensue in ‘ess than 72 h. Because t“”ica‘ antibi“tics re-
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quire repeated application, farmers instead routinely inject antibiotics and steroids 
under the eyelid or make intramuscular injections of antibiotics, such as oxytetracy-
c‘ine. These treat’ents are quite effective if ad’inistered s““n en“ugh. Besides 
blindness, infections usually result in less food intake and, therefore, less weight 
gain. Regardless of size, a blind animal must be sold at a discount. There are various 
estimates, but through loss of productivity and reduced animal value, the economic 
impacts of pinkeye in the United States may exceed $150 million (USDA 2011).

To control pinkeye, experts suggest three basic approaches, and perhaps best is a 
”r“gra’ that inv“‘ves a‘‘ three. The irst a””r“ach is t“ reduce irritants that ’ight 
make the eyes more vulnerable to infection. Irritants include the seed and pollen of 
grass and weeds in grazing areas. Tri’’ing these areas t“ ”revent the l“wering/
seeding of these plants can help reduce the irritation. Other irritating factors are UV 
radiati“n and dust, which are dificu‘t t“ ’“derate. The sec“nd a””r“ach is t“ reduce 
exposure and to immunize. (Doug isolated the sick calf to reduce exposure to other 
animals.) There are vaccines for various strains of this bacterium; but these strains 
often become resistant, and the vaccines may not be effective. The third approach, 
and probably the most effective control measure, is to reduce the number of vectors 
(lies), which is usua‘‘y a cha‘‘enge. F‘ies ”ic— u” bacteria when they feed “n secre-
ti“ns fr“’ the eyes “f infected ca‘ves. Then, the lies transfer the bacteria t“ susce”-
tible individuals, rapidly spreading the disease. Farmers can apply various insecti-
cides, but the lies a‘s“ can bec“’e resistant t“ the’. S“, “ften a far’er ’ust try 
several insecticides (Irsik 2012; Kirkpatrick 2012; Powell 2004).

Problem

Calves are born in the spring and weigh between 60 and 100 lb. In the beef cattle 
industry in A’erica, a ca‘f r“a’s free‘y “n a far’ “r ranch f“r 6 t“ 9 ’“nths unti‘ 
reaching a weight of 600 lb. Then calves from many sources are brought to sale 
barns t“ be s“‘d as st“c—ers. As st“c—ers, steers and heifers gain weight t“ 900 ‘b 
(Liu et al. 2012). Feedlots buy these cattle at sale barns and fattened them in pens for 
4 to 6 months until the animals reach weights between 1200 and 1400 lb and then go 
t“ ’ar—et (Catt‘e’en s Beef B“ard 2009).

Cattle from many sources are in a common pen, and contagious diseases, such as 
foot-and-mouth disease (FMD), can reach epidemic proportions. Modeling can help 
in devising strategies to prevent epidemics and to avoid costly loss of animals. To 
accommodate various diseases, we consider a hypothetical disease, spread by physi-
cal contact, in which an animal is infectious for a certain number of days, and once 
recovery occurs, the animal cannot become sick again. We follow the cattle born in 
one spring until they reach market and determine situations that lead to epidemics. 

Agent-Based Modeling

One technique of modeling the movement of individual beef cattle and the spread of 
disease among the animals is a cellular automaton simulation, such as what we em-
”‘“yed with the ’“ve’ent “f ants in M“du‘e 10.4, M“ve’ent “f Ants Ta—ing the 
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Right Steps.” A related alternative is a grid-based, agent-based (individual-based) 
simulation. 

For a cellular automaton simulation, the state of a grid cell might indicate the num-
ber of cattle at that location as well as attributes, such as weight(s), associated with the 
animal(s). Transition rules that specify the relationship of a cell with its neighbors 
determine the state of the cell at the next time step. For each time step, a cellular au-
tomaton simulation sweeps through every cell of the grid, updating its state.

With an agent-based simulation, each animal is modeled as an autonomous, deci-
sion-making agent that has a state, which is represented by a set of state variables, 
or attribute values, and behaviors, which control its actions. A method or proce-
dure, which is associated with a class, or breed or group, of agents, is a function that 
captures some or all of an agent’s behavior. A simulation frequently includes several 
global simulation variables, which all agents can access. Agents often operate in an 
environment that arranges cells in a rectangular grid. (In Module 13.5, “The Next 
F‘u Pande’ic: O‘d Ene’y New Identity,  we c“nsider an individua‘‘y based 
model that is not grid based.) The environment, its neighboring agents, and the states 
and behavior of an agent determine the agent’s new state. For each time step, instead 
of iterating through each grid cell, an agent-based simulation proceeds through each 
agent, revising its state. 

With both cellular automaton and agent-based simulations, individual actions and 
local interactions can help us to access their effects on the whole system, and we can 
easi‘y visua‘ize any e’erging ”atterns. B“th si’u‘ati“n techniques can be effective 
in modeling dynamic, spatially complex situations. These models can help us under-
stand systems, evaluate various scenarios, and make informed decisions about ac-
tions to take.

Quick Review Question 1

Indicate to which each of the following applies, cellular automaton (CA) simula-
ti“ns, agent-based (AB) si’u‘ati“ns, “r b“th:

a.  Autonomous, decision-making entity has a state and behaviors.
b.  Grid cell has state and transition rules specify next state.
c.  Relationship with neighbors determines next state.
d.  Can use grid.
e.  For each time step, iteration is over each grid cell.
f.  For each time step, iteration is over each autonomous, decision-making 

entity.
g.  Local interactions can cause global change. 

Formulating the Simulation Model

We want to simulate the effects of disease on bringing cattle to market. A bovine 
might be infected at any time. An infection lasts 40 days; and when an infection 
ends, the b“vine is i’’une t“ subsequent infecti“ns. F“r the si’”‘iied ’“de‘ in this 
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module, we do not consider immunity, isolation, or reduction of weight due to ill-
ness, but various projects do. 

A‘‘ catt‘e in the si’u‘ati“n have the sa’e ‘ife cyc‘e. Each a””ears irst as a ca‘f 
weighing between 60 and 100 lb and lives in a pasture until reaching a weight of 600 
lb. The animal is then taken to a sale barn and sold to a stocker for further fattening 
in ”astures. U”“n reaching a weight “f 900 ‘b, the beef c“w is returned t“ the sa‘e 
barn and sold to a feedlot. The bovine remains in a feedlot pen until achieving a 
weight of 1300 lb. The animal is then transferred to an abattoir for processing.

We make the following simplifying assumptions so that the simulation is easier to 
i’”‘e’ent, but ‘ater we can reine the ’“de‘ t“ re’“ve s“’e “f the assu’”ti“ns:

• Birthing c“ws and new births are n“t c“nsidered. We begin with a‘‘ newb“rn 
calves in a pasture.

• Feed is always available so a bovine does not have to move far to graze.
• Except when traveling to another location, cattle move at random in the pas-

ture and the stocker and do not tend to congregate.
• Instead of being trucked, a bovine moves on its own along a one-way road to 

the sale barn.
• For each trip to the sale barn, a beef cow is in the facility for at most for 2 days.
• The disease is spread only through direct contact, not vectors.
• A bovine that recovers from the disease cannot become susceptible again.
• No immunity from the disease occurs.
• No cattle die before reaching the abattoir.
• Infected and noninfected cattle gain weight at the same rate.

The simulation has the following input parameters:

• The probability that a particular section of pasture on a farm contains a bovine
• The probability that a bovine will become infected when close to another in-

fected bovine
• The time step

The simulation provides the following results:

• The total number of cattle
• The number of susceptible, infected, and recovered cattle at each time step
• The cumulative total of infected cattle at each time step

Overall Design of the Simulation

Our agent-based simulation needs to represent cattle as well as their world. For sim-
”‘iicati“n, we ch““se t“ ’“de‘ an area that has six far’s, “ne sa‘e barn, “ne st“c—er, 
one feedlot, and one abattoir. We have agents to represent cattle (bovines). Each 
ty”e “f envir“n’enta‘ area far’, “ne-way r“ad that g“es t“ the east, “ne-way r“ad 
that g“es t“ the west, sa‘e barn, st“c—er, feed‘“t, and abatt“ir is c“’”“sed “f a grid 
of cells/patches/tiles, with each square cell/patch/tile being an agent. For example, 
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one farm consists in a grid of farm tile agents that have certain behaviors and com-
prise a pasture on which the cattle feed. 

The simulation proceeds by computing what happens over a series of discrete 
ti’e ste”s “f ‘ength 1⁄4 day. During each ti’e ste”, a b“vine “n a far’, st“c—er, “r 
feedlot gains weight; upon reaching a weight threshold, the animal moves to another 
designated location; a susceptible animal may become sick due to contact with an 
infected beef cow; and if infected, the animal becomes a little closer to recovery. The 
simulation continues until the user stops execution.

Model Environment

There are seven types of environmental agents, each with a different depiction, on 
which the cattle move: farm pasture (Farm), one-way road to the east (RoadEast), 
one-way road to the west (RoadWest), sale barn (SaleBarn), stocker (Stocker), feed-
lot (Feedlot), and abattoir (Abattoir). As the following algorithm indicates, the ini-
tializations of Farm agents place susceptible cattle agents, Susceptible (discussed in 
the next section), at random on the farm patches. For initialization purposes, we de-
ine a g‘“ba‘ si’u‘ati“n variab‘e, INIT_CATTLE_ PROBABILITY, which is the 
approximate initial fraction of susceptible cattle and, in a sense, is a measure of the 
initial density of cattle on the farms. Thus, a Farm agent, which is one grid patch of 
a farm, has approximately an INIT_CATTLE_ PROBABILITY chance of having a 
Susceptible agent “n t“” “f it. (By c“nventi“n, c“nstants are in a‘‘ u””ercase ‘etters. 
Moreover, we begin the names of agents with uppercase letters, while the names of 
methods/procedures and variables start with lowercase letters.)

Quick Review Question 2

From the text’s website, download your agent-based tool’s 11_2QRQ.”df i‘e f“r this 
system-dependent question to write the initialization of a Farm agent.

Figure 11.2.1 ”resents “ne ”“ssib‘e envir“n’ent with six far’s, each 95 ti‘es 
‘“ng and a””r“xi’ate‘y 16 ti‘es wide, f“r a t“ta‘ “f 7505 Farm agents. The white 
background appears in certain areas, such as between the farms, which are in black. 
F“r the scenari“ sh“wn in the igure, each Farm agent initially had INIT_CATTLE_

Farm Initialization

Procedure to initialize a Farm agent possibly to have a Susceptible agent on 
top

Pre:  INIT_CATTLE_PROBABILITY is a global simulation variable with 
value between 0.0 and 1.0.

Algorithm:

 with a chance of INIT_CATTLE_PROBABILITY

 create a new Susceptible agent on top of the Farm agent
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PROBABILITY = 0.02 = 2% chance of creating a new Susceptible agent on top of a 
tile. Although cattle often inhabit only one small portion of a much larger pasture at 
any “ne ti’e, the c“nigurati“n d“es n“t ca”ture the tendency f“r these ani’a‘s t“ 
congregate. To this landscape, we added one infected bovine agent in the bottom 
ha‘f “f the irst far’ fr“’ the ‘eft. After initia‘izati“n, the scenari“ has 154 susce”-
tible cattle and one infected bovine.

SusceptibleFarm

Infected

Abattoir

RoadWest

RoadEast FeedlotSalebarnStocker

Figure 11.2.1 Environment
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Agents and Their States

A Susceptible cattle agent, depicted in bright color, is one heifer or one steer or a 
group of cattle susceptible to disease. If such an agent gets the disease and is infec-
tious, it becomes an Infected cattle agent, depicted in white. Upon recovery, this 
agent becomes a Rec“vered cattle agent, shown with a duller color. Upon going to 
the abattoir, the dead animal becomes a Processed cattle agent, having a dark color.

Because weight is the ”ri’ary deter’ining fact“r in the ‘“cati“n “f the catt‘e 
(farm, road east or west, sale barn, stocker, feedlot, abattoir), the various cattle 
agents have a weight attribute. F“r si’”‘iicati“n, we f“‘‘“w the herds fr“’ –ust after 
the birthing season in the spring. Thus, at the beginning of the simulation, we initial-
ize all instances of Susceptible to be a uniformly distributed random weight between 
60 and 100 lb. To simplify the model, we do not consider birthing cows, which typi-
cally remain on the farms. 

All cattle agents have a weight attribute, and various states require additional at-
tributes. For example, attributes time1InSale and time2InSale come into existence 
when the agent enters the sa‘e barn f“r the irst “r sec“nd ti’e, res”ective‘y, and 
serve to regulate the length of time the animal remains in the sale barn.

As part of its state, an Infected agent has the attribute daysSick. For most scenar-
ios, we start the simulation with one Infected agent, which has an initial random 
weight from 60 to 100 lb and an initial daysSick value of 0 days to indicate the calf 
has just become sick. 

We deine g‘“ba‘ si’u‘ati“n ”r“”erties t“ c“unt the nu’ber “f each ty”e “f ‘ive 
cattle agent (numSusceptible, numInfected, and numRecovered for the number of 
susceptible, infectious, and recovered cattle, respectively), the cumulative total of 
infected cattle (cummulativeInfected), and the total number of cattle agents (num-

Cattle). All these are initialized to zero before appearance of any cattle. With a left-
pointing arrow (←) indicating assignment, the following shows the initialization 
algorithm for a newly created cattle agent. This initialization calls a method, coun-

tSIR, which asks each entity to increment the appropriate counters by one.

Cattle Initialization

Procedure to initialize new calf with a random weight between 60 and 100 lb, 
to establish the days sick to be 0 for an infected calf, and to establish various 
category counters

Algorithm:

 if the entity is an Infected agent
  weight ← a random number between 60.0 and 100.0
  daysSick ← 0
  call countSIR

 else if the entity is any other cattle agent
  weight ← a random number between 60.0 and 100.0
  call countSIR
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Quick Review Question 3

From the text’s website, download your agent-based tool’s 11_2QRQ.”df i‘e f“r this 
system-dependent question to write the initialization of a Susceptible agent and the 
associated countSIR method.

Agent Behaviors

Locations and weights of the cattle agents are the primary determinants of the simu-
lation. At each time step, which has length dt = 0.25 day, each cattle agent executes 
a catt‘e schedu‘er a‘g“rith’, which deines the “vera‘‘ behavi“r “f Susceptible, In-

fected, Rec“vered, and Processed agents. Because a‘‘ “ther agents (Farm, RoadEast, 
RoadWest, SaleBarn, Stocker, FeedLot, and Abattoir) are environmental agents that 
do not have any methods (other than Farm’s initialization procedure), the following 
cattle scheduler algorithm is the main driver of the simulation. This scheduler calls 
various methods, whose subsequent algorithms provide greater detail.

countSIR 

Procedure to update numSusceptible, numInfected, nu’Rec“vered, cummula-

tiveInfected, and numCattle after addition of a new bovine

Pre:  Global simulation variables numSusceptible, numInfected, nu’Rec“v-

ered, cu’’u‘ativeInfected, and numCattle are the number of suscepti-
ble (Susceptible), infected (Infected), recovered (Rec“vered), cumula-
tive infected cattle, and cattle agents, respectively, before initialization 
of this entity. 

Algorithm:

if entity is a Susceptible agent,  
increment numSusceptible and numCattle by 1

else if entity is Infected agent,  
increment numInfected, cu’’u‘ativeInfected, and numCattle by 1

else if entity is a Rec“vered agent,  
increment nu’Rec“vered and numCattle by 1

Cattle Scheduler to Be Executed Each Time Step

Pre:  The entity is a Susceptible, Infected, Rec“vered, or Processed agent.
Algorithm:

if the agent is on a farm and weighs less than 600 lb
 call sir

 call inFarm
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Quick Review Question 4

From the text’s website, download your agent-based tool’s 11_2QRQ.”df i‘e f“r this 
system-dependent question to write a cattle scheduler method.

At every step in the run of a simulation, the disease processing sir method is 
called for animals that are not being taken to market. (The method’s name stands for 
SIR: Susceptible, Infected, Recovered.) In their agent-based simulation, Liu et al. 
(2012) employed two main attributes related to the nonfatal disease: rate of infec-
tion, β, and rate of recovery, µ. Assuming that a diseased animal is sick for INFEC-

TIOUS_PERIOD = 40 days, µ = 1/(40 days) = 0.025/day; approximately 0.025 =  
2.5% of the infected cattle recover each day. For our simulation, an Infected agent 
who has been sick for the indicated duration of the disease, say 40 days, becomes a 
Rec“vered agent. Otherwise, daysSick for the ill animal is incremented by the length 
of one time step, assumed to be dt = 0.25 days. Thus, a sick bovine requires 160 time 
steps to recover.

At any one time step, the probability that a Susceptible agent will catch the dis-
ease from an adjacent Infected individual is the rate of infection (per day) times the 
length of a time step (dt = 0.25 days),  · dt. To illuminate the outcomes from vari-
ous diseases and situations, we will execute the simulation for several of values of . 
As the following algorithm prescribes, a susceptible cattle agent who comes in phys-
ical contact with (i.e., is next to) an infectious cattle agent can become sick with 
probability  · dt, perhaps  · dt = 0.125 for one scenario. We make this probability a 

else if agent is on a farm
 call sir

 call farm2Sale

else if weight < 900 and agent is in a sa‘e barn
 call sir

 call inSa‘ebarn1
else if agent is in a stocker
 call sir

 call inStocker

else if weight  900 and agent is in a sa‘e barn
 call sir

 call inSalebarn2

else if agent is in a feedlot
 call sir

 call inFeedlot

else if agent is in an abattoir
 call sirAbattoir

 move agent to east
 change agent to Processed
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global simulation property, such as INFECTION_PROBABILITY = 0.125, known 
to all agents.

As the following algorithm indicates, besides determining the progression of the 
disease, we must also increment/decrement simulation properties appropriately. An 
animal having been sick for INFECTIOUS_PERIOD = 40 days recovers, so we dec-
rement by one the current number of infected cattle (numInfected) and increment by 
one the current number of recovered cattle (nu’Rec“vered). Should a susceptible 
animal become infected, we decrease the count of current Susceptible agents (num-

Susceptible) and increase the count of those currently infected (numInfected) and the 
cumulative total of infected cattle.

Quick Review Question 5

From the text’s website, download your agent-based tool’s 11_2QRQ.”df i‘e f“r this 
system-dependent question to write the sir method.

When a beef cow goes to the abattoir, we should no longer count the animal in 
one of the SIR categories. Thus, sirAbattoir adjusts the appropriate counter, num-

Susceptible, numInfected, or nu’Rec“vered.

sir

Procedure to advance an infected bovine’s illness, possibly to recovery, and 
determine if a susceptible bovine agent becomes sick

Pre:  The entity is a cattle agent.
   INFECTIOUS_PERIOD and INFECTION_PROBABILITY are global 

constants and numSusceptible, numInfected, nu’Rec“vered, and cum-

’u‘ativeInfected are global variables.
  If the bovine is an Infected agent, daysSick is the number of days sick.
Post:  The state of the bovine and the variables related to infection have been 

updated.
Algorithm:

 if entity is an Infected agent and daysSick > INFECTIOUS_PERIOD 
  change agent to be a Rec“vered agent
  decrement numInfected by 1
  increment nu’Rec“vered by 1
 else if entity is an Infected agent
  add 0.25 to daysSick

  else if entity is a Susceptible agent and is next to an Infected agent, with 
INFECTION_PROBABILITY chance 

  change agent to be an Infected agent
  set 0 to daysSick

  decrement numSusceptible by 1
  increment numInfected and cu’’u‘ativeInfected by 1
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Quick Review Question 6

From the text’s website, download your agent-based tool’s 11_2QRQ.”df i‘e f“r this 
system-dependent question to write the sirAbattoir method.

The remaining algorithms deal mainly with cattle movement. On a farm, we as-
sume that cattle graze freely, so that each cattle agent performs a random walk 
ar“und its far’. On the average, a 60- t“ 100-‘b newb“rn ca‘f ta—es 6 t“ 9 ’“nths 
(180 270 days) t“ gain ab“ut 540 t“ 500 ‘b, necessary f“r sa‘e. Thus, “ver a 200-day 
period, a calf must gain approximately 2.5 lb/day, or 0.625 lb/dt. As the following 
algorithm for inFarm indicates, to account for variability in weight gain, we incre-
ment weight by a rand“’ nu’ber between 0.50 and 0.75 ‘b/dt while the animal is on 
the farm.

Quick Review Question 7

From the text’s website, download your agent-based tool’s 11_2QRQ.”df i‘e f“r this 
system-dependent question to write the inFarm method.

Although farmers transport their 600-lb calves to sale in trucks, for simplicity, we 
have the cattle move independently to the sale barn using the environment as a guide. 
(A project explores using truck agents to transport the animals.) Cattle-movement 
rules from one major location to the next are designed using cues, such as one-way 

sirAbattoir

Procedure to adjust appropriate system variables when a beef cow is slaugh-
tered

Pre:   The entity is a cattle agent on top of an Abattoir agent.
Post:  The appropriate counter (numSusceptible, numInfected, or nu’Rec“v-

ered) has been decremented by 1.
Algorithm:

 if Susceptible agent, decrement numSusceptible by 1
 else if Infected agent, decrement numInfected by 1
 else if Rec“vered agent, decrement nu’Rec“vered by 1

inFarm

Cattle agent’s behavior on a Farm patch

Pre:  Cattle agent is on a farm and weighs less than 600 lb.
Algorithm:

 move agent at random to adjacent Farm patch
  add a rand“’ nu’ber between 0.50 and 0.75 t“ weight 
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west and east r“ads, f“r the s”eciic c“nigurati“n “f Figure 11.2.1. In ”articu‘ar, as 
the following algorithm for the farm2Sale indicates, a calf of at least 600 lb travels to 
the south on the farm until encountering a RoadWest or a RoadEast agent, which 
indicates the subsequent movement direction. Traveling along the indicated route, 
the bovine proceeds into the sale barn upon seeing that area to its south. 

Unfortunately, some agent-based tools allow an agent to move only to an adja-
cent cell in one time step. However, this disadvantage has limited consequences for 
our simulation since we do not have the animal gaining weight or increasing days-

Sick during movement from the farm to the sale barn. Truck transport can expose 
susceptible cattle to infected animals with which they are not usually in contact. 
Thus, we allow sick bovines to infect susceptible animals that are on their way to the 
sale barn. 

Most cattle are brought to the sale barn the day before the sale, but some arrive 2 
“r ’“re days bef“re and a few arrive the day “f the sa‘e (Davie 1997). F“r “ur si’u-
lation, we assume that each cattle agent spends at least 3 and no more than 8 quarter-
days (time steps) in the sale barn before moving to the stocker, which is to the west 
of the sale barn in Figure 11.2.1. To help manage the time in the sale barn, we initial-
ize a state variable, ti’e1InSa‘e, to be a random integer between 1 and 5, inclusive, 
upon entering the sale barn. While in the barn, we increment ti’e1InSa‘e with each 
time step; and when ti’e1InSa‘e becomes greater than 8, we start moving the animal 
toward the stocker. 

Quick Review Question 8

From the text’s website, download your agent-based tool’s 11_2QRQ.”df i‘e f“r this 
system-dependent question to write the farm2Sale method.

For method inSalebarn1 with ti’e1InSa‘e incrementing at each iteration, a heifer 
or steer remains in the sale barn for up to 8 time steps, or 2 days, until ti’e1InSa‘e 
becomes greater than 8. The method inSalebarn2 deines the behavi“r “f the agent 

farm2Sale

Cattle agent’s behavior in moving from Farm patches to SaleBarn patches

Pre:  Cattle agent is on a Farm, RoadEast, or RoadWest patch and weighs at 
least 600 lb.

Post:  Cattle agent is on a SaleBarn patch.
Algorithm:

 if Farm is to the south, move agent to south
 else if RoadWest is to the south, move agent to southwest
 else if RoadWest is to the west, move agent to west
 else if RoadEast is to the south, move agent to southeast
 else if RoadEast is to the east, move agent to east
 else if sale barn is to the south
  move agent to south
  ti’e1InSa‘e ← a random integer between 1 and 5, inclusive



500 Module 11.2

in the sa‘e barn f“r the sec“nd ti’e, after the steer “r heifer has gained weight t“ 900 
lb in the stocker. This behavior parallels that of inSa‘ebarn1 by incrementing an-
other variable, time2InSale, instead of ti’e1InSa‘e, and moving the animal to the 
east, instead of west, when that variable reaches 8.

Quick Review Question 9

From the text’s website, download your agent-based tool’s 11_2QRQ.”df i‘e f“r this 
system-dependent question to write the inSa‘eBarn1 method.

To simulate close quarters, agents are moved at random and allowed to stack on 
top of each other in the sale barn, as the following algorithm indicates:

Quick Review Question 10

From the text’s website, download your agent-based tool’s 11_2QRQ.”df i‘e f“r this 
system-dependent question to write the ’“veInSa‘ebarn method.

While grazing at the stocker, the steer or heifer gains approximately 300 lb over a 
4- to 6-month (120- to 180-day) period. Thus, we have the animal gaining a random 
weight between 0.4 and 0.6 lb per time step (0.25 day). 

Similar to its behavior on the farm, the animal moves at random while in the 
st“c—er. U”“n reaching 900 ‘b, the agent ’“ves again t“ward the sa‘e barn, which is 
to the east in Figure 11.2.1. As with farm transport, we have the animal moving on 
its own instead of by truck. 

inSalebarn1

Catt‘e agent s behavi“r when in sa‘e barn f“r the irst ti’e

Pre:  Catt‘e agent is in sa‘e barn f“r the irst ti’e.
Post:  Cattle agent is in the stocker.
Algorithm:

 if ti’e1InSa‘e > 8, move agent to west
 else 
  increment ti’e1InSa‘e by 1
  call ’“veInSa‘ebarn

moveInSalebarn

Procedure for a cattle agent’s random movement in a sale barn

Pre:  Cattle agent is in sale barn.
Algorithm:

 if agent is next to SaleBarn, Susceptible, Infected, or Rec“vered,
  move agent at random on top of that item, respectively
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Similar to the transition from the farm to the sale barn, as a cattle agent enters the 
sale barn from the stocker, a state variable, time2InSale, with an initial value of a 
random number between 1 and 5, inclusive, comes into existence. We employ this 
variable to regulate the length of time in the sale barn.

Quick Review Question 11

From the text’s website, download your agent-based tool’s 11_2QRQ.”df i‘e f“r this 
system-dependent question to write the inStocker method.

Feedlots usually place animals in pens. Thus, we do not move the animals at ran-
dom in the feedlot but line them up as far to the east as possible. Staying at the feed-
lot for from 4 to 6 months (120 to 180 days), the animal fattens to 1200 to1400 lb, an 
additional 300 to 500 lb. Thus, we have the animal gaining between 0.5 and 1.0 lb/
dt. Upon reaching a weight of 1300 lb, the animal is moved to the abattoir.

inStocker

Procedure for a cattle agent’s behavior in stocker

Pre:  Cattle agent is in stocker.
Post:  Cattle agent is in sale barn for the second time.
Algorithm:

 if weight  900 and st“c—er is t“ east
  move agent to east
 if weight  900 and sa‘e barn is t“ east
  move agent to east
  set time2InSale to a random integer between 1 and 5, inclusive
 else
  move agent to east on stocker
  add a random number between 0.4 and 0.6 to weight

inFeedlot

Procedure for a cattle agent’s behavior in feedlot

Pre:  Cattle agent is in a feedlot.
Post:  Cattle agent is in an abattoir.
Algorithm:

 if weight  1300 
  move to east
 else if see feedlot to east, north, or south
  move in that direction, respectively
  add a random number between 0.5 and 1.0 to weight 
 else
  add a random number between 0.5 and 1.0 to weight 
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Quick Review Question 12

From the text’s website, download your agent-based tool’s 11_2QRQ.”df i‘e f“r this 
system-dependent question to write the inFeedlot method.

Example Problem

With Figure 11.2.1 having the initia‘ c“nigurati“n, Figure 11.2.2 ”resents a ty”i-
cal sequence of frames from one simulation in which the disease becomes epi-

Figure 11.2.2 Result of one simulation resulting in an epidemic

a b c

d e f

g h i
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demic in the cattle population. With the smaller, duller-colored dots representing 
recovered beef cows, Frames a–c show the random movement of cattle and the 
spread of the disease in one farm. For this simulation, the disease does not die out 
before at least one infectious animal (white) begins its movement to the sale barn. 
Packed in close proximity to each other, many susceptible cattle (bright color) be-
come sick during transport and sale (Frame e). Thus, in the stocker (Frame f), all 
cattle are infected or recovered. In Frames g and h, recovered cattle of the appro-
priate weight are sold in the sale barn and moved into close quarters in the feedlot. 
Finally, the bottom right of Frame i shows bovines weighing at least 1300 lb being 
processed for market.

Repeated Simulations

With a variety of possible values for INFECTION_PROBABILITY and INFEC-

TIOUS_PERIOD and with weight, movement, and disease spread occurring with 
elements of chance, one simulation does not capture all possibilities. Thus, for each 
of several combinations of parameter values, we should run the simulation a number 
“f ti’es, averaging the resu‘ts. The f“‘‘“wing secti“n, M“de‘ Reine’ent,  dis-
cusses how to automate random creations of Susceptible agents and an Infected 
agent “n an existing far’ c“nigurati“n s“ that redrawing is unnecessary. 

As with Liu et al. (2012), we performed the simulations 40 times each for a dis-
ease that lasts for 40 days (rate of recovery, µ = 1/(40 days) = 0.025/day) and for 
probabilities of transmission by contact from 0.625 to 0.125/dt (rates of infection, , 
from 2.5 to 0.5/day, respectively). The epidemic ratio, β/µ, is of particular impor-
tance. If the rate of infection in the numerator is larger or the rate of recovery in the 
denominator is smaller, the epidemic ratio is greater and the disease is more virulent. 
F“r a ixed rec“very rate “f 0.025/day and a ti’e ste” “f 0.25 day, we run the si’u‘a-
tion for the reciprocal of the epidemic ratio, µ/ , having values ranging from 0.01 to 
0.05 ( /µ from 100 to 20,  from 2.5 to 0.5/day, probability of transmission by con-
tact 0.625 to 0.125/dt, respectively). With no immunity, three situations arise: The 
disease affects only a few animals on one farm; the disease reaches epidemic propor-
tions on one farm but does not spread to animals at other locations; or the disease 
becomes epidemic, eventually infecting all the cattle. Figure 11.2.3 gives histograms 
of the frequencies of outbreaks for a variety of µ/  values, where the environment 
has six far’s with an average “f 24.9 beef catt‘e each. 

Figure 11.2.4 plots the average outbreak sizes (cu’’u‘ativeInfected) versus µ/  
in situations where the disease did not spread beyond one farm. Clearly, smaller val-
ues of µ/  with its larger rates of infection ( ) resulted in more serious outbreaks.

For µ/  = 0.1, Figure 11.2.5 plots the number of infected cattle versus time for 
outbreaks on one farm and for outbreaks that escaped to the whole population. The 
mixing of cattle in trading situations drives the spread of the disease. For spread of 
the disease beyond one farm, the disease must persist until trading of animals, so the 
average length of the disease is an important factor. For these simulations, we have 
maintained a recovery rate of 1/(40 days) while considering other rates and stochas-
tic situations.
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Model Reinement

The creati“n “f rand“’ initia‘ c“nigurati“ns “f catt‘e f“r nu’er“us si’u‘ati“ns can 
be ineficient t“ redraw. Thus, in this secti“n we revise “ur ’“de‘ s“ that f“r a ixed 
envir“n’ent, such as Figure 11.2.6, the si’u‘ati“n creates a rand“’ c“nigurati“n “f 
cattle and at random changes one of these to be an infected bovine.

To manage the simulation, we create a new driver to schedule activities for each 
time step. To implement this driver, some agent-based tools would employ a built-in 
procedure that makes the simulation go, while others would create a new agent, say, 
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Figure 11.2.5 Number of infected cattle versus time for µ/  = 0.1 (rate of recovery, µ =  
0.025/day; rate of infection, ) (a) outbreaks on one farm (b) epdimics
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Si’u‘ati“nDriver. For the latter, we might place exactly one Si’u‘ati“nDriver agent 
in a blank space, such as in the bottom-right corner of the environment of Figure 
11.2.6. Using three phases, this driver, which executes each time step, initializes the 
susceptible cattle, changes one of these to an infected bovine, and instructs the cattle 
to follow their behavior rules. 

For this version, initialization of the cattle occurs during the running of the simu-
lation and not in creation of the environment. Thus, we change “Farm Initialization” 
(see the M“de‘ Envir“n’ent  secti“n) and Catt‘e Schedu‘er  (see the Agent Be-
haviors” section) to be the methods randomCattle and cattleBehave, respectively. 

In Phase 0, the Simulation Driver asks every farm agent to execute its random-

Cattle method, which places Susceptible agents at random on the initially empty 
Farm patches. Once the cattle are placed in a pasture, one of the Susceptible agents 
needs to be changed to an Infected agent. Thus, after changing to Phase 1 and until 
one of the Susceptible agents becomes an Infected agent, the Simulation Driver 
instructs each cattle agent to execute initInfected. In initInfected, if all the cattle 

Figure 11.2.6 Starting environment for version 2 of the simulation
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are susceptible (i.e., numSusceptible equals numCattle) with probability 1/num-

Cattle, the method changes the Susceptible agent being processed to an Infected 
agent and updates numSusceptible, numInfected, and cu’’u‘ativeInfected ap-
propriately. For example, if the farms initially have numCattle = 200 susceptible 
cattle, then the probability that a particular bovine is the initial infected animal is 
1/200 = 0.005 = 0.5%.

After initialization of the cattle, the program moves to Phase 2 and remains in this 
”hase f“r each subsequent ste” “f the si’u‘ati“n. Because we are ’ain‘y interested 
in observing the progression of the disease and obtaining the cumulative total of in-
fected cattle over repeated executions, we stop the simulation when no animals are 
sick, that is, when numInfected is 0. Otherwise, we instruct each cattle agent to exe-
cute its catt‘eBehave ’eth“d, which s”eciies the ani’a‘ s behavi“r during that ti’e 
step. Pseudocode for the Simulation Driver, which executes each time step, and 
initInfected follows:

Simulation Driver to Be Executed Each Time Step

Driver for version 2 of the simulation

Algorithm:

 if phase is 0
  request each farm agent to execute randomCattle

  phase ← 1
 else if phase is 1 and numInfected is 0
  request each cattle agent to execute initInfected

 else if phase is 1 
  phase ← 2
 else if phase is 2 and numInfected is 0
  stop simulation
 else if phase is 2
  request each cattle agent to execute catt‘eBehave

initInfected

Method to change Susceptible agent to Infected agent with probability 1/num-

Cattle

Pre:  The agent is a Susceptible or an Infected agent.
   All cattle agents are susceptible to disease, or one bovine is infected 

and all others are susceptible.
Algorithm:

 if entity is a Susceptible agent and numSusceptible equals numCattle, with 
a 1/numCattle chance

  change the entity to be an Infected agent
  decrement numSusceptible by 1
  increment numInfected and cu’’u‘ativeInfected by 1
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Quick Review Question 13

From the text’s website, download your agent-based tool’s 11_2QRQ.”df i‘e f“r this 
system-dependent question to write the Simulation Driver scheduler method.

Quick Review Question 14

From the text’s website, download your agent-based tool’s 11_2QRQ.”df i‘e f“r this 
system-dependent question to write the initInfected method.

For analyzing the results of our multiple simulations, we should generate histo-
grams and graphs, such as Figures 11.2.3–11.2.5. If an agent-based tool does not 
have the ca”abi‘ity “f ”r“ducing such igures, after each si’u‘ati“n, we c“u‘d rec“rd 
appropriate data, such as numCattle and cu’’u‘ativeInfected, in a spreadsheet or 
other computational tool for later processing into histograms, such as Figure 11.2.3, 
and graphs, such as Figure 11.2.4. One of the projects explores creation of a simula-
tion driver to manage multiple simulations and averaging.

A graph of the number of each category of cattle, particularly the number of in-
fected cattle (numInfected), versus time for one simulation can also be instructive. If 
an agent-based tool does not have the ability to plot the results of multiple simula-
tions on one graph, we can usually export the data to spreadsheets for later genera-
tion of more complex graphs, such as Figure 11.2.5.

The ”r“–ects c“nsider “ther reine’ents “f the ’“de‘, such as s”reading “f the 
disease through vectors, variation in weight gain, and quarantine. 

Exercise

1. Adjust the second version of the simulation CattleAndDiseaseV2 so that an 
infected bovine is sick for a random period of time, from 5 to 60 days. 

Projects

On the text s website, i‘es CattleAndDiseaseV1 and CattleAndDiseaseV2 f“r sev-

eral agent-based tools contain code for the simulations of the module. Complete the 

following projects using your agent-based tool.

F“r additi“na‘ ”r“–ects, see M“du‘e 14.13, Re-S“‘ving the Pr“b‘e’s with Agent-
Based Simulations.” 

1. Holding the INFECTION_PROBABILITY constant at one of the values in the 
module, vary the INFECTIOUS_PERIOD so µ/  values vary from 0.01 to 
0.05 in simulation CattleAndDiseaseV2. From the text’s website, download 
the data (CattleAndDiseaseV2Data.xls) for INFECTIOUS_PERIOD = 40 
days. Generate igures such as in Figures 11.2.3 11.2.5. Discuss the resu‘ts. 

2. Modify CattleAndDiseaseV2 so that with a certain probability a farmer iso-
lates an infected beef cow. Run the simulation a number of times and discuss 
the impact of isolations on the results.
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3. Modify CattleAndDiseaseV2 so that infected calves gain less weight. After 
recovery, an animal resumes normal weight gain. Compare your results with 
those of CattleAndDiseaseV2.

4. D“ the ’“diicati“ns fr“’ Pr“–ects 2 and 3.
5. Employing the discussion in the section “Introduction,” model the progres-

sion of pinkeye through a cattle population.
6. Modify CattleAndDiseaseV2 to automate the process of calculating the mean 

”ercent “f the ina‘ cu’u‘ative nu’ber “f infected catt‘e f“r NUM_SIMS 
nu’ber “f si’u‘ati“ns with a ixed set “f ”ara’eters. O’it gra”hing.

7. Ad–ust the irst si’u‘ati“n, Catt‘eAndDiseaseV1, to have one or more trucks 
transport the cattle to the sale barn.

8. Pig fever is a serious problem in the swine population of sub-Saharan Africa 
and Russia. For example, a 2011 outbreak in the Russian Federation resulted 
in the death “f 300,000 “f the c“untry s 19 ’i‘‘i“n ”igs. This vira‘ disease 
can be spread in a variety of ways, including infected human food scraps, 
direct contact, virus particles left on transport vehicles, infected wild boar. 
No cure or vaccine exists, so mass culls, careful hygiene, and quarantine are 
primary defenses. Although frequently fatal, the pigs that do survive are im-
mune (Callaway 2012). Model an outbreak of pig fever along with efforts to 
hinder the spread of the disease.

9. The Classical Swine Fever Virus (CSFV), after 16 years of effort, was elimi-
nated fr“’ U.S. ”ig far’s in 1978. H“wever, CSFV is a recurring ”r“b‘e’ 
for pig farmers in parts of Europe. The virus is easily transmitted to suscep-
tible animals, usually through direct contact with infected animals. More-
over, the virus also can be spread from contaminated transport vehicles, food, 
“r ”ens. There are a‘s“ vect“rs such as birds, lies, and hu’an beings that 
have been known to transfer the virus. The seriousness of the disease varies, 
depending on the strain. In the severe, acute form, incubation ranges from 3 
to 6 days, and death occurs 10 to 20 days postinfection (APHIS 2008).

Minimal control measures required by the European Union include en-
forcing restriction zones and transport regulations, accompanied by culling 
of affected herds. Animals can be individually vaccinated, but one test vac-
cine d“es n“t ”r“vide any ”r“tecti“n f“r the irst 7 days. After 7 days, i’’u-
nity gradua‘‘y increases “ver ti’e (Bac—er et a‘. 2008). 

Model an outbreak of a severe, acute form of CSFV along with efforts, 
including vaccination, to hinder the spread of the disease. Indicate the modes 
of transmission and interventions you are considering. Run the model for a 
variety of parameters indicating measures that are most successful. Discuss 
the results.

Answers to Quick Review Questions

From the text’s website, download your agent-based tool’s 11_2QRQ.”df i‘e f“r 
answers to the system-dependent questions.

1. a. AB b.  CA c.  both d.  both
e.  CA f.  AB g.  both
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MODULE 11.3

Agent-Based Tool: Tutorial 2

Prerequisite: M“du‘e 11.1, Agent-Based T““‘: Tut“ria‘ 1.

Download

From the textbook’s website, download Tutorial 2 for your agent-based tool. We 
recommend that you work through the tutorial and answer all Quick Review Ques-
tions using the corresponding software.

Introduction

This second agent-based tool tutorial, which is available from the textbook’s website 
in your system of choice, prepares you to use the tool to complete projects in Mod-
ules 11.4 and 14.13. The tutorial introduces the following functions and concepts: 

• Grid inspection and communication
• Color
• Minimum and maximum

The module gives examples and Quick Review Questions for you to complete and 
execute in the desired software system. 



MODULE 11.4

Introducing the Cane Toad—Able Invader

Download

The text s website has the i‘e CainToads, which contains a model for this module, 
and a 11_4QRQ.”df i‘e, which c“ntains syste’-de”endent Quic— Review Questi“ns 
and answers, available for download for various agent-based tools.

Introduction

At a time when biologists are concerned about a worldwide decline in amphibian 
populations, it is ironic that an introduced species of toad is rapidly increasing in 
abundance in Austra‘ia. In the irst g‘“ba‘ assess’ent studies, scientists f“und 43% 
of known amphibian species are in decline (Stuart et al. 2004), while Australian 
populations of this toad have increased from an original population of 3000 to mil-
‘i“ns (u” t“ 2000 ”er hectare; Free‘and 1986). And, they are ex”anding their range at 
up to 50 km per year into habitats previously thought too restrictive for their survival 
(Phillips et al. 2006). These toads are voracious predators and nimble competitors. 
Their large populations have spread widely through several Australian states, threat-
ening native species and disrupting the existing biological communities.

The toad, commonly called the marine, or cane, toad (Bufo (Chaunus) mari-

nus), was introduced into various countries, but in Australia it has become a major 
concern. Why would anyone introduce such an animal to a country that already had 
such a rich, unique fauna? To answer that question, we must examine Puerto Rico 
during the early part of the twentieth century. At that time, sugar cane growers there 
were desperately seeking something to control beetle grubs (larvae) that were de-
stroying the roots of their crops. In response, the U.S. Department of Agriculture 
i’”“rted cane t“ads fr“’ Barbad“s. Within 10 years, the beet‘e grub nu’bers were 
reduced to the level of a mere nuisance. This relatively rare example of a positive 
outcome from introducing species to new geography encouraged other cane-grow-
ing regions to mimic this “successful” strategy. Cane toads were introduced to Aus-
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tra‘ia in 1935 t“ ight the da’age d“ne t“ cane cr“”s by gray-bac—ed beet‘es (Der-

molepida albohirtum) and Frenchi beetles (Lepidiota frenchi) (Freeland and Martin 
1985; A‘f“rd et a‘. 1995). H“wever, the t“ads ”r“ved t“ be i‘‘ ch“sen as a cure:

• The adult beetles attack the top of the cane instead of the roots, and toads do 
n“t ly. 

• Beet‘e grubs are active during the day, whi‘e t“ads are active at night. 
• The t“ads d“ n“t ‘i—e the h“t cane ie‘ds, where there is a high danger “f des-

iccation, or drying.
• The amphibian had too many other tasty prey alternatives.

Sadly, cane toad numbers continue to increase, and models predict that they will 
eventually occupy twice the 1 million km2 of Australia they presently do (Urban et 
al. 2007). 

In Australia, female cane toads are prodigious producers of eggs (8000–35,000 
eggs/c‘utch; Her“ and St“neha’ 2009), ‘aying eggs “nce “r twice each year, begin-
ning during their sec“nd wet seas“n (C“hen and A‘f“rd 1993). These eggs are ”r“-
duced in long gelatinous strings attached to shallow vegetation. After approximately 
48 h, tad”“‘es e’erge and initia‘‘y feed “n a‘gae (Hin—‘ey 1962). After 37 t“ 40 
days, metamorphosis into toadlets normally occurs. This time is variable, however, 
dependent on various climatic factors, competition, and predation (from previous 
tadpole cohorts). Growth rates are strongly density dependent, with higher growth 
rates and maturation at lower densities (Alford et al. 1995). Because they are s’a‘‘ 
and poorly developed, young toadlets must initially stay near water to prevent desic-
cati“n (C“hen and A‘f“rd 1993). As they age and ’ature, y“ung t“ads ’“ve farther 
fr“’ the water, but the irst dry seas“n ta—es its t“‘‘ with “n‘y 10% t“ 47% surviving 
(Alford et al.). Free‘and and Martin (1985) f“und that y“ung t“ads are the ”ri’ary 
colonizers, with dispersion occurring at the edges of the toads’ distribution. 

Juvenile and mature toads are active at night, feeding on insects attracted to lighted 
areas (Wright and Wright 1949). They can “ften be f“und in gardens, ar“und h“uses, 
and in “ther disturbed areas (Kra—auer 1968). Cane t“ads are re‘ative‘y aggressive 
and somewhat undiscerning predators. Although favoring certain beetles, they will 
also occasionally dine on ants, crabs, spiders and other arthropods (Krakauer; Easteal 
1982). Vari“us researchers have “bserved cane t“ads feeding “n sna—es, birds, s’a‘‘ 
’a’’a‘s, and “ther a’”hibians (Rab“r 1952; Kra—auer; O‘iver 1949; Bart‘ett and 
Bart‘ett 1999). Researchers are c“nstant‘y investigating the actua‘ i’”acts the t“ads 
may have on competitor, prey, and predator populations. 

Because these ani’a‘s see’ t“ fancy re‘ative‘y “”en, disturbed areas ass“ciated 
with human activity, residents in many areas of eastern and northern Australia are 
quite likely to encounter them. Imagine yourself and your family living in a quiet 
suburb near Cairns, Queensland. You might have a pet dog or cat you feed every eve-
ning on the back patio. If your pet does not eat all the food, an opportunistic cane toad 
’ight inish “ff the re’ains. If y“ur d“g ha””ens u”“n and ’“uths a t“ad, it w“u‘d be 
in f“r a nasty sur”rise; and y“u ’ight ind y“ur ”et dr““‘ing ”r“fuse‘y “r f“a’ing at 
the mouth, staggering, twitching, seizing, and/or vomiting. Your dog would be ex-
”“sed t“ “ne “f the t“ad s ’a–“r defenses against ”redati“n t“xic secreti“ns.

The members of the genus Bufo, including the cane toad, are somewhat notorious 
for their capacity and propensity to produce bufadienolides and other toxic chemi-
cals that they secrete in quantity from prominent, specialized parotoid glands on 
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their heads. Cane t“ads re‘ease these secreti“ns defensive‘y when triled with by cu-
rious or potentially predaceous animals. The bufadienolides are cardiotoxic steroids 
that act much like digitalis, interfering with membrane sodium-potassium pumps, 
thereby increasing the contraction of the heart (Halliday et al. 2009). The ’“uth ‘in-
ing rapidly absorbs the toxins, so it is little wonder your dog soon regrets the folly of 
its appetite or curiosity. For heart patients, digitalis may restore normal heart muscle 
function, but in large-enough quantities, cane toad toxin may lead to cardiac failure. 
On the other hand, Bufo toxin (Chansu) has been used in China since the seventh 
century (Xiao 2002) and is still used in Chinese traditional medicine as an analgesic 
and t“ treat heart fai‘ure (Ma et a‘. 2007). Additi“na‘‘y, t“ad t“xin ”re”arati“ns are 
used for certain types of cancer (Meng et al. 2009). It is ‘itt‘e w“nder that enter”ris-
ing Australians are exporting Bufo marinus t“ the Chinese (BBC News 2010).

The Problem

Invasive species do not often expand along a continuous front, but satellite groups 
establish themselves at invasion hubs, such as advantageous habitat areas. In the 
vast parts of arid Australia during the dry season, artiicial water points (AWPs), 
such as troughs or dams for livestock, can serve as invasion hubs for cane toads. 
Thus, restricting the toads’ access to AWPs might help prevent the spread of this 
invasive species. To study this hypothesis, scientists erected toad-proof fences 
around AWPs in an experimental zone, removing toads that were already in the 
AWPs and excluding others from these water sources. They also performed simula-
tions to model the potential dispersal ability of toads under various climate condi-
tions with and without AWPs (Florance et al. 2011). In this module, we are inter-
ested in deve‘“”ing a si’i‘ar, but si’”‘iied, ’“de‘ t“ study the effect “f fencing 
AWPs on adult cane toad invasion. Ignoring climate, topography, periods of sleep, 
moist areas (except around AWPs), and the cane toad life cycle for the basic model, 
we wish to examine the impact of fenced and unfenced AWPs on the migration of 
cane toads through an area.

Grid-Based Individual-Based Model

For our simulation, a grid-based individual-based model seems appropriate. An 
individual-based model (agent-based model, or entity-based model) follows in-
dividuals of a population in an environment, considering the global consequences 
of their local interactions. Individuals are described in terms of their behaviors 
(rules, or transition rules) and their state (or set of characteristic parameters). With 
a grid-based model, the environment consists of one or more grids, or rectangular 
arrangements of cells (or sites), and an individual moves discretely from one cell to 
an“ther instead “f c“ntinu“us‘y t“ any ”“int (Reyn“‘ds 1999).

Grid-based individual-based simulations are related to cellular automaton simu-
lations, which are also dynamic computational models, or models that change with 
time and that are discrete in space, state, and time. Cellular automaton grids repre-
sent environments, and rules regulate the behavior of the system by specifying local 
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relationships and indicating how cells change states. Recall from our discussion in 
Module 11.2 (“Agents of Interaction: Steering a Dangerous Course”), the prime dis-
tinction between a grid-based individual-based model and a cellular automaton 
model is that a simulation for the former loops through all individua‘s one at a time, 
while a simulation for the latter loops through all grid elements one at a time.

Model of Environment

For our grid-based individual-based simulation of the movement of cane toads 
through an area with AWPs, the environment consists of an m × n grid of cells, 
which are desert agents. Each such agent stores wetness (moisture) and nutrient 
(food) values between 0.0 and 1.0, representing characteristics of that location. 

We can assu’e a ixed “r rand“’ a’“unt “f nutriti“n at each desert agent. F“r 
example, we may initialize all food values to be FOOD_CELL = 0.05. 

Throughout the grid, we have a low, constant value, such as 0.0 for moisture, 
except at or near AWPs. AWPs have values of 1.0 (AMT_AWP). Cells immediately 
adjoining such water areas, whether fenced or unfenced, have lower positive mois-
ture values, such as 0.4 (AMT_AWP_ADJACENT), while those two locations away 
have even lower positive values, such as 0.2 (AMT_AWP_OVER2). Figure 11.4.1 
displays part of a grid’s moisture values and a visualization of the corresponding 
area around an AWP. 

To prevent toads from going off the grid in certain directions or traveling to 
fenced AWPs, we give moisture and food values of –1 to cells on those directional 
b“undaries and in ”r“hibited areas, and we deine t“ad behavi“rs s“ that the ani’a‘ 
never moves to a cell that has negative values. Thus, if we want to allow toads to 
migrate out of the environment only to the west, we assign –1 to all moisture and 
food va‘ues “f ce‘‘s in the irst and ‘ast r“ws (n“rth and s“uth b“rders, res”ective‘y) 
and ‘ast c“‘u’n (east b“rder). By ’a—ing such a restricti“n, we require t“ads starting 
on the east border to migrate the entire width of the desert area, mimicking much of 
the migration that is occurring in Australia. Consequently, survival calculations 
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Figure 11.4.1 (a) Part of a grid’s moisture values and (b) visualization of area around an 
AWP
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w“u‘d tend t“ be ’“re accurate. By ”ara‘‘e‘ reas“ning, t“ attract t“ads in ce‘‘s ad–a-
cent to the west border, we assign a value greater than 1, say 2, to both moisture and 
f““d in the irst c“‘u’n. Figure 11.4.2 ”resents a 6 × 6 grid s food values and a cor-
responding visualization with darker shades of gray representing larger values.

Agents

Figure 11.4.3 depicts a desert area (Desert agents) in light gray with 14 unfenced 
AWPs (Awp) in black and 4 fenced AWPs (FencedAwp), each with a small black 
dot surrounded by white. The AWPs and fenced AWPs are surrounded by AwpAdja-

cent grid agents (grey), and in turn these are surrounded by AwpOver2 agents 
(hatched). Thirty-ive (35) Toad agents in color are on StartBorder patches on the 
far-right (east) column. The top and bottom rows are Border cells, while the far-left 
(west) column has FinishBorder agents. A SimulationDriver, which is useful for 
some agent-based tools, appears in the top left corner of the environment.

Toad’s State

For each toad, we store certain state variables, or characteristic parameters, or attri-
butes, such as the following, which represent the toad’s state at that instant:

energy va‘ue fr“’ 0.0 t“ 1.0 indicating t“ad s a’“unt “f energy fr“’ ‘“w t“ 
high 

water va‘ue fr“’ 0.0 t“ 1.0 indicating t“ad s a’“unt “f water fr“’ ‘“w t“ high
availableFood food value of the cell on which the toad is located
availableMoisture moisture value of the cell on which the toad is located

To facilitate detection that a cell is an undesirable location because of occupation 
by another toad, each toad also has associated variables food and moisture, with 
values of –1 that do not change throughout the simulation. For example, suppose the 
cell to the north of toad A has a toad, B. Because the food and water values to A’s 
north, which are B’s values, are both –1, indicating an inhospitable location, A will 
not hop to that cell until the location is vacant.

(b)
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Figure 11.4.2 Example of (a) a grid’s initial food values with (b) visualization
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Toad Behavior

A toad’s behavior is regulated by its own state, particularly its amount of water and 
energy, and the moisture and food conditions around it. For a current location (cell) 
of a toad on the grid, our simulation might use the site’s von Neumann neighbor-
hood, which includes the four nearest neighbors to the north, east, south, and west 
(see Figure 10.2.3a), or might employ the Moore neighborhood of all eight neigh-
bors (see Figure 10.2.3b). 

At times, the model of a toad’s behavior involves a random walk, which refers to 
the ani’a‘ s a””arent rand“’ ’“ve’ent (M“du‘e 9.5, Rand“’ Wa‘— ). With this 
simulation technique, perhaps under certain constraints, at any time step an agent 
can move at random to a neighboring cell. Relevant toad behavior rules, which in-
clude aspects of a random walk in the movement rules, are as follows:

1. If the toad’s energy value is such that it would like to eat (energy value below 
WOULD_LIKE_EAT) and there is food at the site, it eats.

Figure 11.4.3 Visualization with AWPs (fenced and unfenced), borders toads, and simula-
tion driver

Border

Border

StartBorder

FinishBorder

FencedAwp

Toad

SimulationDriver

Awp

AwpAdjacent
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Desert
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2. A toad gains energy (amtEat) eating. amtEat is at most AMT_EAT but no 
more than the amount of food in the toad’s food site; moreover, the toad’s 
energy value cannot exceed 1.0.

3. A toad gains some water (FRACTION_WATER of amtEat) eating. However, 
the toad’s water value cannot exceed 1.0.

4. If the toad is in water and would like to drink, it does.
5. A toad gains water (AMT_DRINK) drinking. However, the toad’s water 

value cannot exceed 1.0.
6. If the toad is thirsty (water value below WOULD_LIKE_DRINK) but is not 

in water, it hops to the nearest neighboring site with no other toad and the 
most moisture.

7. Else if the toad is hungry (energy value below WOULD_LIKE_EAT), it hops 
to the nearest neighboring site with no other toad and the most food.

8. Else with probability MAY_HOP, the toad hops to a neighboring site.
9. A toad uses energy (ENERGY_HOPPING) hopping.

10. While a toad uses less energy (50% of ENERGY_HOPPING) sitting.
11. A toad uses water (WATER_HOPPING) hopping into a dry area.
12. While a toad uses less water (50% of WATER_HOPPING) sitting in a dry 

area.
13. A toad that crosses the west border is considered migrated and is removed 

from the simulation.
14. If a toad’s water value falls below DESICCATE or food value falls below 

STARVE, the toad dies.

Constants and Global Simulation Variables

The simulation employs a number of constants shown in Table 11.4.1. Some con-
stants, such as DESICCATE and FRACTION_WATER, are from the literature, al-
though death from desiccation may occur at slightly different percentages and the 
fraction of prey that is water varies, depending on the source. Many of the values 
from Table 11.4.1 can be adjusted to explore alternative conditions. 

Besides c“nstants, the si’u‘ati“n has severa‘ g‘“ba‘ si’u‘ati“n variab‘es, which 
Table 11.4.2 lists. Each of these is initialized to be zero. 

Initial Environment

To facilitate creation of random environments and random toads, the simulation be-
gins with an area that contains a 42 × 42 desert, borders, and for some agent-based 
tool, a simulation driver, but no AWPs or toads (see Figure 11.4.5). Thus, to repre-
sent a square ie‘d that is 210 ’ ‘“ng and 210 ’ wide, each ce‘‘ c“rres”“nds t“ a 
(210 × 210)/(42 × 42) = 25-m2 area. Each Desert agent has a state variable of food 
with an initial value of FOOD_CELL. StartBorder and Border agents have inhospi-
table food and moisture values of –1, while FinishBorder agents have attractive such 
values of 2.



Table 11.4.1 
Cane Toad Simulation Constants

Constant Value Meaning

AMT_AWP 1 moisture value for water, such as an AWP
AMT_AWP_ADJACENT 0.4 moisture value of neighboring cell to water
AMT_AWP_OVER2 0.2 moisture value of cell 2 cells away from water
AMT_DRINK 0.05 maximum amount toad drinks in 1 time step
AMT_EAT 0.01 maximum amount toad eats in 1 time step
AMT_MIN_INIT 0.88 minimum initial toad energy and water values
DESICCATE 0.6 level at which desiccation occurs
ENERGY_HOPPING 0.002 maximum energy used by toad in a hop
FOOD_CELL 0.05 food value for initializing constant food grid
FRACTION_WATER 0.6 fraction of prey that is water
INIT_PERCENT_TOADS 80(%) percent chance a StartBorder agent forms a toad
INIT_RANGE 0.12 range of initial toad energy and water values
MAY_HOP 0.5 probability of hopping if not thirsty or hungry
PERCENT_AWPS 1.0(%) percent chance a desert cell has an AWP
PERCENT_AWPS_FENCED 0-100(%) percent chance an AWP is fenced
STARVE 0.6 level at which starvation occurs
WATER_HOPPING 0.002 maximum water used by toad in a hop
WOULD_LIKE_DRINK 0.9 water level at which toad would like to drink
WOULD_LIKE_EAT 0.9 food level at which toad would like to eat

Table 11.4.2 
Global Simulation Variables

Variable Meaning

nu’A‘ive number of live toads in grid area
numCroaked number of dead toads
numMigrated number of toads that have migrated off the grid
phase simulation phase

Figure 11.4.4 Visualization of initial environment
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Simulation Driver

A simulation driver or a built-in procedure that makes the simulation go repeatedly 
guides the simulation through three phases: (1) toad consumption, (2) toad move-
ment, and (3) removal, or cleanup. We say that one sequence involving Phases 1, 2, 
and 3 constitutes a consumption-movement-removal cycle, or a cycle. The phase 
is stored in a global simulation variable, phase, that is 0 initially, to indicate the 
simulation (toads and environment) needs to be initialized. The simulation pro-
gresses through the phases, as follows:

Phase 0: Initialization

In Phase 0, the simulation driver asks each StartBorder agent to execute its create-

Toads method to place toads on the east border. After formation of the toads, the 
simulation driver directs the Desert agents to complete the landscape with unfenced 
and fenced AWPs, and then the driver changes phase to be 1. 

Simulation Driver to Be Executed Each Time Step

Algorithm:

if phase is 0, perform initialization: Place toads at random on the StartBor-

der cells. Second, the desert gains random AWPs and fenced AWPs. 
Then, set phase to 1. (Note: The simulation never returns to Phase 0.)

else if phase is 1, perform consumption: All toads eat and drink; phase up-
dates to 2.

else if phase is 2, perform movement: All toads move. After each toad has 
moved or decided to remain in its current location, phase changes to 3.

else if phase is 3, complete the cycle: All dead and migrated toads are re-
moved from the simulation. The simulation may terminate because no 
toads remain. Otherwise, cycling back, phase changes to 1.

Phase 0 of Simulation Driver

Initialization phase 

Pre:  A grid exists with StartBorder cells on the east, FinishBorder cells on 
the west, Border cells to the north and south, and Desert cells in the 
middle.

   Global simulation constants (Table 11.4.1) have been initialized.
   phase is 0.
Post:  A random number of toads are on the east border.
   The desert landscape has been initialized with fenced and unfenced 

AWPs.
  phase is 1.
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This version of the model requests that each StartBorder patch generate a toad on 
top of it with INIT_PERCENT_TOADS percent chance. Thus, if global variable 
INIT_PERCENT_TOADS is 80, there is a 0.80 probability that a StartBorder agent 
will create a new Toad agent; and, after initialization, toads will cover approximately 
80% of the starting border, here on the east.

Quick Review Question 1

From the text’s website, download your agent-based tool’s 11_4QRQ.”df i‘e f“r this 
system-dependent question to write the method createToads.

Toad initialization establishes the toad’s energy and water t“ be rand“’ l“ating-
point numbers in a certain range and its available food and moisture to be –1. More-
over, each new toad increments the global nu’A‘ive by 1, so that this simulation 
variable maintains a running total of the number of live toads.

Quick Review Question 2

From the text’s website, download your agent-based tool’s 11_4QRQ.”df i‘e f“r this 
system-dependent question to write the Toad initialization method.

After t“ads are generated “n the east b“rder, desert features AWPs and fenced 
AWPs are created with vari“us Desert procedures. The method placeAwps changes 
approximately PERCENT_AWPS percent of the Desert agents to Awp agents; and 

Toad Initialization

Procedure to initialize a new toad with random energy and water

Pre:  AMT_MIN_INIT and INIT_RANGE are global variables indicating the 
minimum energy/water amounts and length of interval of values, re-
spectively.

Algorithm:

increment nu’A‘ive by 1
energy ← rand“’ l“ating-”“int nu’ber between AMT_MIN_INIT and 

AMT_MIN_INIT + INIT_RANGE
water ← rand“’ l“ating-”“int nu’ber between AMT_MIN_INIT and 

AMT_MIN_INIT + INIT_RANGE
 avai‘ab‘eF““d, avai‘ab‘eM“isture, food, and water ← –1

Algorithm:

request each StartBorder agent to execute createToads

request each desert agent to execute placeAwps, placeFencedAwps,  
initAwp, and initAwp2

phase ← 1
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then, placeFencedAwps “fences” about PERCENT_AWPS_FENCED percent of 
these AWPs. To initialize the areas around AWPs to have the gradations moisture, 
which attract thirsty toads, we have methods initAwp1 and initAwp2. First, initAw”1 
changes any Desert agent next to a fenced or unfenced AWP to be an AwpAdjacent 
agent. A subsequent call to initAwp2 converts Desert agents adjacent to AwpAdja-

cent agents to be Aw”Over2 agents. Thus, an inner ring of AwpAdjacents and an 
outer ring of Aw”Over2s surr“und each AWP. Because “n‘y Desert agents change, 
the simulation does allow AWPs to be next to or one cell away from one another. 

Quick Review Question 3

Suppose PERCENT_AWPS is 0.3 (i.e., representing 0.003%), PERCENT_AWPS_

FENCED is 25, and the grid is 100 × 40 cells. On the average, after the initialization 
phase, how many of the following would we expect on the grid?

a.  Awp agents immediately after the call to placeAwps

b.  FencedAwp and Awp agents immediately after the call to placeFencedAwps

c.  AwpAdjacent agents if there are 5 Awp and 2 FencedAwp agents, none of 
which are within 3 cells of a border or each other

Quick Review Question 4

From the text’s website, download your agent-based tool’s 11_4QRQ.”df i‘e f“r this 
system-dependent question for completion of the landscape.

Phase 1: Consumption

Phase 1 is the consumption stage of a cycle of the simulation. The simulation driver 
directs the toads to consume food and water as needed and instructs the grid to up-
date its food values after such consumption. For simplicity, we assume that the 
amount of water does not change at any location on the grid. Upon completion of 
this phase, which occurs in one time step, the simulation advances to Phase 2. The 
behaviors of the simulation driver, toad, and desert agents in Phase 1 follow.

Phase 1 of Simulation Driver

Consumption phase of the simulation driver

Pre:  The desert landscape has been initialized with AWPs and toads, and 
phase is 1.

Post:  Toads have had the opportunity to eat and drink, and phase is 2.
Algorithm:

request each Toad agent to execute toadMayEat and toadMayDrink

request each desert agent to execute updateFood

phase ← 2
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Method toadMayEat, which follows, implements Rule 1 of toad behavior, which 

states a toad that would like to eat, does. For a hungry toad, we call method eat, 

which updates the toad’s state, including toad attribute amtEat. Otherwise, we set 

amtEat to 0. 

AMT_EAT is the most that an animal consumes in one time step. However, the 

toad cannot consume more food than is available in its current location. Moreover, 

its energy level (energy) should not exceed 1, so the additional food cannot be more 

than 1 – energy. Thus, the toad eats amtEat, which is the minimum of AMT_EAT, 

the food available in the toad’s desert cell (avai‘ab‘eF““d), and 1 – energy (Rule 2). 

This value is added to the energy value of the toad and eventually subtracted from 

the value of food in the corresponding desert cell. Food, such as a beetle, contains 

water, too; and we assume toad prey averages FRACTION_WATER = 0.60 = 60% 

water. Thus, after eating, we add FRACTION_WATER * amtEat to a toad’s water 

quantity. However, we must again be careful that the sum does not exceed 1.0, so we 

change water by the minimum of water + FRACTION_WATER * amtEat and 1.0 

(Rule 3). The algorithm for eat follows: 

A corresponding Desert method, updateFood, reduces the amount of food in a 

grid ce‘‘ under a t“ad t“ relect the a’“unt the t“ad has eaten fr“’ that ‘“cati“n.

toadMayEat

Toad behavior regarding eating

Pre:  The agent is a toad, and the phase is 1. 
Post:  The toad may have eaten. Its amtEat state variable has an updated 

value.
Algorithm:

 if the toad is in the desert and its energy is less than WOULD_LIKE_EAT

  request this toad to execute eat

 else
  set the toad’s amtEat to 0

eat

Function to update a toad’s energy and water after it eats

Pre:  The agent is a toad, and AMT_EAT and FRACTION_WATER are global 
variables.

Post:  The toad’s energy and water levels have been adjusted after eating.
Algorithm:

amtEat ← minimum of AMT_EAT, avai‘ab‘eF““d, and 1 - energy

energy ← energy + amtEat

water ← minimum of (water + FRACTION_WATER * amtEat) and 1.0



524 Module 11.4

Quick Review Question 5

Suppose AMT_EAT = 0.01 and FRACTION_WATER = 0.6. Assume a toad is on top 
of a desert cell. Give the values of a toad’s energy and water and a desert cell’s food 
after execution of eat and updateFood for each of the following situations:

a.  energy = 0.9, water = 0.8, and avai‘ab‘eF““d = 0.03
b.  energy = 0.9, water = 0.8, and avai‘ab‘eF““d = 0.005
c.  energy = 0.999, water = 0.8, and avai‘ab‘eF““d = 0.03
d.  energy = 0.9, water = 0.999, and avai‘ab‘eF““d = 0.03

Method toadMayDrink, which implements Rule 4 concerning a thirsty toad in 
water, is similar to toadMayEat. Because we assu’e the a’“unt a t“ad drin—s fr“’ 
a water source is negligible relative to the water source, the algorithm for drink is 
simpler than that for eat. Thus, in one time step, a drinking toad adds no more than 
AMT_DRINK to its internal water amount, being careful that the total does not ex-
ceed 1.0 (Rule 5). Recall our simplifying assumption that water, if present in a cell, 
is continuously available in that cell.

Quick Review Question 6

From the text’s website, download your agent-based tool’s 11_4QRQ.”df i‘e f“r this 
system-dependent question on consumption methods.

Phase 2: Movement

After each toad has had the opportunity to consume a certain amount of the available 
food and water on one step, the simulation proceeds to Phase 2, where the toads may 
move. The following algorithm indicates the simulation driver’s actions during 
Phase 2:

The main driver for toad movement is the method toadMove. We assume that a 
toad’s highest priority is to satisfy its thirst and secondarily its hunger. In the case of 
thirst, the toad moves toward the nearest unoccupied neighbor with the most mois-
ture (Rule 6). Otherwise, if hungry, the amphibian surveys its surroundings and 
heads t“ an e’”ty neighb“rh““d ‘“cati“n with the ’“st f““d (Ru‘e 7). If neither 
thirsty nor hungry, the animal might hop to a neighboring cell or remain in its current 
location (Rule 8). The algorithm for t“adM“ve and the methods this movement pro-
cedure invokes follow.

Phase 2 of Simulation Driver

Movement phase of the simulation driver

Pre:  phase is 2.
Post:  All toads have had the opportunity to move, and phase is 3.
Algorithm:

request each toad agent to execute t“adM“ve
phase ← 3
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Quick Review Question 7

From the text’s website, download your agent-based tool’s 11_4QRQ.”df i‘e f“r this 
system-dependent question on t“adM“ve.

If after possibly eating and/or drinking, the toad is still thirsty with water value 
less than WOULD_LIKE_DRINK, we call the function thirsty, whose algorithm fol-
lows, to process the animal’s next behavior. If in water, the cane toad does not 
change locations, executing method stayHere; while if above another desert agent, 
thirsty calls lookForMoisture to move the toad to a neighboring vacant cell with the 
most moisture. In the case where more than one neighbor has the maximum mois-
ture, we choose at random one of those with the maximum value. When the toad is 
on a StartBorder agent, whose moisture and food values are –1, the animal moves to 
the left with method moveW as long as no other toad already occupies that location. 
If such movement is not possible, thirsty calls stayHere. 

toadMove

Possibly have the toad move 

Pre:  The agent is a toad, and phase is 2.
Post:  The toad has moved or decided to remain in its current location.
Algorithm:

 if water < WOULD_LIKE_DRINK

  call the toad’s thirsty method
 else if energy < WOULD_LIKE_EAT

  call the toad’s lookForFood method
 else if a random number is less than MAY_HOP

  call the toad’s hopForFun method
 else call the toad’s stayHere method

thirsty

Function to change the position of a very thirsty toad

Pre:  The agent is a toad.
Algorithm:

 if the toad is in an AWP
  stayHere

 else if the toad is above another desert agent
  lookForMoisture

 else if toad is above a StartBorder agent and a desert agent without a toad  
  is to west
  ’“veW
 else if the toad is above a StartBorder agent
  stayHere
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B“th ’“veW and stayHere adjust the toad’s avai‘ab‘eF““d and avai‘ab‘eM“is-

ture. Because the t“ad exerts energy and ”“ssib‘y uses water in h“””ing t“ an ad–a-
cent cell, ’“veW calls useWaterEnergyHopping. This procedure decreases the 
toad’s energy by amount ENERGY_HOPPING (Ru‘e 9); and, if the a’”hibian is n“t 
in water, the method decrements the toad’s water by amount WATER_HOPPING 
(Ru‘e 11). Because a t“ad uses 50% ‘ess water and energy by sitting, stayHere calls 
useWaterEnergySitting (Rules 10 and 12). In the case of diminishing water or en-
ergy, the toad will die before the danger of water or energy becoming negative.

Quick Review Question 8

From the text’s website, download your agent-based tool’s 11_4QRQ.”df i‘e f“r this 
system-dependent question related to movement for moisture.

Even if not needing to drink, a toad may be hungry, in which case, we call look-

ForFood (Ru‘e 7). Si’i‘ar t“ lookForMoisture, a hungry toad on the start border at-
tempts to move to the left and one elsewhere moves to a random vacant neighbor 
that has the most food. 

Quick Review Question 9

From the text’s website, download your agent-based tool’s 11_4QRQ.”df i‘e f“r this 
system-dependent question related to movement for food.

If not thirsty or hungry, this amphibian may still move, which hopForFun pro-
cesses (Rule 5). In hopForFun, a toad on the starting boundary moves directly west, 
provided that cell is unoccupied. If elsewhere, at random, the amphibian moves on 
top of a neighboring vacant Desert agent, calling hopHere to establish its new avai‘-
ableFood and avai‘ab‘eM“isture values and calling useWaterEnergyHopping.

Quick Review Question 10

From the text’s website, download your agent-based tool’s 11_4QRQ.”df i‘e f“r this 
system-dependent question related to hopping for fun.

moveW

Procedure to move toad west and update its state variables 

Pre:  The agent is a toad and cell to the west is unoccupied.
Post:  The toad was moved west, and its state variables have been updated.
Algorithm:

move toad to west one cell
avai‘ab‘eF““d ← cell’s food value
avai‘ab‘eM“isture ← cell’s moisture value
call toad’s useWaterEnergyHopping method
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Phase 3: Complete Cycle

After directing toads to eat, drink, and move in Phases 1 and 2, the simulation driver 
eliminates migrated, desiccated, and starved toads from the simulation in Phase 3 
(Rules 13 and 14). (That is, violators will be “toad”!) Then, the driver checks if the 
simulation should be terminated because no more toads are alive on the grid. If toads 
remain, the simulation driver changes phase to 1, so that on the next time step the 
process can loop back to Phase 1 and a new cycle of eating, drinking, moving, and 
updating counts, such as the number of live toads, can begin. The algorithm for 
Phase 3 follows:

The simulation driver has each toad execute its changeCounts method to elimi-
nate migrated, desiccated, and starved toads and adjust global simulation variables 
nu’A‘ive, numCroaked, and numMigrated, as necessary. By ca‘‘ing checkTermi-

nate, the driver stops the simulation if nu’A‘ive is zero.

hopForFun

Function to update a toad’s location to hop in a random “legal” direction if 
possible

Pre:  The agent is a toad.
Post:  The toad may have moved at random on top of a vacant Desert neigh-

bor.
Algorithm:

 if the toad is above a StartBorder agent and can move to the left
  ’“veW

 else if the toad is above a StartBorder agent or has no empty Desert neigh-
bors 

  stayHere

 else
  move on top of a random empty Desert neighbor
  hopHere

Phase 3 of Simulation Driver

Removal phase of the simulation driver

Pre:  phase is 3.
Post:  Migrated, desiccated, and starved toads are eliminated.
  If the simulation continues, phase is 1.
Algorithm:

 request each Toad agent to execute its changeCounts method
 checkTerminate

 phase ← 1
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Quick Review Question 11

From the text’s website, download your agent-based tool’s 11_4QRQ.”df i‘e f“r this 
system-dependent question to write changeCounts and checkTerminate.

Visualization of Example Problem

With Figure 11.4.3 c“ntaining the initia‘ c“nigurati“n “f 4 fenced AWPs and 14 
unfenced AWPs, Figure 11.4.5 contains several frames of an animation of a simula-
ti“n with c“nstant deiniti“ns as in Tab‘e 11.4.1. T“ si’u‘ate the activity “f t“ads 
over a 12-h night using 1200 cycles, each cycle is of length 36 s:

12 h

1200 cycles

12 h

1200 cycles

60 min

h

60 s

min

36 s

cycles
= × × =

We assume activity occurs during evening hours, so the illustrated simulation 
s”ans ’“re than “ne night (1977 cyc‘es, “r 1.64 nights). Initia‘‘y, a‘‘ t“ads are in the 
rightmost column. Frames a–c of Figure 11.4.5 show the toads as they start on their 
journey from the east border. Frames d–f demonstrate thirsty toads taking turns in an 
AWP toward the northeast, but other toads being “frustrated” in their efforts to ob-

changeCounts 

Method to eliminate a toad that should be dead or migrated

Pre:  The agent is a Toad agent.
  DESICCATE and STARVE are global constants.
  nu’A‘ive are the number of live toads.
  numCroaked are the number of toads that have died.
  numMigrated are the number of toads that have migrated.
Post:  If the toad has desiccated or starved, the agent has been erased, num-

A‘ive has been decremented by 1, and numCroaked has been incre-
mented by 1.

   If the toad has migrated off the grid to the west, the agent has been 
erased, nu’A‘ive has been decremented by 1, and numMigrated has 
been incremented by 1.

Algorithm:

 if water < DESICCATE or energy < STARVE

  erase toad agent
  nu’A‘ive ← nu’A‘ive – 1
  numCroaked ← numCroaked + 1
 else if the toad is above a FinishBorder agent
  erase toad agent
  nu’A‘ive ← nu’A‘ive – 1
  numMigrated ← numMigrated + 1
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tain water from a fenced AWP in the southeast. In the latter case, the toads “sense” 
that water is close but cannot get to the AWP. Lingering around a fenced AWP, they 
tend to eat all the resources in the area without getting the necessary amount of hy-
dration. In general, diminished food supplies, indicated by lighter shades of gray in 
fra’es such as g i, he‘” t“ drive the t“ads westward. By Fra’es – and —, ’“st “f the 
toads have migrated west or died from desiccation or starvation, while Frame l con-
tains a de”icti“n “f the ina‘ f““d grid. F“r this ”articu‘ar executi“n “f the ’“de‘, 9 
of the 35 original toads migrated and 26 died. 

Multiple Simulations

The stochastic nature of this model is such that we should not take any one simula-
tion as indicative of what will happen in general. Thus, we could also develop a 
MultipleSimulationDriver agent that instructs Si’u‘ati“nDriver to carry out the 
simulation a designated number of times, numSimulations. At the end of each simu-
lation, a method, calculateNumAlive, accumulates the number of dead toads (num-

Croaked) and the number of toads that have migrated (numMigrated) in ongoing 
totals (totalDead and totalMigrated, respectively). After execution of all the simula-
tions, Mu‘ti”‘eSi’u‘ati“nDriver calculates the average of each total, or the totals 
divided by numSimulations.

Averages for such simulations indicate that appropriate fencing of AWPs should 
he‘” t“ curb cane t“ad ’igrati“n. We can start with the sa’e basic c“nigurati“n as 
in Figure 11.4.3 for each simulation. One execution with numSimulations = 10 
yie‘ded a ’ean “f 26.8 “f 35 (76.6%) t“ads dying and 8.2 (23.4%) successfu‘‘y ’i-
grating. With n“ fencing, ’“re ’igrated (’ean 13.8 “f the 35 t“ads, “r 39.4%); 
whi‘e, if a‘‘ 18 AWPs were fenced in an“ther ex”eri’ent, “n the average “n‘y 1.7 
(4.9%) ’igrated and 33.3 (95.1%) died. The ”r“–ects ex”‘“re ca‘cu‘ating such aver-
ages f“r vari“us c“nigurati“ns.

Assessment of Model

The results do show the impact of fencing all or some AWPs in general agreement 
with the experimental results from Florance et al. (2011). Moreover, the toads do 
migrate from the direction of release on the east to the west. A search for food  
and water with diminishing food availability to the east drives the invasion front 
westward. 

However, it is probably unrealistic to consider our simulated food resources being 
depleted quite so completely without additional prey moving into the area. For in-
stance, if we allow the simulation of the enclosed area with 20 toads to run long 
enough, all toads die as they eat all the food. 

The simulation of this module makes many other simplifying assumptions. We 
have not considered the impact of climate, particularly wet and dry seasons and tem-
perature. Moreover, we have not adequately addressed the adult cane toad’s inclina-
tion to sleep in moist places during the day and to travel, often to water, during the 
night. 
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Figure 11.4.5 Several frames of the animation of one simulation
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c d

g h

k l

Figure 11.4.5 (continued)
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Additionally, we have used an arbitrary landscape for the simulation. A high-
quality simulation employed to make predictions upon which to take actions must 
incorporate a map of the distribution of permanent waters and AWPs, as in Florance 
et al. (2011). With their experiments and their model that uses such a map as well as 
climate data, but no propagation of toads, Florance et al. predict “that systematically 
excluding toads from AWP would reduce the area of arid Australia across which 
toads are predicted to disperse and colonize under average climatic conditions by 
38% from 2,242,000 to 1,385,000 km2.”

Exercise

1. Develop an algorithm for an alternative StartBorder method, createMultiple-

Toads, which generates a Toad agent with probability 0.3 as long as the num-
ber of toads is less than 50. Multiple toads can be in a cell.

Projects

F“r additi“na‘ ”r“–ects, see M“du‘e 14.13, Re-S“‘ving the Pr“b‘e’s with Agent-
Based Simulations.” 

F“r Pr“–ects 1 12, ad–ust the si’u‘ati“n “f this ’“du‘e as indicated. Perf“r’ 
multiple simulations as described in the section “Multiple Simulations” to determine 

the ’ean nu’ber “f t“ads that are a‘ive, dead, and ’igrated. Discuss the resu‘ts, 
inc‘uding h“w c‘“se‘y y“ur resu‘ts ’atch the ex”eri’enta‘ data when ”r“vided.

1. Run the si’u‘ati“n 100 ti’es with c“nstant deiniti“ns, as in Tab‘e 11.4.1, 
each ti’e with a different rand“’ c“nigurati“n, and average the resu‘ts.

2. Run the si’u‘ati“n 100 ti’es with c“nstant deiniti“ns, as in Tab‘e 11.4.1, 
using three ixed c“nigurati“ns: unfenced, ha‘f fenced, and a‘‘ AWPs. 

3. Simulate releasing 21 toads in a 20 × 20 enclosed area that does not allow 
migration and that has only one AWP in the middle. Average the results over 
100 si’u‘ati“ns, each “f which runs f“r 7200 cyc‘es, re”resenting six 12-h 
nights. Re”eat the ex”eri’ent with the “ne AWP being fenced. In a ie‘d ex-
”eri’ent, with an unrestricted AWP and a c“ntr“‘ gr“u” “f 20 t“ads, 19 t“ads 
survived a 72-h ”eri“d. Predati“n, which “ur si’u‘ati“n d“es n“t c“nsider, 
acc“unted f“r the 1 t“ad s death. Then, in an“ther ie‘d ex”eri’ent, 20 “f 21 
toads died overnight in an enclosed area with a fenced AWP (Florance et al. 
2011). Can you adjust constants to obtain a closer match to the experimental 
data? 

4. Incorporate a rule to help prevent toads from remaining for an extended pe-
riod of time around a fenced AWP. For example, you might write a rule 
where occasionally a thirsty toad hops in a random direction or in the direc-
tion of minimum moisture. Compare your results to the existing model.

5. Adjust the model to allow for rapid food regeneration.
6. Adjust the model so that toads are released at random times and not all at 

once.
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7. Initialize each Desert agent to have a random amount of food within a desig-
nated range. Using a diffusion algorithm, as described in the section “Heat 
Diffusion Model” of Module 10.2, “Diffusion: Overcoming Differences,” 
diffuse the food at the end of each cycle. Does the change have an impact on 
depletion of food around fenced AWPs?

8. Have the grid include a larger body of permanent water, such as a river. De-
scribe the impact on survivability of the toads.

9. Explore the difference between dry and rainy seasons on the effectiveness of 
fencing AWPs. For rainy seasons, the moisture grid has more small puddles 
and larger ponds that tend to evaporate between rainstorms.

10. Reine the ’“de‘ t“ inc‘ude ’“ist areas, where t“ads can ta—e refuge fr“’ 
the heat. Assume in such an area a toad’s water amount does not change. A 
thirsty toad in a moist area does not automatically look for water, but the 
longer the toad is in that location, the more likely it is to move to the nearest 
neighboring site with the most moisture. One technique to implement this 
rule is to have a toad state variable, numCycles, to count the number of cycles 
a toad is in a moist area and have the probability of embarking to search for 
water be the reciprocal of numCycles. 

11. Adjust Rule 6 so that a thirsty toad does not immediately return to its previ-
“us ‘“cati“n, and c“’”are the resu‘ts “f y“ur reined ’“de‘ t“ th“se “f the 
text.

12. Reine the ’“de‘ t“ inc‘ude the changes fr“’ Pr“–ects 10 and 11.

F“r Pr“–ects 13 17, use the inf“r’ati“n in the ”r“–ect descri”ti“n and the Intr“-

duction” section, as necessary.

13. Scientists continue to search for effective measures to restrain cane toad pop-
ulations. Dr. Rick Shine, a biologist at the University of Sydney, and his col-
leagues are experimenting with various control measures. One of Professor 
Shine’s honor students, Georgia Ward-Fear, has come upon a remarkable 
possibility. Toadlets of this species, unlike those of other anuran species, are 
active by day. T“ av“id desiccati“n, they c“nine the’se‘ves t“ the areas 
around water, which a species of meat ant (Iridomyrmex reburrus) favors for 
f“raging. M“st “ther s”ecies “f y“ung fr“gs h“” away t“ av“id ants but n“t 
cane toadlets. Their ancestors never had to deal with such large, predatory 
ants, so the escape behavior has not evolved. Thus, the toadlets often provide 
a nutritious morsel for the ants, and these predators successfully reduce the 
y“ung t“ad ”“”u‘ati“n (u” t“ 90%; Ward-Fear et a‘. 2009).

Develop a simulation that contains a grid with water, land, toadlets, and 
meat ants. The toadlets can stay where they are or move in random direc-
tions, but they stay close to or in water. Meat ants remain on land. Assume 
that when a meat ant is adjacent to a toadlet on land, with a certain probabil-
ity the ant “eats” the toadlet, that is, the toadlet disappears from the simula-
tion. Perform an animation of the simulation, and plot the number of toadlets 
versus time. 

14. Sometime between September and March, Australian cane toads work their 
way t“ward aquatic sites t“ breed. Because the t“ads are s“ wide‘y distrib-
uted, from New South Wales to the Northern Territory, the timing depends 
on the particular climatic zone and habitat conditions. The water can be tem-
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porary or permanent, brackish or fresh, but they prefer relatively clear water 
with rather neutra‘ ”H and suficient e’ergent, sub’ergent, and/“r l“ating 
plants for cover to lay their eggs. As noted in the introduction, clutch size 
varies widely but is correlated positively with the size of the female. 

If a fe’a‘e cane t“ad ‘ays 10,000 eggs, ab“ut 7000 wi‘‘ survive t“ ”r“duce 
tadpoles. Tadpoles live normally for 10 to 100 days (average = 38), and the 
wide range results from various environmental factors (e.g., temperature), 
f““d ‘eve‘s, and density. F“r instance, high ‘eve‘s “f intras”eciic c“’”eti-
tion for food can delay development, or impede growth rate.

Tad”“‘e surviva‘ is str“ng‘y density de”endent (Hearnden 1991) but is 
a‘s“ inluenced by ”redati“n fr“’ “‘der c“h“rts “f B. marinus tadpoles, cli-
matic conditions, and food levels. Field data suggests that the maximum sur-
vival for tadpoles ( tmax) t“ be ab“ut 0.35 tad”“‘es/L. Using a c“eficient “f 
intras”eciic c“’”etiti“n (d = 0.5771 tad”“‘es/L), we can it the f“‘‘“wing 
functi“n t“ ie‘d data t“ revea‘ the re‘ati“nshi” between tad”“‘e surviva‘ ( t) 
and initial density (T). 

 t(T) = tmax/(1 + d · T) (La’”“ and De Le“ 1998)

Predati“n by “‘der tad”“‘es can reduce surviva‘ fr“’ 88% t“ 1.7% (Her“ 
and St“neha’ 2009). Surviving tad”“‘es bec“’e metamorphs (toadlets), 
which must make the transition to a terrestrial lifestyle.

 a.  Develop an individual-based model with a food grid to simulate develop-
ment of tadpoles in a pond. Initialize tadpoles in the pond to be of a vari-
ety of reasonable ages and locations. Running the simulation a number of 
times, determine the mean number of tadpoles surviving to become toad-
lets for various densities. Attempt to adjust parameters to match t(T). In-
dicate simplifying assumptions you make, and discuss your results.

 b.  Using the values from Part a, have tadpoles emerge at random locations 
and times around the edge of the pond. Running the simulation a number 
of times, determine the mean number of tadpoles surviving to become 
toadlets.

15. Tad”“‘es ’ay survive at te’”eratures between 17 °C and 42 °C, with ’axi-
’u’ surviva‘ at 29 °C. Reine Pr“–ect 14b t“ ta—e int“ acc“unt the i’”act “f 
pond temperature on tadpole survival. For simplicity, assume the water tem-
perature is the same throughout the pond but is 1 °C to 3 °C lower at night. 
Run the simulation for low, high, and optimum temperatures.

16. Because cane t“ad t“ad‘ets (see Pr“–ect 14) are initia‘‘y quite s’a‘‘ (9 13 
mm) and lack the extreme toxicity of other life stages, they are quite vulner-
ab‘e t“ ”redati“n. Meta’“r”hs gr“w very ra”id‘y at irst (0.647 ’’/da; Zug 
and Zug 1979), but the rate “f gr“wth is density de”endent. The ear‘iest 
metamorphs are generally found within 1 m of the water (Cohen and Alford 
1993). Surviva‘ is inluenced by desiccati“n and ”redati“n, varying fr“’ 
1.2% t“ 17.6% (La’”“ and De Le“ 1998). Susce”tibi‘ity t“ desiccati“n is 
reduced with increased numbers of retreat sites available to the toadlets. 

Develop an individual-based simulation of toadlets near a pond that in-
cludes a moisture grid and predators and that does not allow the toadlets mi-
grate off the grid. Attempt to adjust parameters so that survival is as indi-
cated. Running the simulation a number of times, determine the percent that 



Agent-Based Models 535

survive and the mean toadlet size at the end of 1 year. Indicate your assump-
tions and discuss your results.

17. Surviving toadlets are considered juveniles at 1 year (Lampo and De Leo 
1998) and bec“’e breeding adu‘ts at 2 years. Adu‘t surviva‘ de”ends “n a 
number of environmental factors, especially desiccation. Toads obtain much 
“f their water fr“’ their ”rey (~69%) and ‘“se water via eva”“rati“n, res”ira-
tion, and excretion (Kearney et al. 2008). Although these animals can sustain 
substantial water loss, if they lose 40% of their body mass or more, they are 
much more likely to die of dehydration (Florance et al. 2011). Adult survival 
rates vary between 30 and 70% (La’”“ and De Le“). Juveni‘es are assu’ed 
to have only 10% of the adult survival rates.

Using this information, develop a grid-based individual-based simulation 
involving juvenile and adult cane toads. Initialize the grid with juveniles and 
adults in random locations and juveniles of random ages. Have new juveniles 
entering the simulation at random times from around a pond. Have new adult 
toads entering the simulation at random times from grid boundaries. Allow 
t“ads t“ ’igrate “ut “f the area in any directi“n. Because y“ung t“ads are 
primary colonizers, young adults should be more likely to move than older 
toads and young toadlets. Running the simulation a number of times, deter-
mine the mean number of juveniles and adults that survive, die, and migrate.

F“r each “f the f“‘‘“wing ”r“–ects, using the inf“r’ati“n, deve‘“” a si’u‘ati“n with 
an animation. Also, perform multiple simulations to determine the mean number of 

t“ads that are a‘ive, dead, and ’igrated. Discuss the resu‘ts.

18. Temperature can have a big impact on migration of Bufo marinus as the ani-
mal favors warmer weather but tends to desiccate faster under such condi-
tions. The threshold temperatures for population growth are estimated as 14 
°C and 40 °C, while the optimal temperature range for population growth is 
estimated as 31 °C to 35 °C (Sutherst et al. 1996). Inc“r”“rate a te’”erature 
gradient grid into your simulation, where temperatures are cooler to the south 
and gradually warm for cells further north, as generally happens in Australia. 
Thus, Desert agents to the north have warmer temperature-state variable val-
ues than those further south. Write and incorporate rules using this grid. 
Have the toads released either gradually or all at once from the middle part of 
the south border and allow them to migrate off the grid anywhere. Save the 
temperatures where toads die and migrate, and display two histograms of the 
numbers of dead and migrated toads versus temperature. 

19. Through ex”eri’entati“n and curve itting, Kearney et a‘. (2008) deve‘“”ed 
the following model for the hopping speed, S (km/h), of the cane toad as a 
function of its core body temperature, Tb (°C), from 15 °C to 35 °C: 

S = 25.48396 + 4.51222Tb  0.29052Tb
2 + 0.0082619Tb

3 – 0.000086431Tb
4

Core body temperature is directly proportional to air temperature, and the 
two temperatures are almost equal on rainy nights. Moreover, the scientists 
estimated the proportion of time a toad moves as having a median of 3.84% 
and interquartile (middle) range of 1.4% to 6.8%. They assumed activity is 
limited only by temperature and not rainfall. Their analysis predicted forag-
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ing rates generally less than 1 g/h throughout the present range. Assuming 
that a diet “f cric—ets has 69% water c“ntent, they a‘s“ ”redicted that t“ads 
would need to drink more than 1 L/yr in cooler areas and 10 L/yr in arid 
n“rthern regi“ns. Inc“r”“rating these indings fr“’ Kearney et a‘., deve‘“” a 
grid-based individual-based model of the spread of toads. 

20. Extend the previous project to account for cane toad metabolic rates. With 
ex”eri’entati“n and curve itting, Kearney et a‘. (2008) derived a f“r’u‘a 
for resting metabolic rate, M in watts (W), or joules (J) per second, as a func-
tion of core body temperature, Tb in degrees Celsius, and mass in grams, as 
follows: 

M = 0.0056 – 10.0(0.038 Tb 1.771)mass0.82

Field metabolic rates for active toads was assumed to be 2.5 that for rest-
ing toads in the laboratory. Moreover, Kearney et al. determined that a diet of 
crickets has an energy density of about 6.3 kJ/g wet mass and that cane toads 
can assimilate about 85% of this amount, or 5.355 kJ/g = 5355 J/g. For in-
stance, a 120-g toad with body temperature 25 °C has resting metabolic rate 
M = 0.0429 W = 0.0429 J/s. Dividing by the assi’i‘ated energy density “f 
cric—ets, we ind that this resting cane t“ad requires ab“ut 8 × 10-6 g/s. As-
sume cane toad body masses between 50 g and 500 g. Letnic et al. (2008) 
indicate that most of the cane toads in colonizing-front populations in the 
Northern Territory are adults. Moreover, the scientists estimated mean 
’asses “f 170 g f“r ’a‘es and 290 g f“r fe’a‘es, with s“’e as ‘arge as 2 —g.

21. For free-ranging cane toads, Halsey and White (2010) obtained estimates of 
energetics, such as the rate of the change the volume of oxygen in the blood 
(rate of energy expenditure or metabolic rate), dV/dt (mL/h), calibrated to 
overall dynamic body acceleration (ODBA) in grams, a metric for body mo-
ti“n. Using data and curve itting, they deve‘“”ed the f“‘‘“wing equati“n f“r 
dV/dt as a function of ODBA and mass in grams at 25 °C body temperature: 

dV/dt = 555.9 ODBA + 0.372 mass  19.98

 6.4 mL O2 h
–1 re”resents ab“ut 3200 J/da = 0.037 J/s. Assu’e such a re‘a-

tionship is proportional. Moreover, Kearney et al. (2008) determined that a 
diet of crickets has an energy density of about 6.3 kJ/g wet mass and that 
cane toads can assimilate about 85% of this amount, or 5.355 kJ/g = 5355 
J/g. Dividing by the assi’i‘ated energy density “f cric—ets, we ind that a 
cane toad with dV/dt “f 6.4 ’L/h requires ab“ut 6.9 × 10–6 g/s.

Studying eight cane t“ads de”‘“yed in the ie‘d, they deter’ined the f“‘-
lowing values ± standard error of the mean (SEM):

• Mean b“dy ’ass = 136 ± 13 g; ’ini’u’ ’ass = 97 g; ’axi’u’ = 204 g
• Mean ODBA over recording time = 0.0384 ± 0.0044 g; minimum = 0.0232 

g; maximum ODBA = 0.054 g
• Maximum ODBA over 5 min = 0.086 ± 0.016 g

 They also determined the following proportions (percentages) of recording 
time:
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• Proportion spent resting = 84.0%
• Pr“”“rti“n s”ent in ‘“w-activity behavi“r = 13.87 ± 2.3%
• Pr“”“rti“n s”ent h“””ing = 2.10 ± 0.7%

 Toads typically hop for less than 5% of the time, moving on the average 4% 
of the time at a rate of 18 m/h.

Incorporate energetics into a model of free-ranging cane toads. 
22. Extend the previous project to account for temperature, as in Project 15. The 

equation estimated the rate of the change the volume of oxygen in the blood, 
for cane toad with body temperature 25 °C (Halsey and White 2010). To 
obtain the rate at other body temperatures, we can employ a Q10 correction, 
as follows:

Q10 = (r2/r1)
10/(t2 – t1)

 where r1 and r2 are metabolic rates and t1 and t2 are corresponding tempera-
tures. Thus, using the formula for dV/dt from the previous project to esti-
mate r1 = dV/dt at t1 = 25 °C and knowing the toad’s body temperature t2 
and Q10, we can calculate its r2, or metabolic rate, at t2. A Q10 of 2 results in 
a doubling of the metabolic rate with each increase in temperature of 10 °C. 
For the eight toads in the study, Q10 va‘ues ranged fr“’ 2.0257 t“ 7.5960 
and averaged 3.4426 (standard deviation = 1.8316). With body tempera-
tures ranging fr“’ 13.4 t“ 19.7, the ’ean ± SEM f“r the eight t“ads was 
17.1 ± 0.9 °C. 

Answers to Quick Review Questions

From the text’s website, download your agent-based tool’s 11_4QRQ.”df i‘e f“r 
answers to these system-dependent questions.

3. a.  12 = (0.003)(100)(40)
 b.  3 Awp s and 9 FencedAwp s: using 12 fr“’ Part a, 3 = (0.25)(12); 9 =  

12 – 3
 c.  56 = (8)(5 + 2) because each Awp and FencedAwp agent is surrounded by 

8 AwpAdjacent agents.
5. a.  energy = 0.91, water = 0.806, and food = 0.02 because amtEat = 0.01, so 

energy = 0.9 + 0.01, water = 0.8 + 0.6*0.01, and food = 0.03 – 0.01
 b.  energy = 0.905, water = 0.803, and food = 0.0 because amtEat = avai‘-

ableFood = 0.005, so energy = 0.9 + 0.005, water = 0.8 + 0.6*0.005, and 
food = 0.005 – 0.005

 c.  energy = 1.0, water = 0.8006, and food = 0.029 because amtEat = 1 –  
energy = 0.001, so energy = 0.9 + 0.001, water = 0.8 + 0.6*0.001, and 
food = 0.03 – 0.001

 d.  energy = 0.91, water = 1.0, and food = 0.02 because amtEat = 0.01, so 
energy = 0.9 + 0.01, water = the ’ini’u’ “f 0.999 + 0.6*0.01 = 1.005 
and 1.0, and food = 0.03 - 0.01
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Concurrent Processing

Introduction

“Because “f “ur abi‘ity t“ c“‘‘ect and ana‘yze vast quantities “f data, 
scientists n“w have the ”“tentia‘ t“ s“‘ve s“’e “f the w“r‘d s biggest 
”r“b‘e’s. . .By uti‘izing 21st-century c“’”uting ”“wer, hu’an ex”ertise, 
and a systematic approach to storing and mining information, scientists 

are beginning t“ achieve rea‘ brea—thr“ughs.”

 T“ny Hey, The Next Scientiic Rev“‘uti“n

Bef“re hu’an—ind ‘ies a vast, fascinating, and crucia‘ c“‘‘ecti“n “f —n“w‘edge
knowledge that will change our lives. With precision instrumentation, modern labo-
ratory techniques, and ever-increasing computational abilities, we will be able to 
investigate and understand physical, chemical, and biological systems from the most 
fundamental elements of the universe to the largest and most complex systems. The 
”“ssibi‘ities f“r ’a–“r research brea—thr“ughs, signiicant techn“‘“gica‘ inn“vati“ns, 
medical and health advances, better economic competitiveness, and the like, are 
unfathomable. 

Enhanced computer technology and power are crucial to progress on this new 
frontier. In 2002, the Japanese government began to simulate the earth’s climate and 
ge“‘“gica‘ activity using what was at that ti’e the w“r‘d s fastest su”erc“’”uter
the Earth Simulator. This remarkable machine, occupying a building that would hold 
f“ur tennis c“urts, at that ti’e c“u‘d ”erf“r’ 35.86 Tl“”s (a‘’“st 36 tri‘‘i“n l“at-
ing-”“int ca‘cu‘ati“ns ”er sec“nd). This achieve’ent was the irst ti’e the fastest 
supercomputer had been built outside the United States (Habata et al. 2003). Re-
sponding to this challenge and realizing the associated opportunities, then–U.S. Sec-
retary of Energy Spencer Abraham announced a new project in 2004 called the 
“Leadership Class Computing Facility for Science” to build the fastest supercom-
puter in the world (ORNL 2004). This emphasis on supercomputer development led 
to the Titan supercomputer, now housed at Oak Ridge National Laboratory (ORNL). 
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The Titan has a the“retica‘ ”ea— ”erf“r’ance “f ’“re than 20 ”etal“”s (20,000 tri‘-
‘i“n l“ating-”“int ca‘cu‘ati“ns ”er sec“nd; OLCF 2011). 

It is dificu‘t t“ ind a ‘arge e’”‘“yer wh“ d“es n“t uti‘ize the ca”abi‘ities “f such 
high-performance computing (HPC). As the following examples illustrate, indus-
trial companies, biomedical research institutions and corporations, government 
agencies and ‘ab“rat“ries, ”har’aceutica‘ ir’s, i‘’’a—ers, and s“ “n, a‘‘ beneit “r 
wi‘‘ beneit fr“’ the use “f HPC. 

If y“u had been a safety tester  f“r Genera‘ M“t“rs bac— in the 1930s, y“ur 
working clothes would have been made of leather, and your job would have been to 
steer a moving test car toward an obstacle, like a big tree, and to jump off before the 
car hit. Safety testing at GM has c“’e a ‘“ng way. N“w, GM e’”‘“ys IBM B‘ue-
Gene high-performance computing systems to simulate various forms of car wrecks, 
which reduce signiicant‘y the nu’ber “f ”hysica‘ test crashes (”i‘“ted re’“te‘y) 
and saves the company millions of dollars. Testers who work for GM today do not 
wear protective clothing and are more likely to be computer or computational scien-
tists. Successful application of HPC to automobile safety has now been extended to 
“ther areas “f the aut“’“bi‘e ”r“ducti“n, inc‘uding i’”r“ved fue‘ eficiency and 
”r“duct ’ar—eting. In this way, HPC c“ntributes signiicant‘y t“ the ”r“ducti“n “f 
safer, ’“re eficient aut“’“bi‘es and ’a—es GM ’“re c“’”etitive with “ther aut“-
makers (King 2010).

As an“ther industria‘ exa’”‘e, B“eing is “ne “f the w“r‘d s tw“ ’a–“r c“’’er-
cia‘ aircraft ’a—ers, and its success “r fai‘ure has signiicant i’”act “n the U.S. 
economy. In 2011, the company exported manufactured goods valued at $34 billion 
(C“’’erce.g“v 2012). In 2009, the newest “f B“eing s c“’’ercia‘ air‘iners, the 
787 Drea’‘iner, t““— its irst light (B“eing 2012). The design “f this aircraft with its 
numerous technical innovations utilized more than 800,000 processor hours on Cray 
supercomputers. Using computer-aided design (CAD) and computer-aided engi-
neering software, the company was able to validate their designs before building a 
physical prototype. For example, engineers, using this virtual prototyping, needed to 
test “n‘y 11 wing designs f“r the 787, as “””“sed t“ 77 used f“r the ear‘ier B“eing 
767. Best “f a‘‘, the inished ”r“duct is ‘ighter, is ’“re fue‘-eficient, and ”r“duces 
lower emissions (Cray 2012).

HPC has also dramatically improved the entertainment industry. Movie director 
James Cameron conceived of the phenomenally successful movie Avatar more than 
15 years before its release. At that time, his vision could not have been realized, 
given the visual effects tools available. Eventually, the technical capabilities became 
rea‘ity, and he began the screen”‘ay in 2006. The i‘’ was re‘eased in Dece’ber 
2009 and has earned ’“re than $2.75 bi‘‘i“n (gr“ss) w“r‘dwide (B“x Ofice M“–“ 
2012). The i‘’ is n“ted f“r its gr“undbrea—ing and stunning visua‘ effects, f“r which 
it won an Oscar in 2010. Weta Digital, already noted for its involvement in produc-
ing The Lord of the Rings trilogy, provided the digital production and 3D animation. 
Central to their effort was a considerable amount of high performance computing. 
Rendering the data into images is computationally demanding, and Weta employed 
a large server farm made up of 4000 quad-core Hewlitt-Packard blades with 35,000 
processor cores, 104 terabytes (space for 104 × 1012 characters) of RAM (random-
access memory), and three petabytes (space for 3 × 1015 characters) of network stor-
age. During the i‘’ deve‘“”’ent, Weta ran ab“ut 10,000 –“bs (1.3 1.4 ’i‘‘i“n in-
dividua‘ tas—s) ”er day. S“, in –ust ab“ut 10 years, HPC had changed signiicant‘y, 
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making possible what previously was impossible (Ericson 2010; Swan 2010; Wiki-
pedia 2012).

Numerous medical applications arise from the advances we have made in the 
ie‘d “f gen“’ics, and su”erc“’”uters are crucia‘ ”‘ayers in th“se advances. F“r 
instance, we have long known that individuals have differing susceptibilities to dis-
ease and responses to therapies. Physicians could treat or even prevent the develop-
’ent “f s“’e hu’an diseases if they —new each ”ers“n s genetic ’a—e-u” ”er-
sonal genomics. We have the technology to determine individual gene sequences, 
but the c“st has ”revi“us‘y been t““ great. Being ab‘e t“ “btain an individua‘ s se-
quence at a reas“nab‘e c“st ( $1000) w“u‘d faci‘itate a wh“‘e new a””r“ach t“ 
health care. Physicist Aleksei Aksimentiev at the University of Illinois–Urbana-
Champaign has used more than 10 million processor-hours on the Jaguar supercom-
puter at ORNL to develop a sequencing system involving a nanopore (protein pore 
one-billionth of a meter wide). As DNA moves through the pore, a detector deci-
phers the nucleotide sequence of the DNA. This system drastically reduces the time 
and costs for sequencing (OLCF 2011). 

Cancer comes in many forms and affects many diverse body tissues. Cancers also 
respond differently to various forms of chemotherapy. If we understand the genetics 
and metabolic pathway of each type of cancer, we can devise the most effective 
therapies, and we could likely even prevent its development. NantHealth, a collab-
orative effort among various insurers, research institutes, and businesses, has de-
vised a high-s”eed iber netw“r— that wi‘‘ ”r“vide ”artnering “nc“‘“gists with i’-
portant, detailed information about patient cancers in a very short time. Instead of 
treating a cancer, say, “f the breast, in an “rgan-s”eciic way, the ”hysician can treat 
the disease based on knowledge of the patient’s genetics and the cancer’s develop-
mental pathway, which may be identical to a cancer of another organ type. The col-
laborating scientists of NantHealth collected data on thousands of exomes (expressed 
sequences of DNA) from tumors. These data were collected from more than 3000 
cancer ”atients and were st“red in 96.5 gigabytes (s”ace f“r 96.5 bi‘‘i“n characters) 
that could be processed by a supercomputer in less than 3 days. 1.8 million cancer 
cases were projected for 2012 in the United States. These computational tools will 
enable analysis of 5000 of such cases every day. As Dr. Chan Soon-Shiong of the 
S““n-Shi“ng Institute f“r Advanced Hea‘th says, D“ct“rs wi‘‘ ina‘‘y be ab‘e t“ 
”r“vide higher-qua‘ity treat’ent in a dra’atica‘‘y ’“re eficient, effective, and af-
f“rdab‘e ’anner  (Business Wire 2012).

This chapter is not meant to be an in-depth study of high performance computing 
but is intended to give an idea of some of the applications, architecture, concepts, 
challenges, and algorithms. 

Analogy

A processor, or a processor core or a central processing unit (CPU), performs the 
arithmetic and logic in a computer and is its brain. Concurrent processing involves 
having associated, multiple CPUs working concurrently, or simultaneously, on the 
same or different problems. To achieve the type of high performance for the problems 
discussed in the introduction, concurrent processing is essential. For an examination 
of some of the options and problems involved, we consider an analogous situation.
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Suppose a scout leader is taking a group of 10 scouts in a van on a camping trip. 
Bef“re the fun begins, the tr““” ’ust sh“” f“r ”r“visi“ns ab“ut a hundred different 
ite’s at a gr“cery st“re. What are s“’e “f the “”ti“ns f“r sh“””ing? Bef“re reading 
further, list some your ideas for the task.

1. One option is for the leader to leave all the scouts in the van and to do the 
shopping alone. This option is analogous to a single processor working on a 
single program. Meanwhile, 10 processors (i.e., scouts), who could be help-
ing, are doing nothing to speed the process.

2. Another alternative is for the leader to tear the grocery list into 10 parts and 
have each scout gather the items on his or her list and meet at a cash register, 
where the ‘eader is t“ ”ay. What dificu‘ties ’ight arise? 

• Initia‘‘y, each sc“ut ’ust wait f“r a ”artia‘ ‘ist; ina‘‘y, he “r she ’ust wait 
f“r a‘‘ the “ther sc“uts t“ inish sh“””ing and f“r the ‘eader t“ ”ay. We 
have a bottleneck because on part of the overall task, only one processor 
(i.e., the leader) is working. 

• Perhaps only three shopping carts are at the front of the store, so that ade-
quate resources are not immediately available. 

• M“re“ver, su””“se a sc“ut cann“t ind ”eanut butter. With this scenari“, 
everyone must wait while the child wanders through the store without as-
sistance from anyone else. A synchronization problem exists. The shop-
ping lists probably could have been divided differently to shorten the wait.

3. A better ch“ice ’ight be that as s““n as a sc“ut inishes gathering his “r her 
groceries, he or she helps someone else. However, a speedy scout must know 
where to go, and both scouts must agree how to divide the work. 

4. Another way to help might be to separate scouts into pairs, each consisting of 
a see—er and a sh“””er, wh“ have ce‘‘ ”h“nes. The see—er inds an ite’ “n 
the list and tells the location to the shopper. While the shopper is gathering 
the item into the basket, the seeker searches for the next item. This pipeline 
system still has situations in which a processor (i.e., scout) must wait. The 
sh“””er ’ust wait f“r the see—er t“ ind the irst ite’, and the see—er ’ust 
wait for the shopper to gather the last item. At intermediate stages, the seeker 
’ight have dificu‘ty inding an ite’, causing the sh“””er t“ be id‘e; “r the 
shopper might take a while loading cans of Spam™ into the basket, while the 
seeker has already found the Vienna sausage, the next item on the list.

5. To avoid the bottleneck at checkout, the leader might give each child money 
as well as part of the list. However, the leader must have an excess of re-
sources (i.e., money) to distribute to the group.

6. The leader can also do some preprocessing on the grocery list. For example, 
shopping would be faster if each scout had a list of items on a single aisle. 

Deinitions A processor, or processor core or central processing unit 
(CPU), of a computer performs the arithmetic and logic of a 
computer. Concurrent processing involves having associated, 
multiple CPUs working concurrently, or simultaneously, on the 
same or different problems.
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This task, too, could be accelerated with the help of some of the scouts. This 
scenario would work best if the leader and some of the scouts were familiar 
with the locations of items in the store.

7. Another alternative consists in the leader texting a partial grocery list to each 
scout. Scouts are responsible for buying their parts of the groceries and meet-
ing at the van at a certain time. Upon receiving a receipt, the leader reim-
burses a scout. The scouts, who might be located at great distances from each 
“ther, d“ n“t have t“ sh“” at the sa’e gr“cery st“re. Dificu‘ties can sti‘‘ 
arise, such as a scout not receiving the message or a scout getting sick and 
not being able to shop. It would be advisable for the leader to make sure all 
scouts read their texts and shop. If a scout is sick, the leader can redistribute 
the workload.

Consider other alternatives along with their advantages and disadvantages.

Types of Processing

Three types of processing exist: sequential, parallel, and distributed. Sequential 
processing involves a single processor working on one program. Such processing is 
analogous to the leader being the only shopper.

Parallel processing consists in a collection of connected processors in close 
physical proximity working concurrently. Several examples of a vanload of scouts 
with the leader shopping together at one grocery store provide analogues to parallel 
processing.

Distributed processing involves several (possibly many) processors, perhaps at 
great distances from each other, communicating via a network and working concur-
rently. The example of the leader texting the partial lists to the scouts for them to 
shop at a variety of stores is analogous to distributed processing.

Quick Review Question 1

Indicate the ty”e(s) “f ”r“cessing sequentia‘, ”ara‘‘e‘, distributed, “r n“ne f“r 
each of the following:

a.  Can involve execution of more than one program at a time
b.  Can involve execution of one program
c.  Can have processors in different countries

Deinitions Sequential processing involves a single processor working on 
one program. Parallel processing consists in a collection of con-
nected processors in close physical proximity, or tightly coupled, 
working concurrently. Distributed processing involves several 
processors, perhaps at great distances from each other, communi-
cating via a network (hence, loosely coupled) and working con-
currently.
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Communication

Concurrent computers usually have an MIMD (multiple instruction streams, multi-
ple data streams) architecture in which their processors can execute programs or 
subprograms at the same time. Communication among processors is accomplished 
through shared memory or message passing. 

Figure 12.1.1 presents a diagram of a traditional shared-memory MIMD archi-
tecture. Although a memory module might be associated with an individual proces-
sor, all processors can access all memory modules. 

One dificu‘ty with this architecture is ’aintaining c“nsistency “f the data. F“r 
example, suppose processor A reads a value, say, 2, for a shared variable x; and 
whi‘e A is ”erf“r’ing c“’”utati“ns with the va‘ue, ”r“cess“r B writes a different 
value, say 3, to x. The values are not consistent. Shared-memory systems must pro-
vide mechanisms for the programs to ensure consistency of shared data.

A shared-’e’“ry syste’ is s”eciica‘‘y designed as a ”ara‘‘e‘ c“’”uter. H“w-
ever, another kind of architecture can be constructed with a network of workstations 
that communicate with each other through message passing. Figure 12.1.2 gives a 
diagram of such a distributed-memory MIMD architecture, in which each proces-
sor, or node, has its own associated memory that is inaccessible to other processors. 
Computer clusters, which have this type of architecture, can range from small sys-
tems with a few processors to supercomputers with thousands of processors.

Communication in such an architecture is accomplished through message pass-
ing. With message passing, programmers must explicitly divide a program into 
pieces, called processes, for concurrent execution. However, in the case of a mes-
sage-passing system, computer A cannot access directly a variable, say, x, stored in 
c“’”uter B s ’e’“ry. Instead, A sends a ’essage t“ B requesting the va‘ue “f x; if 
acce”tab‘e, B sends a ’essage t“ A with the va‘ue “f the variab‘e. 

To handle these operations, a message-passing system does require a programmer 
to write special message-passing calls. However, a shared-memory system must 
have its own mechanism to ensure the consistency of shared data, and execution of 
this ’echanis’ can add signiicant‘y t“ executi“n ti’e “f a ”r“gra’. Additi“na‘‘y, a 
message-passing system with its network of complete individual computers has the 

CPU CPU...

...

Connecting Network

Memory

CPU

MemoryMemory

Figure 12.1.1 Shared-memory MIMD architecture
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advantage of scalability with the usua‘‘y easy additi“n “f ’“re ”r“cess“rs t“ the 
system, a program’s execution speed increases. Also, with improvements in technol-
ogy, a faster, commercially available workstation can easily be swapped for a slower 
one in a message-passing system.

Advances in computer architectures, including hybrid systems, are occurring all 
the time. However, discussion of these is beyond the scope of this text.

Quick Review Question 2

Indicate which ty”e “f MIMD c“’”uter syste’ shared-’e’“ry, ’essage-”assing, 
b“th, “r neither exhibits the characteristic f“r each “f the f“‘‘“wing:

a.  The system is more scalable than others.
b.  The system must provide a way to ensure consistency of data.
c.  Processors of the system can work on a problem concurrently.
d.  System can be upgraded more easily.
e.  Usually, a manufacturer develops the system as a parallel computer.
f.  A programmer splits a program into parts for execution on different processors.
g.  A programmer writes a call to request that a processor send data from its 

memory to another processor for its memory.
h.  Processors can execute several independent programs at the same time.
i.  A processor can write directly to the memory of another processor.

Deinitions In an MIMD (multiple instruction streams, multiple data 
streams) architecture, processors can execute programs or sub-
programs concurrently. In a shared-memory MIMD architec-
ture, processors communicate through a shared memory. In a 
distributed-memory MIMD architecture, each processor has 
its own associated memory not directly accessible by other pro-
cessors, but processors communicate through message passing. 
A process is a task or a piece of a program that is executing sepa-
rately. Scalability is the capability of a computer system with ex-
panded hardware resources to exhibit better performance.

...
Memory MemoryMemory

Connecting Network

CPU CPUCPU

Figure 12.1.2 Distributed-memory MIMD architecture
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Metrics

We can employ several metrics, or measures, to indicate the improvement achieved 
using vari“us c“nigurati“ns “f a ”ara‘‘e‘ c“’”uter instead “f a sequentia‘ ’achine. 

For execution on a concurrent machine, a program is divided into separate pro-
cesses, or tasks, to be executed in parallel on various processors. The granularity of 
parallelism refers to the number of components. We say that a machine has ine 
granularity if it contains many processors, such as a system with thousands of sim-
ple processors, each executing relatively few instructions. A machine with coarse 
granularity contains a small number of processors, such as a system with a dozen 
very fast and complex processors, each executing many instructions simultaneously. 
A measure of the granularity is the ratio of computation to communication:

ratio of computation to communication = 
computation time

communication time

This rati“ is ‘arge in the case “f c“arse granu‘arity and s’a‘‘ f“r ine granu‘arity. 
Fine granularity has the advantage that many processors can execute the program 
simultaneously, but the larger number of processes has the disadvantage of requiring 
greater c“’’unicati“n ti’e. C“arse granu‘arity reduces c“’’unicati“n an ad-
vantage but reduces c“ncurrency a disadvantage. Thus, the ”r“gra’’er see—s a 
balance between the extremes of granularity by achieving a larger ratio of computa-
tion to communication along with suitable parallelism.

Quick Review Question 3

Suppose communication consumes 10% of the execution time for a concurrent pro-
gram. Determine the ratio of computation to communication.

A commonly used metric for a parallel computer’s performance is the speedup 
factor. For a system with n processors, the speedup factor S(n) is as follows:

S(n) = 
execution time on sequential computer

execution time on systtem with  processorsn

or

S(n) = 
number of computational steps on sequential computer

number  of computational steps in parallel with  processorsn

Often algorithms to accomplish some computation are different on a sequential com-
puter and a parallel or distributed system, and we employ the times for the best algo-
rithms available on each system in measuring speedup. For example, suppose the 

Deinition A granularity metric is as follows:

ratio of computation to communication = 
computation time

communication time
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best sequential algorithm for a particular task takes 100 ms, while the corresponding 
work with a 200-processor system requires 2.5 ms. In this case, the speedup is 
S(200) = (100 ms)/(2.5 ms) = 40.

Quick Review Question 4

Suppose a sequential algorithm takes 24 ms, while the speedup on a parallel com-
puter with 8 processors is S(8) = 4. Determine the execution time on the parallel 
computer.

Usually, the maximum speedup possible with n processors is S(n) = n, which we 
call linear speedup because the graph is a straight line.1 With linear speedup, the 
time required for execution with n processors is 1/n of time for execution on a se-
quential computer. For example, suppose the time for a sequential algorithm is 1 ms. 
With linear speedup and two processors, the execution time is 1/2 ms = 0.5 ms, so 
that S(2) = 1/0.5 = 2. For three processors, the execution time is 1/3 ms; with four 
processors, 1/4 ms; and so on. 

Quick Review Question 5

Suppose maximum speedup is achieved with an eight-processor system for an algo-
rithm that executes in 24 ms on a sequential computer. Determine the execution time 
on the parallel computer.

Linear speedup is rarely achieved because of several overhead factors, including 
the following:

1. Communication time between processors
2. Times when some of the processors are idle
3. Additional computations necessary in the parallel version and unnecessary in 

the sequential version

For algorithms in the next module, we consider such overheads and speedup factors.

1  Occasionally, a speedup better than S(n) = n can be achieved through comparison with an inferior sequential 

algorithm or through a special multiprocessor architectural feature, such as a very large amount of memory.

Deinition For a system with n processors, the speedup factor S(n) is as fol-
lows:

S(n) = 
execution time on sequential computer

execution time on systtem with  processorsn

or

S(n) = 
number of computational steps on sequential computer

number  of computational steps in parallel with  processorsn
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Exercises

1. Complete the matching related to the shopping scouts example in the “Anal-
ogy” section. An answer may be used more than once.
a Grocery list A Data item
b Item on grocery list B Distributed processing
c Leader goes through checkout alone C Memory
d Peanut butter D Message passing
e Scout E MISD
f Scout leader F Parallel processing
g Scouts shopping in same store G Processor
h Seeker talks to shopper H Sequential processing

2. Give the advantages and disadvantages of a shared-memory system and of a 
message-passing system.

3. The best sequential sorting algorithm that compares elements requires n 
log(n) computational steps. Suppose a sorting algorithm on a parallel system 
requires 4n computational steps. Determine the speedup factor (Wilkinson 
and A‘‘en 1999).

4. For each of the overhead factors inhibiting linear speedup, give an analogous 
example using the shopping scouts.

5. Draw the graph for linear speedup.

Project

1. Write a ”a”er with references “n a scientiic a””‘icati“n that is advanced by 
high-performance computing.

Answers to Quick Review Questions

1. a.  parallel processing and distributed processing
 b.  sequential processing, parallel processing, and distributed processing
 c.  distributed processing
2. a.  message passing 
 b.  both (Although the problem is more obvious with shared-memory MIMD 

architectures, the problem exists with both architectures.)
 c.  both
 d.  message passing 
 e.  shared memory 
 f.  message passing 
 g.  message passing 
 h.  both
 i.  shared memory 
3. rati“ “f c“’”utati“n t“ c“’’unicati“n = 0.9/0.1 = 9
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4. 6 ms, because S(8) = 4 = (24 ms)/t; the parallel algorithm on an eight-proces-
sor system is four times faster than the sequential one. Thus, t = (24 ms)/4 = 6 
ms.

5. 3 ms, because for linear speedup, S(8) = 8 = 24 ms/(execution time on paral-
lel computer); thus, execution time on parallel computer = (24 ms)/8 = 3 ms
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MODULE 12.2

Parallel Algorithms

Introduction

High-performance computing (HPC) does not just involve computers but includes 
the a‘g“rith’s ’any f“r c“’”utati“na‘ ’“de‘s and si’u‘ati“ns that un‘eash 
their capabilities. The following applications illustrate some of the triumphs and po-
tential of HPC algorithms.

Scientists at the Oak Ridge National Laboratory are using a powerful supercom-
puter, named “Gaea,” the mother of earth in Greek mythology, to better understand 
the earth’s climate. With Gaea, scientists can devise, test, and enhance climate mod-
els; and better models will improve our understanding of climate and its changeable-
ness and variation. Such improvements will be useful for making better projections 
to inform the public and to help leaders in sectors, such as government, industry, 
agriculture, and transportation, in planning, making decisions, and creating policy 
(NOAA 2012). 

Although climate changes are of some concern to most people, almost all people 
are concerned with weather, especially when natural disasters like hurricanes and 
tornadoes threaten lives and property. In late October 2012, a tropical storm devel-
oped from a weather disturbance in the Caribbean, south of the island of Hispañola. 
Na’ed Sandy, it headed n“rthward ”ast Ja’aica, Cuba, the Baha’as, and Mid-At-
lantic States of the United States, developing into a Category 1 and, then, a Category 
2 hurricane (NWS 2012). Although not the most powerful storm, it turned into one 
of the most devastating hurricanes the northeastern United States had ever experi-
enced. Several factors served to make the storm more damaging: very warm water, a 
high-pressure system that nudged it westward, and a cold front from the west, with 
which it merged. Coincidentally, there was a full moon, which augmented the effects 
of high tide (Jacobson 2012). 

Vari“us sens“rs and “bservers ba‘‘““ns, sate‘‘ites, air”‘anes, “ceanic bu“ys, 
and weather stati“ns ’“nit“r st“r’s ‘i—e Sandy and generate en“r’“us a’“unts 
of data, creating a computationally challenging situation that we call big data. In the 
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case of Sandy, scientists at the National Hurricane Center (NHC) and at weather-
forecasting/monitoring facilities in other parts of the world fed the data into super-
computer models that help predict the storm’s track and power. Such models can 
show great variation in their predictions, and those for this storm were no exception. 
Some models predicted that the storm would head out to sea, while others predicted 
that Sandy would do exactly what it did. The fastest machine provided the most ac-
curate model. Even though there was loss of life and incredible damage, without the 
warnings from the NHC, made possible by the computer models, the devastation 
would have been much worse (Jacobson 2012). 

As another example, Sequoia, a supercomputer housed at Lawrence Livermore 
National Laboratory, has been used to create the fastest and most detailed simulation 
of the electrophysiological activity of the human heart. This simulation, which has 
the spatial resolution of one heart cell, should give scientists great insights into vari-
“us ty”es “f heart disease and the eficacy “f vari“us treat’ents. F“r instance, with 
such models, scientists can perform virtual experiments to test the effects of various 
drugs used to treat cardiac arrhythmia. Associated with thousands of deaths in the 
United States each year, abnormalities in the electrical activity of the heart induce 
arrhythmia. Scientists at Johns Hopkins University claim that physicians can use 
computational models to guide preventive treatment, which can reduce the number 
of cardiac deaths. These types of computationally based tools will enable doctors to 
render treatment, personalized for each patient, for heart disease as well as for other 
diseases, such as cancer (Giordani 2012; Winslow et al. 2012). 

C“’”uter scientist, Chandra–it Ba–a–, at the University “f Texas Advanced C“’-
puting Center, has led a team that employed biophysical algorithms and parallel-
processing supercomputers to create 3D models of cellular binding sites for viruses, 
targets for drug therapy. These computing tools reduce the time required to select 
drugs that are most likely to target effectively the disease-prone binding sites from 
’“nths t“ days. As Dr. Ba–a– says, C“’”uters are a g““d way t“ acce‘erate the 
process of drug design. . . . It takes 10 years to proof out a drug, and a billion dollars 
or more. Hence computational drug discovery is not only timesaving, but economics 
te‘‘s y“u this is the way we sh“u‘d be g“ing  (TACC 2012; McBride 2012). Phar’a-
ceutica‘ ir’s “f a‘‘ sizes e’”‘“y en“r’“us a’“unts “f c“’”uting ”“wer f“r drug 
discovery, which saves both time and money.

In this module, we examine some of the algorithms for solving classical prob-
‘e’s with scientiic a””‘icati“ns in ”ara‘‘e‘. In d“ing s“, we investigate s”eedu”s 
and some of the challenges of parallel programming. While not considering actual 
code, we can gain an appreciation for some of the aspects of designing parallel 
algorithms. 

Embarrassingly Parallel Algorithm: Adding Two Vectors

Some algorithms are so easy to partition onto noncommunicating processes that 
we call them embarrassingly so. An embarrassingly parallel algorithm can di-
vide computation into many completely independent parts that have virtually no 
communication.
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Addition of two vectors is an example of such an algorithm. On the Cartesian 
plane, to add two vectors, represented by ordered pairs such as (1, 3) and (2, 5), we 
add componentwise. That is, t“ “btain the resu‘t s irst c“’”“nent, “r c““rdinate, 
we add the irst c“’”“nents “f the “rdered ”airs; the su’ “f the sec“nd c“’”“nents 
yields the second coordinate of the result. Thus, the sum of (1, 3) and (2, 5) is as 
follows:

(1, 3) + (2, 5) = (1 + 2, 3 + 5) = (3, 8)

An ordered pair is a special case of a vector, which is an ordered n-tuple of num-
bers, v = (v1, v2, . . ., vn). (Notice that we boldface the name of a vector, such as v, but 
not the name of a scalar, such as v1.) To obtain the sum of two vectors v = (v1, v2, . . ., 
vn) and u = (u1, u2, . . ., un), with n elements each, we also compute the sum compo-
nentwise, as follows:

v + u = (v1, v2, . . ., vn) + (u1, u2, . . ., un)

 = (v1 + u1, v2 + u2, . . ., vn + un)

With n processes, numbered 1 to n, each process can perform the sum of two corre-
sponding coordinates without communication with other processes. Thus, the algo-
rithm for Process i is as follows:

In this case, assuming an “ideal” concurrent system in which communication is 
not a consideration, the speedup is linear with S(n) = n. Of course, if n processes are 
not available, some processes must calculate more than one coordinate of the result, 
and speedup is less.

Deinition An embarrassingly parallel algorithm can divide computation 
into many completely independent parts that have virtually no 
communication.

Algorithm for Process i in Calculation of Vector Sum w = v + u

wi = vi + ui

Deinitions A vector is an ordered n-tuple of numbers, v = (v1, v2, . . ., vn). 
A componentwise vector operation is performed component by 
component, or coordinate by coordinate. For n-tuples v = (v1, v2, 
. . ., vn) and u = (u1, u2, . . ., un), their sum is v + u = (v1 + u1, 
v2 + u2, . . ., vn + un).



558 Module 12.2

Quick Review Question 1

Suppose we wish to perform the sum of two vectors of 24 elements each. Compute 
the most number of coordinate sums per process and the speedup, expressed as a 
rounded integer, if the following number of processes is available: 

a. 24 b.  6 c.  5 d.  4 e.  40 

Data Partitioning: Adding Numbers

Many applications exist that must compute the sum of a sequence of numbers, x0, x1, 
. . ., xn - 1. A sequential algorithm mirrors how we usually add a column of numbers 
using a ca‘cu‘at“r. Initia‘‘y, we enter the irst nu’ber (x0) into the calculator. Corre-
spondingly, with the sequential algorithm, we have a variable, say, sum, that accu-
mulates the ongoing sum and has an initial value of x0. On the calculator, we repeat-
edly press the + key and enter the next number from the sequence. With the 
algorithm, we also add one element at a time to the old value of sum, obtaining a new 
value for sum. On the calculator, we complete the process by pressing the = key; and 
in the algorithm we return sum. The sequential algorithm is as follows.

One parallel technique of adding a set of numbers uses partitioning. With (often) 
one process per processor, a specially designated process, called the root, or root 
process, splits the list of numbers into nonoverlapping subsets and sends the subsets 
to different processes, keeping one subset for itself. Each process computes the sum 
of its subset using a sequential algorithm, such as the preceding one. The processes 
send their partial sums to the root, which adds these values to obtain the overall sum. 

Sequential Algorithm to Calculate the Sum of a Sequence of Numbers, 
x0, x1, . . ., xn-1

sum ← x0

for i going from 1 through n – 1
 sum ← sum + xi

return sum

Parallel Data-Partitioning Addition Algorithm with Message-Passing 
Root’s Algorithm

Partition set of n numbers and send n/p numbers to each of p - 1 other pro-
cesses1

Compute sum of remaining n/p numbers
Receive p partial sums from processes
Compute sum of these p-values

1 Some processes might get a slightly larger list if p does not divide into n evenly. 
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Figure 12.2.1 Sum of 256 numbers using partitioning with root and 8 processes

Other Process’s Algorithm

Receive set of numbers from root
Compute sum of these numbers
Send sum to root

Deinitions A parallel data-partition algorithm uses one process, the root, 
to partition the data into subsets and to send the subsets to pro-
cesses, often keeping one subset for itself. Each process performs 
the appropriate computations with its subset and sends the result 
t“ the r““t f“r ina‘ ”r“cessing.

For example, if there are 256 numbers in the sequence and 8 processors, each with 
its own process, each process computes the sum of 256/8 = 32 numbers, and the root 
ca‘cu‘ates the ina‘ su’ inv“‘ving the 8 ”artia‘ su’s fr“’ the ”r“cesses. This tech-
nique is analogous to the scout leader splitting the grocery list, giving each scout a 
sublist, and keeping one sublist. The scouts and leader work individually to gather 
their parts of the groceries, which they bring to the leader to purchase. Figure 12.2.1 
presents a diagram of the partitioning process, and the algorithms designate the du-
ties of all the processes. 
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Let us perform a rough analysis of the time involved in this parallel addition by 
partitioning algorithm assuming one process per processor. As Table 12.2.1 illus-
trates, the total time has four phases: initial communication of n data items from root 
to p processes, calculation of the sum of n/p numbers by each process, communica-
tion of p partial sums from the processes to the root, and sum of p numbers by the 
root. Ignoring communication time, the speedup factor, S(p), for p processes is 
roughly as follows:

speedup without communication = 

n

n

p
p+

As an exercise shows, this speedup tends to p for large n. In our example, the speedup 
is as follows:

256

256

8
8+

 = 
256

40
 = 6.4

We could achieve additional speedup by having the root perform additions as partial 
sums arrive from the processes.

In the preceding computation of speedup, we are ignoring the time for communi-
cation. For a worst-case analysis of communication time, assume the processors do 
not share memory; each processor has exactly one process; communication is se-
quential; messages cannot overlap; a message can contain at most one number; and 
the root distributes all of the numbers and does not keep a subset. In this case, we 
must move n numbers one at a time before the parallel computation and p numbers 
afterwards. This communication time might consume as much time as adding the 
numbers sequentially in one process. Moreover, all process processes are idle while 
the r““t ”erf“r’s the ina‘ additi“n “f p partial sums. If at all possible, we seek to 
avoid such idle times by so many processes. The divide-and-conquer approach, 
which the next section discusses, provides an alternative that is useful for many 
applications.

Quick Review Question 2

Suppose we need to compute the sum of 1024 = 210 numbers, and all communication 
is sequential. Determine how many values are transferred to and from the root with 
partitioning for each of the following number of processes:

a. 2 b. 8 c. 256

Table 12.2.1 
Time for Parallel Addition by Partitioning Algorithm

Time to send Time to add Time to send Time to add
256 numbers 32 numbers 8 numbers 8 numbers
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Quick Review Question 3

For the situations in Quick Review Question 2, determine how many addition opera-
tions occur at the same time. Consider the parallel computations by the processes 
and the computations by the root. 

Divide and Conquer: Adding Numbers

Divide-and-conquer algorithms are widely used in computer science, particularly 
in parallel processing. With such an algorithm, the problem is divided into subprob-
lems of the same form. We continue dividing the problems into smaller and smaller 
problems. Then, we solve the small problems and reassemble the solutions. 

Figures 12.2.2 and 12.2.3 diagram a divide-and-conquer solution of adding 256 
numbers on 8 processes, p0, p1, . . ., p7, with 1 process per processor. Root process, 
p0, which initially has all the numbers, transmits half of the numbers to process p4, so 
that each is in charge of 128 numbers. Concurrently, p0 and p4 send half their num-
bers (64 numbers each) to p2 and p6, respectively. Then, these four processes (p0, p2, 
p4, p6) pass half the values (32 numbers each) to the remaining processes (p1, p3, p5, 
p7). In all, this tree of divisions to 8 processes in Figure 12.2.2 has log28 = 3 levels of 
divisions. In Figure 12.2.2, each arrow indicates a message containing half a pro-
cess’s values, and the relative thickness of the arrow represents the amount of data. 
The next-‘“wer ‘eve‘ “f the igure sh“ws that a ”r“cess that sent a ’essage with data 
becomes responsible for the remaining half of its data.
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x 0 , ..., 

x 127   

p0

x 64 , ..., 
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x 255   
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p 3
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x 95   
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x 31   

p 0

x 224 , ..., 

x 255   

p 7

x 192 , ..., 

x 223 

p 6

x 0 , ..., 

x 255   

p0

Figure 12.2.2 “Divide” phase of divide-and-conquer algorithm for sum of 256 numbers 
with 8 pro cesses. Each arrow represents a message containing half the values from the sender.



562 Module 12.2

After the “divide” phase comes the “conquer” phase (Figure 12.2.3). Each pro-
cess calculates the sum of its 32 numbers. The odd-numbered processes, p1, p3, p5, 
p7, send their results to the even-numbered processes, p0, p2, p4, p6, respectively. 
Each of the even-numbered processes adds its answer to the result that an odd-num-
bered process communicated. Retracing the path when the processes were dividing 
the data set, p2 and p6 send their answers to p0 and p4, respectively. Each of processes 
p0 and p4 adds its tw“ nu’bers, and ina‘‘y, p0 computes the sum of its and p4’s re-
sults. In Figure 12.2.3, each arrow represents a single sum value.

To analyze the time involved, let us initially ignore communication and assume 
“ne ”r“cess ”er ”r“cess“r. At the irst ste” “f the c“nquer  ”hase, each ”r“cess is 
adding n/p = 256/8 = 32 numbers, or performing (n/p) – 1 = 31 addition operations. 
However, at each level of the tree thereafter, we have only simultaneous sums of 
pairs of numbers. Thus, after time for the initial additions by the 8 processes, we 
need only the time to compute 3 more sums. The number of these sums (3) is the 
same as the number of levels of divisions. In general, a system with p number of 
processes has log2 p of these division levels. Thus, in all we have (n/p) - 1 + log2p 

Deinition A divide-and-conquer algorithm divides a problem into sub-
problems of the same form and then divides these into subprob-
lems of the same form, and so on. The small problems are solved, 
and the ina‘ s“‘uti“n is asse’b‘ed.

s 3 = x 96 

+ ... + x 127   

s 2 = x 64 

+ ... + x 95   

s 1 = x 32 

+ ... + x 63   

s 0 = x 0 

+ ... + x 31   

p 0 p 2 p 3 p 1 

s 0123   = 

s 01   +  s 23   

s 23   = 

s 2   +  s 3   

s 01   = 

s 0   +  s 1   

p 0 p 2 

p 0 

s 7 = x 224 

+ ... + x 255   

s 6 = x 192 

+ ... + x 223   

s 5 = x 160 

+ ... + x 191   

p 6 p 7 p 5 

s 4567   = 

s 45   +  s 67   

s 67   = 

s 6   +  s 7   

s 45   = 

s 4   +  s 5   

p 4 p 6 

p 4 

s 4 = x 128 

+ ... + x 159   

p 4 

s 0123   +

s 4567   

p 0 

Figure 12.2.3 ”Conquer” phase of divide-and-conquer algorithm for sum of 256 numbers 
with 8 processes. Each arrow represents a single sum value.
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sums; without communication, the speedup factor S(p) for p processes is roughly as 

follows:

speedup without communication = 
n

n

p
p− +1

2
log

This speedup tends to p for large n.

For 256 numbers and 8 processes, during the “divide” phase, communication 

time includes time to move half the numbers initially, and because of concurrency, 

one-fourth and one-eighth of the numbers, respectively, at the next two levels. Thus, 

in a‘‘, the ”r“cess ’ust have ti’e t“ c“’’unicate (256)(7)/8 = 224 nu’bers, as the 
following illustrates:

256

2

256

4

256

8

256 7

8
+ + =

( )( )
 

In general, for p being a power of 2, the divide phase communicates the following 

number of values:

n n n n

p

n p

p2 4 8

1
+ + + + =

−
...

( )

For the processes sending their results, communication time is small and approxi-

mately proportional to the number of levels, log2p. Thus, ignoring startup times for 

processes, the total communication time is approximately proportional to the follow-

ing expression:

n p

p
p

( )
log

−
+

1
2

This value is smaller than the communication time for the partitioning algorithm, 

which is approximately proportional to n + p. Moreover, the time in which processes 

are idle is smaller.

Quick Review Question 4

Suppose we need to compute the sum of 1024 = 210 numbers, and all communication 

is sequential. Determine how many values are transferred concurrently in the divide-

and-conquer algorithm of this section for each of the following number of 

processes:

a. 2 b. 8 c. 256

Quick Review Question 5

For the situations in Quick Review Question 4, determine how many addition opera-

tions occur at the same time.
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Quick Review Question 6

Compare the results of Quick Review Questions 2 and 3 with Quick Review Ques-
tions 4 and 5, respectively. For the given situations, determine the better summation 
algorithm, partitioning or divide and conquer.

a.  For a small number of processes, which algorithm uses less communication?
b.  For a large number of processes, which algorithm performs fewer concurrent 

additions?

Parallel Random Number Generator

Another example of a nearly embarrassingly parallel algorithm is the Monte Carlo 
esti’ati“n “f area under a curve (M“du‘e 9.2). F“r n darts, n processors, one process 
per processor, and shared memory, each process can compute the coordinates of one 
“dart” hit and increment a shared counter if the “dart” hits below the curve. In gen-
eral, for n darts and p processes, each process can compute the number of hits for n/p 
darts. One ”r“cess ”erf“r’s the ina‘ ste” “f esti’ating the area using this c“unt.

However, a problem exists. Each process must generate random numbers, but 
generation of the same pseudorandom number sequence by two processes would 
skew the result. 

We illustrate a solution to the problem using the following simple sequential ran-
d“’ nu’ber generat“r, which ”r“duces the sequence 1, 7, 5, 2, 3, 10, 4, 6, 9, 8 be-
fore cycling back to 1:

 r0 = 1

rn = (7 rn – 1) mod 11, for n > 0

Suppose for simplicity that two processes are available (n = 2), and each needs 
pseudorandom numbers. Using the number of processes as the exponent of the coef-
icient, 7, “f rn–1, we have the following:

72 mod 11 = 5

Instead “f using 7 as the c“eficient in the generating functi“n, we e’”‘“y 5 as 
follows:

rn = (5rn–1) mod 11

For one computer, we use the seed r0 = 1, while for the other computer we employ 
r0 = 7, the sec“nd nu’ber in the “rigina‘ sequence. Thus, “ne ”r“cess generates the 
sequence 1, 5, 3, 4, 9 with the f“‘‘“wing rand“’ nu’ber generat“r:

 r0 = 1

rn = (5 rn–1) mod 11

The second process generates alternate random numbers from the original sequence 
7, 2, 10, 6, 8 by using the f“‘‘“wing rand“’ nu’ber generat“r:
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 r0 = 7

rn = (5 rn–1) mod 11

Figure 12.2.4 shows the sequence developed with the generating function rn =  
(7 rn–1) mod 11 and the sequences for the two processes with the generating function 

rn = (5 rn–1) mod 11.
In general, suppose we have a pseudorandom number generator of the following 

form:

 r0 = 1

rn = (a rn – 1) mod m

For k ”r“cesses, we c“’”ute the new c“eficient as A = ak mod m. With the pro-
cesses numbered 0, 1, 2, . . ., k – 1, the seed for process i is ai mod m. In the preced-
ing exa’”‘e, f“r ”r“cess 0, the seed is 70 = 1; and f“r ”r“cess 1, the seed is 71 = 1. 
The algorithm is given next, and Figure 12.2.5 shows the sequences for this general 
case.

Quick Review Question 7

Consider the following very small, sequential random number generator:

 r0 = 1

rn = (7 rn – 1) mod 11, for n > 0

Parallel Random Number Generator Algorithm for Process i of k Pro-
cesses from Sequential Generator r0 = 1, rn = (a rn – 1) mod m

r0 = ai mod m
rn = (A rn – 1) mod m, where A = ak mod m

1,    7,    5,      2,   3,    10,   4,     6,     9,     8

Figure 12.2.4 Parallel random number sequences for two processes 

r 0 ,      r 1 ,      r 2 ,  ...,    r k ,      r k +1 ,      r k +2 ,  ...,    r 2 k ,     r 2 k +1 ,      r 2 k +2 ,  ...    

Figure 12.2.5 Parallel random number sequences for k processes
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Su””“se we wish t“ have the c“rres”“nding ”ara‘‘e‘ versi“n f“r ive ”r“cesses. De-
termine the following:

a.  The generating function
b.  Seeds f“r the ive ”r“cesses
c.  The sequence for the process with seed 1

Sequential Algorithm for the N-Body Problem

The N-body problem, which concerns simulations of the interactions and move-
ments of a number of objects, or bodies, in space, has many applications, including 
luid dyna’ics, ev“‘uti“n “f the ga‘axy, and ’“‘ecu‘ar dyna’ics. A sequentia‘ a‘g“-
rithm for such a simulation has the following general design.

Gravity causes acceleration and movement. The magnitude of the gravitational 
force between two bodies with masses m1 and m2 at a distance r apart is

F = 
Gm m

1 2

2
r

where G = 6.67 × 10-11m3kg-1s-2 is Newton’s gravitational constant. For example, 
suppose body 1 with mass m1 = 2 kg is located at position (1, 3, 0) and body 2 with 
mass m2 = 4 kg is at (2, 0, 3), where distances are in meters. We calculate the  
distance between the objects in a similar fashion to the way in which we compute 
the distance between points on the plane; we take the square root of the sum of  

General Sequential Algorithm for Solving the N-Body Problem

initialize positions and velocities of objects
f“r ti’e g“ing fr“’ start t“ inish by ste” size ∆t

 calculate forces
 move bodies

Deinitions The distance between two points, (x1, y1, z1) and (x2, y2, z2), is 

r = x x y y z z
2 1

2

2 1

2

2 1

2

−( ) + −( ) + −( )
The magnitude of the gravitational force between two bodies with masses 
mi and m2 at a distance r apart is

F = 
Gm m

1 2

2
r

where G = 6.67 × 10-11 m3 kg-1 s-2 is Newton’s gravitational constant.



High-Performance Computing  567

the squares of the differences in corresponding coordinates, as in the following 
example:

r = 2 1 0 3 3 0 19
2 2 2−( ) + −( ) + −( ) = m

Thus, the following expression gives the magnitude of the gravitational force attract-
ing the two bodies:

F = 
6 67 10 2 4

19

11

2

. ×( )( )( )− − −m kg s kg kg

m

3 1 2

 = 2.8 × 10-11 N

Quick Review Question 8

Consider body 1 of mass 35 × 109 kg at location (4000, 0, 5000) and body 2 of mass 
14 × 109 kg at location (2000, 3000, –1000), with distances in meters. Compute the 
following:

a.  The distance between the two bodies
b.  The magnitude of gravitational force between two bodies

The direction of force on body 1 at (x1, y1, z1) by body 2 at (x2, y2, z2) is the unit 
vector, or vector of length 1, from body 1 to body 2, namely, 

d = 
x x

r

y y

r

z z

r

2 1 2 1 2 1
− − −





, ,  

where r is the distance between the bodies. For example, with bodies at positions (1, 
3, 0) and (2, 0, 3), the direction of force on body 1 by body 2 is

d = 
2 1

19

0 3

19
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19

1

19
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19

3
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, , , ,

Quick Review Question 9

For the bodies from Quick Review Question 8, determine the direction of force on 
body 1 by body 2.

Deinition The unit direction vector from (x1, y1, z1) to (x2, y2, z2), or di-
rection of the force on body 1 by body 2 at those points, respec-
tively, is as follows:

d = 
x x

r

y y

r

z z

r

2 1 2 1 2 1
− − −





, , ,

where r = x x y y z z
2 1

2

2 1

2

2 1

2

−( ) + −( ) + −( )  is the distance between the 
points.
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With magnitude and direction of the force on body 1 by body 2, we can compute 
the force vector as the magnitude of the force times the direction of force. Thus, with 
F being the magnitude of the gravitational force, the force vector F is as follows:

F = (Fx, Fy, Fz) = F
x x

r

y y

r

z z

r

2 1 2 1 2 1
− − −





, ,

  = 
F x x

r

F y y

r

F z z

r

2 1 2 1 2 1
−( ) −( ) −( )





, ,

This vector indicates that the force that body 2 exerts on body 1 in the x-direction is 

Fx = 
F x x

r

2 1
−( )

, in the y-direction is Fy = 
F y y

r

2 1
−( )

, and in the z-direction is Fz = 

F z z

r

2 1
−( ). Thus, for the preceding example with magnitude of the gravitational 

force between them being F = 2.8 × 10-11 N and the direction vector being d = 
− −





1

19

3

19

3

19
, , , the force exerted by body 2 on body 1 is the vector 

F = 
− × × − ×





− − −
2 8 10

19

8 4 10

19

8 4 10

19

11 11 11
.

,
.

,
.

 ≈ (0.64 × 10–11, 1.9 × 10–11, 

1.9 × 10–11)

Quick Review Question 10

F“r the b“dies fr“’ Quic— Review Questi“ns 8 and 9, deter’ine the f“rce vect“r 
indicating the force that body 2 exerts on body 1.

The total force on a body is the vector sum of all forces on the body. The sequen-
tial algorithm for computing the total force on each of the N bodies, body 1, body 2, 
. . ., body N, is given next. For each body i except the last, we compute the force 
vector from it to each body j, where j > i, and vice versa, and add these force vectors 
to the appropriate ongoing sums. Thus, when the algorithm is complete, for each i, Fi 
is the total accumulated sum of all force vectors on body i.

Sequential Algorithm to Determine the Total Force on Each of the N 
Bodies

assume Fi is 0 N for i from 1 to N 
for i going from 1 to N – 1
 for j going from i + 1 to N
  calculate distance (ri,j) between body i and body j
  calculate direction vector (di,j) from body i to body j
  calculate magnitude (Fi,j) of force between them
  add force body j exerts on body i (Fi,j di,j) to Fi

  add force body i exerts on body j (-Fi,j di,j) to Fj
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Quick Review Question 11

In the sequential algorithm to determine the total force on each of the N bodies, sup-
pose the number of bodies is 15. Give the following:

a.  The range of numbers for the bodies
b.  The sequence of values for j when i is 5

The next major part of the simulation is to move all bodies. To do so, we must 
irst ca‘cu‘ate their ve‘“cities. Reca‘‘ that by Newt“n s sec“nd ‘aw “f ’“ti“n (M“d-
u‘e 3.1, M“de‘ing Fa‘‘ing and S—ydiving,  the secti“n Physics Bac—gr“und ), a 
force F on a body of mass m creates an acceleration a on that body, and 

F = ma 

or 

a = 
F

m

However, acceleration is the instantaneous rate of change of velocity with respect to 
time, or the derivative of velocity,

a = dv/dt

Thus, f“r s’a‘‘ change in ti’e ∆t, we have the following approximation of the small 
change in the velocity vector, ∆v:

∆v ≈ a∆t = 
F ∆t
m

The rate of change of velocity is approximately a for one time unit, while the change 
in velocity is about a∆t f“r ∆t. We estimate the velocity vector (vt + ∆t) at time step 
t + ∆t as the sum of the velocity vector at the previous time step (vt) and the change 
in velocity (∆v), as follows:

vt + ∆t ≈ vt + ∆v ≈ vt + 
F ∆t
m

We use this velocity vector to calculate the new position of a body. Recall that 
velocity is the instantaneous rate of change of position with respect to time, or the 
derivative of position with respect to time,

v = ds/dt

Thus, f“r a s’a‘‘ change in ti’e ∆t, the small change in position is as follows:

∆s ≈ v∆t

In one time unit, the change in position is v, whi‘e in ∆t time units the change in 
position is v∆t. As with the new velocity, the new position (st+∆t) for the body at time 
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t + ∆t is approximately the sum of the position at the previous time step (st) and the 
change in position (∆s), as follows:

st+∆t ≈ st + ∆s 

 ≈ st + vt∆t

That is, as Figure 12.2.6 illustrates, we estimate the new position as the old position 
plus the product of the old velocity and the change in time. We put these various 
aspects together in the sequential algorithm for computing the new positions of all 
the bodies. 

Quick Review Question 12

Consider body 1 of mass 35 × 109 kg at location s = (4000, 0, 5000) with velocity 
v = (500, 300, 100). Su””“se ∆t = 0.1 s and F1 = (3500 × 109, –1400 × 109, 7000 ×  
109). Evaluate the following:

a.  ∆v
b.  ∆s
c.  The new v
d.  The new s

Barnes-Hut Algorithm for the N-Body Problem

Suppose N processes are available so that each process can be responsible for ex-
actly one body. After computation of the force vector for a body on a time step, the 
movement of a body is completely independent of the other bodies. Thus, this phase 
of the simulation can be embarrassingly parallel.

Sequential Algorithm to Move N Bodies

for i going from 1 to N
calculate change in velocity vector, ∆v, as Fi(∆t/m)
calculate change in position vector, ∆s, as v∆t

add ∆v to v
add ∆s to s
assign 0 to Fi

s
t

v
t

s
t+Δt

v
t 
Δt

Figure 12.2.6 New position from old
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Overall this simulation consumes a great deal of time, particularly if the number 
of bodies N is ‘arge and the ti’e ste” ∆t is small. For each time step, the computation 
of the total force uses a nested loop whose body executes approximately N2 times. 
Concurrency can help in the movement phase. However, if we have one process re-
sponsible for one body’s computations, for the force phase, communication times 
would be approximately proportional to N2 because of the information required 
ab“ut interacti“ns with a‘‘ “ther b“dies. A si’”‘iicati“n that can reduce c“’’uni-
cation and speed the process is clustering, in which we approximate several bodies 
as a cluster that we consider to be one body.

The Barnes-Hut algorithm, another divide-and-conquer parallel algorithm, per-
forms a simulation of the N-body problem employing clustering. For each time step, 
the algorithm divides space, which we can consider as a cube, into eight subcubes. 
Any subcube that does not contain a body is eliminated from further consideration. 
The algorithm continues the partitioning process on any subcube that contains more 
than one body. Eventually, we have a collection of cubes of varying sizes that each 
c“ntains “ne “r n“ b“dy. Figure 12.2.7 ”resents an exa’”‘e “f the 2D c“unter”art t“ 
this process, in which squares are divided into subsquares.

Quick Review Question 13

Partiti“n the square in Figure 12.2.8 int“ subsquares using the Barnes-Hut a‘g“rith’.

While performing the partitioning process, the algorithm generates an octtree, 
with each node, or tree vertex, corresponding to a cube and with branches going to at 
’“st 8 n“des, re”resenting subcubes “f that cube. Figure 12.2.9 i‘‘ustrates the 2D 
counterpart, a quadtree, t“ acc“’”any the ”artiti“ned square fr“’ Figure 12.2.7. T“ 
develop the quadtree, for each subdivided square, we start with the top left square 
and travel in a clockwise fashion, generating a child node for each square.

5

1
2
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4
6

7

8

9
10

11

b

cd

e

a

Figure 12.2.7 Partiti“ning “f square int“ subsquares using the Barnes-Hut a‘g“rith’
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Quick Review Question 14

Generate a quadtree for the partition of Figure 12.2.8.

In each node, we store the total mass and center of mass for all the bodies in that 
subdivision (cube for 3D or square for 2D). As we are computing the total force on a 
b“dy, say, b“dy 1 in Figure 12.2.9, we traverse, or travel through, the tree, starting 
at the top node, called the root, and accumulate the force exerted by the other bodies 
on body 1. In determining interactions, if a node representing several bodies is suf-
icient‘y far, we d“ n“t c“nsider the b“dies individua‘‘y but as a c‘ustered b“dy. F“r 
exa’”‘e, in Figure 12.2.9, the c‘uster that n“de e re”resents ’ight be at a distance 
greater than some predetermined distance from body 1. Thus, we do not consider 
b“dy 1 s interacti“ns with b“dies 5, 6, and 7 individua‘‘y but ”erf“r’ the c“’”uta-
tions with the information in node e as if it were one object interacting with body 1. 

5
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3

4

6

7

8

9

10

11

Figure 12.2.8 Square of bodies for Quick Review Question 13

32

b

84 e

c

5 6 7

d

11109

1

a

Figure 12.2.9 Quadtree t“ acc“’”any Figure 12.2.7, in which a i‘‘ed circ‘e with a ‘etter 
re”resents a square and an uni‘‘ed circ‘e with a nu’ber re”resents a b“dy
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Thus, a s’a‘‘-en“ugh thresh“‘d distance can signiicant‘y decrease the a’“unt “f 
communication between processes during the force computation phase. 

As with the sequential algorithm, after computing the forces, we move the bodies. 
Because this ”hase d“es n“t require c“’’unicati“n with “ther ”r“cesses, this ”art “f 
the simulation can run very quickly in parallel. Periodically, we reformulate the oct-
tree. The f“‘‘“wing ”resents the genera‘ Barnes-Hut a‘g“rith’.

To calculate the total force on a body requires time on the order of log(N) for a 
fair‘y bushy tree. Because we ”erf“r’ this ”r“cess f“r each “f the N bodies, the total 
time is approximately proportional to N log(N), a signiicant i’”r“ve’ent “ver the 
sequential force computation algorithm, which takes about N2 steps. The periodic 
reformulation of an octtree also takes time on the order of N log(N). Moreover, the 
movement phase can easily be preformed in parallel without communication. Thus, 
“vera‘‘ the Barnes-Hut A‘g“rith’ is usua‘‘y an i’”r“ve’ent “ver the sequentia‘ 
version of simulation of the N-b“dy ”r“b‘e’. Dificu‘ties d“ exist, h“wever, in at-
tempts to parallelize. For example, the distribution of the bodies is usually nonuni-
form, which leads to an unbalanced tree and, consequently, longer traversal times.

Quick Review Question 15

C“nsider the b“dies in Figure 12.2.7 with quadtree in Figure 12.2.9.

a.  In the sequential algorithm to compute the total force vector for each body, 
determine the number of times the body inside the nested loop is executed.

b.  Su””“se in executi“n “f the Barnes-Hut A‘g“rith’ the thresh“‘d is such that 
a body interacts only with nodes (b, c, d, e) and other bodies in its same subs-
quare fr“’ the irst ”artiti“n. The tw“ exce”ti“ns t“ this ru‘e are that the 
distances between body 4 and node e and between body 8 and node e are 
considered to be beyond the threshold distance. For example, body 1 inter-
acts with n“des b, c, and d; B“dy 2 interacts with b“dies 1 and 3 and n“des c 
and d; body 4 interacts with bodies 1 and 8 and nodes b, e, and d; and body 5 

Barnes-Hut Algorithm for Solving the N-Body Problem in Parallel

generate octtree as follows:
 repeatedly subdivide cube containing more than one body into 8 subcubes
 generate tree with nodes representing nonempty subcubes
 store in each node the total mass and center of mass of its bodies

f“r ti’e g“ing fr“’ start t“ inish by ste” size “f ∆t

 calculate forces as follows:
  for each body, traverse tree starting at root
   perform computations with node when center of mass is “far”
    or when node has no children
 move bodies
 update center of mass
 when “appropriate,” rebuild octtree



574 Module 12.2

interacts with b“dies 1, 4, 6, 7, and 8 and n“des b and d. Deter’ine the t“ta‘ 
number of interactions for the force computation.

Exercises

1. Give an embarrassingly parallel algorithm to compute a scalar times a vector. 
F“r exa’”‘e, 3(4, 2, 1) = (3 ∙ 4, 3 ∙ 2, 3 ∙ ( 1)) = (12, 6, 3).

2. Su””“se a c“’”uter gra”hics screen has res“‘uti“n 1024 × 768, that is, 1024 
pixels (d“ts “n screen) wide and 768 ”ixe‘s high. Each ”ixe‘ is has ‘eve‘s “f 
red, green, and blue, where each value is between 0.0 and 1.0. Suppose 16 
processes are available for parallel computation. Give an algorithm for a 
nearly embarrassingly parallel algorithm to add 0.05 to the red component up 
to a maximum of 1.0 for every pixel.

3. As the section “Data Partitioning: Adding Numbers” indicates, ignoring com-

munication, the speedup factor, S(p), for p processes is roughly 

n

n

p
p+ . Show 

that for large n, this speedup tends to p. One way t“ d“ s“ is irst t“ simplify 
the expression by obtaining a common denominator for n/p and p and by in-
verting the resulting fraction and multiplying. Use the fact that for very large 
n and relatively small p, n + p2 ≈ n. 

4. Similar to Exercise 3, show that the speedup without communication for the 

divide-and-conquer addition algorithm, 

n

n

p
p− +1
2

log , of the section “Di-

vide and Conquer: Adding Numbers” tends to p for large n.
5. a.  Give a parallel partitioning algorithm to compute the maximum of n num-

bers with p processes.
 b.  Analyze the communication cost and the speedup.
6. Repeat Exercise 5 for a divide-and-conquer algorithm.
7. Deve‘“” a divide-and-c“nquer a‘g“rith’ t“ ind the nu’ber “f “ccurrences 

of a particular element in an array, or vector.
8. a.  Develop a divide-and-conquer algorithm to perform a parallel merge sort 

of an array. Hint: After division, each process sorts its part of the array 
using an eficient a‘g“rith’. Then, the subarrays are ’erged int“ ‘arger 
sorted subarrays.

 b.  Analyze the communication and computation times if the number of pro-
cesses is equal to the number of array elements, n.

 c.  Repeat Part b if the number of processes is less than the number of array 
elements. Assume that the computation time for the sequential sorting al-
gorithm employed is proportional to m log(m), where m is the number of 
elements being sorted.

9. Consider the following random number generator:

 r0 = 1

rn = (59 rn – 1) ’“d 349, f“r n > 0
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 a.  Suppose four processes working concurrently need to generate random 
numbers. Give the corresponding generating function.

 b.  Give the seeds for the four processes.
 c.  Give the most number of pseudorandom values the original function 

generates.
 d.  Give the most number of pseudorandom values the parallel function 

generates.
10. Re”eat Exercise 9 f“r the f“‘‘“wing rand“’ nu’ber generat“r and 3 

processes:

 r0 = 1

rn = (523 rn – 1) mod 1021, for n > 0

11. Suppose a pseudorandom number generator of the following form generates 
the most number of values possible:

 r0 = 1

rn = (a rn – 1) mod m

 a.  Give the number of pseudorandom numbers this function generates.
 b.  Suppose m – 1 = pq, where p and q are positive integers. Give the number 

of pseudorandom numbers the following function generates:

 r0 = 1

rn = (ap rn – 1) mod m

12. Consider the following generating function for a pseudorandom number 
generator:

rn = (a rn – 1 + c) mod m

 For k processes, the parallel version is as follows:

rn = (A rn – 1 + C) mod m

 where A = ak mod m and C = c(1 + a + a2 + . . . + ak - 1) mod m. Notice that the 
va‘ue “f the c“eficient is the sa’e as with the versi“n in the text, where c = 0 
(Wi‘—ins“n and A‘‘en 1999). 

 a.  Determine the parallel version for two processes and the generating func-
tion rn = (7 rn 1 + 4) mod 11, for n > 0.

 b.  Re”eat Part a f“r ive ”r“cesses.
13. Repeat Exercise 12a for three processes and the generating function 

rn = (229 rn–1 + 1) mod 10,000, for n > 0.
14. Su””“se in a Barnes-Hut a‘g“rith’, the ’easure “f far  is re‘ative. Instead 

of visiting its children, we use the information from a node if the following is 
true for some number, threshold:

(width of subsquare for node)/(distance to body) < threshold

 Su””“se in Figure 12.2.7 that the s’a‘‘est square, such as the “ne c“ntaining 
body 6, is 1 unit wide; so that the square with body 4 has width 2 units; and 
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the square with body 1 is 4 units wide. Suppose threshold is 0.5. Estimate 
(width of subsquare for node)/(distance to body) and if the node information 
would be used in the force computation for the following situations:

 a.  B“dy 4 and n“de e
 b.  B“dy 1 and n“de e
 c.  B“dy 1 and n“de d

Projects

F“r an additi“na‘ ”r“–ect, see Pr“–ect 8 fr“’ M“du‘e 14.9, C‘“uds Bringing It  
All Together.” See the text’s website for additional high-performance computing 

material.

Complete the following projects using your computational tool.

1. Develop a sequential program to simulate the Parallel Algorithm for Addi-
tion Using Data Partitioning. Create a function for the root’s algorithm with 
parameters for the number of processes (p) and an array of numbers. Create 
another function for the section “Other Process’s Algorithm,” which has pa-
rameters for the process number (or rank) and an array of numbers. Assume 
the number of summands is evenly divisible by p. Display communications, 
such as Pr“cess 3 sending ”artia‘ su’ 537 t“ R““t.  

In each “f Pr“–ects 2-4, deve‘“” a sequentia‘ ”r“gra’ t“ si’u‘ate the indicated ”ar-

a‘‘e‘ divide-and-c“nquer a‘g“rith’. Create a functi“n with the f“‘‘“wing ”ara’e-

ters: the number of processes (p), the nu’ber “f ”artici”ating ”r“cesses at this ‘eve‘ 
(participants; see Figure 12.2.2), the ”r“cess nu’ber (“r rank), the array, left index 

(or one less) and right index (or one less) of the subarray under consideration (see 

Figure 12.2.2). 
Assu’e the nu’ber “f array e‘e’ents is a ”“wer “f 2 that is even‘y divisib‘e by p. 

Dis”‘ay c“’’unicati“ns, such as Pr“cess 0 receiving w“r—, # ”artici”ants = 1, 
‘eft = 0, right = 255 ; Pr“cess 0 sending w“r— t“ ”r“cess 4, requesting su’ fr“’ 
128 t“ 255 ; and ‘ater, Pr“cess 4 sending su’ (su’ = 131) “f its ”art.  F“r the 
function’s algorithm, if all processes are participating (participants = p), perform 

the operation sequentially on its subarray. Otherwise, perform the required opera-

tion (addition or maximum) on two calls to the function with appropriate arguments. 

Thus, the function is recursive, or is a function that calls itself.

2. Addition of a list of numbers 
3. Finding the maximum of a list of numbers 
4. Determining the number of occurrences of a value in a list of numbers 
5. F“r the situati“n in Exercise 9, deve‘“” the sequentia‘ rand“’ nu’ber gen-

erator and the random number generators for each process. Display the com-
plete sets of random numbers generated.

6. Develop a simulation in 2D or 3D of the N-body problem using a sequential 
algorithm. Generate an animation of the simulation.

7. Suppose a pipeline of p processes operates on a stream of integers, 2, 3, 4, 
. . ., passed from one process to the next. Each process reme’bers the irst 
number, N, it receives and passes to the next process all remaining numbers 
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in the sequence that are not multiples of N. When the last process receives a 
number, the algorithm stops. (This algorithm is a parallel version of the se-
quential sieve of Eratosthenes algorithm.)

 a.  Determine the task of this algorithm. 
 b.  Develop a program for a sequential version of this algorithm. 
 c.  Develop a program to simulate the pipeline version. 
 d.  Write an analysis of the amounts of computation and communication for 

the sequential and pipeline versions and of the speedup.

Answers to Quick Review Questions

1. a.  1, 24
 b.  4, 6 
 c.  5, 5 
 e.  6, 4 
 e.  1, 24
2. a.  1026 = 1024 + 2 
 b.  1032 = 1024 + 8 
 c.  1280 = 1024 + 256
 Notice that as the number of processes increases, the communication cost 

increases.
3. a.  512 = 511 + 1
 b.  134 = 127 + 7 
 c.  258 = 3 + 255
4. a.  513 = 512 + 1 
 b.  899 = 512 + 256 + 128 + 3 = 1024(7)/8 + ‘“g28
 c.  1028 = 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 8 = 1024(255)/ 

256 + log2256
5. a.  512 = 511 + 1 = (1024/2) - 1 + log22 
 b.  130 = 127 + 3 = (1024/8) - 1 + ‘“g28
 c.  11 = 3 + 8 = (1024/256) - 1 + log2256
 Notice the improvement using 256 processes for the divide-and-conquer al-

gorithm over the partitioning algorithm.
6. a.  divide-and-conquer
 b.  divide-and-conquer
7. a.  rn = (10 rn–1) mod 11, for n > 0 because 75 mod 11 = 10
 b.  1, 7, 5, 2, 3
 c.  1, 10
8. a.  7000 ’ because r = 2000 4000 3000 0 1000 5000

2 2 2−( ) + −( ) + − −( )

 = 4 10 9 10 36 10
6 6 6× + × + ×  = 7000

 b.  667.0 N = F = 
6 67 10 35 10 14 10

49 10

11 9 9

6

. ×( ) ×( ) ×( )
×

−

 = 6.67 × 102 

9. ( 2/7, 3/7, 6/7) = ((2000  4000)/7000, (3000  0)/7000, (–1000 – 5000)/ 
7000)

10. A””r“xi’ate‘y ( 190.6, 285.9, 571.7) = 667.0( 2/7, 3/7, 6/7)
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11. a.  body 1 through body 15
 b.  integers 6 through 15

12. a.  (10, –4, –20) because ∆v = F1(∆t/m) = ((3500 × 109)(0.1)/(35 × 109), 
(–1400 × 109) (0.1)/(35 × 109), ( 7000 × 109)(0.1)/(35 × 109))

 b.  (50, 30, –10) because ∆s = (old v) ∆t = (500, 300, –100) 0.1
 c.  (510, 296, 120) because new v = old v + ∆v = (500, 300, –100) + (10, 

–4, –20)
 d.  (4050, 30, 4990) because new s = old s + ∆s = (4000, 0, 5000) + (50, 30, 

–10)
13. See Figure 12.2.10 for the answer.
14. See Figure 12.2.11 for the answer.

Figure 12.2.10  Partition for Quick Review Question 13
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Figure 12.2.11  Quadtree for Quick Review Question 14
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15. a.  55 = 10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 10(11)/2 because f“r i = 1, j 
goes from 2 through 11; for i = 2, j goes from 3 through 11; and so forth, 
until for i = 10, j goes from 11 through 11.

 b.  52 because of the evaluation in Table 12.2.2
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Table 12.2.2 
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MODULE 13.1

Computational Toolbox—Tools of the Trade: Tutorial 7

Prerequisite: M“du‘e 10.1, C“’”utati“na‘ T““‘b“x T““‘s “f the Trade: Tut“ria‘ 
6.  A‘ternative Tut“ria‘ 7 has n“ ”rerequisite f“r th“se wh“ wish t“ c“ver Cha”ter 
13 bef“re (“r instead “f) ce‘‘u‘ar aut“’at“n si’u‘ati“ns. 

Download

Fr“’ the textb““— s website, d“wn‘“ad Tut“ria‘ 7 “r A‘ternative Tut“ria‘ 7 in the 
format of your computational tool or in PDF format. We recommend that you work 
through the tutorial and answer all Quick Review Questions using the corresponding 
software.

Introduction

This seventh computational toolbox tutorial, which is available from the textbook’s 
website in your system of choice, prepares you to use the system to complete proj-
ects for this chapter. The tutorial introduces the following functions and concepts: 

• Vectors operations, such as addition, scalar multiplication, and dot product
• Matrix operations, such as addition, scalar multiplication, matrix multiplica-

tion, and power
• Eigenvalues and eigenvectors for Modules 13.3 and 13.4
• Sorting of ordered pairs for Module 13.5
• Timing for Module 13.5

The module gives computational examples and Quick Review Questions for you to 
complete and execute in the desired software system. 



MODULE 13.2

Matrices for Population Studies—Linked for Life

Prerequisite: M“du‘e 13.1, C“’”utati“na‘ T““‘b“x T““‘s “f the Trade: Tut“ria‘ 
7,  “r A‘ternative Tut“ria‘ 7  (u” t“ secti“n “n Eigenva‘ues and Eigenvect“rs ). 
Additional high-performance computing materials related to this module are 

avai‘ab‘e “n the text s website.

Downloads

The text s website has the i‘e PopsAndMatOps, which contains examples from this 
module, available for download for various computational tools and project data 
i‘es ce‘‘_tra–ect“ry_i‘e.txt, ce‘‘_ty”es_i‘e.txt, and ce‘‘_ve‘_i‘e.txt.

Population Matrices and High-Performance Computing

B‘ue crabs (Callinectes sapidus) are very important to life along the Gulf Coast of 
the United States. Essential to the complex, estuarine food webs, these animals also 
re”resent the sec“nd-‘argest c“’’ercia‘ ishery in the area, and thereby ”r“vide 
‘ive‘ih““ds f“r ’any and they are de‘ici“us! Because the ec“‘“gica‘ and ec“n“’ic 
i’”act “f ”“”u‘ati“n luctuati“ns “f this s”ecies is i’’ense, “ur understanding “f 
the dynamics of crab populations is crucial. Human intrusion (oil spills, pollution, 
“verishing, habitat degradati“n, etc.) and natura‘ disasters (hurricanes, etc.) in addi-
tion to natural oscillations (climate cycles, dispersal, etc.) all impact populations. 
Some environmentalists may decry the emphasis on the crabs’ economic impor-
tance, but the reality is that proper management is necessary for healthy, sustained 
populations. We need to understand better the factors critical to the quality and 
quantity of native populations. 

Actually, we do know quite a bit about blue crabs. They are found in the western 
Atlantic Ocean, from Nova Scotia to Argentina, in the Gulf of Mexico and in the 
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Caribbean. Also, blue crabs have been introduced into the North Sea, southwest of 
France, ”arts “f the Mediterranean, and Ja”an. F“und t“ de”ths “f 90 ’, they eat 
ab“ut anything ”‘ants, benthic invertebrates, s’a‘‘ ish, detritus, carri“n and d“ a 
great deal of cannibalism (FAO 2012; Zinski 2006).

Females mate only one time, right after what is called a “pubertal” molt. As she 
readies for this molt, she calls male crabs with chemical signals. Drawn to her allure 
(and attractants), as with many animals, the males may squabble over mating rights. 
The winner often cradles the female until her key molt. Once she is “softened up” for 
mating, sperm is transferred to storage sacs (seminal receptacles), from which the 
female will fertilize her eggs. When her shell hardens, the female migrates to estuar-
ies, where she buries herself in mud to overwinter. With the arrival of spring, the 
female fertilizes and transfers her eggs to form a mass (sponge) attached to her body, 
which often contains about 2 million individuals (some up to 8 million; Zinski 2006).

Hatching into larvae (zoeae) in about 2 weeks, they are carried out into the open 
ocean, where some feed, grow, and molt several times over a month or more before 
they are transformed into megalops. Over 1 to 3 weeks, these swimming larvae are 
transported closer to shore. On shore, they molt into juvenile crabs and then head up 
the estuaries (primary habitat along the Gulf Coast), where they reside, grow, and 
undergo numerous molts. Maturity normally is achieved by the following summer. 
Adult males tend to stay in the upper estuaries (lower salinity), whereas adult fe-
males, after mating, remain in the lower reaches (higher salinity). Of course, most of 
the millions of fertilized eggs/larvae never reach adulthood, because they become 
f““d f“r “ther “rganis’s inc‘uding their “wn —ind (Zins—i 2006).

Although we know a great deal, we still do not know enough to understand the 
population dynamics of this or any other species that is passively dispersed over 
large areas. The countless larval stages are of small sizes and at the mercy of preda-
tors, currents, and winds. There is considerable drift of immatures from their birth 
estuary among other estuaries connecting the adults of different sites. How is it pos-
sible to understand the population dynamics of this species when we so obviously do 
not understand dispersal? 

Gulf coast populations are considered metapopulations, which means that they 
are spatially fragmented. The extent of connectivity, or exchange of individuals 
among these populations, is extremely important for population stability and recolo-
nizati“n f“‘‘“wing ‘“ca‘ extir”ati“n events. Larva‘ dis”ersa‘ is very ’uch inluenced 
by mortality, duration of planktonic stages, and behavior in the water column and 
u”“n sett‘ing. T“ assess c“nnectivity, scientists ’ust quantify the c“ntr“‘‘ing inlu-
ences for transport, stocks, and maintenance.

Given the scale and complexity of this problem, scientists are turning to computer 
modeling and simulation to work out spatially explicit models for blue crab popula-
ti“ns. These ’u‘tifaceted, ec“‘“gica‘ ’“de‘s are n“w ”“ssib‘e because ine‘y tuned 
hydr“dyna’ic ’“de‘s “f c“asta‘ areas are avai‘ab‘e. Bef“re they can deve‘“” any 
usefu‘ ”“”u‘ati“n ’“de‘, scientists ’ust deter’ine the inluence “f ‘arva‘ dis”ersa‘, 
sett‘e’ent, and surviva‘ rates “n luctuati“ns in b‘ue crab nu’bers and a‘s“ a c“n-
nectivity matrix for the estuaries, which is a rectangular array of numbers indicating 
contacts various estuary populations have with one another.

Using the Northern Gulf of Mexico Nowcast-Forecast System of the U.S. Navy, 
biologists at Tulane University are able to use a particle-tracking model (PTM) to 
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simulate larval dispersal. The Navy system incorporates tides, freshwater runoff, 
winds, sea height, sea temperatures, and 3D current velocities. So, using this type of 
input and PTM, they can follow the trajectory of individual particles (larvae) with 
time. The resulting dispersal model can then be incorporated into the larger popula-
tion model. 

Over a 3-year period, scientists have collected more than a terabyte (space for 
1012 characters) of data for their study. On a 2010 sequential computer, they estimate 
that the simulation time for one larva is 5 min and for 2000 larvae is 1 week. Thus, 
averaging the results of 300 simulations involving 2000 larvae each would take 
ab“ut 5.7 years! With such ’assive a’“unts “f data and such intensive c“’”uta-
tions, researchers must use high-performance computing with multiple computer 
processors to store the data and large matrices and to perform the needed simulations 
in a reasonable amount of time (Taylor 2010).

In this module, we examine populations that change with time. To make long-
term predictions about these populations, we store their data in structures called vec-
tors and matrices and perform calculations on these structures.

Vectors

A data structure is a formal skeleton that can hold data and on which we can per-
f“r’ s”eciic “”erati“ns. One data structure that ’“st c“’”utati“na‘ t““‘s and c“’-
puter languages have is a vector, or a one-dimensional array. Vectors allow us to 
collect a great deal of similar data together under one name instead of thinking of 
perhaps hundreds of individual variable names. For example, Table 13.2.1 indicates 
simulated changes in populations of competing whitetip reef sharks (WTS) and 
b‘ac—ti” shar—s (BTS) in an area (fr“’ the ’“de‘ in M“du‘e 4.1). We can su’’arize 

these values in two vectors, w = (20.00, 6.57, 4.69, 3.08, 0.99, 0.02), “r 

20 00
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4 69

3 08
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0 02
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and b = (15.00, 5.37, 4.84, 6.00, 10.83, 27.43), “r 

15 00

5 27

4 84

6 00

10 83

27 43

.

.

.

.

.
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, f“r WTS and BTS, re-

spectively. We use boldface, such as w, or a line over the letter, such as w , to indi-
cate a vector. Each of the vectors w and b has six numbers, or elements, or mem-
bers, so the size of each is 6. A subscript, or index (plural indices), indicates the 
particular item of the vector, and indices begin with 1 or 0. For a starting index of 1, 
w1 = 20.00 is the nu’ber “f whiteti” shar—s at ’“nth 0. By ’“nth 5, the si’u‘ated 
population dwindles to 0.02, which is w6. Another advantage of vectors is the ability 
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to use a variable like i as a subscript instead of a constant like 6. In a computational 
tool, we can employ this index to change values in a loop, allowing us to perform the 
same operations on all array elements. In mathematics, we can employ a variable 
index to express a general case.

Quick Review Question 1

For b = (15.00, 5.37, 4.84, 6.00, 10.83, 27.43), where indices begin with 1, give the 
value of b4. 

A vector equal to w has size 6 and its numbers are identical to and in the same 
order as those of w. Thus, two vectors are equal if and only if they are of the same 
size and corresponding elements are equal.

Deinitions A vector v is an ordered n-tuple, written as a row or a column,

v = (v1, v2, . . . , vn) = 

v

v

v
n

1

2

⋮



















 

where v1, v2, . . . , vn are numbers, called elements, or members. The size of a 
vector is the number of elements, here n. A subscript is an index (plural indi-
ces), and in vector notation, indices begin with 1 or 0.

Deinition Vectors (x1, x2, . . . , xn) and (y1, y2, . . . , yn) are equal if and only 
if xi = yi for i = 1, 2, . . . , n.

Table 13.2.1 
Simulated Populations

Time  

(months) WTS BTS

0 20.00 15.00
1 6.57 5.37
2 4.69 4.84
3 3.08 6.00
4 0.99 10.83
5 0.02 27.43
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Vector Addition

Su””“se the “n‘y shar—s in the given area are BTS and WTS. T“ “btain the t“ta‘ 
number of sharks each month (vector s), we add corresponding values of the vectors 
element by element, as follows:

s = w + b = 
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.
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.
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20 00 15 00

6 57 5 27

4 69 4 84

3 08 6 00

0 99 10 83
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For instance, initially, the number of sharks is s1 = b1 + w1 = 20.00 + 15.00 = 35.00, 
“r the su’ “f the nu’ber “f BTS and the nu’ber “f WTS at the start “f the si’u‘a-
tion. The two vectors must be of the same size for their sum to make sense. 

Quick Review Question 2

Suppose two scientists, Drs. Chang and Morris, are leading research teams studying 
red-footed boobies on two islands in Galapagos. Each group counts the number of 
eggs, hatchlings, juveniles, and nesting pairs over a 1-week period. Suppose the val-
ues for Dr. Chang’s team are 35, 16, 240, and 351 and for Dr. Morris’ team are 18, 
10, 103, and 153, respectively. 

a.  Express the values for Dr. Chang’s team in a vector, c, and for Dr. Morris’ 
team in a vector, m.

b.  Compute t = c + m.
c.  What does t represent?

Multiplication by a Scalar

Suppose that each member of the vectors w and b is in hundreds of sharks. In this 
case, w1 = 20.00 indicates that the initial number of whitetip sharks is 100 · 20.00 =  
2000 WTS. To carry the process through every month, we use scalar multiplica-
tion, as follows:

100(20.00, 6.57, 4.69, 3.08, 0.99, 0.02) = (2000, 657, 469, 308, 99, 2)

We multiply the scalar, or number, 100 by each element.

Deinition Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be vectors of n el-
ements each. The sum of x and y is the vector

x + y = (x1 + y1, x2 + y2, . . . , xn + yn).
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Quick Review Question 3

The scientists in Quick Review Question 2 estimate that the actual numbers of boo-
bies in each category to be 1.1 as many as they observed. The vector of data for Dr. 
Chang’s team is c = (35, 16, 240, 351). 

a.  Using 1.1 and the variable name c, give the expression for the vector of esti-
mated values.

b.  Give the vector with values rounded to the nearest integers.

Dot Product

As part of the effort to keep them from extinction, scientists around the world have 
studied the ’agniicent green sea turt‘e and used ’athe’atics and c“’”uter science 
to make predictions about their populations. We deal with a different type of multi-
plication in estimating the number of eggs laid by Hawaiian green sea turtles in one 
year. We can c“nsider their ‘ife cyc‘e t“ be in ive stages, with egg ‘ayers in tw“ 
stages, novice breeders of age 25 years, and mature breeders from ages 26 through 
50 years. On the average, a novice breeder lays 280 eggs in a year, and a mature 
breeder ‘ays 70 eggs ”er year. We can c“’bine these data in a vect“r e = (280, 70). 
Su””“se a‘s“ that there are 291 n“vice and 9483 ’ature breeders, which we st“re in 
the vector b = (291, 9483). T“ a””r“xi’ate the t“ta‘ green sea turt‘e egg ”r“ducti“n 
in a year, we multiply together corresponding terms and add the results, as follows:

 e · b = (280, 70) · (291, 9483)
 = 280 · 291 + 70 · 9483
 = 81,480 + 663,810
 = 745,290 eggs 

This type of multiplication, the dot product, involves two vectors of the same size 
and results in a number, not another vector (Green Sea Turtle).

Deinitions A scalar is a real number. Let x = (x1, x2, . . . , xn) be a vector. 
The scalar product of a scalar a and the vector x is the vector

ax = a(x1, x2, . . . , xn) = (ax1, ax2, . . . , axn).

Deinition Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be vectors of n el-
ements each. The dot product (or scalar product, or inner 
product) of x and y is

x · y = x1 · y1 + x2 · y2 + · · · + xn · yn.
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Often in writing the d“t ”r“duct, the irst ter’ is written as a r“w vect“r, such as 

(280, 70), whi‘e the sec“nd is written as a c“‘u’n vect“r, such as 
291

9483









 . Multipli-

cation of elements follows the arrows, elements from left to right corresponding to 
elements from top down:

e · b = (280, 70)
›

⋅








 ↓

291

9483
 = 280 · 291 + 70 · 9483 = 745,290 eggs

This notation will be useful for computations we will be doing shortly.

Quick Review Question 4

The irst stage in the ‘ife “f the Hawaiian green sea turt‘e, c“nsisting “f eggs and 
hatch ‘ings, “ccurs during the irst year. Stage 2, –uveni‘es, extends fr“’ year 1 t“ 
year 16. Su””“se 23% “f the hatch‘ings survive and ’“ve t“ stage 2, whi‘e 67.9% “f 
those in Stage 2 remain in that stage each year. In one year, suppose Stage 1 has 
808,988 individua‘s, and Stage 2 has 715,774 (Green Sea Turt‘e).

a.  Give a vector, p, with real-number elements representing the percentages.
b.  Give a vector, s, storing the individuals in Stages 1 and 2.
c.  Using variables p and s, not the data, give the vector operation to determine 

the number of individuals that will be in Stage 2 the following year.
d.  Calculate this value.

Matrices

In the section “Vectors,” we considered the data structure of a one-dimensional 
array, or vector. One example involved vector w, which stored under that one name 
the simulated number of whitetip sharks from 0 through 5 months. Quite often, how-
ever, more features need to be stored and manipulated. In such cases 2D arrays may 
be helpful. For example, we can store the data from Table 13.2.1 for the number of 
whiteti” reef shar—s (WTS) and b‘ac—ti” shar—s (BTS) in the f“‘‘“wing 2D array:

S = 

20 00 15 00

6 57 5 27

4 69 4 84

3 08 6 00

0 99 10 83

0 02 27 43

. .

. .

. .

. .

. .

. .



























The name used in mathematics and in many computational tools for a 2D array is 
matrix. A matrix (plural, matrices) is a rectangular array of numbers, and we can 
think of a matrix as a table of numbers.

The symbol for an individual matrix element has two subscripts indicating its row 
and column. Assuming that the row and column indices for S shown previously 
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begin with 1, the value 3.08, which is the number of WTS at month 3, is element s41, 
the va‘ue in the f“urth r“w and irst c“‘u’n. Usua‘‘y, we re”resent a ’atrix with an 
uppercase letter and an element with the corresponding lowercase letter and indices. 
Thus, we can abbreviate the array as S = [sij]. The size of a matrix is the number of 
rows by the number of columns. Thus, S is a 6 × 2, or a 6-by-2, matrix.

Quick Review Question 5

For matrix S, assume the row and column indices begin with 1. Give each of the 
following. 

a.  The value of s12

b.  The notation for the element with value 6.00

Scalar Multiplication and Matrix Sums

As with vectors, two matrices are equal if they have the same size and corresponding 
elements are identical. To compute the sum of two matrices that have the same size, 
we add corresponding elements. For the product of a scalar times a matrix, we mul-
tiply each element by the scalar.

Quick Review Question 6

For the following, calculate the indicated matrices:

A = 
1 3 9

0 5 6









 , B = 

−









1 2 0

1 4 3
, and C = 

7 4

2 8−










Deinitions A matrix (plural, matrices), S = [sij], is a rectangular array of 
numbers. Element sij is in row i and column j. A matrix with m 
rows and n columns has size m × n, or m by n.

Deinitions Let A = [aij] and B = [bij] be two m × n matrices. A and B are 
equal if and only if aij = bij for all i and j. The product of scalar 
c and matrix A is m × n matrix

cA = [caij] 

That is, each element of A is multiplied by c. The matrix sum of 
A and B is an m × n matrix

A + B = [aij + bij] 

That is, corresponding elements are added.
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a.  3B

b.  A + B
c.  C + 2A + B

Matrix Multiplication

The ability to multiply matrices allows us to model many problems, including 
those involving changes in populations. The foundation for the operation of matrix 
multiplication is the concept of dot product of vectors. Suppose we wish to esti-
mate the total shark mass at each month of the simulation involving whitetip reef 
shar—s (WTS) and b‘ac—ti” shar—s (BTS). An esti’ate “f the average ’ass “f a 
whitetip is 20 kg, while that of a blacktip is 18 kg. Suppose we started the simula-
ti“n with 20 WTS and 15 BTS. Thus, the initia‘ t“ta‘ shar— ’ass is the f“‘‘“wing 
dot product:

(20, 15) · (20, 18) = 20 · 20 + 15 ·18 = 670 —g 

As pointed out before, we can write the second vector as a column vector. Then, we 
are actua‘‘y ’u‘ti”‘ying a 1 × 2 ’atrix by a 2 × 1 ’atrix t“ ind a 1 × 1 ’atrix, as 
follows:

20 15
20

18
[ ]







  = [670]

To compute the shark mass totals at each month, we multiply the shark matrix S by 
the mass vector g = (20, 18), written as a column. We take the dot product of each 
row of S with g to compute a 6 × 1 matrix of monthly masses (kg) rounded to the 
nearest integer, as follows:

WTS BTS

month 0

month 1

month 2

month 3

month 4

month 5

20 00 15 00. .

66 57 5 27

4 69 4 84

3 08 6 00

0 99 10 83

0 02 27 43

. .

. .

. .

. .

. .





































mass

20

18

WTS

BTS

 = 

20 00 20 15 00 18

6 57 20 5 27 18

4 69 20 4 84 18

3 08 20 6 0

. .

. .

. .

. .

⋅ + ⋅
⋅ + ⋅
⋅ + ⋅
⋅ + 00 18

0 99 20 10 83 18

0 02 20 27 43 18

⋅
⋅ + ⋅
⋅ + ⋅



























. .

. .

 = 

mass

month 0

month 1

mo

670

228

181

170

215

494



























nnth 2

month 3

month 4

month 5

As we ’“ve fr“’ ‘eft t“ right “n a r“w “f the irst ’atrix, we g“ d“wn “n the sec“nd, 
multiplying corresponding elements and then adding the results. Consequently, the 
nu’ber “f c“‘u’ns in the irst ’atrix ’ust equa‘ the nu’ber “f r“ws in the c“‘u’n 
vect“r. The resu‘ting vect“r has the sa’e nu’ber “f r“ws as the irst ’atrix and the 
same number of columns as the second. In this example, S has size 6 × 2 while g has 
size 2 × 1, and the result is a 6 × 1 matrix. 
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Quick Review Question 7

a.  For the vector v = (5, 0, -1), written as a column vector, and the matrix A = 

1 3 9

0 5 6









 , calculate Av.

b.  For a 5 × 8 matrix B, give the size of a vector w for which we can calculate 
Bw.

c.  Give the resulting size of Bw.

Suppose scientists observed that 25% of the WTS have wounds, while none of the 
BTS d“. Such w“unds c“u‘d c“ntribute t“ an ani’a‘ s decreased hunting abi‘ity. In 
calculating the total number of wounded sharks, we need to consider only the WTS. 
Again, the computation can be accomplished with a dot product. At the start of the 
simulation, we have the following computation:

20 00 15 00
0 25

0 00
. .

.

.
[ ]







  = [5.00]

Zer“ in the sec“nd r“w e‘i’inated the effect “f the nu’ber “f BTS. 
Additi“na‘‘y, su””“se scientists n“ted that 30% “f the WTS and 20% “f the BTS 

have lesions. The total number of sharks with lesions at a particular month is the dot 
product of a vector of the numbers of sharks and a column vector with these percent-
ages. F“r exa’”‘e, as the f“‘‘“wing c“’”utati“n sh“ws, 9 shar—s have ‘esi“ns in 
month 0:

20 00 15 00
0 30

0 20
. .

.

.
[ ]







  = [9.00]

Certainly, we can take the shark-numbers matrix, S, and multiply by any 2 × 1 

attribute vector, such as 
20

18









 ,
0 25

0 00

.

.









 , or 

0 30

0 20

.

.









. However, we can perform all these 

calculations together. We form a 2 × 3 attribute matrix, A = 
20 0 25 0 30

18 0 00 0 20

. .

. .









 , and 

we d“t each r“w “f the irst ’atrix (S) by each column of a second matrix (attribute 
matrix, A) to get a resulting totals matrix (T) containing the totals for shark mass, 
wounded sharks, and sharks with lesions by month. There are six months, thus six 
r“ws, “ne f“r each ’“nth, in the resu‘ting t“ta‘s ’atrix. Because there are three at-
tributes to total, the totals matrix has three columns, or three totals, for each month. 
Six r“ws in the irst ’atrix a‘“ng with three c“‘u’ns in the sec“nd yie‘d a 6 × 3 t“-
tals matrix, as follows:

SA = 

WTS BTS

month 0

month 1

month 2

month 3

month 4

month 5

20 00 15 00. .

66 57 5 27

4 69 4 84

3 08 6 00

0 99 10 83

0 02 27 43

. .

. .

. .

. .

. .





































mass % wounded % lesions

WTS

B

20 0 25 0 30

18 0 00 0 20

. .

. . TTS
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= T = 

mass (kg) wounded #lesioned

month 0

month 1

month 2

month 3

mont

#

hh 4

month 5

670 5 00 9 00

228 1 64 3 03

181 1 17 2 38

170 0 77 2 12

215

. .

. .

. .

. .

00 25 2 46

494 0 005 5 49

. .

. .



























Usually we write the matrix product without row and column headings, as follows:

SA = 

20 00 15 00

6 57 5 27

4 69 4 84

3 08 6 00

0 99 10 83

0 02 27 43

. .

. .

. .

. .

. .

. .





































20 0 25 0 30

18 0 00 0 20

. .

. .
 = 

679 5 00 9 00

228 1 64 3 03

181 1 17 2 38

170 0 77 2 12

215 0 25 2 46

494

. .

. .

. .

. .

. .

00 005 5 49. .



























 = T

In the totals matrix, T, the third-r“w, irst-c“‘u’n e‘e’ent (t31 = 181) indicates 
that at ’“nth 2 “f the si’u‘ati“n, the t“ta‘ ’ass “f WTS and BTS in the area is 181 
kg. The rounded second-row, second-column element (t22 = 1.64, rounded to 2) indi-
cates that in month 1, two of the sharks have wounds. The rounded sixth-row, third-
column element (t63 = 5.49, r“unded t“ 5) sh“ws that ive “f the shar—s have ‘esi“ns 
in ’“nth 5. F“r the d“t ”r“ducts t“ be ”“ssib‘e, the nu’ber “f c“‘u’ns in the irst 
matrix (here S) and the number of rows in the second (here A) have to be identical; 
here both are 2.

Quick Review Question 8

Consider the following matrices: 

A = 
8 5 3 4

5 1 0 1

−
−









 ,  B = 

2 6

7 1

4 3

9 2

−

− −



















,  C = 

6 5

1 3

2 8

−
−

















,  I2 = 
1 0

0 1









 ,  and

I3 = 

1 0 0

0 1 0

0 0 1

















Deinition Let A = [aij]m×q be an m × q matrix and B = [bij]q×n a q × n matrix. 
The matrix product of A and B is an m × n matrix AB, or A · 
B = C = [cij]m×n, where cij is the dot product of the ith row of A and 
the jth column of B.
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Evaluate each of the following:
a.  AB

b.  BA

c.  CI2

d.  I3C

Square Matrices

Each of I2 and I3 in Parts c and d of the last Quick Review Question is a square ma-
trix, having the same number of rows as columns. Moreover, each has 1s along its 
diagonal, the line of elements from the top left to the bottom right. A number of 
examples in biology involve square matrices. For example, the hypothetical data in 
Tab‘e 13.2.2 ”resents the distributi“n “f ABO b‘““d ty”es f“r ’“thers and newb“rns 
(multiple births omitted) in a county over a year. The corresponding matrix is as 
follows:

M =



















1068

273

21

2059

53 68 516

37 88 601

60 58 0

491 189 0

Acc“rding t“ the datu’ in the sec“nd r“w, irst c“‘u’n, “n‘y 37 ’“thers with 
ty”e B b‘““d gave birth t“ a chi‘d with ty”e A b‘““d in that c“unty during the year “f 
the study. The diagonal values, which are in boldface, indicate the numbers of 
mother-newborn pairs that share the same blood type. For instance, 1068 type A 
mothers gave birth to type A children in the county that year.

As another example involving a square matrix, Table 13.2.3 presents similarity 
’easures (s”eciica‘‘y, Euc‘idean distances) “f the 18S rRNA sequences “f ”airs “f 
animals, where smaller numbers indicate closer relationships. Thus, with a Euclid-

Deinitions An n × n matrix is called a square matrix. In an n × n square 
matrix M, the diagonal is the set of elements {m11, m22, . . . , mnn}.

Table 13.2.2 
Hy”“thetica‘ Data f“r the Distributi“n “f ABO B‘““d Ty”es “f M“thers and 
Newb“rns (Mu‘ti”‘e Births O’itted) in a C“unty Over a Year. (Si’i‘ar t“ Tab‘e 
1 in B“ttini et a‘. 2001)

Mother\Newborn A B AB O

A 1068 53 68 516
B 37 273 88 601
AB 60 58 21 0
O 491 189 0 2059
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ean distance of 0.028, the rRNA sequences of a human and a rabbit are more closely 
re‘ated than that “f a hu’an and a fr“g (distance 0.350). Because the distance fr“’ 
animal A’s rRNA sequence to animal B’s sequence is the same as the distance from 
B to A, the table and the corresponding matrix, which follows, are symmetric around 
the diagonal:

M =

0 0 316 0 336

0 316 0 0 130 0 102

0 130 0

0 336 0 1

. .

. . .

.

. .

0.350

0.350 0.028

002 00.028



















Thus, as the boldface emphasizes, the distance in row 3, column 4, namely, 0.028, is 
the same as the number in row 4, column 3. In general, elements mij = mji. For sym-
metry, the values on the diagonal do not have to be zero as they are in this example.

Matrices and Systems of Equations

The section “Dot Product” indicates that a Hawaiian green sea turtle novice breeder 
‘ays an average “f 280 eggs ”er year, whi‘e a ’ature breeder “n‘y ‘ays 70. We c“n-
sidered a s”eciic nu’ber “f turt‘es in each categ“ry, 291 and 9483, res”ective‘y, and 
calculated the total yearly egg production as the following dot product:

e · b = (280, 70) · (291, 9483)

Instead of specifying the number of turtles in each category, let n be the number of 
novice breeders and m the number of mature breeders with b = (n, m). In general, the 
average annual egg production, a, is computed as follows:

e · b = (280, 70) · (n, m)

 = 280n + 70m = a

Thus, the dot product translates into one side of a linear equation. 

Deinition An n × n square matrix M is symmetric if mij = mji for all i and j. 

Table 13.2.3 
Si’i‘arity Measures (S”eciica‘‘y, Euc‘idean Distances) “f the 18S rRNA 
Sequences “f Pairs “f Ani’a‘s (L“c—hart et a‘. 1994, Tab‘e 3)

Frog Bird Human Rabbit

Frog 0 0.316 0.350 0.336
Bird 0.316 0 0.130 0.102
Human 0.350 0.130 0 0.028
Rabbit 0.336 0.102 0.028 0
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The following are examples of linear equations:

6x = 1

5x + 7y = 3

-2x + πy + 3 z = 9

1/2x1 + 33.2x2 + 15x3 + 13x4 = 33/4

The equations derive their name from the fact that when they have only one, two, or 
three variab‘es, as in the irst three exa’”‘es, their gra”hs are straight ‘ines. The gen-
eral linear equation is

a1x1 + a2x2 + ∙ ∙ ∙ + anxn = c

where ai and c are numbers for i = 1, 2, . . . , n.
While we can employ a dot product in representing one linear equation, we can 

use matrix multiplication for a system of linear equations. Returning to the example 
inv“‘ving whiteti” shar—s (WTS) and b‘ac—ti” shar—s (BTS) fr“’ the secti“n Ma-
trix Multiplication,” suppose the number of each kind of shark by month is as in 
Table 13.2.1. That section represented the data in the following matrix, with the 
nu’ber “f WTS in the irst c“‘u’n and the nu’ber “f BTS in the sec“nd:

S = 

20 00 15 00

6 57 5 27

4 69 4 84

3 08 6 00

0 99 10 83

0 02 27 43

. .

. .

. .

. .

. .

. .



























Let x be the percentage of whitetip sharks with lesions, y be the percentage of black-
tip sharks with lesions, and h = (x, y). Suppose the total number of sharks with le-
si“ns fr“’ ’“nth 0 thr“ugh 5 is 9.00, 3.04, 2.38, 2.12, 2.46, and 5.49, res”ective‘y, 
with vector representation v = (9.00, 3.04, 2.38, 2.12, 2.46, 5.49). Thus, we have the 
following linear equation for the total number of sharks with lesions in month 0:

20.00x + 15.00y = 9.00

which we can write as the following dot product:

(20.00, 15.00) · (x, y) = 9.00

or

[20.00, 15.00] · 
x

y









 = [9.00]

Quick Review Question 9

Use the preceding shark data for month 1.
a.  Write the linear equation.
b.  Write the corresponding equation using a dot product.
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Instead of writing each equation separately, we can employ matrix multiplication 
to system of six equations, as follows:

20 00 15 00

6 57 5 27

4 69 4 84

3 08 6 00

0 99 10 83

0 02 27 43

. .

. .

. .

. .

. .

. .



























x

y









  = 

9 00

3 04

2 38

2 12

2 46

5 49

.

.

.

.

.

.



























or

Sh = v

As we see in other modules, besides providing a useful abbreviation for systems of 
equati“ns, ’atrices can si’”‘ify the ”r“cess “f inding s“‘uti“ns.

Quick Review Question 10

Express the following system of equations using a matrix-vector notation:

2 7

6 5

x y

x

− =
=





Exercises

Given the sca‘ars a = 7 and b = 3 and the vect“rs u = (3, 4, 8, 0), v = ( 9, 4, 21, 2), 
y = (8, 8, 1, 2), and x = (7, 17, 6), where ”“ssib‘e, c“’”ute the va‘ues “f Exercises 
1 20. Chec— y“ur w“r— with a c“’”utati“na‘ t““‘.

 1. au  2. bv  3. au + bv  4. u + v
 5. v + u  6. (u + v) + y  7. u + (v + y)  8. u + x
 9. (a + b)y 10. ay + by 11. 0x 12. u · v
13. y · (2v) 14. 2(y · v) 15. (2y) · v 16. x · y
17. v – y 18. a(u + y) 19. au + ay 20. (0, 0, 0) · x

C“’”ute, if ”“ssib‘e, the d“t ”r“ducts in Exercises 21 23. Chec— y“ur w“r— with a 
computational tool.

21. ( , )5 7
1

4
⋅

−







  22. ( , , )6 2 3

1

1
⋅








  23. ( , , )7 7 1

3

3

1

− ⋅
















24.  Su””“se the f“‘‘“wing ite’s are f“r sa‘e “ne wee— by a scientiic su””‘y 
h“use at the indicated ”rices: a ”articu‘ar bacteria‘ cu‘ture, $17; case “f ”i-
”ettes, $310; case “f Petri dishes, $190; case “f bea—ers, $40.

 a.  Write these prices in a vector v.
 b.  Suppose there is a 25%-off sale. What scalar is multiplied by v to give 

the sale prices?
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 c.  Perform this scalar multiplication.
 d.  Suppose 83 bacterial cultures, 18 cases of pipettes, 145 cases of Petri 

dishes, and 108 cases of beakers are sold during the sale. Write a dot prod-
uct of vectors to calculate the amount of money from the sale, and evalu-
late this dot product.

 e.  Suppose the next week the store sells 20 bacterial cultures, 3 cases of pi-
”ettes, 76 cases “f Petri dishes, and 37 cases “f bea—ers. Write the vect“r 
sum to indicate the number of each item sold during the 2-week period, 
and evalulate this addition.

Deter’ine the va‘ues “f the un—n“wns t“ ’a—e the vect“rs equa‘ in Exercises 25 27.

25.  (3, 5, 7) = (a, b, 7) 26. (–6, 2, 1) = (–6, 2, 1, a) 27. 2(6, 1, a) = b(3, c, 4)

28. Consider the matrix A a
ij

= =
−

−








[ ]

6 3 2

0 8 4

a.  What is A’s size? b.  Find a21, a12, a31, and a13.

Using A B C=
−

−








 =

−
−









 =

−
−











6 3 2

0 8 4

1 2 3

7 2 1

0 4 1

3 1 8
, , and , calculate the 

’atrices in Exercises 29 40. Chec— y“ur w“r— with a c“’”utati“na‘ t““‘.

29. 3A 30. 3B 31. 3A + 3B 32. A + B
33. 3(A + B) (Compare to Exercise 31.) 34. B + A (Compare to Exercise 32.)
35. –A 36. B + C 37. (A + B) + C (Use Exercise 32.)
38. A + (B + C) (Use Exercise 36; c“’”are t“ Exercise 37.)
39. 2(3A) (Use Exercise 29.) 40. 6A (C“’”are t“ Exercise 39.)

If ”“ssib‘e, c“’”ute the ’atrices in Exercises 41 43 using A = [3 5] and 

B =
−

















1 1

3 4

1 4

.  Check your work with a computational tool.

41. 2A 42. A + A 43. A + B
44. How many elements are in matrix A if it is of each given size?
 a.  20 × 5 b.  m × n c.  5 × 5 d.  n × n
45. Consider the square matrix

A a
ij

=
















= ×

1 5 3

5 4 6

3 6 8

3 3
[ ] .

 a.  Find a21 and a12. b.  Why is A symmetric?
 c.  Give the diagonal elements of A.
 d.  Suppose B is a symmetric matrix. Fill in the blanks.

B =

− − − −
− −

− − −
−



















7

2 3

1 4 4

6 5 0 3
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46. A lab is using spectrophotometer to indicate the number of bacteria in a 
broth. From a reading, they determine absorbance, a value between 0.0 and 
2.0. As the number of bacteria increases, so does the absorbance. Each team 
takes measurements at 10-min intervals. Suppose following measurements 
are made for E. coli at 15 °C fr“’ 70 ’in t“ 130 ’in: 0.041, 0.055, 0.064, 
0.062, 0.089, 0.097, 0.103. The f“‘‘“wing ’easure’ents are f“r E. coli at  
21 °C: 0.055, 0.070, 0.077, 0.095, 0.105, 0.115, 0.124. P‘ace the va‘ues in a 
matrix, and indicate the meanings of the rows and columns (Johnson and 
Case 2009).

47. Suppose a certain animal has a maximum life span of 3 years. This example 
predicts populations in each age category: year 1 (0–1 year), year 2 (1–2 
years), and year 3 (2–3 years). We consider only females. A year 1 female 
animal has no offspring; a year 2 female has 3 daughters on the average; and 
a year 3 female has a mean of 2 daughters. A year 1 animal has a 0.3 proba-
bility of living to year 2. A year 2 animal has a 0.4 probability of living to 
year 3. Suppose at one instance, the number of year 1, 2, and 3 females are 
2030, 652, and 287, res”ective‘y.

 a.  Write a row vector of three elements giving the mean number of female 
offspring in each age category.

 b.  Write a row vector triple giving the probabilities that in the next year a 
year 1 animal lives to years 2, 3, and 4.

 c.  Write a row vector triple giving the probabilities that in the next year a 
year 2 animal lives to years 2, 3, and 4.

 d.  Place the row vectors from Parts a–c in a matrix, L.
 e.  Write a column vector, c, of the female counts in each year.
 f.  Using Parts d and e, estimate the female numbers in each age category a 

year later.
 g.  Using Parts d and f, estimate the female numbers in each age category 2 

years after the initial counts.
 h.  Using Part d, calculate L2, or LL.
 i.  Using Parts h and e, calculate L2c. 
 j.  How do your answers from Parts g and i compare?

48. Consider the matrix

T =
















0 50 20

100 150 120

90 170 200

.

 For any 3 × 3 matrix M with elements from the set of nonnegative integers, 
apply the function f t“ each e‘e’ent, deined as

f m
m t

mij

ij ij

ij

( )
,

,
=

<0

1

if corresponding threshold value, 

if ≥≥


 corresponding threshold vlaue, t

ij
.

 T is called a threshold matrix, and each tij is a threshold value. An element 
of the matrix M is mapped to 1 if and only if it is at least as big as the corre-
sponding threshold value. Fill in the blanks for the image of the elements of 
the following matrix M:
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M=
















→
− −
− −
− − −

















110 112 100

100 70 75

90 80 90

1

0 .

49. A dither matrix can be used to enhance a digital image, such as a medical 
image from a CT (computerized tomography) scan of the body. A computer 
can analyze the degree of grayness of each dot, or pixel, of one such black-
and-white image and assign it a value for intensity, say from 0 (white) to 
255 (black). One method of enhancing the picture is dithering. Each digi-
tized pixel is compared with an individual threshold value to determine if a 
dot will or will not be placed at that point on the reconstructed picture. 
There are no gray dots in the reconstructed picture; a black dot is either 
present or not present at each position, depending on the presence of a 1 or 
0 in the c“rres”“nding ”“siti“n “f the ina‘ ’atrix. T“ acc“’”‘ish this ”r“-
cedure a threshold matrix, called a dither matrix, is needed. Much experi-
’entati“n has been d“ne in dithering t“ ind the best thresh“‘d ’atrix t“ 
help produce a clear, apparently continuous image using black dots on a 
white background. The construction of one dither matrix is presented in this 
problem. Let

D V
2 2

0 2

3 1

1 1

1 1
=









 =









and .

 T“ deve‘“” the dither ’atrix, ind the f“‘‘“wing ’atrices:
 a.  4D2 b.  4D2 + 2V2 c.  4D2 + 3V2 d.  4D2 + V2

 e.  Construct the 4 × 4 matrices D4 and V4 with the 2 × 2 matrices from the 
previous parts placed in the indicated positions.

D
D D V

D V D V
V

V V

V V
4

2 2 2

2 2 2 2

4

2 2

2 2

4 4 2

4 3 4
=

+
+ +









 =









,

 f.  Calculate the dither matrix 16D4 + 8V4, which is the threshold matrix that 
will be used in reconstructing a picture below.

 g.  Consider the 4 × 4 matrix M containing pixel intensities transmitted from 
space.

M =



















100 145 100 178

111 60 250 102

40 200 20 73

254 198 223 204

..

   With function f deined as in Exercise 48, ind the i’age “f M after apply-
ing f to every point.

 h.  Draw the picture in a 4 × 4 array. Note: If the picture were larger, we 
could use the same dither matrix by applying that threshold matrix in a 
checkerboard fashion over the entire picture.
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Let A B C=








 =

−








 =

− −









1 2

3 4

6 2 0

0 1 4

2 1 5

7 1 0
, , .  Where possible, perform 

the indicated “”erati“n “r answer the questi“n in each “f the Exercises 50 63. 
Check your work with a computational tool.

50. AB 51. AC 52. AB + AC (Use Exercises 50 and 51.)
53. B + C 54. A(B + C) (Use Exercise 53. Compare to Exercise 52.)
55. BA 56. BC 57. 3(AC) (Use Exercise 51.)
58. 3A 59. (3A)C (Use Exercise 58. C“’”are t“ Exercise 57.)
60. A2 = A · A 61. B2 62. 02×2 · A, where 02×2 is a 2 × 2 matrix of all zeros.
63. B · 03×3, where 03×3 is a 3 × 3 matrix of all zeros.

F“r Exercises 64 67, ”erf“r’ the indicated ’atrix ’u‘ti”‘icati“n. Chec— y“ur w“r— 
with a computational tool.

64. 
0 1 0 2 0 9

1 3 0 5 0 7

2 2 3 9

0 6 0 4

1 1 2 8

. . .

. . .

. .

. .

. .



























 65. 

1 3

8 5

0 7

2 2

6 5 5

5 1 0

−

−



















−
−











66. 
9 0

3 2

6 10 3 8

3 11 20 7











−
−









  67. 

0 4 3 2 4 9 1 1

8 4 2 6 3 6 8 8

2 1 0

3 0 9

7 5 5

3 9 8

. . . .

. . . .











−
−



















Using the matrix A = 
1 2

3 4









 , where possible, perform the indicated operation or 

answer the questi“n in each “f the Exercises 68 74.

68. Find the matrix H such that HA =
⋅ ⋅
⋅ ⋅











5 1 5 2

7 3 7 4
.

69. Find the matrix J such that AJ =
⋅ ⋅
⋅ ⋅











1 4 2 9

3 4 4 9
.

70. [6 1]A 71. A
6

1









  72. A

x

y









  73. 

x

y
A









  74. A[6 1]

75. Write the following system of equations as AX = B using a matrix and 
vectors:

4x1 + 5x2 = –3

7x1 + 9x2 = 4
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Projects

To complete the following projects, use a computational tool. 

1. The Network Dynamics and Science Simulation Laboratory (NDSSL) at Vir-
ginia Technical University generated from real data a synthetic dataset for the 
activities of the population of Portland, Ore. Various NDSSL datasets are 
avai‘ab‘e at htt”://ndss‘.vbi.vt.edu/“”endata/d“wn‘“ad.”h” (NDSSL 2009a, b, 
c, d). Scientists use such data “for simulating the spread of epidemics at the 
level of individuals in a large urban region, taking into account realistic con-
tact ”atterns and disease trans’issi“n characteristics  (VBI 2008). Fi‘es in the 
Details c“‘u’n describe the datasets; i‘es in the Samples column display 
s’a‘‘ exa’”‘e i‘es; and i‘es in the Download column are compressed large 
datasets. O’itting the header ‘ine in the i‘e, cut and ”aste a Data Set Re‘ease 
1 “r 2 sa’”‘e activities i‘e int“ a text i‘e. F“r this dataset deve‘“” c“de t“ ac-
complish the following tasks, which can be used for epidemiological studies:

 a.  Form the vector, personIdLst, of person IDs.
 b.  Form the vector, locationIDLst, of location IDs.
 c.  Generate connection matrix, connMat, with people indices representing 

row labels and location indices representing column labels. The ij element 
of connMat is 1 if the ith person visits the jth location; otherwise, the ele-
ment is 0.

 d.  Write a function to return the number of locations a person visits.
 e.  Write a function to return the number of people that visit a location. 
 f.  Generate a people-to-people connection matrix, connPeopleMat, with 

people indices representing row labels and column labels. The ij element 
of connPeopleMat is 1 if the ith and the jth people visit the same location 
in a day but not necessarily at the same time; otherwise, the element is 0.

 g.  Using connPeopleMat from Part f, write a function to return the degree of 
a person ID, that is, to return the number of people that go to locations 
visited by the individual.

 h.  Calculate the square of the matrix connPeopleMat from Part f. Develop a 
functi“n that returns true if tw“ ”e“”‘e, A and B, have direct “r indirect 
c“ntact, that is if A and B were at the sa’e ‘“cati“n in a day “r if there is 
a ”ers“n C such that A and C were at the sa’e ‘“cati“n and C and B were 
at the same location in a day. As before, ignore times people visit loca-
tions. Explain why the square of connPeopleMat and the sum of connPeo-

pleMat and its square are useful for this task. 
2. Using the NDSSL site listed in Project 1, download and uncompress a Data 

Set Re‘ease 1 “r 2 activities i‘e. Generate 1000 rand“’ unique ”ers“n IDs. 
Fr“’ the dataset, create a data i‘e with the activities ‘ines f“r “n‘y these in-
dividuals. Repeat Project 1 with this new dataset.

3. Using the NDSSL site listed in Project 1, download and uncompress a Data 
Set Re‘ease 1 “r 2 activities i‘e. Re”eat Pr“–ect 1 using high-”erf“r’ance 
computing.

Pr“–ects 4 7 use data fr“’ si’u‘ati“ns with Cancer Chaste. Chaste (Cancer, 

Heart and Soft Tissue Envir“n’ent) is a genera‘ ”ur”“se si’u‘ati“n ”ac—age ai’ed 
at multi-scale, computationally demanding problems arising in biology and physiol-
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“gy. Current functi“na‘ity inc‘udes tissue and ce‘‘ ‘eve‘ e‘ectr“”hysi“‘“gy, discrete 
tissue ’“de‘‘ing, and s“ft tissue ’“de‘‘ing. The ”ac—age is being deve‘“”ed by a 
tea’ ’ain‘y based in the C“’”utati“na‘ Bi“‘“gy Gr“u” at Oxf“rd University C“’-

”uting Lab“rat“ry, and deve‘“”’ent draws “n ex”ertise fr“’ s“ftware engineering, 
high-”erf“r’ance c“’”uting, ’athe’atica‘ ’“de‘ing and scientiic c“’”uting. 
Whi‘e Chaste is a generic extensib‘e ‘ibrary, s“ftware deve‘“”’ent t“ date has f“-

cused on two distinct areas: continuum modelling of cardiac electrophysiology 

(Cardiac Chaste); and discrete modeling of cell populations (Systems Biology 

Chaste), with s”eciic a””‘icati“n t“ tissue h“’e“stasis and carcin“genesis (Cancer 
Chaste)  (Chaste 2012). The initia‘ f“cus “f Cancer Chaste was “n c“‘“recta‘ can-

cer, which it is be‘ieved “riginates in tiny crypts of Lieberkühn that descend from 

the c“‘“n s e”ithe‘iu’ int“ the under‘ying c“nnective tissue (Cancer Chaste 2012).
At Oxf“rd, using Cancer Chaste, Orne‘‘a C“’inetti and Ange‘a Shilet, in c“nsu‘-

tati“n with Ge“rge Shilet, deve‘“”ed si’u‘ati“ns t“ see the i’”act “f differential 

cell adhesion, “r variati“ns in the ‘eve‘ “f adhesi“n between ce‘‘s “f vari“us ty”es, in 
the crypt. The categories of cells are stem (generati“n 0); transit categories TA1 

(generati“n 1), TA2 (generation 2), TA3 (generation 3), and TA4 (generati“n 4); 
and differentiated (generati“n 5). Ste’ ce‘‘s are anch“red at the b“tt“’ “f the cry”t. 
Exce”t f“r differentiated ce‘‘s, ce‘‘s “f a‘‘ “ther categ“ries can divide. Using Cancer 
Chaste, the researchers  w“r— atte’”ts t“ re”r“duce the w“r— “f W“ng et a‘. (2010) 
using a cellular Potts model. Files ce‘‘_tra–ect“ry_i‘e.txt, ce‘‘_ty”es_i‘e.txt, and 
ce‘‘_ve‘_i‘e.txt generated by s“’e “f the Oxf“rd si’u‘ati“ns are avai‘ab‘e f“r 
d“wn‘“ad fr“’ the text s website (C“’inetti et a‘. 2010).

4. (See the ita‘icized descri”ti“n i’’ediate‘y bef“re Pr“–ect 4.) The i‘e cell_

tra–ect“ry_i‘e.txt, which is available for download from the text’s website, 
has simulated data about the location of a cell in the crypt each simulation 
h“ur unti‘ the ce‘‘ ‘eaves the cry”t. Each ‘ine “f the i‘e c“ntains the si’u‘a-
tion time, generation, and x- and y-coordinates of the cell’s location. Plot the 
trajectory of the cell using a different color for each generation. Have a leg-
end indicating the generation. See Figure 4b of Wong et al. (2010) for a simi-
‘ar igure. Discuss the resu‘ts.

5. (See the ita‘icized descri”ti“n i’’ediate‘y bef“re Pr“–ect 4.) The i‘e cell_

ty”es_i‘e.txt, which is available for download from the text’s website, has 
simulated data for 20 runs (experiments) of the simulation about the total 
nu’ber “f each ce‘‘ ty”e every ha‘f h“ur f“r ti’es 70 t“ 170 si’u‘ated h“urs. 
Each ‘ine “f the i‘e c“ntains the si’u‘ati“n ti’e and the nu’ber “f ce‘‘s in 
each category (stem, TA1, TA2, TA3, TA4, differentiated). Generate a 
stacked bar chart of the average number of cells in each category by time. 
See Figure 7 “f W“ng et a‘. (2010) f“r a si’i‘ar igure. Are there any an“’a-
‘ies in the igure? Discuss the resu‘ts.

6. (See the ita‘icized descri”ti“n i’’ediate‘y bef“re Pr“–ect 4.) The i‘e cell_

ve‘_i‘e.txt, which is available for download from the text’s website, has sim-
ulated data about the velocities of cells in the crypt one simulation hour be-
fore the end of the simulation and at the end of the simulation for 20 runs 
(ex”eri’ents) “f the si’u‘ati“n. Each ‘ine “f the i‘e c“ntains the si’u‘ati“n 
time, cell number, generation number, and x- and y-coordinates of the cell’s 
location. Averaging over the 20 datasets, generate a plot of the mean migra-
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tion velocities (change in y-coordinate over 1 h) of cells at different heights 
(y-coordinates) in the crypt. See Figure 5b, graph with triangles, of Wong et 
a‘. (2010) f“r a si’i‘ar igure. Discuss the resu‘ts.

7. (See the italicized description immediately before Project 4.) Scientists have 
found that cultured epithelial cells move collectively in sheets. For a simula-
tion of cells in the crypt, we can use spatial correlation of velocity, C(r), as 
a metric of the amount of coordinated movement of the cells. With r being 
the distance between two cell centroids, or centers of mass for the cells, for 
all pairs of cells at distance r from each other, we add the cosines of the an-
gles between their velocity vectors and divide by the number of such pairs. 
For cells i and j with average velocities over 1 h (change in position from one 

hour to the next), vi and vj, the cosine of the angle between vi and vj is 
v v

v v

i j

i j

⋅( )
, 

where |vi| is the length of vector vi. Because the c“s(0) = 1, its ’axi’u’, the 
fraction is largest when the angle is zero and the two velocity vectors point in 
the same direction, or the two cells are headed in the same direction. Thus, a 

large value for the spatial correlation of velocity, C(r) = 
1

N
r

i j

r r ri j v v

v v

i j

i j

⋅( )
∑

= −

,

, 

where Nr is the number of cell pairs with distance r, indicates a high correla-
tion of velocities of pairs of cells at distance r from each other (Haga et al. 
2005). 

The i‘e ce‘‘_ve‘_i‘e.txt, which is available for download from the text’s 
website, has simulated data about the velocities of cells in the crypt one sim-
ulation hour before the end of the simulation and at the end of the simulation 
f“r 20 runs (ex”eri’ents) “f the si’u‘ati“n. Each ‘ine “f the i‘e c“ntains the 
simulation time, cell number, generation number, and x- and y-coordinates of 
the cell’s location. Using only data for differentiated cells, produce a plot of 
the mean C(r) values along with standard error bars, or symmetric error 
bars that are two standard deviation units in length, and use intervals of 
length 1/6 for r. We c“nsider “n‘y differentiated ce‘‘s f“r tw“ reas“ns. Be-
cause differentiated cells do not divide, cell division does not affect their 
velocities as much as it does cells of other types. Moreover, differentiated 
cells compose the largest category of cells. See Figure 6b, graph with circles, 
“f W“ng et a‘. (2010) f“r a si’i‘ar igure.

Answers to Quick Review Questions

1. 6.00
2. a.  c = (35, 16, 240, 351), m = (18, 10, 103, 153)
 b.  t = (53, 26, 343, 504)
 c.  data totals by category
3. a.  1.1c
 b.  (39, 18, 264, 386)
4. a.  (0.23, 0.679)
 b.  (808988, 715774)
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 c.  p · s
 d.  672078 = 0.23 · 808988 + 0.679 · 715774
5. a.  15.00
 b.  s42

6. a. 
−









3 6 0

3 12 9

 b. 
0 5 9

1 9 9









  

 c.  cannot be done because C has size 2 × 2, not 2 × 3, the size of 2A + B

7. a.  Av = 
1 3 9
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  because

  (1)(5) + (3)(0) + (9)( 1) = 4
  (0)(5) + (5)(0) + (6)(–1) = –6
 b.  8 × 1
 c.  5 × 1

8. a. A B⋅ =
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8 5 3 4

5 1 0 1

2 6

7 1

4 3

9 2

99 26

12 29
  because

(8)(2) + (5)(7) + (3)(4) + ( 4)( 9) = 99

(8)(-6) + (5)(1) + (3)(3) + (–4)(–2) = –26

(-5)(2) + (1)(7) + (0)(4) + (1)( 9) = 12

( 5)( 6) + (1)(1) + (0)(3) + (1)( 2) = 29

 b.  B A⋅ =

−

− −
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4 3

9 2

8 5 3 4

5 1 0 1

46 4 6 14

51 36 21 227

17 23 12 13

62 47 27 34
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 c.  C
 d.  C
9. a.  6.57x + 5.27y = 3.04
 b.  (6.57, 5.27) · (x, y) = 3.04

10. 
2 1

6 0

7

5

−
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MODULE 13.3

Time after Time—Age- and Stage-Structured Models

Prerequisites: M“du‘e 13.1, C“’”utati“na‘ T““‘b“x T““‘s “f the Trade: 
Tut“ria‘ 7  “r A‘ternative Tut“ria‘ 7  (thr“ugh secti“n “n Eigenva‘ues and 
Eigenvect“rs ) and M“du‘e 13.2, Matrices f“r P“”u‘ati“n Studies Lin—ed f“r 
Life.” Additional high-performance computing materials related to this module are 

avai‘ab‘e “n the text s website.

Downloads

The text s website has the i‘e AgeStructured, containing the models in this module, 
available for download for various computational tools.

Introduction

The w“rst thing that can ha””en wi‘‘ ha””en is n“t energy de”‘eti“n, 
economic collapse, limited nuclear war, or conquest by a totalitarian 

government. As terrible as these catastrophes will be for us, they can be 

repaired within a few generations. The one process ongoing. . .that will 

take millions of years to correct, is the loss of genetic and species 

diversity by the destruction of natural habitats. This is the folly our 

descendants are least likely to forgive us.

E. O. Wi‘s“n (Bean 2005)

If you were sitting on a beach on one of the 12 islets of French Frigate Shoals in 
northwestern Hawaii admiring the April moon, you might be surprised to see a rather 
large body crawling deliberately up the sand. It is likely a female green sea turtle 
(Chelonia mydas) on her way to deposit her eggs. Although these turtles may nor-
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mally feed around other Hawaiian islands, they usually return to the beach where 
they hatched (natal beach) to nest. Ninety percent of green turtle nests in Hawaii are 
found on these islets. 

Nesting is an arduous process for this animal, and she may make the journey 
more than once this season. Though she may have several more clutches to lay, she 
digs a h“‘e with her fr“nt li””ers t“ a de”th “f ab“ut 2 ft, de”“sits her 100± eggs, 
covers the eggs, and returns to the water. She might return 2 weeks or so later to 
build another nest and deposit more eggs. Fortunately for her, she does this only 
every 3 years or so.

Undisturbed eggs deposited this night incubate below the surface for about 2 
months. After escaping from their leathery cases, 1-oz hatchlings work together to 
emerge from their sandy womb. All this occurs at night, when temperatures are 
lower and the turtles are less conspicuous. Once out of the nest, they sprint toward 
the bouncing glints of light on the ocean surface. Many do not make it, intercepted 
by birds, crabs, or other predators, which have learned that these hatching events 
”r“vide tasty ’ea‘s. Even if they ’a—e it t“ the water, n“ ’atter h“w ierce‘y they 
swi’, carniv“r“us ish ’ay eat the’. Then, as adu‘ts, turt‘es have tw“ ’ain ”reda-
t“rs shar—s and hu’an beings, the ‘atter being ’“re “f a threat.

Those that survive the beach dash and shallow waters swim out to sea, where they 
feed “n vari“us l“ating ”‘ants and ani’a‘s. As they bec“’e adu‘ts they uti‘ize ‘arge, 
shallow sea grass beds for much of their diet. Such a diet results in the development 
of body fat that is green, which gives this animal its name. Long lived, this animal 
may not become sexually mature for 20 years or more. Few from that original clutch 
of eggs, however, will make it to return to this beach for breeding and nesting.

Marine predators are not the only obstacles to survival and breeding success. Tur-
tles and their eggs are still consumed in many places in the world. Coastal develop-
ment and subsequent habitat destruction also devastate breeding and nesting. For 
example, in St. Croix various species of sea turtles nest primarily in the Jack, East 
End and Isaac Bays, and Buc— Is‘and, where there is n“ deve‘“”’ent and the beaches 
are relatively undisturbed. Information from satellites has proved invaluable in col-
lecting a wide variety of environmental data that help in protecting important, unique 
habitats, understanding environmental changes, and ensuring the survival of endan-
gered species. NASA with the CNES (Centre National d’Etudes Spatiales, the 
French space agency) and NOAA (the National Oceanic and Atmospheric Adminis-
tration) established Argos, a satellite-based system that helps to collect, process, and 
disseminate environmental data for various platforms (ARGOS 2013).

Pollution of various sorts may not only cause turtle mortality directly but also 
induce an ever-increasing incidence “f ibr“”a”i‘‘“’a. This disease resu‘ts in the 
development of large tumors that interfere with normal life activities of the animals, 
resulting in death. 

On Dece’ber 28, 1973, the Endangered S”ecies Act beca’e ‘aw in the United 
States. This act provides programs that promote the conservation of threatened and 
endangered plant and animal species and the habitats where they are found. Endan-
gered organisms are species that are in danger of extinction throughout all or over a 
sizeable portion of their range. Threatened species are those likely to become en-
dangered in the foreseeable future. Currently, there are almost 2000 threatened and 
endangered species worldwide found on the list maintained and published by the 
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Fish and Wildlife Service of the U.S. Department of Interior. Of the approximately 
1200 animals on the list are six of the seven species of sea turtles. Green sea turtles 
were added t“ the ‘ist in 1978. 

Many studies have been attempted to ascertain the status of green sea turtle popu-
lations worldwide. Various interventions, primarily aimed at protecting the nests and 
hatchlings, have been attempted. However, there is much we do not know about the 
biology and demography of these animals that need to be understood to make appro-
priate conservation efforts. Sea turtle life cycles are long and complex; because 
gr“wth st“”s at sexua‘ ’aturity, it has been dificu‘t t“ deter’ine the age “f turt‘es. 
Also, it has been virtually impossible to mark hatchlings so that we can identify them 
as adults. Detailed information regarding the population demography of turtles is 
vital if we are to establish the status of wild populations and to implement effective 
management procedures. Decisions and conservation efforts we make today may be 
crucia‘ t“ ”reventing their extincti“n. But, h“w can we ’a—e effective decisi“ns if we 
do not understand how various management alternatives affect turtle populations?

One approach to studying sea turtle populations is the use of mathematical mod-
e‘s, s”eciica‘‘y Les‘ie and Lef—“vitch ’atrix ”“”u‘ati“n ”r“–ecti“ns. The Les‘ie ’a-
trix ”r“–ecti“n, deve‘“”ed by P. H. Les‘ie in 1945, uses ’“rta‘ity and fecundity rates 
to develop population distributions. These distributions are founded on initial popu-
‘ati“n distributi“n “f age gr“u”s. Because the age “f adu‘t turt‘es is dificu‘t t“ deter-
mine, some researchers have used a Lefkovitch matrix, which divides the popula-
tions into stage classes. Some of the life stages are easily recognizable (eggs, 
hatch‘ings, nesting adu‘ts), but the –uveni‘e stages are ‘“ng ‘asting, and age is difi-
cu‘t t“ deter’ine. S“, size (‘ength “f cara”ace “r she‘‘) is used t“ deine stages. 

Resulting population projections have indicated that we may need to increase 
protective measures to juveniles and adults if we really want to increase the num-
bers “f sea turt‘es. Cr“wder et a‘. (1994) ”ub‘ished a stage-based ”“”u‘ati“n ’“de‘ 
for the loggerhead turtle (Caretta caretta) that projected the effects of the use of 
turt‘e-exc‘usi“n devices (TEDs) in traw‘ isheries. These devices a‘‘“w y“ung tur-
tles to escape the trawls that trap shrimp, and the model predicted that the required 
use of TEDs for offshore trawling would allow a gradual increase in Loggerheads 
by an “rder “f ’agnitude in ab“ut 70 years. Such regu‘ati“ns ’ay save th“usands 
“f turt‘es each year and he‘” t“ save sea turt‘e s”ecies fr“’ extincti“n (B–“rnda‘ et 
a‘. 2000; Cr“use et a‘. 1987; Cr“wder et a‘. 1994; Earthtrust 2009; F“rbes 1992; Zug 
2002).

The Problem

We can classify many animals by discrete ages to determine reproduction and mor-
tality. For example, suppose a certain bird has a maximum life span of 3 years. Dur-
ing the irst year, the ani’a‘ d“es n“t breed. On the average, a ty”ica‘ fe’a‘e “f this 
hypothetical species lays 10 eggs during the second year but only 8 during the third. 
Suppose 15% of the young birds live to the second year of life, while 50% of the 
birds from age 1 to 2 years live to their third year of life, age 2 to 3 years. Usually, 
we consider only the females in the population; and in this example, we assume that 
half the offspring are female.
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For such a situation, we are interested in the answers to several questions:

• Can we determine the projected population growth rate?
• In the case of declining populations, what is the predicted time of extinction?
• As time progresses, does the population reach a stable distribution?
• If so, what is the proportion of each age group in such a stable age distribution?
• How sensitive is the long-term population growth rate or predicted time of ex-

tinction to small changes in parameters?

Age-Structured Model

Figure 13.3.1 presents a state diagram for the problem with the states denoting ages 
(year 1, 2, or 3) of the bird. The information indicates that an age-structured model 
might be appropriate. In age-structured models we ignore the impact of other factors, 
such as population density and environmental conditions. We can use such models 
to answer questions about the rate of growth of the population and the proportion of 
each age group in a stable age distribution.

For the example in the previous section, three clear age classes emerge, one for 
each year. Thus, in formulating this deterministic model, we employ the following 
variables: xi = number of females of such a bird at the beginning of the breeding 
season in year i (age i – 1 to i) of life, where i = 1, 2, or 3. Thus, x1 is the number of 
eggs and y“ung birds in their irst year “f ‘ife. 

Time, t, of the study is measured in years immediately before breeding season, 
and we use the notation xi(t) to indicate the number of year i females at time t. For 
example, x2(5) represents the number of females during their second year, ages 1 to 
2 yr old, at the start of breeding season 5. Some of these survive to time t + 1 = 6 yr 
and progress to the next class, those females in their third year of life. At that time (at 
time 6 yr of the study), the notation for number of year 3 females is x3(6).

To establish equations, we use these data to project the number of female birds in 
each category for the following year. The number of eggs/chicks depends on the 
number of adult females, x2 and x3. Because “n the average a year 2 (ages 1 t“ 2 years 
old) mother has 5 female offspring and a year 3 (ages 2 to 3 years old) mother has 4 
female offspring, the number of year 1 (ages 0 to 1 year old) female eggs/chicks at 
time t + 1 is as follows:

 5x2(t) + 4x3(t) = x1(t + 1) (1)

year 1 year 3year 2

F
2  

= 5
F

3 
= 4

P
1 
= 0.15 P

2 
= 0.50

Figure 13.3.1 State diagram for problem
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However, at time t + 1, the number of year 2 (ages 1 to 2 years old) females, 
x2(t + 1), depends only on the number of year 1 (ages 0 to 1 year old) females this 
year, x1(t), that live. The latter survives with a probability of P1 = 15% = 0.15, so that 
we estimate next year’s number of year 2 females to be as follows:

 0.15x1(t) = x2(t + 1) (2)

Similarly, to estimate the number of year 3 (ages 2 to 3 years old) females next year, 
we need to know only the number of year 2 (ages 1 to 2 years old) females, x2(t), and 
their survival rate (here, P2 = 50% = 0.50). Thus, the number of year 2 females next 
year will be approximately the following:

 0.50x2(t) = x3(t + 1) (3)

Placing Equations 1, 2, and 3 together, we have the following system:

5 4 1

0 15 1

0 50 1

2 3 1

1 2

2 3

x t x t x t

x t x t

x t x t

( ) ( ) ( )

. ( ) ( )

. ( ) ( )

+ = +

= +

= +









This system of equations translates into the following matrix-vector form:

0 5 4

0 15 0 0

0 0 50 0

1
1

2

3

1

.

.

( )

( )

( )

( )































=
+x t

x t

x t

x t

xx t

x t

2

3

1

1

( )

( )

+
+

















or 

Lx(t) = x(t + 1), where

 L = 

0 5 4

0 15 0 0

0 0 50 0

.

.
















, x(t) = 

x t

x t

x t

1

2

3

( )

( )

( )
















, and x(t + 1) 

 = 

x t

x t

x t

1

2

3

1

1

1

( )

( )

( )

+
+
+
















. 

Suppose an initial population distribution has 3000 female eggs/chicks, 440 year 

2, and 350 year 3 female birds, so that x(0) = 

3000

440

350

















 is the initial age-distribution 

vector. The next year, because of births, aging, and deaths, the number of females in 
each age class changes. The following vector gives the calculation for the estimated 
population at time t = 1 year:
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x(1) = Lx(0) = 

0 5 4

0 15 0 0

0 0 50 0

.

.

















3000

440

350

















 = 

3600

450

220

















Thus, at t = 1 year, we project a population of more eggs/chicks but fewer year 3 
female adults than initially present. 

Quick Review Question 1

Suppose an insect has maximum life expectancy of 2 months. On the average, this 
ani’a‘ has 10 “ffs”ring in the irst ’“nth and 300 in the sec“nd. The surviva‘ rate 
fr“’ the irst t“ the sec“nd ’“nth “f ‘ife is “n‘y 1%. Assu’e ha‘f the “ffs”ring are 
fe’a‘e. Su””“se initia‘‘y a regi“n has 2 fe’a‘es in their irst ’“nth “f ‘ife and 1 in 
her second.

a.  Deine the variab‘es “f the ’“de‘.
b.  Construct a system of equations for the model.
c.  Give the matrix representation for the model.
d.  Using matrix multiplication, determine the number of females for each age at 

time t = 1 month expressed to two decimal places.
e.  Determine the number of females for each age at time t = 2 months.

Leslie Matrices

L is an example of a Leslie matrix, which is a particular type of projection matrix, 
or transition matrix. Such a square ’atrix has a r“w f“r each “f a inite nu’ber (n) 
of equal-length age classes. Suppose Fi is the average reproduction, or fecundity, 
rate of class i; and Pi is the survival rate of those from class i to class (i + 1). With 
xi(t) being the number of females in class i at time t, x1(t) is the number of females 
born between time t – 1 and time t and living at time t. The model has the following 
system of equations:

 

F x t F x t F x t F x t x t

P x t x t

n n n n1 1 2 2 1 1 1

1 1 2

1( ) ( ) ( ) ( ) ( )

( ) (

+ + + + = +
= +

− −⋯

11

1

1

2 2 3

1 1

)

( ) ( )

( ) ( )

P x t x t

P x t x t
n n n

= +

= +












 − −

⋮

 (4)

where 

Fi is the average reproduction rate (fecundity rate) of class i, 
Pi is the survival rate of from class i to class (i + 1), and 
xi(t) is the number of females in class i at time t. 

Therefore, the corresponding n × n Leslie matrix is as follows:
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L = 

F F F F F

P

P

P

n n

n

1 2 3 1

1

2

1

0 0 0 0

0 0 0 0

0 0 0 0

⋯

⋯

⋯

⋮ ⋮ ⋮ ⋮ ⋮

⋯

−

−























Fi and Pi are n“nnegative nu’bers, which a””ear a‘“ng the irst r“w and the subdi-
agonal, respectively; all other entries are zero.

With x(t) being the population female distribution vector at time t, (x1(t), x2(t), 
. . ., xn(t)), and x(t + 1) being the female distribution vector at time t + 1, (x1(t + 1), 
x2(t + 1), . . ., xn(t + 1)), both expressed as column vectors, we have the following 
matrix equivalent of the system of Equations 4: Lx(t) = x(t + 1)

Quick Review Question 2

Give the Leslie matrix for a system with four classes, where the (female) reproduc-
ti“n rates are 0.2, 1.2, 1.4, and 0.7 f“r c‘asses 1 t“ 4, res”ective‘y, and the surviva‘ 
rates are 0.3, 0.8, and 0.5 for classes 1 to 3, respectively.

Age Distribution over Time

Let us now consider the population distribution as time progresses. In the section 
“An Age-Structured Model,” we considered the initial female age distribution of a

Deinition In an n × n square matrix B, the subdiagonal is the set of ele-
ments 

{b21, b32, . . . , bn(n-1)}.

Deinition A Leslie matrix is a matrix of the following form, where all en-
tries Fi and Pi are nonnegative:

F F F F F

P

P

P

n n

n

1 2 3 1

1

2

1

0 0 0 0

0 0 0 0

0 0 0 0

⋯

⋯

⋯

⋮ ⋮ ⋮ ⋮ ⋮

⋯

−

−

























Matrix Models 615

hypothetical bird species to be 

3000

440

350

















 and calculated the distribution at time t = 1 

to be x(1) = Lx(0) = 

3600

450

220

















. Repeating the process, we have the following results 

at time t = 2 years:

x(2) = Lx(1) = 

0 5 4

0 15 0 0

0 0 50 0

.

.

















3600

450

220

















 = 

3130

540

225

















Summing the elements of the result gives us a total female population at that time of 
3895. The ”ercentage “f fe’a‘es in each categ“ry is as f“‘‘“ws:

3130 3895

540 3895

225 3895

/

/

/

















 = 

0.803594

0.138639

0.0577664

















 = 

80.36%

13.86%

5.78%

















We note that the calculation x(2) = Lx(1) = L(Lx(0)) = L2x(0). Similarly, x(3) =  
Lx(2) = L(L2x(0)) = L3x(0). In general, x(t) = Ltx(0).

For several values of t, Table 13.3.1 indicates the population change in the three 
classes by presenting the distributions, x(t) = Ltx(0), and the percentage of female 
animals in each class. As time goes on, although the numbers of birds in each class 
changes, the vector of percentages of animals in each category converges to v = 

0.8206

0.1205

0.0590

















 = 

82.06%

12.05%

5.90%

















. From time t = 20 years on, the percentages expressed to two 

decimal places do not change from one year to the next. Over time, the percentage of 
eggs/chicks stabilizes to 82.06% of the total population, while year 2 birds comprise 
12.05% and year 3 birds are 5.90% “f the ”“”u‘ati“n. This c“nvergence t“ ixed 
”ercentages is characteristic “f such age-structured ’“de‘s. Because we are assu’-
ing the nu’ber “f fe’a‘es (“r ’a‘es) t“ be a ixed ”r“”“rti“n (ha‘f) the ”“”u‘ati“n, 
the convergence of category percentages for females (or males) is the same as the 
convergence of category percentages for the entire population (females and males).

Projected Population-Growth Rate

Interestingly, if we divide corresponding elements of the population distribution at 
time t + 1, x(t + 1), by the members of the distribution at time t, x(t), we have con-
vergence of the quotients to the same number. Table 13.3.2 shows several of these 
quotients, which converge in this example to 1.0216, which we call λ. Thus, eventu-
ally each age group changes by a factor of λ = 1.0216 (102.16%) from one year to 
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Table 13.3.1 
Population Distributions and Class Percentages of the Total Population

Time, t

Distribution

x(t) = Lnx(0) Class Percentages

0

3000

440

350

















79.16%

11.61%

9.23%

















1

3600

450

220

















84.31%

10.54%

5.15%

















2

3130

540

225

















80.36%

13.86%

5.78%

















3

3600

469.5

270

















82.96%

10.82%

6.22%

















⋮ ⋮ ⋮

9

3913.31

574.45

281.813

















82.04%

12.04%

5.91%

















10

3999.5

586.997

287.225

















82.06%

12.04%

5.89%

















⋮ ⋮ ⋮

20

4950.87

726.933

355.783

















82.06%

12.05%

5.90%

















21

5057.8

742.631

363.467

















82.06%

12.05%

5.90%

















⋮ ⋮ ⋮

100

27353.5

4016.29

1965.7

















82.06%

12.05%

5.90%

















101

27944.3

4103.03

2008.15

















82.06%

12.05%

5.90%
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the next. For instance, in going from time t = 100 years to t + 1 = 101 years, Table 
13.3.1 sh“ws that the nu’ber “f year 1 fe’a‘es increases 2.16%, fr“’ 27,353.5 t“ 
1.0216(27,353.5) = 27,944.3. Si’i‘ar‘y, the nu’ber “f year 2 fe’a‘es changes fr“’ 
4,016.29 t“ 1.0216(4,016.29) = 4,103.03, and the year 3 fe’a‘es a‘s“ g“es u” by the 
sa’e fact“r, fr“’ 1,965.7 t“ 1.0216(1,965.7) = 2,008.15. Thus, with each age gr“u” 
ultimately changing by a factor of 1.0216 = 102.16% annually, eventually we esti-
mate the population will increase by 2.16% per year. Thus, for an initial total popu-
lation of P0, the estimated population at time t is P = P0(1.0216)t.

With an annual increase in population of 2.16% per year and, correspondingly, 
λ = 1.0216 > 1, we expect that this bird population will increase with time. Had the 
population been projected to decline each year with 0 < λ < 1, we would expect the 

Table 13.3.2 
x(t + 1)/x(t) for Table 13.3.1

Time, t x(t + 1)/x(t)

0

3600 3000

450 440

220 350

/

/

/
















 = 

1.2

1.02273

0.628571

















1

3130 3600

540 450

225 220

/

/

/
















 = 

0.869444

1.2

1.02273

















2

3600/3130

469.5/540

270 225/

















 = 

1.15016

0.869444

1.2

















⋮ ⋮

9
3999.5/3913.31

586.997/574.45

287.225/281.813
















 = 

1.02202

1.02184

1.01921

















⋮ ⋮

20

5057.8/4950.87

742.631/726.933

363.467/355.783
















 = 

1.0216

1.02159

1.0216

















⋮ ⋮

100

27944.3/27353.5

4103.03/4016.29

2008.15/1965.7

















 = 

1.0216

1.0216

1.0216
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birds eventually to become extinct. A value of λ = 1 would signal a stable population 
in which, on the average, an adult female produces one female offspring that will live 
to adulthood. Thus, λ is an important concept related to the stability of a population.

Interestingly, multiplying the constant λ by the vector of percentages to which the 
category distributions converge, v, has the same effect as multiplying the Leslie ma-
trix L by v, or Lv = λv, as the following calculations indicate:

Lv = 

0 5 4

0 15 0 0

0 0 50 0

.

.

















0.8206

0.1205

0.0590

















 = 

0.84

0.12

0.06

















λv = 1.0216

0.8206

0.1205

0.0590

















 = 

0.84

0.12

0.06

















Multiplying both sides of the equation by a constant, c, maintains the equality, 
cLv = cλv or L(cv) = λ(cv). The formula holds for any constant, c, and, consequently, 
for any population distribution where the percentages of the total for the three classes 
are 82.06%, 12.05%, and 5.90%, res”ective‘y. Thus, ’u‘ti”‘icati“n “f the ”“”u‘ati“n 
distribution vector by the constant 1.0216 is identical to the product of the Leslie 
matrix by the distribution vector. λ is an eigenvalue for the matrix L, and v is a cor-
responding eigenvector for L.

Quick Review Question 3

Consider the Leslie matrix L = 
5 150

0 01 0.









  from Quick Review Question 1c with 

the initial population distribution vector x(0) = 
2

1









 .

a.  Using a computational tool, for each age class give the value to which its 
percentage of the total population converges as time progresses. Express 
y“ur answer t“ six signiicant igures.

b.  Using a computational tool, give the number, λ, to which the quotient of each 
class population at time t over the class population at time t – 1 converges as 
ti’e ”r“gresses. Ex”ress y“ur answer t“ six signiicant igures.

c.  Using the values from Parts a and b, give a vector v that satisies Lv = λv.
d.  Give another vector v that satisies the equati“n fr“’ Part c, where a ’i‘‘i“n 

ti’es ’“re insects are in their irst ’“nth “f ‘ife. 

Using mathematics, which we do not show here, or a computational tool, we can 
obtain three eigenvalues and three corresponding eigenvectors for the 3 × 3 matrix L 
(Table 13.3.3). Two of the three eigenvalues are imaginary numbers, and the corre-
sponding two eigenvectors contain imaginary numbers. The eigenvalue with the 
largest magnitude (for real numbers, the largest absolute value), 1.0216, is the domi-
nant eigenvalue and is the projected annual growth rate associated with the Leslie 
matrix. Leslie matrices always have such a unique positive eigenvalue. The sum of 
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the c“’”“nents “f the c“rres”“nding eigenvect“r, ( 0.9869, 0.144906, 0.0709212), 
is 1.20273. Dividing this su’ int“ each e‘e’ent, we “btain an“ther eigenvect“r, 
(0.8206, 0.1205, 0.0590), which is the ”receding vect“r “f ”r“–ected ”r“”“rti“ns f“r 
the three classes.

Stage-Structured Model

An age-structured model, where we distinguish life stages by age, is a special case of 
a stage-structured model, where we divide the life of an organism into stages. Fre-
quently, it is convenient or necessary to consider the life of a species in stages instead 
of equally spaced time intervals, such as years. Perhaps the animal, such as a logger-
head sea turtle, typically lives for a number of years, and we cannot accurately deter-
mine the age of an adult. Conceivably the stages differ greatly in lengths of time. 
Also, rates may be strongly associated with developmental stages or animal size. 

M“rris, Shertzer, and Rice generated a stage-structured ’“de‘ “f the Ind“-Paciic 
‘i“nish Pter“is v“‘itans to explore control of this invasive and destructive species to 
reef habitats (Morris et al. 2011). Such consideration is very important because in a 
Caribbean regi“n study, A‘bins and Hix“n f“und ‘i“nish reduced recruit’ent “f na-
tive ishes (additi“n “f new native ishes) by an average “f 79% “ver a 5-wee— ”eri“d 
(A‘bins and Hix“n 2008). A ‘i“nish g“es thr“ugh three ‘ife stages: ‘arva (L, about 1 
month), juvenile (J, about 1 year), and adult (A). With 1 month being the basic time 
step, the probability that a larva survives and grows to the next stage is GL = 0.00003, 
while the probability that a juvenile survives and remains a juvenile in a 1-month 
period is PJ = 0.777. In 1 ’“nth, GJ = 0.071 “f the –uveni‘es ’ature t“ the adu‘t 
stage, while PA = 0.949 “f the adu‘ts survive in a ’“nth. On‘y adu‘ts give birth, and 
the number of female larvae she produces per month is RA = 35,315. Figure 13.3.2 
presents a state diagram for these circumstances.

Deinition For square matrix M, the constant λ is an eigenvalue and v is an 
eigenvector if multiplication of the constant by the vector accom-
plishes the same results as multiplying the matrix by the vector; 
that is, the following equality holds:

Mv = λv

The dominant eigenvalue for a matrix is the largest eigenvalue 
for that matrix.

Table 13.3.3 
Eigenvalues and Vectors for L

Eigenva‘ue Eigenvect“r

1.0216 ( 0.9869, 0.144906, 0.0709212)
0.510798 + 0.180952 i (0.935827, 0.244171  0.0864985 i, 0.185709 + 0.150458 i)

0.510798  0.180952 i (0.935827, 0.244171 + 0.0864985 i, 0.185709  0.150458 i)
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Thus, if xL(t), xJ(t), and xA(t) represent the number of female larvae, juveniles, and 
adults at time t, respectively, we have the following system of equations for the dis-
tribution at time t + 1: 

35315 1

0 00003 0 777 1

0 071

x t x t

x t x t x t

x t

A L

L J J

J

( ) ( )

. ( ) . ( ) ( )

. (

= +

+ = +

)) . ( ) ( )+ = +







 0 949 1x t x t

A A

Thus, we have the following transition matrix, called a Lefkovitch matrix:

0 0 35315

0 00003 0 777 0

0 0 071 0 949

. .

. .

















Using these va‘ues, the ‘i“nish ’“nth‘y gr“wth rate (λ) is about 1.13. Because 
adu‘t ‘i“nish re”r“duce ’“nth‘y “ver the entire year, adu‘t surviv“rshi” has a great 
impact on the population’s growth rate. With all else being the same, not until the 
probability of an adult surviving in a 1-month period is reduced approximately 30%, 
from PA = 0.949 to PA = 0.66 or less, could a negative population growth be achieved. 
Harvesting 30% “f the adu‘t ‘i“nish each ’“nth is quite a cha‘‘enge. H“wever, si-
multaneous reductions of 17% for the probabilities of juvenile and adult survivor-
ship could also produce a declining population. Thus, “results indicate that an eradi-
cation program targeting juveniles and adults jointly would be far more effective 
than one targeting either life stage in isolation” (Morris et al. 2011). 

Algorithms

For an age-structured or a stage-structured problem, we form the appropriate matrix, 
L, and the vector representing initial female population distribution, x, and deter-
mine the distribution at time t by calculating Ltx. 

larvae

G
J 
= 0.071G

L 
= 0.00003

P
J 
= 0.777

R
A 

= 35,315

juvenile adult

P
A 

= 0.949

Figure 13.3.2 State diagra’ f“r ‘i“nish (M“rris et a‘. 2011)
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For the projected population growth rate, we calculate the eigenvalue, λ, which is 
available through a command with many computational tools. When it is not avail-
able, to estimate the projected population growth rate to within m decimal places, we 
keep calculating the ratio of age distributions, x(t + 1)/x(t), until two subsequent ra-
tios differ by no more than 10-m. For the preceding example with birds, to estimate 
population growth to within four decimal places, we consider any one of the compo-
nents, say the irst, “f x(t + 1)/x(t) = Lt+1x / Ltx. After repeated calculation, we dis-
cover with x(15)/x(14) = L15x/L14x = (1.02153, 1.02173, 1.02136) and x(16)/x(15) =  
L16x/L15x = (1.02162, 1.02153, 1.02173) that the irst c“’”“nents are suficient‘y 
close to each other:

| 1.02153  1.02162 | = 0.00009 < 10-4 = 0.0001

These irst e‘e’ents, 1.02153 and 1.02162, differ by n“ ’“re than 10-4, so our pro-
jected population growth rate is 1.0216. Similarly, we can determine the category 
percentages of the total to within m deci’a‘ ”‘aces by inding when each “f the c“r-
responding elements of x(t)/(total population) and x(t + 1)/(total population) differ 
by no more than 10-m. 

Sensitivity Analysis for the Age-Structured Example

We can use sensitivity analysis to examine how sensitive values, such as long-term 
population growth rate (dominant eigenvalue λ) or predicted time of extinction, are 
to small changes in parameters, such as survivability and fecundity. Suppose in the 
preceding bird example, we wish to examine the sensitivity of the long-term popula-
tion growth rate to small changes in survivability of year 1 and year 2 birds, P1 and 
P2, respectively. Adjusting P1 and P2 individually by ±10% and ±20%, Table 13.3.4 
shows the corresponding new values of λ and the change in projected population 
growth rate, λnew – λ, as calculated using a computational tool. Relative sensitivity 
or sensitivity of λ with respect to Pi measures the numeric impact on λ of a change 
in Pi, or the instantaneous rate of change of λ with respect to Pi (the partial derivative 
of λ with respect to Pi, ∂λ/∂Pi). Thus, to approximate this relative sensitivity, we di-
vide the change in projected population growth rate by the corresponding small 
change in Pi:

 

where Pi,new is the new value of Pi and λnew is the resulting new value of λ. For ex-
ample, P1 = 0.15, and P1 + (10% of P1) = P1 + 0.10P1 = 1.10P1 = 0.15 + 0.015 =  
0.165. With P1 = 0.15, the original dominant eigenvalue λ is 1.0216. Replacing the 
chance of a year 1 bird surviving with P1,new = 1.10P1 = 0.165, the new dominant ei-
genvalue λnew is 1.06526, and λnew – λ = 1.06526 – 1.0216 = 0.04366. Thus, the rela-
tive sensitivity of P1 using +10% is approximately (λnew – λ)/( P1,new – P1) = (λnew – λ)/
(0.10P1) = 0.04366/0.015 = 2.9067. Si’i‘ar‘y f“r 10% “f P1, the sensitivity is 
3.0677. H“wever, the re‘ative sensitivity “f λ to small changes in P2 (+10% and 
–10%) is much smaller (0.2480 and 0.2562, respectively). From these calculations in 

sensitivity of λ to Pi = ∂λ ≈
λnew – λ

,
∂Pi Pi,new – Pi
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Table 13.3.4, we see that λ is most sensitive to changes in survivability of year 1 
birds, P1. This analysis indicates that conservationists might concentrate their efforts 
on helping eggs and nestlings survive.

Sensitivity Analysis for the Stage-Structured Example

Using sensitivity analysis, Morris et a‘. (2011) deter’ined that ‘i“nish ”“”u‘ati“n 
growth λ is very sensitive to lower-level mortality parameters of larval, juvenile, and 
adult mortality and is “most sensitive to the lower-level parameter of larval mortal-
ity.” However, the larvae have venomous spines, probably making them less appeal-
ing ”rey than ’any “f the native reef ish. A ”r“–ect ex”‘“res a ‘i“nish sensitivity 
analysis and the model of Morris et al. model more closely.

Applicability of Leslie and Lefkovitch Matrices

Leslie or Lefkovitch matrices are appropriate to use when we can classify individu-
als in a species by age or stage, respectively. The dynamics of the populations are 

Deinition The relative sensitivity, or sensitivity, of λ to parameter P in a 
transition matrix is the partial derivative of the dominant eigen-
value of the matrix (λ) with respect to P, ∂λ/∂P, or the instanta-
neous rate of change of λ with respect to P. Thus, this relative 
sensitivity of λ with respect to P is approximately the change in λ 
divided by the corresponding small change in P:

 

where Pnew is the new value of P close to P and λnew is the resulting new 
value of λ.

sensitivity of λ to P = ∂λ ≈
λnew – λ

,
∂P Pnew – P

Table 13.3.4 
Sensitivity of λ (Originally 1.0216) to Changes in Survivability 

Survivabi‘ity 
Parameter

Percent  

Change Pi,new λnew λnew  λ Pi,new  Pi

λnew – λ
Pi,new – Pi

P1 = 0.15 +10% 0.165 1.0653 0.0437  0.015 2.9111
P1 = 0.15 +20% 0.180 1.1069 0.0853  0.030 2.8435
P1 = 0.15 –10% 0.135 0.9756 –0.0460 –0.015 3.0677
P1 = 0.15 –20% 0.120 0.9268 0.0948 –0.030 3.1599
P2 = 0.50 +10% 0.550 1.0340 0.0124  0.050 0.2480
P2 = 0.50 +20% 0.600 1.0460 0.0244  0.100 0.2443
P2 = 0.50 –10% 0.450 1.0088 –0.0128 –0.050 0.2562
P2 = 0.50 –20% 0.400 0.9955 –0.0261 –0.100 0.2607
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based only on the females, and an adequate number of males for fertilization is as-
sumed. The models in this module accommodate only population growths that do 
not depend on the densities of the populations so that the fecundity and survival rates 
remain constant. However, we can extend the models to incorporate density de-
pendence by dampening values in the matrix. Unfortunately, estimations of fe-
cundity and surviva‘ rates can be dificu‘t. If a””r“”riate, h“wever, an age- “r a stage- 
structured model can allow us to use matrix operations to determine the projected 
population growth rate and the stable-age distribution (Horne 2008).

Need for High-Performance Computing

Typically, a Leslie matrix is small enough so that high-performance computing 
(HPC) is unnecessary to model the long-term situation for one type of animal. How-
ever, one species might be a small part of a much bigger network of other species of 
animals and plants and their environment. Execution of models of such larger prob-
‘e’s inv“‘ves extensive c“’”utati“n that can beneit fr“’ HPC. 

For example, PALFISH is a parallel, age-structured population model for fresh-
water s’a‘‘ ”‘an—tiv“r“us ish and ‘arge ”isciv“r“us ish, structured by size, in s“uth 
Florida. The model contains 111,000 landscape cells, with each cell corresponding 
t“ a 500-’ by 500-’ area and c“ntaining an array “f l“ating-”“int nu’bers re”re-
senting individua‘ ish density “f vari“us age c‘asses. Researchers re”“rted a signii-
cant improvement in runtime of PALFISH over the corresponding sequential ver-
sion of the program. The mean simulation time of the sequential model was about 35 
h, while the parallel version with 14 processors and dynamic load balancing was less 
than 3 h (Wang et al. 2006).

Another use of HPC can be in parameter sweeping, or executing a model for 
each element in a set (often a large set) of parameters or of collections of parameters. 
The results can help the modeler obtain a better overall picture of the model’s behav-
i“r, deter’ine the re‘ati“nshi”s a’“ng the variab‘es, ind variab‘es t“ which the 
’“de‘ is ’“st sensitive, ind ranges where s’a‘‘ variati“ns in ”ara’eters cause ‘arge 
output changes, locate particular parameter values that satisfy certain criteria, and 
ascertain variables that might be eliminated to reduce model complexity (Luke et al. 
2007). 

For example, suppose in our simple example of the bird, which has a maximum 
life span of 3 years, we are interested in determining the impact on the projected 
growth rate (positive eigenvalue) of changing the probabilities of the animal living 
from year 1 to 2 and from year 2 to 3. Such a problem is embarrassingly parallel on 
a high-performance system; we can divide computation into many completely inde-
pendent experiments with virtually no communication. Thus, we could have multi-
ple nodes on a cluster running the same program with different probability pairs and 

Deinition Parameter sweeping is the execution of a model for each ele-
ment in a set of parameters or of collections of parameters to ob-
serve the resulting change in model behavior.
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with their “wn “ut”ut i‘es. After c“’”‘eti“n, we can c“’”are the resu‘ts, ”erha”s 
using these to predict the impact of various interventions to improve the one, the 
other, or both probabilities. For more computationally intensive programs that re-
quire signiicant runti’e, HPC can be ”articu‘ar‘y usefu‘ f“r such ”ara’eter 
sweeping.

For example, researchers are modeling biological metabolism at a kinetic level 
for a green alga, Chlamydomonas reinhardtii (Chang et al. 2008). However, limited 
knowledge exists of parameters for enzymes with known kinetic responses. Conse-
quent‘y, the researchers have deve‘“”ed the High-Perf“r’ance Syste’s Bi“‘“gy 
T““‘—it, HiPer SBTK, t“ ”erf“r’ sensitivity ana‘ysis and itting “f differentia‘ equa-
tions to the data. One problem involves 64 parameters and approximately 450,000 
calculations for a full sensitivity matrix. Chang et al. (2008) wrote, “In moving from 
desktop-scale simulations of a small set of biochemical reactions to genome-scale 
simulations in the high-performance computing (HPC) arena, a paradigm shift must 
occur in the way we think of biological models. A complete representation of me-
tabolism for a single organism implies model networks with thousands of nodes and 
edges.  Because ”ara‘‘e‘is’ “f the ca‘cu‘ati“ns is extre’e‘y we‘‘ ba‘anced, where 
each process has approximately the same amount of work as any other process, the 
scientists are optimistic that the code will scale to thousands of processors. Thus, 
ultimately, they plan to develop an in silico cell model of metabolism that contains 
all reliable experimental data for C. reinhardtii with problem sizes perhaps thou-
sands of times larger than the current problem.

Exercises

1. a.  Suppose a Leslie matrix associated with an age-structured population 
’“de‘ has an eigenva‘ue “f 0.984. Is the equi‘ibriu’ ”“”u‘ati“n gr“wing 
or shrinking?

 b.  By h“w ’uch?
 c.  Su””“se a c“rres”“nding eigenvect“r is ( 2.35, 1.04, 0.87, 0.69). F“r 

each age class, give the estimated percentage of the total population to 
which the class converges as time progresses.

2. Suppose certain animal has a maximum life span of 3 years. A year 1 (0–1-
year) female has no offspring; a year 2 (1–2-years) female has 3 daughters on 
the average; and a year 3 (2–3-years) female has a mean of 2 daughters. 
Thirty percent of year 1 animals live to year 2, and 40% of year 2 animals 
live to year 3. Suppose the numbers of year 1, 2, and 3 females are 2030, 652, 
and 287, res”ective‘y.

 a.  Determine the corresponding Leslie matrix, L.
 b.  Give the initial female population distribution vector x(0).
 c.  Calculate the population distribution at time t = 1, vector x(1).
 d.  Calculate the class percentages of the total population at time t = 1.
 e.  Give the vector for class percentages of the total population, v, expressed 

to two decimal places, to which x(t)/T(t) converges, where T(t) is the total 
population at time t.
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 f.  Find the number λ, expressed to two decimal places, to which x(t + 1)/x(t) 
converges.

 g.  Using answers from Parts a, d, and f, verify that Lv = λv.
3. Consider the following Leslie matrix representing a population, where the 

basic unit of time is 1 year:

0 0 2 1 3 3 5

0 1 0 0 0

0 0 2 0 0

0 0 0 4 0

. . .

.

.

.



















 a.  Give the animal’s maximum life span, and describe the meaning of each 
positive number in the matrix.

 b.  Determine the dominant eigenvalue and the annual growth rate. Do you 
expect the animal’s numbers to grow or decline?

 c.  Draw a state diagram for the animal.
 d.  Using –10% of the parameter, determine the sensitivity of λ to the second 

r“w, irst c“‘u’n ”ara’eter (0.1).
 e.  Determine the sensitivity of λ to the third row, second column parameter.
 f.  Determine the sensitivity of λ to the fourth row, third column parameter.
 g.  Based “n y“ur answers t“ Parts d f, where sh“u‘d c“nservati“n eff“rts 

focus?
4. Crouse et al. (1987) c“nsidered the f“‘‘“wing seven stages in the ‘ife “f ‘“g-

gerhead sea turtles (Caretta caretta): (1) eggs and hatchlings (< 1 year); (2) 
s’a‘‘ –uveni‘es (1 7 years); (3) ‘arge –uveni‘es (8 15 years); (4) subadu‘ts 
(16 21 years); (5) n“vice breeders (22 years); (6) irst-year e’igrants (23 
years); (7) ’ature breeders (> 23 years). On‘y the ‘ast three stages re”r“duce 
with fe’a‘e fecundities “f 127, 4, and 80 ”er year, res”ective‘y. Tab‘e 13.3.5 
gives the probabilities per year of a stage From turtle surviving and remain-
ing at or advancing to stage To.

Table 13.3.5 
The Probabilities per Year of a Stage From Loggerhead Sea 
Turtle Surviving to Stage To

From Stage To Stage

Probability  

per Year

1 2 0.6747
2 2 0.7370
2 3 0.0486
3 3 0.6611
3 4 0.0147
4 4 0.6907
4 5 0.0518
5 6 0.8091
6 7 0.8091
7 7 0.8089
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 a.  Give the Lefkovitch matrix for this model.
 b.  Determine the dominant eigenvalue and the annual growth rate. Do you 

expect the animal’s numbers to grow or decline?
 c.  Give the annual mortality rate for stage 1 animals.
 d.  Give the annual mortality rate for stage 2 animals.
 e.  Give the annual mortality rate for stage 3 animals.
 f.  Give the annual mortality rate for stage 4 animals.
 g.  Give the annual mortality rate for stage 5 animals.
 h.  Give the annual mortality rate for stage 6 animals.
 i.  Give the annua‘ ’“rta‘ity rate f“r stage 7 ani’a‘s.
 j.  Draw a state diagram for the animal.
 k.  Determine the sensitivity of λ to each parameter indicated in Table 13.3.5.
5. Consider the following Lefkovitch matrix representing a population, where 

the basic unit of time is 1 year:

0 0 3 4 7 5

0 1 0 2 0 0

0 0 3 0 0

0 0 0 4 0 5

. .

. .

.

. .



















 a.  Describe the meaning of each positive number in the matrix.
 b.  If possible, give the animal’s maximum life span. Give the length of time 

for any stage that you can determine.
 c.  Determine the dominant eigenvalue and the annual growth rate. Do you 

expect the animal’s numbers to grow or decline?
 d.  Draw a state diagram for the animal.
 e.  Determine the sensitivity of λ t“ the sec“nd-r“w, irst-c“‘u’n ”ara’eter 

(0.1).
 f.  Determine the sensitivity of λ to the second-row, second-column para-

meter.
 g.  Determine the sensitivity of λ to the third-row, second-column parameter.
 h.  Determine the sensitivity of λ to the fourth-row, third-column parameter.
 i.  Determine the sensitivity of λ to the fourth-row, fourth-column parameter.
 j.  Based “n y“ur answers t“ Parts e –, where sh“u‘d c“nservati“n eff“rts 

focus?

Projects

1. In the 1960s and 1970s, scientists did an ex”eri’enta‘ reducti“n in ”“”u‘a-
tion density of Uinta ground squirrels in three types of habitats in Utah: lawn, 
nonlawn, and edge (Oli et al. 2001). For 4 years, they collected life table 
data; then for 2 years, they reduced the population by about 60%, keeping the 
same sex and age composition. Subsequently, they collected new life-table 
data. Data was collected postbreeding, after the birth pulse. Table 13.3.6 
presents their data for the nonlawn habitat in three categories: Young (< 1 
year), Yearling (1–2 years), and Adult (> 2 years). 
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 a.  Use a partial life cycle model to analyze the effect of the population re-
ducti“n. C“nsider ive age gr“u”s with year 1 being y“ung, year 2 being 
yearling, and years 3, 4, and 5 being adults. Do not consider any of these 
animals after age 5 years. Determine the projected population growth rate 
(λ) pre- and postreduction. 

 b.  By changing each surviva‘ rate in the ”rereducti“n data “ne at a ti’e by 
±10% and ±20%, determine to which parameter λ is most sensitive. Dis-
cuss the results. 

2. People in Europe and Asia enjoy eating skates, which are closely related to 
shar—s. C“nsequent‘y, the ani’a‘ has dec‘ined since the 1970s. Fris—, Mi‘‘er, 
and Fogarty did a study of little skates, winter skates, and barndoor skates to 
determine sustainable harvest levels and strategies (Frisk et al. 2002). For the 
little skate (Leucoraja erinacea), the scientists used an age-structured model 
incorporating 1-year age categories with 8-year longevity. Data from a previ-
ous study indicated age of 50% maturity to be 4 with annual female fecundity 
of 15 for mature females. They assumed this level to be constant for mature 
fe’a‘es. F“r age-s”eciic surviva‘ (Pi), they adopted an exponential decay 
based on natural mortality (Mi) and ishing ’“rta‘ity (Hi): Pi = e

M H
i i

− +( )
, i = 1, 

2, . . ., 8. The “rigina‘ ana‘ysis c“nsidered s—ates t“ be ‘arge en“ugh f“r ish-
ing by age 2, at which ti’e the ishing ’“rta‘ity beca’e 0.35. The ”r“babi‘-
ity “f death by natura‘ causes was assu’ed be 0.45 f“r these ish and 0.70 f“r 
year 1 skates.

 a.  Develop a Leslie matrix for the little skate and determine the long-term 
annual population growth rate, λ. The intrinsic rate of population increase, 
r, is the natural logarithm of λ, which the researchers calculated as 0.21 
for little skates. Do you get the same value? What is the meaning of r? 
Interpret λ and r for the long-term forecast of little skates.

 b.  The researches also performed a stochastic analysis to test the sensitivity 
of their model to parameter estimation. For little skate, they drew adult 
fecundity, irst-year surviva‘, and adu‘t surviva‘ fr“’ n“r’a‘ distributi“ns 
with ’eans and standard deviati“ns as indicated in Tab‘e 13.3.7. Deve‘“” 
a stochastic version of the model. Run the simulation 1000 times for at 
least 200 years on each simulation. Determine average values for λ and r.

 c.  Researchers did a similar study for winter skate using an adult female fe-
cundity ’ean “f 17.5 and standard deviati“n “f 5. Due t“ a ‘ac— “f ade-
quate information about adult mortality, they held M1 and M constant 
(Frisk et al. 2002). Repeat Part a using this information.

Table 13.3.6 
Pre- and Postreduction Survival and Fertility data for Nonlawn Uinta Ground 
Squirrels (Oli et al. 2001)

Prereduction Postreduction

Category Surviva‘ Fertility Surviva‘ Fertility

Young 0.375 0.353 0.474 0.792
Yearling 0.419 0.741 0.481 0.981
Adult 0.500 0.885 0.588 1.200
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3. Scientists conducted a 4-year study, “Population Viability Analysis for Red-
Cockaded Woodpeckers in the Georgia Piedmont,” to evaluate the risk of 
extinction for this endangered species and to recommend management to 
’ini’ize this danger (Maguire et a‘. 1995). They c“nsidered ive age 
groups: < 1 year (juvenile; class 1), 1 year (class 2), 2 years (class 3), 3 years 
(class 4), and > 3 years (class 4+). From observed data, they modeled the 
population and performed various simulations. For the survival rate of class i 
(Pi), they calculated the observed number of class i females surviving to class 
i + 1 divided by the number of females in class i. To consider the situation at 
postbreeding time (postbirth pulse sampling), they calculated fecundity for 
class i as the average number of female nestlings born to mothers of class 
i + 1 (mi+1) multiplied by the proportion of females entering class i that will 
survive to class i + 1 (Pi). Because the study ”‘aced a‘‘ fe’a‘e red-c“c—aded 
woodpeckers from age 4 years on into the same class, class 4+, they calcu-
lated the number in that group at time t + 1, x4+(t + 1), as P4x4(t) + P4+x4+(t). 
Tab‘e 13.3.8 ”resents data f“r new‘y banded birds (NB) and f“r new‘y banded 
birds and n“nbanded birds (NBU). The researchers f“und an initia‘ distribu-
ti“n “f (20, 10, 9, 9, 6) f“r the ive c‘asses. In their si’u‘ati“ns, they c“nsid-
ered extinction to be the time at which the total population was less than or 
equal to 1.

 a.  Deve‘“” a deter’inistic ’“de‘ f“r each set “f birds, NB and NBU, using 
a stage-structured 5 × 5 Leslie matrix. What happens to the population 
over a period of time? Assuming extinction when a population is less than 

Table 13.3.8 
Data “n Red-C“c—aded W““d”ec—ers in the Ge“rgia Pied’“nt, 1983 1988, f“r 
New‘y Banded Birds (NB) and f“r New‘y Banded Birds and N“nbanded Birds 
(NBU), Where Pi is the Proportion of Females Entering Class i That Will Survive to 
Class i + 1 and mi Is the Average Number of Female Offspring per Female of Class i 
(Maguire et a‘. 1995)

NB NBU

Class Pi mi Pi mi

1 0.380 0.000 0.401 0.000
2 0.653 0.133 0.734 0.126
3 0.850 1.082 0.961 1.023
4 0.400 1.194 0.456 1.129
4+ 0.589 1.590 0.667 1.504

Table 13.3.7 
Means and Standard Deviations for Adult Fecundity, First-Year Survival, and Adult 
Survival of Little Skate Used for Stochastic Analysis (Frisk et al. 2002)

Mean Standard Deviati“n

little skate
adult fecundity (female) 15 2.5
irst-year surviva‘ (M1) 1.21 0.4
adult-year survival (M) 0.45 0.05
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1, when does extinction occur? How might you explain the difference 
between the “utc“’es “f NB and NBU ”“”u‘ati“ns? 

 b.  By changing each surviva‘ rate, Pi, one at a time by ±10% and ±20%, de-
termine which parameter poses the greatest sensitivity to extinction risk. 
Use NB data. By deter’ining the ”ara’eter that has the greatest i’”act, 
ecologists can focus their efforts on improving that group’s survival. 

 c.  Researchers deter’ined that in 1987 88, the area c“ntained 41 ”“tentia‘ 
nesting sites. Develop a habitat saturation model by limiting the num-
ber of breeding woodpeckers each year to 41. Give nesting preference to 
older birds. Thus, with nBi being the number of class i breeding females, 
ni being the number of class i females, and min being the minimum func-
tion, we have nB4+ = min(n4+P4+, 41). That is, the number of potential class 
4+ breeders is n4+P4+, but at most 41 can breed. If n4+P4+ is greater than 41, 
no nesting sites remain for birds in other classes. If n4+P4+ is less than 41, 
the model allows nB4 = min(n4P4, 41 – nB4+) woodpeckers in class 4 to 
breed in the remaining number of sites. Similarly, nB3 = min(n3P3, 41 – nB4+ –  
nB4), and so on.

 d.  Tab‘e 13.3.9 gives the researchers  ca‘cu‘ati“ns f“r P1 along with the cor-
responding probability for each of the 4 years of the study. Starting with 
an initia‘ ”“”u‘ati“n distributi“n “f (20, 10, 9, 9 6), which was their 1988 
esti’ate, deve‘“” a st“chastic versi“n “f the ’“de‘ f“r NB “r NBU birds. 
To do so, at each year with the given probabilities, randomly select the 
juvenile (class 1) survival rate from the estimations in the table. That is, at 
each time step, generate a uniformly distributed random number, r, be-
tween 0 and 1. F“r the NB data, if r is ‘ess than the irst ”r“babi‘ity, 0.295, 
use the irst va‘ue, 0.3708, f“r P1; else if r is ‘ess than 0.295 + 0.310 = 0.605, 
use P1 = 0.4131; and so on. Run the simulation 1000 times for at least 200 
years on each simulation. Determine the range of extinction, the average 
extinction, and the probability of extinction within 100 years. Discuss the 
results.

These simulations correspond to environmental stochasticity, or vari-
ation in parameters caused by random environmental changes. The re-
searchers si’”‘iied the ’“de‘ t“ use variati“ns in P1 t“ relect this envi-
ronmental stochasticity. Why might they make such an assumption?

Table 13.3.9 
Yearly Estimates of Juvenile Survival Rates (P1) and Corresponding 
Pr“babi‘ities f“r Red-C“c—aded W““d”ec—ers in the Ge“rgia Pied’“nt, 1983
1988, f“r New‘y Banded Birds (NB) and f“r New‘y Banded Birds and 
N“nbanded Birds (NBU) (Maguire 1995).

NB NBU

Year P1 Probability P1 Probability

1984 0.3708 0.295 0.3793 0.285
1985 0.4131 0.310 0.4220 0.318
1986 0.2176 0.135 0.2353 0.095
1987 0.4354 0.260 0.4508 0.302
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 e.  Repeat Part c at each time step selecting randomly a juvenile survival rate 
in an appropriate range as discussed in Part d.

 f.  F“r NB “r NBU, ”erf“r’ a sensitivity ana‘ysis t“ deter’ine the ”ara’e-
ters Pi to which the growth rate λ is most sensitive. Using these results, 
make recommendations about where to concentrate conservation efforts.

4. This project considers the ‘i“nish exa’”‘e in the secti“n Stage-Structured 
Model.” With data from the literature on average mortalities of eggs and li-
“nish in the vari“us stages, durati“ns “f eggs and ‘arvae, fecundity, and ”r“-
portion female as in Table 13.3.10, Morris et al. (2011) calculated various 
probabilities using the following exponentially decreasing models:

 GL = e M D
L L

− , GJ = e J
−M
/12 , PJ = 11 12e

M
J

−
/ , PA = e M

A
− , RA = ρfe M DE E−

 a.  With these models and the values in Table 13.3.10, recalculate GL, GJ, PJ, 
PA, and RA and use these calculations for a Lefkovitch matrix. Revise the 
last paragraph in the section “Stage-Structured Model” for this matrix. 
That is, update the growth rate λ, the percentage that reduces probability 
of an adult surviving to produce negative population growth, and the per-
centages of simultaneous reductions of probabilities of juvenile and adult 
survivorship to produce a declining population.

 b.  Perf“r’ a sensitivity ana‘ysis t“ deter’ine the higher-‘eve‘ ”ara’eters
GL, GJ, PJ, PA, and RA t“ which the ’“nth‘y gr“wth rate λ is most sensi-
tive. Using these results, make recommendations for controlling this 
menace.

 c.  Perform a sensitivity analysis to determine the lower-level parameters 
from Table 13.3.10 to which the monthly growth rate λ is most sensitive. 
Using these results, make recommendations for controlling this menace.

 d.  Adult mortality, MA, is de”endent u”“n ishing intensity. Draw 1000 va‘-
ues of adult mortality from a normal distribution with mean 0.052/month 
and standard deviation 5% of this mean, excluding numbers beyond two 
standard deviations from the mean. Generate 1000 Lefkovitch matrices 
and calculate the resulting growth rates λ for these matrices. (Morris et al. 
2011) used si’i‘ar ca‘cu‘ati“ns t“ i‘‘ustrate sensitivity t“ ’iss”eciica-
tion of parameter values.” Discuss your results.

Table 13.3.10 
Values from (Morris et al. 2011) Assuming 30 Days/Month

Symbol Meaning Value

ME Egg mortality 9.3/’“nth
ML Larval mortality 10.5/month
MJ Juvenile mortality 0.165/month
MA Adult mortality 0.052/month
DE Egg duration 0.1 month
DL Larval duration 1 month
ρ Proportion female 46%
f Fecundity 194,577 eggs/’“nth/ 

 female
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5. Ty”ica‘‘y, s”awning (breeding) Paciic sa‘’“n trave‘ u” the sa’e river where 
they were born, breed, lay their eggs, and then die. The eggs hatch; the young 
salmon develop for 1 or 2 years in the streams; the juvenile salmon travel 
downstream to the ocean; then, as smolts they enter the ocean, where they 
may remain for several years, continuing to grow.

Between 1961 and 1975, f“ur da’s were c“nstructed “n the ‘“wer Sna—e 
River. Unfortunately, the dams inhibited the usual migration of spring/sum-
’er chin““— sa‘’“n, s“ “ficia‘s ’ade vari“us da’ ”assage i’”r“ve’ents, 
including transportation of spawning salmon upstream and of juvenile salmon 
downstream. Kareiva, Marvier, and McClure studied the situation using age-
structured models (Kareiva et al. 2000). They tested the effectiveness of vari-
ous implemented management interventions and examined whether improv-
ing the survival of any of the life stages could stop population declines. The 
study assumed a 5-year life expectancy, equal proportion of male and female 
salmon, and breeding at year 3 or later. Table 13.3.11 contains the study’s 
parameters. As we will see, parameters s2 (probability of surviving from year 
1 to year 2) and µ (probability of surviving upstream migration) are calculated 
from the parameters indented immediately below them.

Researchers are continuing to gather data, to further develop population 
models, and to publish their results (Zabel et al. 2006; Interior Columbia 

Table 13.3.11 
Parameters from Tables 1 and 2 (Kareiva et al. 2000) 

Symbol Meaning Value

s1 Probability of surviving from year 0 to year 1 0.022
s2 Probability of surviving from year 1 to year 2 

z Pr“”“rti“n “f ish trans”“rted 0.729
sz Probability of surviving transportation 0.98
sd Probability of surviving in-river migration (no  

transportation)
0.202

se Probability of surviving in estuary and during ocean entry 0.017
s3 Probability of surviving from year 2 to year 3 0.8
s4 Probability of surviving from year 3 to year 4 0.8
s5 Probability of surviving from year 4 to year 5 0.8
b3 Probability of a year 3 female to breed 0.013
b4 Probability of a year 4 female to breed 0.159
b5 Probability of a year 5 female to breed 1.0
µ Probability of surviving upstream migration 

hms Harvest rate in main stem of columbia river 0.020
sms Probability of survival of unharvested spawner from bonneville 

dam to spawning basin
0.794

hsb Harvest rate in subbasin 0
ssb Probability of survival of unharvested adult in subbasin before 

spawning
0.9

m3 Number of eggs per year 3 female spawner 3257
m4 Number of eggs per year 4 female spawner 4095
m5 Number of eggs per year 5 female spawner 5149
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Technica‘ Rec“very Tea’ 2007). M“re“ver, these resu‘ts are ”‘aying a ”art 
in salmon recovery planning (NOAA 2011).

 a.  T“ survive t“ year 2, a year 1 ish ’ust trave‘ d“wnstrea’ ”ast the da’ 
and survive in one of the following two ways: 

  1. have transportation over the dam and survive; 
  2. migrate on its own past the dam and survive.

In either case, the ish ’ust then survive –“urneys in the estuary and int“ 
the ocean. With z being the ”r“”“rti“n “f ish trans”“rted, give the f“r-
’u‘a f“r the ”r“”“rti“n “f ish that ’igrate in-river ”ast the da’ with“ut 
transportation. Using z, sz, sd, and se from Table 13.3.11, develop a model 
for s2, the probability of a salmon surviving from year 1 to year 2. Using 
the indicated parameter values from Table 13.3.11, evaluate s2.

 b.  With hms being the harvest rate in main stem of Columbia River, give the 
formula for the proportion not harvested in the river. Similarly, with hsb 
being the harvest rate in the subbasin, give the formula for the proportion 
n“t harvested in the subbasin. T“ survive u”strea’ ’igrati“n, a ish ’ust 
survive in the river and the subbasin. Thus, it must survive the danger of 
harvest and travel in both locations. Using hms, sms, hsb, and ssb from Table 
13.3.11, develop a model for µ, the probability of survival of an unhar-
vested s”awner fr“’ B“nnevi‘‘e Da’ t“ s”awning basin. Using the indi-
cated parameter values from Table 13.3.11, evaluate µ.

 c.  With b3 being the probability of a year 3 female to breed, give the for-
mula for the proportion of year 3 females that do not breed. Using this 
formula and s4, the probability of surviving from year 3 to year 4, deter-
mine the proportion of females that survive to year 4, that is, the proba-
bility that a female does not breed and survives to year 4. Using the indi-
cated parameter values, evaluate the proportion of females that survive to 
year 4. Why do we not include the proportion that spawn? Using the in-
dicated parameter values from Table 13.3.11, evaluate the proportion of 
females that survive to year 4.

 d.  Similarly to Part c, determine the proportion of females that survive to 
year 5.

 e.  Determine a formula for the fecundity of year 3 salmon; that is, the aver-
age number of female young from a year 3 mother. For your formula 
consider the probability that a year 3 salmon breeds, the probability that 
the salmon then survives the upstream journey, the average number of 
eggs for a 3-year-old, the proportion of those that are female offspring, 
and the probability that the egg hatches and the offspring survives the 
irst year. Using the indicated ”ara’eter va‘ues fr“’ Tab‘e 13.3.11, ca‘-
culate the fecundity of year 3 salmon.

 f.  Similarly to Part e, determine the fecundity of year 4 salmon.
 g.  Similarly to Part e, determine the fecundity of year 5 salmon.
 h.  Using the previous parts, determine the Leslie matrix. After calculating 

its dominant eigenvalue, discuss the long-term prospects for the chinook 
salmon on the Snake River if the situation does not change.

 i.  Kareiva et al. (2000) examined the impact on long-term population 
growth had authorities not taken the following actions: (i) “reductions of 
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harvest rates, fr“’ a””r“xi’ate‘y 50% in the 1960s t“ ‘ess than 10% in 
the 1990s ; (ii) engineering i’”r“ve’ents that increased –uveni‘e d“wn-
stream migration survival rates from approximately 10% just after the 
last turbines were installed to 40 to 60% in most recent years”; (iii) “the 
trans”“rtati“n “f a””r“xi’ate‘y 70% “f –uveni‘e ish fr“’ the u””er’“st 
da’s t“ be‘“w B“nnevi‘‘e Da’, the ‘“west da’ “n the C“‘u’bia River.  
Based “n ca‘cu‘ati“ns, they c“nc‘uded, If such i’”r“ve’ents had n“t 
been made, the rates of decline would likely have been 50 to 60% annu-
ally. . ..” Discuss which parameters would need to be adjusted for their 
calculations.

 j.  Many conservation efforts have been focused on transportation through 
the dams. If such efforts were completely successful (an impossible 
goal), determine the long-term growth. Would such actions be enough to 
reverse the ”“”u‘ati“n dec‘ines? Based “n these resu‘ts, sh“u‘d c“nserva-
tion efforts focus solely on transportation?

 k.  Justify the following statement (Kareiva et al. 2000): “management ac-
ti“ns that reduce ’“rta‘ity during the irst year by 6% “r reduce “cean/
estuarine ’“rta‘ity by 5% w“u‘d be suficient  t“ reverse the ”“”u‘ati“n 
declines.

 l.  Justify the statement (Kareiva et al. 2000) that “a 3% reducti“n in irst-
year mortality and a 1% reduction in estuarine mortality” would be suf-
icient t“ reverse the ”“”u‘ati“n dec‘ines.

 m.  Perform a sensitivity analysis to determine the si parameters (Table 
13.3.11) to which the monthly growth rate λ is most sensitive. Using these 
results, make recommendations on where to focus conservation efforts.

6. Furbish’s lousewort, Pedicularis furbishiae, is an endangered herbaceous 
plant that grows along a 140-mi stretch of the St. John River in northern 
Maine and New Brunswic—, Canada. This ”erennia‘ d“es we‘‘ in areas hav-
ing little cover from woody plants and little riverbank disturbance. Wetter 
conditions promote growth and colonization, but moist soil is more likely to 
s‘ide int“ the river. River ice l“ws scra”e the ban—s, advantage“us‘y re’“v-
ing woody vegetation but also disturbing P. furbishiae. If disturbances occur 
too frequently (more frequently than every 6 to 10 years), the lousewort does 
not have adequate time to reestablish itself. Thus, success of the plant ap-
pears to depend on a delicate balance of conditions.

To examine the long-term prospects of the species’ survival, Eric Menges 
”erf“r’ed a 3-year (1983 1986), s”ring-t“-s”ring study “f P. furbishiae, re-
cording plant and environmental data. Then, he used stage-based modeling with 
the f“‘‘“wing six stages: seed‘ing; –uveni‘e, which is be‘“w ’ini’u’ l“wering 
size; vegetative, which is n“t l“wering but is ab“ve ’ini’u’ l“wer size; 
s’a‘‘ re”r“. l“wering ”‘ant with “ne scape, “r ‘ealess l“wer sta‘—; ’ediu’ 
re”r“. l“wering ”‘ant with tw“ t“ f“ur sca”es; and ‘arge re”r“. l“wering 
plants with more than four scapes. Table 13.3.12 gives probabilities of transi-
ti“ning fr“’ “ne stage t“ an“ther based “n the data fr“’ 1984 1985. The ”‘ants 
reproduce only sexually, so fecundity as presented in Table 13.3.13 was deter-
’ined using an esti’ate “f the nu’ber “f seed‘ings ”r“duced (Menges 1990).

 a.  Draw a state diagram for the model.
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 b.  Develop a Lefkovitch matrix model, L84t“85, using data from Tables 
13.3.12 and 13.3.13 and deter’ine the inite rate “f ”“”u‘ati“n change, λ. 
If the plant could maintain such annual population growth, would you an-
ticipate the population of P. furbishiae to increase or decrease over time?

 c.  The gr“wing seas“n in 1984 85 was advantage“us f“r P. furbishiae. 
H“wever, disturbance fr“’ ice sc“ur and riverban— s‘u’”ing in 1983 84 
were challenging and resulted in a transition matrix L83t“84 with domi-
nant eigenvalue λ = 0.77. In 1985 86, the envir“n’enta‘ c“nditi“ns re-
sulted in a transition matrix L85t“86 with λ = 1.02. Using these values and 
your result from Part b, discuss the wisdom of using data from one year to 
make long-term predictions.

Table 13.3.12 
Probabilities with Standard Errors of P. furbishiae Changing from One Stage to 
An“ther Based “n Data fr“’ S”ring 1984 t“ S”ring 1985 (Menges 1990)

From To Probability

Seedling Juvenile 0.39
Seedling Vegetative 0.01
Juvenile Juvenile 0.47
Juvenile Vegetative 0.21
Juvenile Small repro. 0.11
Juvenile Medium repro. 0.00
Vegetative Juvenile 0.14
Vegetative Vegetative 0.24
Vegetative Small repro. 0.45
Vegetative Medium repro. 0.11
Small repro. Juvenile 0.09
Small repro. Vegetative 0.24
Small repro. Small repro. 0.36
Small repro. Medium repro. 0.21
Small repro. Large repro. 0.01
Medium repro. Juvenile 0.04
Medium repro. Vegetative 0.16
Medium repro. Small repro. 0.26
Medium repro. Medium repro. 0.42
Medium repro. Large repro. 0.10
Large repro. Vegetative 0.01
Large repro. Medium repro. 0.28
Large repro. Large repro. 0.61

Table 13.3.13 
Fecundities of P. furbishiae Based “n Data fr“’ S”ring 1984 t“ 
S”ring 1985 (Menges 1990)

Stage Fecundity

Small repro. 2.45
Medium repro. 7.48
Large repro. 29.93
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 d.  Because envir“n’enta‘ c“nditi“ns can vary great‘y fr“’ year t“ year, 
using one year’s data can be misleading for making long-term predictions. 
T“ acc“unt f“r such envir“n’enta‘ st“chasticity, Menges (1990) ”er-
formed 100 simulations following the population for 100 simulated years, 
where each year he used a Lefkovitch matrix selected at random from the 
“bserved ’atrices f“r 1983 84, 1984 85, and 1985 86. Perf“r’ these 
simulations; for each simulation multiply the matrices together and calcu-
‘ate the inite rate “f ”“”u‘ati“n change f“r the resu‘ting ina‘ ’atrix. As-
suming an initial population distribution of (156, 158, 82, 55, 44, 5) for 
500 individua‘s, ca‘cu‘ate the ina‘ ”“”u‘ati“n distributi“n and t“ta‘ ”“”u-
lation for each simulation. Discuss your results.

Menges (1990) did n“t give a‘‘ the data f“r 1983-84 and 1985-86. F“r 
crude estimates of the Lefkovitch matrices (say, L83t“84 and L85t“86) 
for these years, multiply matrix L84t“85 from Part b by appropriate con-
stants; in each case, ’u‘ti”‘y by the desired d“’inant eigenva‘ue (0.77 
and 1.02, respectively) and divide by the dominant eigenvalue, λ = 1.27, 
for L84t“85. 

7. During the early part of the twentieth century, sugar cane growers in Puerto 
Rico were desperately seeking something to control beetle grubs (larvae) that 
were destroying the roots of their crops. In response, the U.S. Department of 
Agriculture imported some rather large toads, Bufo marinus, fr“’ Barbad“s. 
Within 10 years, the beetle grubs numbers were reduced to the level of a 
mere nuisance. This was a relatively rare example of a positive outcome 
from introducing species to new geography. The toad, commonly called the 
cane toad, was introduced to cane-growing areas in other countries, includ-
ing Australia; but in Australia they have become a major pest. Dispersing 
widely through several Australian states, these voracious predators and nim-
ble competitors are threatening native species and disrupting biological com-
munities (Markula et al. 2010). 

One method that has been successful in controlling certain insect pests, 
particularly for initial invasions into an area, is the release of sterile males. 
With the release of a large number of such males relative to the number of 
fertile males, the hope is that many nonproductive matings will occur, result-
ing in a population reduction. However, usually the female insect causes 
most of the damage, whereas the male cane toad is as destructive as the fe-
male. Moreover, typically insects have very short life spans, but a large in-
lux “f steri‘e ’a‘e t“ads that ‘ive f“r severa‘ years can increase the ”“”u‘a-
ti“n size signiicant‘y and cause extensive envir“n’enta‘ da’age. 

Stage-based models in McCallum (2006) with data from Lampo and De 
Le“ (1998) de’“nstrate the i’”ractica‘ity “f using steri‘e ’a‘es t“ c“ntr“‘ 
the cane toad population in Australia. Table 13.3.14 summarizes the model 
probability parameters for the following stages: egg, tadpole, juvenile, and 
adu‘t. With data indicating a range “f fr“’ 7500 t“ 20,000 eggs in a c‘utch, 
the models use a clutch size of 15,000 eggs, half of which are assumed to be 
female.

 a.  Draw a state diagram for the model.
 b.  Develop a Lefkovitch matrix model, L, using the mean probabilities from 

Tab‘e 13.3.14 with a fecundity “f 7500 fe’a‘e eggs, and deter’ine the 
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inite rate “f ”“”u‘ati“n change, λ. If the animal could maintain such an-
nual population growth, would you anticipate the cane toad population to 
increase or decrease over time?

 c.  Repeat Part b for the lower and upper extremes of the probability and fe-
cundity ranges. Discuss the results.

 d.  Determine an eigenvector associated with the dominant eigenvalue, λ, for 
the matrix of Part b. Scale the vector so that the number of adult cane toad 
females is 100. Plot the number of adult females versus time over a 15-
year ”eri“d. Because “f the ex”“nentia‘ gr“wth inv“‘ved, create an“ther 
plot of the common logarithm (logarithm to the base 10) of the number of 
adult females versus time. Plot the log of the number of adults versus time.

 e.  Suppose a control effort releases 5000 sterile males into the population 
each year. Develop a program to estimate the number of adult females per 
year for 15 years. Each simulation year, adjust the Lefkovitch matrix of 
Part b so that the female fecundity is the probability that a male is fertile 
’u‘ti”‘ied by the ’ean fe’a‘e c‘utch size “f 7500. Thus, each year, ca‘cu-
late the number of sterile males in the population; besides an additional 
release of 5000 sterile males, the data indicate that on the average an adult 
has a 0.50 chance of surviving from one year to the next. Also, calculate 
the total number of males (fertile and sterile) in the population each year. 
Assume that the number of fertile males equals the number of females in 
the population. Plot the common log of the number of adult females ver-
sus time on the same graph as the corresponding plot for Part d. Plot the 
common log of the number of adults versus time on the same graph as the 
corresponding plot for Part d. Does the model predict that such a control 
effort would be successful?

 f.  Repeat Part e for a sterile male release of 10,000 per year. Discuss the re-
sults and the practicality of such a control effort.

 g.  Repeat Part e where 10,000 sterile males are released each year until the 
number of females falls below 50, half the original number of females. 
Discuss the results.

 h.  Perform a sensitivity analysis to determine the parameters to which the 
annual growth rate λ is most sensitive. Using these results, make recom-
mendations on where to focus conservation efforts.

8. For several constants in Table 11.4.2 of the agent-based Module 11.4, “Intro-
ducing the Cane T“ad Ab‘e Invader,  ”erf“r’ a sensitivity ana‘ysis t“ de-

Table 13.3.14 
Austra‘ian Cane T“ad Data (La’”“ and De Le“ 1998)

From To

Mean  

Probability

Probability  

Range

Egg Tadpole 0.718 0.688 0.738
Tadpole Juvenile 0.05 0.012 0.176
Juvenile Adult 0.05 0.03 0.07
Adult Adult 0.50 0.3 0.7
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termine how sensitive the death percentage is to each of the constants with 
value less than 1.

Answers to Quick Review Questions

1. a.  xi(t) = number of this female insect in the ith month of life alive in the area 
at time t, where i = 1 or 2

 b.  Assu’ing that an insect gives birth t“ ha‘f fe’a‘es, 5 and 150 in the irst 
or second month of life, respectively, we have the following system of 
equations:

5x1(t) + 150x2(t) = x1(t + 1)

 0.01x1(t) = x2(t + 1)

 c.  L = 
5 150

0 01 0.











 d.  160 month 1 female insects and 0.02 month 2 female insects because 

x(1) = Lx(0) = 
5 150

0 01 0.
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 e.  803 month 1 female insects and 1.6 month 2 female insects because 
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3. a.  99.811103%, 0.188897%
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Probable Cause—Modeling with Markov Chains

Prerequisite: M“du‘e 13.1, C“’”utati“na‘ T““‘b“x T““‘s “f the Trade: Tut“ria‘ 
7  “r A‘ternative Tut“ria‘ 7  (thr“ugh the secti“n Eigenva‘ues and 
Eigenvect“rs ); M“du‘e 13.2, Matrices f“r P“”u‘ati“n Studies: Lin—ed f“r Life ; 
and deiniti“ns “f eigenva‘ue  and eigenvect“r  fr“’ M“du‘e 13.3, Age- and 
Stage-Structured Models.” Additional high-performance computing materials 

re‘ated t“ this ’“du‘e are avai‘ab‘e “n the text s website.

Introduction

To the U.S. Navy and shipping companies around the world, barnacles can be a real 
drag, and they are out to get rid of the creatures. How can such a small animal be so 
des”ised by s“ ’any? Th“ugh see’ing‘y insigniicant, barnac‘es are “ne “f the ’ain 
causes of fouling of ship hulls. Growing on the submerged hull surfaces, they inter-
fere with the smooth movement of ships through the water, causing ships to use 
more fuel, which adds up to tremendous costs. Millions of dollars have been ex-
”ended t“ ind ways t“ e‘i’inate “r at ‘east great‘y inhibit attach’ent. Shi” “wners 
have tried various types of paints, but many of them leach toxic compounds into the 
water. Recently, researchers have developed some nontoxic coatings, which help to 
change the mechanical properties of the hull surface, so that barnacle larvae and 
other fouling organisms are less likely to attach. 

Incidentally, barnacles also help to foul intake pipes for coastal power stations. 
S“, inding an effective, n“nt“xic ’eth“d t“ ”revent such f“u‘ing w“u‘d be a signii-
cant beneit t“ hu’an ”“”u‘ati“ns. 

As adu‘ts, barnac‘es are ’“st‘y s’a‘‘, sessi‘e ani’a‘s they re’ain attached t“ 
ir’ surfaces. They ada”ted t“ vari“us natura‘‘y “ccurring surfaces bef“re hu’an 
beings began ex”‘“ring and harvesting the seas. The 900 “r s“ s”ecies can be f“und 
on whale skin, crab and mollusk shells, and rocky shores. You may have seen them 
as y“u ex”‘“red a r“c—y beach “r exa’ined a seashe‘‘ “n a sandy beach. Barnac‘es 
are prominent members of a community of organisms that call the intertidal zone 
home. 
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Intertidal regions, which lie between high- and low-tide lines, represent a transi-
tion between the marine and terrestrial ecosystems. Although these regions include 
sand beaches, estuaries, and bays, barnacles particularly like rocky shores. In fact, 
rocky intertidal areas include very dense and diverse communities, highly adapted to 
the periodic exposure to drying, wave action, and extremes of temperature. The or-
ganisms of this habitat are often found in distinct, vertical zones, arranged according 
t“ degree “f ex”“sure ‘“w, ’idd‘e, high intertida‘, and s”‘ash z“nes. The width “f 
each z“ne is deter’ined s“’ewhat by the degree “f ”r“tecti“n fr“’ wave acti“n
narrower in more protected areas. 

So, barnacles are important members of these communities, which are rich in 
numbers of taxa. Like their neighbors in this zone, barnacles must live under some 
fairly extreme physical conditions (e.g., heavy wave action, desiccation, high tem-
”erature), whi‘e trying t“ su””‘y the’se‘ves with suficient f““d and avai‘ab‘e “xy-
gen, overcoming competition and predation, and producing gametes for reproduc-
tion. They are unable to control the physical environment. Moreover, none of the 
biological challenges is easily met. Any additional physical or biological stress 
would put even organisms as hardy as barnacles in jeopardy. 

What if environmental conditions changed so that a barnacle species disappears? 
Many scientists suggest that the world oceans are warming. What effects might 
ocean temperature change have on intertidal communities? Well, increasing tem-
perature would add to the other extremes that these organisms already have to en-
dure, and the animals might not be able to withstand higher temperatures. Tempera-
ture cues are also important for development and reproduction of many animals. 
Fr“’ 1993 thr“ugh 1996, researchers at H“”—ins Marine Stati“n in Ca‘if“rnia sur-
veyed transects in a r“c—y intertida‘ c“’’unity that was irst surveyed in the 1930s. 
They found a dramatic shift in species, where southern species (warm-adapted) in-
creased signiicant‘y “ver n“rthern s”ecies (c“‘d-ada”ted) during a ti’e ”eri“d 
where ocean and summer air temperatures had both increased over the 60-year span 
of time. What this study suggests is that such a change can eliminate some species 
fr“’ the c“’’unity ”erha”s a barnac‘e s”ecies. S“ what? (Ca‘if“rnia C“asta‘ 
C“’’issi“n 1987; F“ster 2009; Intertida‘ Stress“rs  2007)

Barnac‘es are i‘ter feeders that “ccur in ‘arge nu’bers in their c“’’unities. 
They form hiding places for small animals and serve as food for others. Their role, or 
niche, is interwoven into the community structure and function, and their loss might 
have seri“us ra’iicati“ns. Each s”ecies is integrated s“ that it has ’u‘ti”‘e interac-
tions with other community members and the environment. The extinction of a bar-
nac‘e s”ecies w“u‘d certain‘y affect “ther c“nstituents “f the ec“syste’ ( Barnac‘es  
2012; C“rne‘‘ University 2003; Natura‘ Hist“ry Museu’ 2012; St“ut 2009).

Understanding the effects of losses in diversity is and will continue to be critical 
to the implementation of judicious conservation policies, but that understanding is 
problematic in the multifarious, natural ecosystems. Mathematical models may offer 
us an effective approach to estimating the impact of species losses to a community. 
For this type of study, we can employ Markov chain models (MCM), which are 
based on the probability of passing from one state to another. Normally, the param-
eters of these models depend on the observed and experimental data available, but 
MCMs allow us to utilize parameters without extensive experimentation.
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Problems from Psychology to Genetics

Besides ”redicting effects “f s”ecies ‘“ss t“ a c“’’unity, Mar—“v chain ’“de‘s are 
useful in quite a variety of problems, from predicting the behavior of animals to lo-
cating genes in the DNA. In this module, we start with a problem from psychology 
in which we have observed the various activities of an animal and the likelihood of 
moving from one pursuit to another. Using this information, with MCMs we can 
estimate the average amount of time a typical animal spends performing each en-
deavor and, given the activities of a group of animals, predict their behavior in the 
near future. In M“du‘e 14.14, C“’”utati“na‘ C“de Brea—ing: Deci”hering Our 
Own Mysteries,” we employ this same modeling technique to pursue vastly different 
problems in genetics.

Probability

Markov chain models involve matrices in which all the elements are probabilities, so 
we start with a brief introduction (some of which is a review) to probability theory. 
The probability of an event, or the occurrence of something, is a number between 0 
and 1, inclusive, indicating the chance of the event happening. A probability of 0 
means that the event can never occur, while 1 says that that the situation is always 
true. As an example, suppose a certain kind of seed has a 50–50 chance of germinat-
ing. Thus, the probability or chance of germinating is P(germinating) = ½ = 0.5 = 50%. 
For each seed, one of two events can occur, germination or no germination; and the 
results are equally likely to occur. We expect that if we observe many seeds, about 
half the seeds will germinate. 

Quick Review Question 1

Suppose at a site on a strand of DNA, an equal likelihood exists for any of the four 
bases (A, C, T, G). Give the probability of the base T occurring at a particular site.

The sum of all the possible events for a situation, such as germinating and not 
germinating, sums to 1. If a seed has only a 30% chance of germinating, P(germi nat-
ing) = 0.3, then it has a 70% chance “f n“t ger’inating: P(not ger mi nat ing) =  
1 – P(ger’inating) = 1  0.3 = 0.7.

Deinition The probability of an event, E, written P(E), is the chance of its 
occurrence and is a number between 0 and 1, inclusive.

Rule The probability of an event not occurring is 1 minus the probability of 
the event,

P(not E) = 1 – P(E)
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Quick Review Question 2

Suppose at a site on a strand of DNA, an equal likelihood exists for any of the four 
bases (A, C, T, G). Give the probability of T not being at a particular site.

Suppose an ant is equally likely to go in any one of eight directions, N, NE, E, SE, 
S, SW, W, or NW. For example, P(N) = 1⁄8 and P(S) = 1⁄8. The probability that the 
ant will move in the north or south direction is P(N or S) = P(N) + P(S) = 1⁄8 + 1⁄8 = 
1⁄4. The ant cannot move in two directions at the same time, so moving to the north 
and moving to the south are mutually exclusive; the events cannot occur at the same 
time. If events E1 and E2 are mutually exclusive, then the probability of E1 or E2 is 
the sum of the probabilities of the individual events, that is, P(E1 or E2) = P(E1) + P(E2). 

Quick Review Question 3

Suppose at a site on a strand of DNA, an equal likelihood exists for any base. Give 
the probability of a site containing A or T.

To calculate the probability that the ant will go in a northerly (N, NE, NW) or 
westerly (W, NW, SW) direction, we must subtract the probability of where the 
events overlap, going NW, as follows:

P(northerly or westerly) = P({N, NE, NW}) + P({W, NW, SW}) - P(NW)

  = 3⁄8 + 3⁄8 - 1⁄8 = 5⁄8

We subtract P(NW) to avoid counting that direction twice. The two events, heading 
in a northerly direction and heading in a westerly direction, are not mutually exclu-
sive. If events are not mutually exclusive, then for the probability of one or the other 
we must subtract the probability of overlap from the sum of the probabilities.

Rule If events E1 and E2 are mutually exclusive and, thus, cannot occur at 
the same time, then the probability of E1 or E2 is the sum of the 
probabilities of the individual events, 

P(E1 or E2) = P(E1) + P(E2)

Rule If E1, E2, . . ., En are all possible mutually exclusive events for a situ-
ation so that no two of the events can occur at the same time, then 

P(E1) + P(E2) + ∙ ∙ ∙ + P(En) = 1

Rule P(E1 or E2) = P(E1) + P(E2) – P(E1 and E2) 
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Quick Review Question 4

Suppose a certain medicine causes nausea in 1 out of every 10 patients. On the aver-
age, 4% of those taking the drug experience diarrhea. The probability that a patient 
who is using the drug experiences nausea and diarrhea is 0.01. Give the probability 
that a patient taking the drug has nausea or diarrhea.

Considering again the seeds that have a 30% chance of germinating, suppose we 
have two seeds, S1 and S2. Each has 0.3 probability of germinating, and the state of 
one seed has no bearing on the state of the other. We say these events are indepen-
dent. Certainly, the probability of both seeds germinating is even less likely than any 
one germinating. In fact, the probability of S1 germinating and S2 germinating is the 
product of their individual probabilities:

P(S1 germinating and S2 germinating) = P(S1 ger’inating) ∙ P(S2 germinating)

 = (0.3)(0.3) = 0.09

On‘y a 9% chance exists “f b“th seeds ger’inating.

Quick Review Question 5

Suppose at a site on a strand of DNA, an equal likelihood exists for any of the four 
bases. Give the probability of one site containing A and another unrelated site con-
taining T.

Frequently, we wish to know the probability of one event, E2, given the occur-
rence of another event, E1. The notation for such a conditional probability is P(E2| 
E1). For example, suppose a public health agency wages an aggressive campaign to 
stop the spread of a particular disease by trying to quarantine any individual who has 
come in contact with someone who has the disease. The probability that an exposed 
individual is quarantined can be written as a conditional probability, P(quarantined | 
exposed), the probability of quarantine given exposure. This quantity is equal to 
probability of the individual being quarantined and exposed divided by the probabil-
ity of being exposed:

P(quarantined | exposed) = P(quarantined and exposed)/P(exposed)

Deinition Events are independent if the occurrence of one event has no 
impact on the occurrence of the other. 

Rule For independent events E1 and E2, the probability of both events oc-
curring is the product of their individual probabilities:

P(E1 and E2) = P(E1) ∙ P(E2)
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For example, suppose in a group of 100 people, 10 have been exposed and 2 have 
been exposed and quarantined. Thus, picking an individual at random from the group 
of 100, we have a 10/100 = 10% = 0.10 chance of selecting an exposed person and a 
2/100 = 2% = 0.02 chance of the person being quarantined and exposed. However, if 
our selection is only from the subset of 10 exposed people, then the probability of 
picking one of the 2 individuals who is also quarantined is 2/10 = 0.20 = 20%; the 
probability that an exposed individual is quarantined is 0.02/0.10 = 0.2 = 20%.

Quick Review Question 6

Suppose the DNA for a certain animal contains the sequence, s1, of 20 bases (A, C, 
T, G) that evolves to another sequence, s2, as follows:

s1 C A C T T G T G A G C C C A C T T C G T

s2 C A T T T G T G A C C C T A C T T A G T

For Parts a–d, determine the probabilities.

a.  That C occurs in s1, written P(E1 = C)
b.  That C occurs in s2

c.  That C occurs in s1 and T occurs in the corresponding site in s2, written 
P(E2 = T and E1 = C)

d.  That T occurs in the corresponding site in s2, given that C occurs in s1, writ-
ten P(E2 = T | E1 = C)

e.  Calculate P(E2 = T and E1 = C) / P(E1 = C), which is your answer from Part a 
divided into your answer from Part c. 

f.  How do your answers from Parts d and e compare?

Transition Matrix

We can employ a matrix of conditional probabilities to estimate the long-term be-
havior of an animal. For example, the red howler monkey’s primary food is leaves. 
Because ‘eaves are hard t“ digest, the ’“n—ey s”ends ab“ut ha‘f “f its wa—ing h“urs 
resting. Resting requires less energy than other activities and gives time for diges-
ti“n. Su””“se we c“nsider a si’”‘iied syste’ where the ’“n—ey is in “n‘y tw“ 
states, eating (E) and resting/sleeping (R); and S = {E, R} is the state space, or set of 
possible states. 

Rule Conditional probability of event E2 given event E1 is

P(E2 | E1) = P(E2 and E1)/P(E1) 

Thus,

P(E2 and E1) = P(E2 | E1)P(E1)
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Let us consider some hypothetical data. If one state (Xn) of the monkey is eating, 
then the probability that the state of the monkey 1 h later (Xn+1) is eating is 0.6. We 
express this information as a conditional probability, P(Xn+1 = E | Xn = E) = 0.6. Be-
cause we assume the monkey is either eating or resting at any time, the probability 
that the monkey is resting 1 h after eating is P(Xn+1 = R | Xn = E) = 1 – 0.6 = 0.4. 

Quick Review Question 7

With a state of resting at time n, let us suppose that 1 h later the monkey is eating 
with a probability of 0.2.

a.  Express this information in conditional probability notation.
b.  Give the conditional probability notation and value for the monkey resting 1 

h later.

We can express the data in the preceding paragraph and Quick Review Question 
7 with the f“‘‘“wing ’atrix, T:

T = 

X X
n n+













1

0 6 0 2

0 4 0 8

\

. .

. .

E R

E

R

 

The irst c“‘u’n indicates the ”r“babi‘ities “f the indicated va‘ues (E “r R) “f state 
Xn+1 given that the monkey is initially eating, Xn = E. Note that the sum of this col-
umn’s values is 1, because we are considering only one of two possible states for the 
monkey at any time. Similarly, the second column sums to 1 and presents the prob-
abilities of the monkey eating or resting/sleeping, given that the animal was resting 
the previous hour. Figure 13.4.1 presents a state diagram of the system, with the 
nodes representing the states and probabilities of going from one state to another la-
beling the directed edges.

We call T a transition matrix (Markov matrix, probability matrix, or stochas-
tic matrix). A Markov chain consists of a sequence of variables X1, X2, X3, . . . in 
which the value of any variable, Xn+1, depends only on the value of its immediate 
predecessor, Xn. That is, P(Xn+1 = x | Xn = xn, . . ., X2 = x2, X1 = x1) = P(Xn+1 = x | Xn = xn).

Su””“se initia‘‘y 90% “f a gr“u” “f h“w‘er ’“n—eys are eating and 10% are rest-

ing, represented by the probability vector v0 = 
0 9

0 1

.

.









, where the components are 

nonnegative and sum to 1. We can predict the percentage of monkeys eating and 
resting 1 h later by evaluating Tv0, as follows:

Deinitions A transition matrix (Markov matrix, probability matrix, or 
stochastic matrix) is a matrix in which all the entries are non-
negative and the sum of the elements in each column (or each 
row) is 1. A Markov chain consists of a sequence of variables 
X1, X2, X3, . . . in which the value of any variable, Xn+1, depends 
only on the value of its immediate predecessor, Xn.
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v1 = Tv0 = 
0 6 0 2

0 4 0 8

. .

. .










0 9

0 1

.

.









  = 

0 56

0 44

.

.











The calculations predict that at the next hour 56% will be eating, while 44% will be 
resting.

Using T and v1, we can predict the situation at hour 2, as follows:

v2 = Tv1 = 
0 6 0 2

0 4 0 8

. .

. .










0 56

0 44

.

.









  = 

0 424

0 576

.

.











Thus, we ”redict 42.4% “f the ’“n—eys wi‘‘ be eating and 57.6% resting at h“ur 2. 
Note that by substitution of v1 = Tv0 in v2 = Tv1, we see that v2 = T(v1) = T(Tv0) = 

TTv0 = T2v0. Similarly, at the next hour, the vector is v3 = Tv2 = T(T2v0) = T3v0 = 

0 3696

0 6304

.

.









 . In general, vn = Tnv0. Table 13.4.1 presents several calculations for Tn and 

vn. Notice that as n gets larger and larger, written n → ∞, Tn approaches, or con-

verges to, 
1 3 1 3

2 3 2 3

/ /

/ /









  and vn converges to v = 

1 3

2 3

/

/









 , an equilibrium, or steady-

state, vector associated with T. Thus, v is a probability vector with Tv = v, where 
each coordinate of v is the long-term probability that the system will be in the cor-
responding state. As time progresses, at any one time approximately one-third of the 
monkeys will be eating and two-thirds resting. Moreover, regardless of the starting 
vector giving the percentages in each category, with time the percentages will ap-
proach 331⁄3% and 662⁄3% for eating and resting, respectively. Even if all monkeys 
are eating initially, eventually about one-third will be eating at any one time. When 
all the entries of a transition matrix are positive, it can be shown that Tn will con-
verge to a matrix M and vn = Tnv0 will converge to a steady-state vector. (We will 
cover a technique for calculating these limiting steady-state values shortly.) 

Deinition A probability vector is a vector whose components are nonneg-
ative and sum to 1.

Deinition An equilibrium, or steady-state, vector, v, of the Markov chain 
associated with the transition matrix T is a probability vector, 
where Tv = v. 

R0.8
0.2

0.4
0.6E

Figure 13.4.1 State diagram of the system
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Quick Review Question 8

Suppose baboons are observed to be eating (E), grooming (G), or resting (R). A bi-
ologist records their activities every 15 min and estimates that if a baboon is eating 
in one period, in the next 15-min period the animal will be eating or resting with the 
probabilities 0.3 and 0.6, respectively. If grooming at one observation, in 15 min 
they are likely to be grooming with a 0.3 probability or eating with a 0.4 probability. 
If resting in one time period, at the next observation the probabilities a baboon will 
still be resting or will instead be eating are 0.8 and 0.2, respectively. 

a.  Using the order E, G, and R for rows and columns, develop a transition ma-
trix, T, for this problem.

b.  Suppose when the study began, 30% of the baboons were eating, 10% were 
grooming, and 60% were resting. Using the model from Part a, give esti-
mates for the percentages of baboons in each state 15 min later.

c.  Using a computational tool, estimate the matrix to which Tn converges as n 
gets larger and larger. 

Theorem 1 If all the entries of a Markov matrix are positive, then as n gets 
larger and larger, Tn converges to a matrix, M, and vn = Tnv0 con-
verges to a vector, v = Mv0.

Table 13.4.1 
Markov Matrix, T, and Probability Vector, v, to Several Powers

n vn = Tnvn-1 Tn

0
0 9

0 1

.

.











1
0 56

0 44

.

.











0 6 0 2

0 4 0 8

. .

. .











2
0 424

0 576

.

.











0 44 0 28

0 56 0 72

. .

. .











3
0 3696

0 6304

.

.











0 376 0 324

0 624 0 688

. .

. .











4
0.34784

0.65216











0.3504 0.3248

0.6496 0.6752











10
0.333393

0.666607











0.333403 0.333298

0.666597 0.666702











100
0.333333

0.666667











0.333333 0.333333

0.666667 0.666667
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d.  Using a computational tool, estimate the vector to which a probability vector 
for the system converges n g“es t“ ininity.

Using a computational tool, we can calculate that the dominant eigenvalue of the 
Markov matrix, T, for the howler monkey example is λ = 1, and a corresponding ei-
genvector is x = ( 0.447214, 0.894427), s“ that

0 6 0 2

0 4 0 8

. .

. .











−
−











0 447214

0 894427

.

.
 = 1

0 447214

0 894427
⋅

−
−











.

.
 

 Tx = λx

The rati“ “f the irst c““rdinate “f x to the second coordinate is one-third to two-thirds. 
That is, if we add the coordinates of x, s = 0.447214 + ( 0.894427) = 1.34164, and 
divide the sum s into each coordinate of x, we “btain 0.447214/ 1.34164 = 1/3 = 
0 333.  = 331⁄3% and 0.894427/( 1.34164) = 2/3 = 0 666.  = 662⁄3%. These values are 
the exact proportions to which the components of vn = Tnvn-1 tend as n g“es t“ ininity 
(see Table 13.4.1). The vector x = (1/3, 2/3) = (0 333. , 0 666. ) = (331⁄3%, 662⁄3%) is 
the equilibrium vector associated with the transition matrix T.

In general, λ = 1 is always an eigenvalue for the transition matrix of a Markov 
chain. Moreover, if each of the components of the corresponding eigenvector x is 
nonnegative and s is the sum of these components, then (1/s)x is the equilibrium vec-
tor for T, and this vector is a probability vector. If we start with a probability vector, 
v0, where each component gives the fraction in each corresponding state, such as 
eating (E) and resting/sleeping (R), then Tnv0 converges to v = (1/s)x as n becomes 
larger and larger. Moreover, each coordinate of this equilibrium vector, v, is the ulti-
mate proportion of the corresponding state. 

Quick Review Question 9

For the baboon example in Quick Review Question 8, using a computational tool, 
determine each value.

a.  The dominant eigenvalue.
b.  The principal eigenvector.

Theorem 2  Suppose T is a Markov chain transition matrix. Then, T has an 
eigenvalue λ = 1. Moreover, if each of the components of the cor-
responding eigenvector, x, is nonnegative and s is the sum of 
these components, then (1/s)x is a steady-state vector for T.

Theorem 3 Suppose T is a Markov chain transition matrix. If Tn has all 
positive entries for some positive integer n, then T has a unique 
equilibrium vector v. Moreover, if y is a probability vector, then 
Tny converges to v as n becomes larger and larger (Agnew and 
Knapp 2002).
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c.  The steady-state vector associated with T.
d.  The ultimate percentages, expressed in whole numbers, in each state.

Exercises

1. In this problem we consider the animal community on a vertical rock wall of 
a middle intertidal zone. Suppose we have data for large (> 2 cm) and small 
(  2 c’) ’usse‘s Mytilus californianus (B and SMC, res”ective‘y), g““se 
barnacles Pollicipes polymerus (PP), and other crustaceans (other). Suppose 
at a ixed ”“int the transiti“n ”r“babi‘ities fr“’ ec“‘“gica‘ state B t“ ec“‘“gi-
ca‘ states B, SMC, and PP are 0.84, 0.04, and 0.03, res”ective‘y; fr“’ SMC 
t“ B, SMC, and PP are 0.55, 0.26, and 0.03, res”ective‘y; fr“’ PP t“ B, 
SMC, and PP are 0.40, 0.06, and 0.35, res”ective‘y; and fr“’ “ther t“ B, 
SMC, and PP are 0.15, 0.07, and 0.02, res”ective‘y.

 a.  Develop the 4 × 4 transition matrix for this model, where the sum of the 
elements in each column is 1.0.

 b.  Determine the equilibrium vector.
 c.  Interpret the results.
2. The Jukes-Cantor model for DNA sequence evolution uses a constant, α, 

for the probability of substitution of one base (A, C, G, or T) for a different 
base, such as G for T.

 a.  Under this model, give the formula for the probability that a base at a par-
ticular position does not mutate from one evolutionary time step to the next.

 b.  Give the general transition matrix for this model.
 c.  Give the transition matrix in the situation where α = 0.25, and determine 

the ultimate distribution of bases.
 d.  Give the transition matrix in the situation where α = 0.3, and determine 

the ultimate distribution of bases.
 e.  Give the transition matrix in the situation where α = 0.1, and determine 

the ultimate distribution of bases.
 f.  Determine the ultimate distribution of bases for the general matrix of Part 

b.
 g.  What conclusions do you draw from your calculations?
3. The Kimura model for DNA sequence evolution gives a higher probability 

for a transition (from A to G, from G to A, from T to C, or from C to T; prob-
ability α) than a transversion (from A to C, from C to A, from T to G, or from 
G to T; probability ) with α >  (Sinha 2007).

 a.  Under this model, give the formula for the probability that a base at a par-
ticular position does not mutate from one evolutionary time step to the 
next.

 b.  Give the general transition matrix for this model.
 c.  Give the transition matrix in the situation where α = 0.25 and  = 0.10, 

and determine the ultimate distribution of bases.
 d.  Determine the ultimate distribution of bases for the general matrix of Part 

b.
 e.  What conclusions do you draw from your calculations?



Matrix Models 651

Projects

F“r additi“na‘ ”r“–ects, see Pr“–ect 14 fr“’ M“du‘e 14.11, S”aced Out: Native 
P‘ants L“se t“ Ex“tic Invasives,  and M“du‘e 14.14, “Computational Code-Break-

ing Deci”hering Our Own Mysteries.

1. Epithelial tissue, composed of layers of cells, is a covering or lining. For 
example, the outer portion of the skin, linings of the gastrointestinal system 
and the lungs, and the outer surface of the cornea are all epithelial tissue. 
Usually when a cell divides, the daughter cells have one less side than the 
parent cell but neighboring cells gain sides. It has been observed that virtu-
ally no cells are triangular. 

Mar—“v chains can be used t“ ’“de‘ ce‘‘ sha”e, s”eciica‘‘y the nu’ber “f 
sides of their 2D polygonal structure, in dividing sheets of epithelial cells. A 
Markov chain model for the number of sides in dividing sheets of epithelial 
cells hypothesizes that the distribution of sides from a dividing cell to two 
daughter ce‘‘s f“‘‘“ws a bin“’ia‘ distributi“n with its c“eficients fr“’ Pas-
cal’s triangle, as indicated in Table 13.4.2. The table gives a model of the 
relative odds of a cell of one shape becoming a cell of another shape after 
divisi“n “f that ce‘‘ and its neighb“rs. F“r exa’”‘e, the va‘ue in r“w 7, c“‘-
umn 8 is 6; and the sum of the values in column 8 is 16. Thus, 6/16 is the 
”r“babi‘ity that a ce‘‘ with 8 sides wi‘‘ bec“’e a ce‘‘ with 7 sides after its and 
its neighbors’ divisions. The table incorporates the distribution of sides of a 
dividing cell to its daughter cells and the observed average gain of one side 
from the division of neighbors. (Gibson et al. 2006a, 2006b)

 a.  Develop a Markov chain model for the number of sides in dividing sheets 
of epithelial cells where the state of a cell is its number of sides, s > 3. In 
developing the model, draw a state diagram, form a transition matrix, de-
termine the stable equilibrium percentages for categories of the number of 
cell sides, and the average number of sides. 

 b.  Verify the model by comparing these percentages and this average with 
observations from time-lapse microscopy of three very different animals: 
Drosophila wing disk epithelium, the outer epidermis of the freshwater 
cnidarian Hydra, and the tadpole tail epidermis of the frog Xenopus (Table 
13.4.3). Employ a histogram for your comparisons.

Table 13.4.2  
A M“de‘ “f the Re‘ative Odds “f a Ce‘‘ “f One Sha”e Bec“’ing a Ce‘‘ “f 
Another Shape after Division of That Cell and Its Neighbors

Bef“re Divisi“n

4 5 6 7 8 9 10

A
fte

r 
D

iv
is

i“
n

4
5 1 1 1 1 1 1
6 1 2 3 4 5
7 1 3 6 10
8 1 4 10
9 1 5

10 1
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 c.  Based “n y“ur w“r—, are the scientists wh“ deve‘“”ed this ’“de‘ –ustiied 
in concluding that “the distribution of polygonal cell types in epithelia is 
not a result of cell packing, but rather a direct mathematical consequence 
of cell proliferation”?

2. H. S. Horn used Markov chains to model succession in a forest, perhaps from 
a virgin f“rest “r fr“’ a f“rest after a catastr“”hic event, such as ire. Using 
a tree-by-tree replacement process with synchronous replacement of all trees 
by a new generation, he assumed that “the probability that a given species 
will be replaced by another given species is proportional to the number of 
sa”‘ings “f the ‘atter in the underst“ry “f the f“r’er.  Besides synchr“ny, he 
makes additional simplifying assumptions, such as sapling abundance pre-
dicts survival to reach the canopy and transition probabilities are constant. A 
study of Institute Woods in Princeton, New Jersey, yielded the data in Table 
13.4.4. 

 a.  Using Table 13.4.4’s data, develop a Markov chain model of this forest’s  
succession and determine the stable equilibrium percentages.

Table 13.4.3 
Observed Number of Cell Sides in Drosophila Wing Disk Epithelium, the Outer 
Epidermis of the Freshwater Cnidarian Hydra, and the Tadpole Tail Epidermis of 
the Frog Xenopus (Gibson et al. 2006a)

Number of Cell Sides

3 4 5 6 7 8 9 10

Drosophila 0 64 606 993 437 69 3 0
Hydra 0 16 159 278 125 23 1 0
Xenopus 2 40 305 451 191 52 8 2

Table 13.4.4  
Transition Matrix for Institute Woods in Princeton: Percent Saplings under Various Species of 
Trees; BTA, Bigt““th As”en; GB, Gray Birch; SF, Sassafras; BG, B‘ac—gu’; SG, Sweetgu’; WO, 
White Oa—; OK, Red Oa—, HI, Hic—“ry; TU, Tu‘i”tree: RM, Red Ma”‘e; BE, Beech (H“rn 1975b, 
Tab‘e 1, ”. 199) 

BTA GB SF BG SG WO OK HI TU RM BE

Sapling 

species 

(%)

BTA 3 3 1
GB 5 1 1
SF 9 47 10 3 16 6 2 1 2 13
BG 6 12 3 20 0 7 11 3 4 10 2
SG 6 8 6 9 31 4 7 1 4 9 1
WO 2 3 1 0 10 6 3 2 1
OK 2 8 10 7 7 7 8 13 11 8 1
HI 4 0 12 6 7 3 8 4 7 19 1
TU 2 3 10 5 14 8 9 9 3 8
RM 60 17 37 25 27 32 33 49 29 13 6
BE 3 3 15 17 7 17 17 17 34 23 80

Species 

Counts
104 837 68 80 662 71 266 223 81 489 405
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 b.  Using the distribution of species in the last row of Table 13.4.5 as the 
initial distribution and the transition matrix from Part a, plot the estimated 
number of trees of each species for 20 generations.

 c.  Trees, however, do not have the same life expectancy, as Table 13.4.5 indi-
cates. Thus, Horn weighted (i.e., multiplied) the stationary distribution by 
the longevities in the table, normalized the result (i.e., divided by the sum 
of the components), and obtained percentages (i.e., multiplied by 100). 
Perform these calculations on your stable equilibrium distribution to obtain 
an age-corrected distribution, which is the analog of a climax community. 

 d.  Calculate the relative invasiveness of each species as the sum of the per-
cent saplings under other trees divided by the maximum such sum. That 
is, to calculate this metric, for each row, calculate the row sum minus the 
diag“na‘ e‘e’ent; ind the ’axi’u’ “f these su’s; and divide each r“w 
sum minus the diagonal element by this maximum. Discuss how the 
beech’s ability to invade under other species is evident in the probabilities 
of Table 13.4.4. 

 e.  Evaluate a metric for each species’ resistance to invasion by other species 
as follows: Calculate the sum of percentages of other saplings under its 
canopy (column sum excluding diagonal element); determine the mini-
mum such sum; and for each species, compute this minimum divided by 
the sum of percentages of other saplings under its canopy. Discuss how 
the beech’s resistance to invasion by other species is evident in the prob-
abilities of Table 13.4.4. 

 f.  Calculate a metric for each species’ self-replacement as the percentage of 
its own saplings under its canopy (diagonal element) divided by the maxi-
mum such percentage (maximum diagonal element). Discuss how the 
beech’s copious self-replacement is evident in the probabilities of Table 
13.4.4. 

 g.  Compare your results to those of Horn’s data for several subforests of 
varying ages in Institute Woods (see Table 13.4.6). 

Table 13.4.5 
L“ngevity (Years) “f Trees in Institute W““ds (H“rn 1975b, Tab‘e 2, ”. 200)

BTA GB SF BG SG WO OK HI TU RM BE

80 50 100 150 200 300 200 250 200 150 300

Table 13.4.6  
The e’”irica‘ a””r“ach resu‘ts fr“’ inde”endent ’easure’ents “f 639 trees in stands that have 

been fallow for at least the number of years indicated. The percentages are of total basal area, 
ca‘cu‘ated fr“’ dia’eters ’easured at breast height.  (H“rn 1975b, Tab‘e 2, ”. 200) 

Years 

fallow BTA GB SF BG SG WO OK HI TU RM BE

25 0 49 2 7 18 0 3 0 0 20 1
65 26 6 0 45 0 0 12 1 4 6 0

150 0 1 5 0 22 0 0 70 2
350 6 3 0 14 1 76
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 h.  Discuss the climax abundance of each species in relationship to its posses-
sion of the characteristics of Parts d, e, and f. 

 3. Fecal shedding is the elimination of a pathogen through an animal’s fecal 
’atter. Because ’any diseases s”read by feca‘ shedding, an understanding 
of the dynamics of contagiousness is important in disease prevention and 
c“ntr“‘. Ivane— and “thers (2007) used Mar—“v chain ’“de‘s t“ study, in 
dairy cattle, the dynamics of fecal shedding of the pathogen Listeria monocy-

togenes (LM), a bacterium that causes listeriosis, a disease of the central 
nervous system. Models with two states, shedding (of LM) and nonshedding, 
were developed for overall (all subtypes) L. monocytogenes shedding consid-
ering various combinations of time-dependent risk factors, or covariates that 
can change with time. These covariates include silage (feed) contaminated 
with LM and stress, such as from antiparasitic treatment. 

Using data and statistics and considering the situations of presence or 
absence of contaminated silage and stress, the scientists estimated the prob-
ability of fecal shedding or nonshedding one day (time t – 1) leading to the 
presence or absence of LM in a cow’s feces the next day (time t). Thus, 
they determined 23 = 8 ”r“babi‘ities (Tab‘e 13.4.7). With 1 indicating ”res-
ence and 0 absence of each of the three conditions (contaminated silage, 
stress, and feca‘ shedding) the day bef“re, Tab‘e 13.4.7 gives the ”r“babi‘i-
ties “f feca‘ shedding “f LM. F“r exa’”‘e, the irst tw“ r“ws under the 
headings consider the situation in which silage contamination and stress did 
not exist at time t – 1. In this case, the probability of changing from a non-
shedding state at time t – 1 to a shedding state at time t is p01 = P(shedding 
at time t | nonshedding at time t – 1) = 0.038, while the probability of re-
maining in a shedding state is p11 = P(shedding at time t | shedding at time 
t – 1) = 0.116. Using these two probabilities, we can develop a 2 × 2 Mar-
—“v ’atrix. In Tab‘e 13.4.7, each ”air “f r“ws be‘“w the headings resu‘ts in 
a different model.

 a.  Develop four Markov chain models 
p p

p p

00 10

01 11









  for each covariant situa-

tion in Tab‘e 13.4.7. Starting with an initia‘ distributi“n at ti’e t = 0 of 

Table 13.4.7 
For all subtypes of Listeria monocytogenes, presence (1) or absence (0) of overall 
LM contamination of silage, stress, and LM fecal shedding at time t – 1 with the 
probability of LM fecal shedding the next day (time t)

At ti’e t  1 At time t

Subtypes

Silage

Contam. Stress

Fecal

Shedding

Probability of

Fecal Shedding

All 0 0 0 p01 = 0.038
0 0 1 p11 = 0.116
0 1 0 p01 = 0.174
0 1 1 p11 = 0.410
1 0 0 p01 = 0.358
1 0 1 p11 = 0.648
1 1 0 p01 = 0.746
1 1 1 p11 = 0.907
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100% nonshedding cows, for each situation, plot the percent of shedding 
cows from day 0 through day 10. Determine the long-term distributions, 
which give the equilibrium probabilities of being in nonshedding and 
shedding states, or the eventual proportion of time in each state. Discuss 
the results.

 b.  The time spent in a state of this model has a geometric distribution. If the 
initial day (day 0) is nonshedding, the probability of the next day (day 1) 
being nonshedding, or the proportion of time of a nonshedding day 1, is 
p00; the probability of days 1 and 2 being nonshedding is p00p00 = (p00)

2; 
the probability of days 1–3 being nonshedding is (p00)

3; and so on. Thus, 
the mean time spent in the nonshedding state over a period of n – 1 days is 

1 + p00 + (p00)
2 + ∙ ∙ ∙ + (p00)

n - 1. This sum is a inite geometric series, 

which equals 
1

1

00

00

−
−
p

p

n

 (discussed in Module 2.5, “Drug Dosage”). As n 

goes to ininity, (p00)
n g“es t“ 0 because 0  p00 < 1. Thus, for a Markov 

chain model of Part a, we can estimate the mean time for a cow to spend 

in a nonshedding state as 
1

1
00

− p
. Similarly, we can estimate the time for a 

cow to spend in a shedding state as 1/(1 – p11). Make such estimates for 

each of the covariant situati“ns in Tab‘e 13.4.7, and discuss the resu‘ts.
 c.  The models of Part a are homogenous Markov chain models, which use 

the same transition matrix throughout. However, we can employ a nonho-
mogenous Markov chain model, where we vary the transition matrix 
depending on the presence or absence of the time-varying covariates (con-
taminated silage and stress). Thus, for a real or assumed pattern of time-
varying covariates, by employing the appropriate transition matrices, we 
can examine the changing distributions. Develop a program to accept a 
sequence of time-varying covariates for a period of 20 days and to plot the 
percentage of shedding cows versus day. Discuss the results for several 
patterns.

4. (Prerequisite: From Module 10.2, “Diffusion: Overcoming Differences,” 
secti“ns Heat Diffusi“n  and B“undary C“nditi“ns ) The stepping-stone 
model is useful in the study of genetics. For the model, we start with an n × n 
grid (matrix) with each cell (element) having one of k integer values. Repeat-
edly, we select a cell at random and choose one of its eight neighbors at ran-
dom. We then change the value at the cell to be the value of the selected 
neighbor. Periodic boundary conditions are employed. A grid represents a 
state of the system. Thus, with each grid having n2 cells and each cell hav-
ing k possible values, the system has k n

2

 possible states. For example, a small 
10 × 10 grid with 100 cells and values of only 0 and 1 has 2100 = 1.2677 × 1030 
possible states. A transition matrix with this number of states would have an 
excessive number of elements: 1030 × 1030 = 1060 elements. However, we can 
employ cellular automaton simulations to simulate the Markov chain (Grin-
stead and Snell 2003).

 a.  Develop the stepping-stone model using n = 20 and k = 2 (values 
nu’1 = 1 and num2 = 2). E’”‘“y a rand“’ initia‘ c“nigurati“n with a 
probability of p for one of the cell values, nu’1. Using visualizations of 
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the grid with white representing one cell value and black representing the 
other, develop an animation. Run the animation a number of times with 
different values of p and observe regions of color and the ultimate “win-
ner.” Does the winner seem related to p? Discuss the results.

 b.  Repeat Part a without the animation but plotting the number of each color 
at each time step. Discuss the results.

 c.  Repeat Part a using k > 2.
 d.  Repeat Part b using k > 2.

Answers to Quick Review Questions

1. ¼ = 0.25 = 25%
2. 0.75 = 1  0.25 = 1  P(T); a‘ternative‘y, 0.75 = P(A) + P(C) + P(G).
3. ½ = 0.5 = 50%
4. 0.13 = 0.10 + 0.04 – 0.01
5. 1/16 = (¼)(¼) 
6. a.  7/20 = 0.35
 b.  5/20 = 0.25
 c.  2/20 = 0.10
 d.  2/7 = 0.286 because C “ccurs in s1 7 ti’es
 e.  2/7 = (2/20)/(7/20)
 f.  They are equal.
7. a.  P(Xn+1 = E | Xn = R) = 0.2
 b.  P(Xn+1 = R | Xn = R) = 0.8 = 1 – 0.2

8. a.  

0 3 0 4 0 2

0 1 0 3 0 0

0 6 0 3 0 8

. . .

. . .

. . .

















 b.  E: 25%, G: 6%, R: 69% because the ”r“duct “f T from Part a and (0.3, 0.1, 
0.6), ex”ressed as a c“‘u’n vect“r, is (0.25, 0.6, 0.69), ex”ressed as a 
column vector.

 c.  

0 0 0

0 0 0

0

. . .

. . .

.

229508 229508 229508

0327869 0327869 0327869

7377055 737705 7377050 0. .

















 d.  (0.229508, 0.0327869, 0.737705)
9. a.  1
 b.  Any n“nzer“ ’u‘ti”‘e “f ( 0.296799, 0.0423999, 0.953998)
 c.  (0.229508, 0.0327869, 0.737705) “btained by ’u‘ti”‘ying the vect“r fr“’ 

Part b by 1 over the sum of its elements, s = 1.2932 
 d.  E: 23%, G: 3%, R: 74% “btained by ex”ressing as ”ercentages the e‘e-

ments of the vector from Part c
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MODULE 13.5

The Next Flu Pandemic—Old Enemy, New Identity

Prerequisites: M“du‘e 13.1, C“’”utati“na‘ T““‘b“x T““‘s “f the Trade: 
Tut“ria‘ 7  “r A‘ternative Tut“ria‘ 7  (exce”t secti“n “n Eigenva‘ues and 
Eigenvect“rs ) and M“du‘e 13.2,  Matrices f“r P“”u‘ati“n Studies Lin—ed f“r 
Life.” Additional high-performance computing materials related to this module are 

avai‘ab‘e “n the text s website.

Downloads

For several computational tools, the text’s website has a SocialNetworks i‘e, with 
implementations of the functions of this module, available for download. 

Introduction

Char‘ie Bates is a c“‘‘ege s“”h“’“re wh“ wa—es u” this ’“rning fee‘ing rea‘‘y bad. 
He assumes that it is just a hangover. He had a pretty wild night of drinking at his 
fraternity’s welcome-back party that traditionally begins the spring semester. His 
head is pounding, and he is exhausted.

Char‘ie fee‘s that he can s‘ee” this “ne “ff, s“ he decides t“ cut his 9 “ c‘“c— ec“-
nomics class. He resets his alarm and rolls over. Four hours later he is distressed to 
ind that he has a‘s“ s‘e”t thr“ugh his 11:00 g“vern’ent c‘ass. Even ’“re disturbing 
is that he feels even worse. He has never had a sore throat from a hangover, and he is 
fee‘ing very achy. S“, he gets u”, dresses, and stu’b‘es “ver t“ the ca’”us inir-
’ary. The nurse inds that he has a te’”erature “f 102.5 °F. She thin—s he has the lu. 

Every year we hear the warnings fr“’ ”ub‘ic hea‘th “ficia‘s t“ get “ur lu sh“ts. 
Some of us comply, but many of us do not. In fact, the CDC reported that less than 
40% “f the U.S. ”“”u‘ati“n was vaccinated during the 2008 2009 lu seas“n (CDC 
2009). Inluenza can attac— any age, race, “r sex. It n“t “n‘y ’a—es us fee‘ ’iserab‘e, 
it costs millions of days of lost productivity at school or at work. Although the high-
est rates of infection are in children, the most severe, even life-threatening effects are 
on those over the age of 65. 
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S“, why d“n t we get the sh“t? We‘‘, it ’ay be a resu‘t “f lu ’yths.  S“’e “f 
these misconceptions are as follows (NFID 2008a, b): 

•  Flu is not a serious disease. 

Flu is not the common cold, which also can certainly make you miserable. 
CDC esti’ates that the lu is the cause “f an average “f 36,000 deaths and 
hundreds of thousands of hospitalizations per year in the United States (CDC 
2009). 

• The vaccinati“n is n“t necessary. 
Because the inluenza virus is s“ genetica‘‘y ”‘iab‘e, it changes fr“’ year t“ 
year. A vaccination received one year will offer you little to no protection 
fr“’ the inluenza virus the next year. 

• Y“u can get the lu fr“’ the sh“t. 
Not likely. The vaccine is made from inactivated or killed viruses. The worst 
side effect y“u ’ay “btain fr“’ a lu sh“t is a s“re ar’. H“wever, if y“u are 
allergic to eggs, you should not get a lu sh“t that is egg based.

Pub‘ic hea‘th “rganizati“ns w“r‘dwide are trying t“ ind ways “f effective‘y 
blunting the inevitable epidemics/pandemics of this disease. As part of their efforts, 
“ficia‘s are using the resu‘ts “f c“’”utati“na‘ science ’“de‘s, which e’”‘“y c“’-
puter science and mathematics along with the science, to make informed decisions 
on how to combat the menace.

The Problem

Computational scientists model the spread of disease in a number of ways. System 
dynamics models consider the changing sizes of complex interrelated systems, such 
as susceptibles, infecteds, and recovereds, as time progresses. Cellular automaton 
simulations model reality with 1D, 2D, or 3D grids that change with time. A grid 
site has a state, such as susceptible, infected, or recovered. Rules, such as an infected 
person recovers in 5 days, regulate the behavior of the system. The results of cellular 
automaton simulations are challenging to verify, and system dynamics models do 
n“t ”r“vide s“’e “f the s”eciicity that w“u‘d be he‘”fu‘ in ’a—ing ”ub‘ic hea‘th 
decisi“ns in the face “f an e”ide’ic. As Bisset and Madhav (2009) write, these 
modeling approaches were limited in their ability to capture the complexity of 
human interaction that underlies disease transmission.” Grid-based agent-based 
models, which simulate and visualize the behaviors and interactions of individuals, 
can overcome some of these limitations; but the restricted movement of an individ-
ual from one cell to a neighboring cell at a discrete time step and the inability for 
such systems to handle large datasets hinder their utility. A related modeling tech-
nique, individual-based (or network-based) epidemiology simulation, which em-
ploys matrices, tracks the simulated behavior of individuals in a community. Thus, 
this ’eth“d ”r“vides the desired s”eciicity and is easier t“ verify, but its si’u‘ati“ns 
incorporate massive amounts of data that require extensive effort to gather and need 
massive computing power to process. 

To help meet this challenge, scientists at Los Alamos National Laboratory devel-
oped the Epidemiological Simulation System (EpiSims) to simulate the spread of 
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epidemics in a large city at the individual level, considering realistic contacts among 
the ”e“”‘e and characteristics “f disease trans’issi“n (VBI 2008). E’”‘“ying trans-
portation information, census data, and activities surveys from a sample of about 
2000 people, researchers have generated hypothetical data that model the move-
ments and demographics of Portland, Ore. With EpiSims, scientists can study a 
nu’ber “f i’”“rtant issues: the eficacy “f ”reventi“n ’easures, such as vaccinating 
particular segments of the population; the value of early detection measures, such as 
”‘acing fever sens“rs at high trafic bui‘dings; the effectiveness “f ”ub‘ic hea‘th in-
terventions, such closing schools; and fundamental questions, such as patterns of the 
spread of disease.

Individual-based epidemiology simulations can estimate some of the following 
metrics: 

• A smallest set of locations (minimum dominating set) that a given propor-
tion of the population visits

Such information can be helpful in determining sites for fever sensors or 
in closing of particular public buildings during an epidemic.

• The distribution of the number of contacts people have with other people 
(degree distribution)

Targeted vaccination of individuals who have many contacts can offer 
signiicant‘y better resu‘ts than vaccinating ”e“”‘e at rand“’ (Mas“n and 
Verw“erd 2007).

• The probability that two contacts of a randomly chosen person have contact 
with one another (clustering coeficient; Newman et al. 2002)

A large probability indicates that a disease can spread rapidly through a 
community.

• The average smallest number of contacts for a disease to spread from one ar-
bitrary individual to another (mean shortest path length)

A small mean also indicates the probable rapid spread of a disease.

Graphs

Employing an area of mathematics called graph theory, individual-based epidemiol-
ogy simulations use graphs that represent the contacts between people to predict the 
s”read “f disease and t“ ana‘yze hea‘th-care interventi“ns. By a graph we do not 
mean a graph of a function, such as f(x) = x2, but rather a set of nodes with undirected 
or directed edges connecting some of the points, as illustrated in Figure 13.5.1. In that 
contact network, or social network, which is a type of graph, the nodes represent 
people or groups of people, such as members of a household that can become in-
fected, and places, where the disease can spread from an infected person to a suscep-
tible individual. Numbers indicate the households, while the places are school, hospi-
tal, work, shop, and cloister. Each edge represents an association that can lead to 
transmission of the disease. For example, one or more individuals in household 6 go 
to work, shop, and school, locations where they can contract or spread the disease.

An undirected graph G = (V, E) consists of a set V of vertices (singular, ver-
tex), or nodes or points, and a set E of edges, or arcs, connecting pairs of points. In 
the graph of Figure 13.5.1, V = {1, 2, 3, 4, 5, 6, 7, School, Hospital, Work, Shop, 
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Cloister}. We denote an undirected edge e between nodes u and v as (u, v) or as (v, 
u). Here, (u, v) is n“t an “rdered ”air. In the ”receding igure, e = (6, Hospi-

tal) = (Hospital, 6) is an edge because there is contact between at least one member 
of household 6 and people who are at the Hospital. The size of the graph is its num-
ber of nodes, so the graph in Figure 13.5.1 has size 12.

Quick Review Question 1

Referring to Figure 13.5.2, give the following:

a.  The set of vertices, V, for the graph
b.  Two notations for the edge connecting 3 and 6
c.  The graph’s size

We need to know several terms to speak the language of graph theory. In Figure 
13.5.1, points 6 and Hospital are adjacent because there is an edge, e, connecting 
them. We say that edge e, which can be written as (6, Hospital) or as (Hospital, 6), is 
incident to points 6 and Hospital. Vertex Cloister is isolated, having degree 0, or no 
incident lines, while point 5 has degree 2, or is the endpoint of two edges. 

Deinitions An undirected graph G = (V, E) consists of a set V of vertices 
(singular, vertex), or nodes or points, and a set E of edges, or 
arcs, connecting pairs of points. An undirected edge between 
nodes u and v is denoted as the unordered pair (u, v) or (v, u). The 
number of nodes in a graph is the size of the graph.

Cloister

1

Shop

Work

2

3

Hospital

4

School

5
6

7

e

Figure 13.5.1 Contact network of households and places
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Figure 13.5.2 Graph for Quick Review Question 1

Deinitions Two vertices u and v of a graph are adjacent if there exists an 
edge (u, v) connecting them. An edge e is incident to vertex v if v 
is an endpoint of e. The degree of a vertex v, deg(v), is the num-
ber of times v is an endpoint of an edge. If deg(v) = 0, then v is 
called an isolated point.
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Quick Review Question 2

Referring to Figure 13.5.2, give each of the following:

a.  The vertices adjacent to node 3
b.  The edge(s) incident to node 1
c.  The degree of node 3
d.  The isolated point(s)

Much work on the structural properties of biological networks, such as social 
networks, has focused on the distribution of degrees. If n is the number of nodes in a 
network and nk is the number of nodes of degree k, then the degree distribution is 
P(k) = nk/n, which is the proportion of nodes having degree k, for k = 0, 1, 2, . . .. For 
example, in Figure 13.5.1, which is a graph of size n = 12, one node (Cloister) has 
degree 0 and “ne n“de (n“de 7) has degree 1, s“ P(0) = P(1) = 1/12. With ive n“des 
(n“des 1, 2, 3, 4, and 5) having degree 2, ive-twe‘fths “f the n“des (P(2) = 5/12) are 
incident to two nodes. 

Studies of this and many other biological networks, such as the central metabolic 
networks of 43 organisms and protein interaction networks for various organisms, 
have degree distributions that appear to follow power laws. A function f follows a 
power law if f(x) is proportional to xb for some constant b; that is, f(x) ∝ xb, or 
f(x) = cxb, for some constants c and b. In the case of many biological networks, the 
degree distribution P(k) is proportional to k-r for some constant r. S”eciica‘‘y f“r 
metabolic networks, P(k) ∝ k–r for 2 < r < 3, or P(k) = ck–r for 2 < r < 3 and some 
constant c. A degree distribution following this power law implies that nodes with 
small degree are extremely common, while nodes with large degree are quite rare. 
Figure 13.5.3 shows the graph of P(k) = k–2.5 with the typical broad-tail, or long, 
stretched-out portion to the right, of such a power law form. 

Networks that follow the power law P(k) ∝ k–r with r > 1 are called scale-free 
networks. Interestingly, the Internet is a scale-free network. In a scale-free net-
work, most nodes have relatively low degree, but a few nodes, called hubs, have 
high degrees. Removal of hub nodes can easily result in the network being discon-
nected. Thus, scale-free networks are particularly vulnerable to attack and failure at 
the hubs. Bi“‘“gists have suggested that in a genetic “r ”r“tein netw“r—, a hub n“de, 
which is a gene or protein that participates in a large number of interactions, may be 
’“re signiicant f“r the surviva‘ “f an “rganis’ than n“des that have s’a‘‘ degrees 
(Mas“n and Verw“erd 2007). In a s“cia‘ netw“r— that is sca‘e-free, a hub ‘“cati“n, 
which has numerous visitors each day, is a prime site for the spread of disease.

Deinitions A function f follows a power law if f(x) is proportional to xb for 
some constant b; that is, f(x) ∝ xb, or f(x) = cxb, for some con-
stants c and b. If n is the number of nodes in a graph and nk is the 
number of nodes of degree k, then the degree distribution is 
P(k) = nk/n, which is the proportion of nodes having degree k. 
Networks that follow the power law P(k) ∝ k–r with r > 1 are 
called scale-free networks. Hubs are nodes with high degrees in 
scale-free networks.
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Paths

Paths through the contact network in Figure 13.5.1 can help illuminate the epidemi-
ology of the disease. Suppose initially someone in household 1 has the disease. One 
way for someone from household 5 to contract the disease indirectly from 1 is by the 
path 1, Shop, 6, School, 5. Someone from household 1 goes shopping, infecting 
someone at the shop. Likewise, an individual from household 6 goes shopping and 
catches the disease. That person or someone in household 6 who becomes ill from 
contact with that individual goes to school, spreading the disease further. An indi-
vidual from household 5 also attends the school and contracts the disease there. With 
four edges along this path, we say the path length is 4. 

 Quick Review Question 3

Give two paths of length 3 from node 2 to node 6 in Figure 13.5.2.

In general, for biological networks, such as protein, gene, or metabolic networks, 
the average length of a path between nodes is small in comparison to the size of the 

Deinitions In a graph G, a path from vertex v0 to vn along edges e0 to en–1 
is the sequence

v0, e0, v1, e1, . . . , vn–1, en–1, vn

where ei = (vi, vi+1) for i = 0, 1, . . . , n –1. If no ambiguity exists, the path 
can be represented with just the vertices as the sequence v0, v1, . . . , vn or 
just the edges as the sequence, e0, e1, . . . , en–1. A path of n edges is said 
to be of length n.
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Figure 13.5.3 Graph of P(k) = k–2.5
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graph. Thus, we say such networks exhibit the small-world property. S”eciica‘‘y, 
if such a graph has n n“des, by deiniti“n the average sh“rtest-”ath ‘ength is “n the 
order of magnitude of log n or smaller. For example, metabolic networks have be-
tween 200 and 500 metabolites (nodes), but the average path length is between 3 and 
5. Genetic networks contain about 1000 genes (nodes) and 4000 interactions (edges), 
with an average ”ath ‘ength “f 3.3. Because average ”ath ‘ength indicates h“w read-
i‘y the netw“r— can c“’’unicate inf“r’ati“n, bi“‘“gica‘ netw“r—s are eficient 
communicators. For instance, a metabolic network needs few interactions for one 
’etab“‘ite t“ inluence the behavi“r “f an“ther ’etab“‘ite (Mas“n and Verw“erd 
2007). One “f the ”r“–ects c“nsiders an a‘g“rith’ t“ ca‘cu‘ate ’ean ”ath ‘ength.

Clustering

Figure 13.5.4 is a subgraph of Figure 13.5.1 because every node and every edge of 
Figure 13.5.4 is in Figure 13.5.1. The subgraph of Figure 13.5.1 that includes every 
node and edge except Cloister is connected because there is a way to get from any 
point to any other point in that subgraph by following edges. Thus, the disease has 
the potential of spreading to every node in the subgraph. 

Suppose household 6 of Figure 13.5.4 represents a family of two parents and 
three children in which every member of the family has contact with every other 
member. Figure 13.5.5 illustrates the graph of this household, which is complete, 
having every point (vertex or node) connected to every other point directly by ex-
actly one edge. An ill member of the household will expose everyone in the house.

In the gra”h “f Figure 13.5.5, each “f the ive ”“ints has f“ur incident edges c“n-
necting that node to the remaining nodes. In other words, each node has degree 4. 

Deinition A graph with n nodes exhibits the small-world property if the 
average shortest-path length is on the order of magnitude of log n 
or smaller.

Figure 13.5.4 One subgraph of Figure 13.5.1 
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Hospital

School

6
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Theref“re, the su’ “f the degrees “f a‘‘ the ”“ints is (5)(4) = 20. Because in su’-
ming the degrees we count each edge twice, once for each endpoint, the number of 
edges in this complete graph is half the sum, (5)(4)/2 = 20/2 = 10. In general, a com-
plete graph with n points has n(n – 1)/2 edges.

Quick Review Question 4

Referring to Figure 13.5.2, give each of the following:

a.  The edge sets of all connected subgraphs with V = {7, 8, 9}
b.  The complete subgraph G = (V, E) “f three ”“ints c“ntaining n“de 7
c.  The edge(s) to add to have a complete subgraph with V = {2, 3, 4, 5}
d.  The number of edges in the complete subgraph formed by this addition

Deinitions S is a subgraph of graph G if S is itself a graph and every node 
and edge of S is in G. A graph is connected if there exists a path 
from any vertex to any other vertex. A graph is complete if each 
point is adjacent to every other point with exactly one edge be-
tween each pair of nodes.

Theorem A complete graph with n nodes has n(n – 1)/2 edges.

Figure 13.5.5 C“’”‘ete gra”h “f a h“useh“‘d with ive individua‘s
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The c“nce”t “f c“’”‘eteness is centra‘ t“ the ca‘cu‘ati“n “f c‘ustering c“efi-
cients, a measure of how rapidly a disease can spread. The clustering coeficient for 
a vertex, v, is the probability that two nodes adjacent to v are themselves adjacent. 
That is, the chance that two arbitrary edges incident to v are part of a triangle of 
edges in the gra”h is the c‘ustering c“eficient f“r v. Thus, if A is the set of nodes 
adjacent to v, then the c‘ustering c“eficient is the qu“tient “f the nu’ber “f edges in 
the subgraph with points from A and the number of edges in a complete graph with 
that nu’ber “f ”“ints. If a n“de has degree zer“ “r “ne, then its c‘ustering c“eficient 
is 0. The c‘ustering c“eficient “f v indicates of how close v and its adjacent nodes 
are to being a complete graph. For example, node 2 in Figure 13.5.2 is adjacent to 4 
nodes, nodes 1, 3, 4, and 5. Three edges appear in the subgraph with these adjacent 
nodes, V = {1, 3, 4, 5}. However, a complete graph with four nodes has (4)(3)/2 = 6 
edges. Thus, the c‘ustering c“eficient f“r n“de 2 is 3/6 = 0.5. A 50% ”r“babi‘ity ex-
ists that two neighbors of node 2 are themselves adjacent. One research project cal-
cu‘ated the c‘ustering c“eficient “f ”e“”‘e using the Internet t“ be 0.1078; but with 
an edge connecting two actors if they were in a movie together, the clustering coef-
icient “f ’“vie act“rs is signiicant‘y higher, 0.79 (Egge’ann and N“b‘e 2008). 

Quick Review Question 5

Give the c‘ustering c“eficient f“r each “f the f“‘‘“wing:

a.  Node 3 from Figure 13.5.2
b.  N“de 7 fr“’ Figure 13.5.2
c.  Node 5 from Figure 13.5.1
d.  Node Cloister from Figure 13.5.1

Typically, a small-world network not only has a small mean path length, but it 
a‘s“ has a ‘arge ’ean c‘ustering c“eficient. With these characteristics, disease can 
spread rapidly in social networks.

Bipartite Graphs

Figure 13.5.6 shows a contact network of Wards A, B, and C in a psychiatric hospital 
with health-care workers, indicated by numbers. This bipartite graph has its verti-
ces split into two sets, a set of wards and a set of workers, with edges only between 

Deinition Suppose A is the set of nodes adjacent to node v in graph G, and 
n(A) is the number of points in A. The clustering coeficient for 
v, C(v), is the number of edges of G in the subgraph with points 
from A divided by the number of edges in a complete graph with 
n(A) nodes:

C(v) = 
number of edges of G in subgraph with set of nodes A

number of edges in complete graph with n1(A) nodes
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vertices in different sets. As another example, a metabolic network is a directed bi-
partite graph. Its nodes are partitioned into the set of metabolites and the set of reac-
tions catalyzed by the metabolism’s enzymes.

Quick Review Question 6

Is Figure 13.5.1 a bipartite graph? If not, explain why not. If so, give two sets of 
vertices, V1 and V2, where arcs are only between vertices in different sets.

Matrix Representation of Graphs

For a graph to be manipulated in a computer, its structure must be stored in some 
convenient manner. Often, we use one- and two-dimensional arrays, or vectors and 
matrices, respectively, to represent graphs. Such arrays, depending on the represen-
tation, can specify such information as adjacent nodes, data stored at nodes or along 
edges, and existence of paths between nodes.

We will be using adjacency matrices and connection matrices, which can store 
graphs where we are not interested in the values at the nodes but only in the graphs 
themselves. An associated vector can store nodal values. Take, for example, the graph 
Figure 13.5.7.

In the adjacency matrix, A, with indexing beginning at 1, the element in row i 
and column j, aij, indicates the number of edges between node i and node j for i and 

Deinition A bipartite graph is a graph with vertices partitioned into two 
sets, V1 and V2, where arcs are only between vertices in different 
sets.

1

ward A ward B ward C

2 3 4 5

Figure 13.5.6 Bi”artite c“ntact netw“r—
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j = 1, 2, 3, 4. F“r instance, because tw“ edges c“nnect ”“ints 1 and 4 in Figure 13.5.7, 
elements a14 and a41 are both 2. As the following matrix illustrates, the adjacency 
matrix for an undirected graph is symmetric about the diagonal:

A connection matrix, C, indicates only existence of an edge from one point to 
another, not the number of such edges. As the following connection matrix for Fig-
ure 13.5.7 i‘‘ustrates, if at ‘east “ne edge exists between n“de i and node j, then the 
element in row i and column j, cij, is 1; while the value is 0 otherwise:

1 2 3 4

1  

2

3

4

0 1 0 2

1 0 0 0

0 0 1 0

2 0 0 0
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0 1 0 1

1 0 0 0

0 0 1 0

1 0 0 0
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Figure 13.5.7 Example graph



Matrix Models 671

People-Location Graphs

Su””“se we have a i‘e “f activities “f ”e“”‘e in an area, where each rec“rd inc‘udes, 
a’“ng “ther data, an identiicati“n nu’ber f“r a ”ers“n (personID) and an identii-
cation number for a location (locationID) that person visited during a day. For ex-
a’”‘e, su””“se the i‘e c“ntains the f“‘‘“wing ”ers“n-‘“cati“n ”airs:

(7, 2938), (7, 27618), (7, 2938)  
(8, 2938), (8, 6270), (8, 21032), (8, 2938), (8, 15370), (8, 2938)  
(9, 10628), (9, 29740), (9, 10628)  
(18, 2938), (18, 5212), (18, 2938), (18, 19815), (18, 2938)

Thus, the ”ers“n with ID 7 started “ut at ‘“cati“n with ID 2938, ”resu’ab‘y 
h“’e; trave‘ed t“ ‘“cati“n 27618, ”erha”s w“r—; and then returned h“’e. The ”er-
s“n with ID 8, wh“ ‘ived in the sa’e h“’e (2938), ”r“bab‘y did a c“u”‘e “f errands 
in the ’“rning (t“ ‘“cati“ns 6270 and 21032), returned h“’e f“r ‘unch, and ’ade 
an“ther tri” (t“ 15370) in the aftern““n bef“re returning h“’e f“r dinner. The activi-
ties i‘e is ‘i—e‘y t“ c“ntain ’uch ’“re inf“r’ati“n, such as the ti’es at each ‘“ca-
tion, but we simplify the modeling by considering only people and locations. The 
corresponding bipartite graph indicating connections is in Figure 13.5.8. In this sec-
tion, we develop a way of storing this information.

After reading the i‘e inf“r’ati“n int“ an array “f rec“rds, activities, we can em-
ploy the functions genPersonIDLst and genLocIDLst to return the list of personIDs 
and locationIDs, respectively. For the preceding activities, genPersonIDLst(activities) 
returns the ‘ist {7, 8, 9, 18}, whi‘e genLocIDLst(activities) returns the list of loca-
ti“ns visited, {2938, 27618, 6270, 21032, 15370, 10628, 29740, 5212, 19815}.

Deinitions An adjacency matrix for a graph with n nodes is an n × n ma-
trix, where the element in row i and column j indicates the num-
ber of edges between node i and node j. A connection matrix for 
this graph is an n × n matrix, where the element in row i and col-
umn j is 1 if an edge exists between node i and node j and is 0 
otherwise. 

genPersonIDLst(activities)

Function to return the list of IDs for people in array, activities, of activity  
records

genLocIDLst(activities)

Function to return the list of IDs for locations in list, activities, of activity  
records



672 Module 13.5

A person’s or a location’s ID is different than its index in the list of people or lo-
cations, respectively. For example, assuming indices begin with 1 in locationIDLst 
given bef“re, the index “f ‘“cati“n ID 2938 is 1, whi‘e ‘“cati“n ID 21032 has index 
4. T“ “btain an index, we deine a functi“n, index, with parameters of an element 
and a list to return the index of the element in the list. Thus, for the preceding ex-
ample, index(21032, locationIDLst) returns 4; and for personIDLst = {7, 8, 9, 18}, 
index(8, personIDLst) returns 2.

7

2938

27 618

8

6270

21 032

15 370

9

10 628

29 740

18

5212

19 815

Figure 13.5.8 Bi”artite gra”h “f ”e“”‘e and ‘“cati“ns
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We deine functi“n genPeopleLocConnMat to generate a type of connection  
matrix for the bipartite graph of people to locations they visit. Each person corre-
sponds to a row and each location to a column. For example, the person with ID 
personIDLst(4) = 18 visited locations locationIDLst(1) = 2938, locationIDLst(8) =  
5212, and locationIDLst(9) = 19815. Thus, r“w 4 “f the bi”artite gra”h s ad–acency 
’atrix has 1s in c“‘u’ns 1, 8, and 9 and 0s e‘sewhere. The entire ’atrix t“ re”resent 
the connections of this people-location graph a””ears in Figure 13.5.9.

index(el, lst)

Function to return the index of element el in list lst

1 1 0 0 0 0 0 0 0

1 0 1 1 1 0 0 0 0

0 0 0 0 0 1 1 0 0

1 0 0 0 0 0 0 1 1
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3 6 7 0 3 6 7 1 8
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Figure 13.5.9 Connection matrix for people-location graph in Figure 13.5.8, where each 
person corresponds to a row and each location to a column

genPeopleLocConnMat(personIDLst, locationIDLst, activities)

Function to return connection matrix for a people-location graph

Pre:

 personIDLst is a list of IDs of people.
 locationIDLst is a list of IDs of locations.
  activities is a list of activities of people with each record including a per-

son’s ID and the ID of a location he or she visited.
Post:

  The function has returned a connection matrix with each row correspond-
ing to a person and each column corresponding to a location.

Algorithm:

 numPersons ← length of personIDLst

 numLocations ← length of locationIDLst
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Minimal Dominating Set

With a looming epidemic, public health might want to quickly place fever detectors 
or vaccination sites in a relatively small set of locations to which a high percentage 
of people travel. With realistic contact patterns from a community, determination  
of such a minimum dominating set is in the realm of graph theory and computer 
science. 

To compute a minimum dominating set, or a smallest set of locations that a 
given proportion of the population visits, we can use the FastGreedy Algorithm to 
obtain an approximation. First, we arrange the locations in nondecreasing order of 
degree in the people-location matrix. For example, in Figure 13.5.8, because loca-
ti“n 2938 has the ‘argest degree, 3, that ”‘ace is irst in any arrange’ent “f degrees 
in n“ndecreasing “rder. Because a‘‘ “ther ‘“cati“ns have degree 1, the re’ainder “f 
the list can be in any order. With the FastGreedy Algorithm, we keep selecting loca-
tions from largest degree down until a given population percentage has visited the 
set of selected locations (Eubank et al. 2004). Thus, returning to Figure 13.5.8, if we 
want t“ d“’inate  75% “r ‘ess “f the ”e“”‘e, which in this case is ‘ess than “r equa‘ 
t“ three ”e“”‘e, we need t“ se‘ect “n‘y the irst ‘“cati“n, 2938, fr“’ “ur ‘ist. Fast-

Greedy is called a greedy algorithm because at each iteration, the most advanta-
geous near-term choice is picked. 

For the design of the FastGreedy Algorithm, we break the technique into several 
s’a‘‘er functi“ns. First, we deine a functi“n, degLocation, to calculate the degree of 
a location index in the people-location graph. For example, in the graph of Figure 
13.5.8 with connection matrix, connMat, in Figure 13.5.9, ‘“cati“n 2938 with index 
1 has degree 3 because 3 people visit that location. Thus, degLocation(connMat, 1) 
returns 3.

Deinitions A minimum dominating set for a people-locations graph is a 
smallest set of locations that a given proportion of the population 
visits.

  nu’Activities ← length of activities
  connMat ← numPersons-by-numLocations matrix of zeros
  for i going from 1 through nu’Activities do the following: 
   personID ← ID of person in activities(i)
   locationID ← ID of location in activities(i)
   row ← index(personID, personIDLst)
   column ← index(locationID, locationIDLst)
   connMat(row, column) ← 1
  return connMat
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We must sort the location degrees while continuing to associate the location index 
with its degree. Thus, we form a list of ordered pairs of location indices and their 
degrees. A function, sortSecond, sorts this list by its second coordinates. Depending 
on the sorting algorithm, the function might return the following list for the graph in 
Figure 13.5.8:

{(1, 3), (9, 1), (8, 1), (7, 1), (6, 1), (5, 1), (4, 1), (3, 1), (2, 1)}

The “rder “f the irst c““rdinates (‘“cati“n indices) is uni’”“rtant, but the “rder “f 
the second coordinates (location degrees) must be nonincreasing.

To determine coverage, we also have a function, adjacentPeopleLst, to return a 
list of indices for people adjacent to a particular location with a given index. Thus, 
the function indicates the people who travel to a particular location. For example, 
with connMat being the c“nnecti“n ’atrix in Figure 13.5.9 f“r the gra”h in Figure 
13.5.8, adjacentPeopleLst(connMat, 1) returns the list {1, 2, 4} because people with 
IDs 7, 8, and 18 (with indices 1, 2, 4, res”ective‘y, in personIDLst) visit location 
2938 (with index 1 in locationIDLst).

degLocation(connMat, j)

Function to return the degree of the location with a given index in a people-
location graph

Pre:  j is the index of a location in connection matrix, connMat, for a people-
location graph.

Post: The function has returned the degree of the location with index j.
Algorithm:

 Return the number of ones in column j of connMat.

sortSecond(pairLst)

Function to return pairLst, a list of ordered pairs, sorted by the second coordinates

adjacentPeopleLst(connMat, j)

Function to return a list of the indices of people who visit the location with a 
given index in a people-location graph 

Pre:

  j is the index of a location in connection matrix, connMat, for a people- 
location graph.

Post:

  The function has returned a list of indices of people who visit the location 
with index j in a people-location graph with connection matrix connMat.

Algorithm:

  Return a list of the row indices where ones occur in column j of connMat.
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Using the FastGreedy A‘g“rith’, we n“w deine a functi“n, minDominating, to 
send back a list of locations that “dominates” a given percentage of people; that is, 
the function returns a list of locations to which that percentage of people visits. 

For example, with locationIDLst = {2938, 27618, 6270, 21032, 15370, 10628, 
29740, 5212, 19815}, connMat being as in Figure 13.5.9, and percentPeople = 0.75 =  
75%, minDominating(locationIDLst, connMat, percentPeople) returns {2938}; 3 “ut 
“f 4 ”e“”‘e g“ t“ the ‘“cati“n with ID 2938. With percentPeople = 1.0 = 100%, the 
functi“n can return {2938, 5212, 19815, 29740}. One hundred ”ercent “f the ”e“”‘e 
go to these 4 locations. Examining Figure 13.5.8, however, we note that smaller sets, 
such as {2938, 29740} and {2938, 10628}, d“’inate 100% “f the ”e“”‘e. The Fast-

Greedy Algorithm, which is fast and greedy, provides a heuristic for determining a 
dominating set. The algorithm yields a good approximation but not necessarily the 
best answer, and algorithms exist that are even faster. 

minDominating(locationIDLst, connMat, percentPeople)

Function to return a dominating set for a proportion of the people in a people-
location graph using the FastGreedy Algorithm

Pre:

 locationIDLst is a list of locations in a people-location social network.
 connMat is a connection matrix associate with the graph. 
 percentPeople is a proportion of the people.
Post:

 A dominating set has been returned.
Algorithm:

 if percentPeople is not between 0 and 1, percentPeople ← 1
 people ← empty list
 locations ← empty list
  locDegPairLst ← list of location indices (j = 1, 2, 3, . . ., number of col-

umns in connMat) and associated degrees obtained by calling 
degLocation(connMat, j) for each j

 sortedLocDegPairLst ← sortSecond(locDegPairLst) // list of pairs
 locDegPair ← 1
 percentLength ← percentPeople * (number of rows in connMat)
 while (length of people) < percentLength

   (locIndex, locDeg) ← sortedLocDegPairLst(locDegPair) // next pair
  loc ← locationIDLst(locIndex)
  locations ← locations with loc appended
  people ← union of people and adjacentPeopleLst(connMat, locIndex)
  locDegPair ← locDegPair + 1
 return locations
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Degree Distribution

For the distribution of the number of contacts people have with other people (degree 
distribution), we irst generate a c“nnecti“n ’atrix f“r a ”e“”‘e-”e“”‘e gra”h ass“-
ciated with a social network, such as the people-location graph of Figure 13.5.8. For 
simplicity, we ignore timing and assume two people are adjacent if they visited the 
same location in a day. Thus, Figure 13.5.10 is the people-people graph correspond-
ing to Figure 13.5.8, and the associated connection matrix is given in Figure 13.5.11.

We deine a functi“n, peopleToPeople, to return the connection matrix (connPeo-

pleMat) for a people-people graph. Going through every column of the people-loca-
tion connection matrix, connMat, we go down each column looking for 1s. For every 
1, we look through the rest of the column for 1s. The people corresponding to these 
indices are adjacent. For example, connMat of Figure 13.5.9 has 1 in element con-

nMat(1, 1). Because connMat(1, 2) is a‘s“ 1, we deine the 1 2 and 2 1 e‘e’ents “f 
connPeopleMat, connPeopleMat(1, 2) and connPeopleMat(2, 1), to be 1. That is, 
people with indices 1 and 2 are adjacent. Similarly, in the developing symmetric 
matrix, we assign 1 to connPeopleMat(1, 4) and connPeopleMat(4, 1). Then, with 1 
in the irst c“‘u’n, sec“nd r“w “f connMat and an“ther 1 in the ‘ast r“w, we deine 
connPeopleMat(2, 4) and connPeopleMat(4, 2) as 1. Because the matrix is symmet-
ric, we have already indicated that people with indices 2 and 1 are adjacent.

Figure 13.5.11 Connection matrix of Figure 13.5.10

Location ID
P

er
so

n
 I

D

7 8 9 18

 7  

 8

 9

18

0 1 0 1

1 0 0 1

0 0 0 0

1 1 0 0



















7

8

18

9

Figure 13.5.10 People-people graph derived from social network in Figure 13.5.8
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To obtain a degree distribution, we have a function, degPersonPPG, to calculate 
the degree of each node in the person-person graph. For the connection matrix con-

nPeopleMat in Figure 13.5.11 with graph in Figure 13.5.10, degPers“nPPG(conn- 
PeopleMat, 1) = degPers“nPPG(connPeopleMat, 2) = degPers“nPPG(connPeople-
Mat, 4) = 2, while degPers“nPPG(connPeopleMat, 3) = 0. That is, the people with 
IDs 7, 8, and 18 and indices 1, 2, and 4, res”ective‘y, have degree 2, “r 2 ad–acent 
n“des. ID 9 (with index 3) is is“‘ated because that ”ers“n d“es n“t g“ anywhere the 
other 3 people visit.

Fina‘‘y, we deine a functi“n, pLst, that returns the a list of ordered pairs, (k, 
P(k)), of a degree, k, and the corresponding degree distribution value, P(k). For 
k = 0, 1, 2, . . ., maximum(degree), P(k) = nk/n, where nk is the number of nodes of 
degree k and n is the total number of nodes in a people-people graph. Thus, for con-
nection matrix of Figure 13.5.11, pLst(connPeopleMat) returns {(0, ¼), (1, 0), (2, 

peopleToPeople(connMat)

Function to return a connection matrix for the people-people graph associated 
with the people-location social network with a given connection matrix 

Pre:

 connMat is a connection matrix for a people-location graph.
Post:

  The function has returned a connection matrix for the corresponding  
people-people graph.

Algorithm:

 maxPersonIndex ← number of rows of connMat

 connPeopleMat ← maxPersonIndex-by-maxPersonIndex matrix of 0s
 for locIndex going from 1 through the number of columns of connMat:
  for i going from 1 through maxPersonIndex:
   if connMat(i, locIndex) is 1
  for j going from i + 1 through maxPersonIndex:
   if connMat(j, locIndex) is 1
    connPeopleMat(i, j) ← 1
    connPeopleMat(j, i) ← 1
 return connPeopleMat

degPersonPPG(connPeopleMat, i)

Function to return the degree of the person with a given index in a people-
people graph

Pre:  i is the index of a location in connection matrix, connPeopleMat, for a 
people-people graph.

Post: The function has returned the degree of the person with index i.
Algorithm:

 Return the number of ones in row i of connPersonMat.
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¾)}. For the n = 4 nodes, one-fourth of the nodes have degree 0; no nodes have de-
gree 1; and three-fourths of the nodes have degree 2. 

The plot of the list pLst(connPeopleMat), {(0, ¼), (1, 0), (2, ¾)}, for the graph of 
Figure 13.5.10 is certainly stilted because of the small number of nodes (Figure 
13.5.12). Projects investigate some realistic social networks, revealing the more 
characteristic broad-tailed power law form for probability distributions of biological 
networks (Figure 13.5.3). Additionally, the mean degree of the graph in Figure 
13.5.10 is 1.5 = (2 + 2 + 0 + 2)/4. However, a typical scale-free network has a few 
n“des with signiicant‘y higher degrees than the gra”h s ’ean degree.

pLst(connPeopleMat)

Function to return a list of ordered pairs, (k, P(k)), for k = 0, 1, 2, . . ., 
maximum(degree), where P(k) is the degree distribution value

Pre:  connPeopleMat is the connection matrix for a people-people graph.
Post:  The function has returned a list of ordered pairs (k, P(k)), k = 0, 1, 2, 

. . ., maximum(degree).
Algorithm:

 numPeople ← number of rows of connPeopleMat

  degreeLst ← list of degPers“nPPG(connPeopleMat, i), i = 1, 2, 3, . . ., 
numPeople

  return ‘ist “f “rdered ”airs with irst c““rdinate being deg and second coor-
dinate being (number of occurrences of deg in degreeLst)/numPeople, 
deg = 0, 1, 2, . . ., (maximum value in degreeLst)

1 2
degree k

0.25

0.5

0.75

1.
P(k)

Figure 13.5.12  Plot of degree distribution for the graph of Figure 13.5.10 with connection 
matrix in Figure 13.5.11
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Clustering Coeficient

The c‘ustering c“eficient “f a ”ers“n ”r“vides an indicati“n “f the ra”idity with 
which a disease can spread among his or her associates, and the mean clustering co-
eficient is a ’etric “n ‘“ca‘ c“nnectivity “f a ”“”u‘ati“n. T“ deter’ine the c‘uster-
ing c“eficient “f a n“de with a given index in a c“nnecti“n ’atrix, we start by dein-
ing a function, adjacentPeople, to return a list of indices of its adjacent nodes. 
Another function, numPeopleEdges, returns the number of edges in a subgraph with 
a given collection of vertex indices. Thus, for this function, we count the number of 
“nes in the c“nnecti“n ’atrix with r“w and c“‘u’n indices in this set. Because each 
edge is counted twice, the result is divided by 2.

With these two functions and degPers“nPPG, we can deine a functi“n, cluster-

ingCoeff, t“ return the c‘ustering c“eficient “f a vertex, given its index. Using clus-

teringCoeff, we deter’ine that the ’ean c‘ustering c“eficient f“r “ur very s’a‘‘ 
”e“”‘e-”e“”‘e gra”h in Figure 13.5.11 is the high va‘ue “f 0.75.

adjacentPeople(connPeopleMat, i)

Function to return a list of indices of the people adjacent to the person with 
index i in the people-people graph with connection matrix connPeopleMat

numPeopleEdges(connPeopleMat, vertices)

Function to return the number of edges in a subgraph with a given collection 
of vertex indices

Pre:   connPeopleMat is the connection matrix for a people-people graph.
 vertices is a list of indices of nodes for a subgraph.
Post: The function has returned the number of edges in this subgraph.
Algorithm:

  return half the number of ones in elements of connPeopleMat with row 
and column indices from vertex

clusteringCoeff(connPeopleMat, v)

Functi“n t“ return the c‘ustering c“eficient “f a n“de

Pre:  connPeopleMat is the connection matrix for a people-people graph.
 v is a index of a node in this graph.
Post: The functi“n has returned the c‘ustering c“eficient f“r v.
Algorithm:

 deg ← degPers“nPPG(connPeopleMat, v)
 if deg < 2
  return 0
 else
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Example Problems

Activities with four people and nine locations served as an example in the “Algo-
rithms” part of this module. We discovered that the function minDominating, which 
uses the heuristic FastGreedy Algorithm, can return a set of four locations that dom-
inates all the people and a set with only one location to which 75% of the people 
visit. With a mean degree of 1.5 in the people-people graph, a plot of the degree 
distributi“n (Figure 13.5.12) has “n‘y three ”“ints. The ’ean c‘ustering c“eficient 
(0.75) is also exaggerated with such a small set.

A more realistic example derives from the activities in a synthetic data set (activ-

ities-portland-1-v1.dat) for the population of Portland, Ore., that the Network Dy-
namics and Science Simulation Laboratory (NDSSL) at Virginia Technical Univer-
sity generated from real data (NDSSL 2009a). The set contains 8,922,359 activities 
involving 1,615,860 people. So that we can perform calculations on a sequential 
machine, we select 1000 people at random, using all their activities. 

One such set of people has 5511 activities involving 3458 different locations. 
Execution of minDominating to cover 100% of the people yields a set of 3455 loca-
tions, while 594 locations can cover 50% of the population.

A plot of the degree distribution of a people-people graph for the 1000 individu-
a‘s (Figure 13.5.13) with a itted functi“n f(k) = 0.0219242 + 0.259918k 1.2 reveals 
a more realistic situation than that of Figure 13.5.12. 

  adj ← adjacentPeople(connPeopleMat, v)
  numerator ← numPeopleEdges(connPeopleMat, adj)
  denominator ← deg*(deg - 1)/2.0
   // number of edges in complete graph with deg number of nodes
  return numerator/denominator

10 2 3 4 5 6 7 8
Degree k

0.25

0.5

0.75

1.

P(k)

Figure 13.5.13  Degree distributi“n “f a 1000 rand“’‘y se‘ected ”e“”‘e with itted functi“n 
f(k) = 0.0219242 + 0.259918k 1.2
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The ’ean c‘ustering c“eficient f“r this gr“u” “f 1000 individua‘s is 0.118524 =  
11.8524%, slightly more than that of people on the Internet (Eubank et al. 2004).

Assessment of Model

Clearly, the results involving 1000 randomly selected people and their activities 
from the NDSSL synthetic data set are more realistic than the illustrative example 
with 4 people. Although the FastGreedy Algorithm does not necessarily yield a min-
imum dominating set even for the larger data set above, Eubank et al. (2004) proved 
that the technique does provide a fast method for obtaining a good dominating set. 
Thus, ”ub‘ic hea‘th “ficia‘s can use the resu‘ts t“ designate which ‘“cati“ns sh“u‘d 
have fever-detection sensors or should close during epidemics.

The degree distributi“n “f the ‘arger data set with itted functi“n f(k) =  
0.0219242 + 0.259918k–1.2 (Figure 13.5.13) does approximate the power law, 

P(k) = ck–r, common for scale-free networks. The shape reveals only a few nodes, in 
this case 8 out of 1000, or 0.8% of the population, have degree 6 or more. Using 
further de’“gra”hic inf“r’ati“n, ”ub‘ic hea‘th “ficia‘s ’ight target such we‘‘-
networked” people for immediate vaccination. Moreover, with simulations, they can 
investigate the impact of this and other vaccination policies on combating the spread 
“f inluenza.

The ’ean c‘ustering c“eficient “f 0.118524 f“r “ur gr“u” “f 1000 individua‘s is 
indicative of small-world networks, which exhibit higher cliquishness of an average 
neighb“rh““d. By c“ntrast, rand“’ gra”hs with ab“ut 300 t“ 5000 n“des have c‘us-
tering c“eficients “f a””r“xi’ate‘y 0.05 t“ 0.005, res”ective‘y, exhibiting a‘’“st n“ 
c‘ustering (Watts and Str“gatz 1998). 

Computing Power

As Bisset and Marathe (2009) state, These far ’“re c“’”‘ex netw“r—-based ’“d-
els present a new set of computational challenges that require the use of high-perfor-
mance computing.” Several reasons exist for requiring this power:

• Social networks are very large, have unstructured shapes, and change fre-
quently. Thus, computing systems require enormous storage to hold and sig-
niicant ”“wer t“ ’ani”u‘ate the data.

• Because these ’“de‘s are st“chastic, inv“‘ving chance, scientists ’ust exe-
cute a simulation with various intervention scenarios and compliance rates 
and must replicate each simulation run many times to obtain meaningful re-
sults on which to base policy recommendations. 

• Incorporation of the diverse characteristics of people and their activities is 
i’”“rtant in studying disease ”r“”agati“n in s”ace and ti’e. By c“ntrast, the 
study of physical systems usually does not require such diversity.

Computational scientists at such institutions as Los Alamos National Laboratory 
and Virginia Tech have developed high-performance individual-based simulation 
models to study the nature of epidemics and the impacts of policy decisions on con-
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tr“‘‘ing e”ide’ics in urban envir“n’ents (Bisset and Marathe 2009; Euban— et a‘. 
2004). With petascale computing platforms, researchers anticipate developing simu-
‘ati“ns t“ ’“de‘ g‘“ba‘ ”ande’ics (Bisset and Marathe). 

Because “f the directi“n “f ’uch research in the study “f e”ide’ics, it is advanta-
geous for the modeler to be able to use high-performance computing. The text’s 
website has additional high-performance computing materials related to this 
module.

Projects

F“r additi“na‘ ”r“–ects, see M“du‘e 14.15, S“cia‘ Netw“r—s: Va‘ue in Being We‘‘ 
Connected.”

For each of the following projects, use one of the NDSSL data sets at http://ndssl 

.vbi.vt.edu/“”endata/ (NDSSL 2009a) “r an“ther data set with activity data.

1. Develop the following functions:
 a.    genPeopleLocAdjMat(personIDLst, locationIDLst, activities) to return an 

adjacency matrix for a people-location graph
 b.    degPerson to return the degree of a person index in a people-location 

graph
 c.    SPD(connMat, i) to return the number of pairs of vertices in a people-

people graph with connection matrix, connMat, where the length of short-
est path (or the distance) between the vertices is i

 d.    isolated to return a list of isolated nodes in a graph
2. This project involves computation of the metric mean shortest-path length. A 

biological network typically exhibits the small-world property with a small 
average ”ath ‘ength, ’a—ing the syste’ an eficient c“’’unicat“r “f inf“r-
mation or disease.

The distance between two points in a graph is the length, or the number of 
edges, of the shortest path between those points. Floyd’s algorithm is a 
’eth“d f“r inding the distance between each ”air “f vertices in a netw“r—. 
We start by replacing each off-diagonal zero in the square connection matrix 
with ∞, a value greater than any number. For example, for the graph in Fig-
ure 13.5.14, the initial matrix follows:

D = 

0 1

0 1

1 0 1

1 1 0

∞ ∞

∞ ∞

∞

∞



















1 432

Figure 13.5.14  Graph for Project 2

http://ndssl.vbi.vt.edu/opendata/
http://ndssl.vbi.vt.edu/opendata/
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 For k = 1, 2, 3, 4, we consider each element dij; if dik + dkj is smaller than dij, 
we replace dij with the sum. For example, when k = 3, we replace d24 (∞) by 
d23 + d34 = 1 + 1 = 2; the length of the shortest path from v2 to v4 is 2 and goes 
through v3. Symmetrically, d42 is replaced by d43 + d32 = 1 + 1 = 2. At the end 
of that iteration, the distance matrix is as follows:

D = 

0 1

0 1 2

1 0 1

1 2 1 0

∞ ∞

∞

∞



















 When k = 4, d12 becomes d14 + d42 = 1 + 2 = 3; and d14 + d43 = 1 + 1 = 2 re-
places d13. The ina‘ distance ’atrix, which the a‘g“rith’ returns, is as 
follows:

D = 

0 3 2 1

3 0 1 2

2 1 0 1

1 2 1 0



















Use Floyd’s algorithm to calculate the distance matrix for a social network, and gen-
erate a histogram of these distances. Compute the mean smallest number of contacts 
for a disease to spread from one arbitrary individual to another. Also calculate the 
diameter, which is the largest distance in the graph and is a measure of the extent of 
the graph. 

Studies involving metabolic networks of between 200 and 500 nodes discovered 
’ean s’a‘‘est-”ath ‘engths between 3 and 5 (Mas“n and Verw“erd 2007). Genetic 
networks of about 1000 genes and 4000 interactions were discovered to have a 
mean-smallest path length of 3.3 (Mason and Verwoerd). Do your data set exhibit 
the small-world property with a small mean smallest-path length? Does your data set 
have a fair‘y ‘arge ’ean c‘ustering c“eficient?

Floyd’s algorithm f“r inding the ‘ength “f the sh“rtest ”ath between each 
pair of vertices in a network of n nodes:

  D ← connection matrix for the network
  for i going from 1 through n, do the following: 
   for j going from 1 through n, do the following:
    if i ≠ j and dij is 0
     dij ← ∞
  for k going from 1 through n, do the following:
   for i going from 1 through n, do the following: 
    for j going from 1 through n, do the following:
     if dik + dkj < dij then
      dij ← dik + dkj
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3. Deine a functi“n C(k) t“ return the ’ean c‘ustering c“eficient “f n“des that 
have degree k. For metabolic networks of 43 organisms, C(k) is approxi-
mately proportional to k–1, so that as the degree increases, the clustering co-
eficient decreases. Thus, n“des with s’a‘‘ degrees tend t“ be c‘ustered 
dense‘y, and n“des with ‘arge degrees are n“t (Mas“n and Verw“erd 2007). 
Does your data set exhibit a similar attribute?

4. Let N(v) be the set of nodes adjacent to the person or location vertex, v,  
in a people-location network. For V being a subset of vertices, let N(V) =  

∪
∈v V
N v( ), the union of all N(v) for v in V; that is, N(V) is the collection of all 

nodes adjacent to at least one vertex in V. The overlap ratio for a subset of 
locations, S, is the number of elements in N(S) divided by the sum of the de-
grees of nodes in S. This value is greater than 0 and less than or equal to 1. A 
smaller overlap ratio indicates a greater overlap, or a greater probability that 
two people visit the same location. Eubank et al. (2004) shows that the Fast-

Greedy Algorithm yields better results for higher overlap ratios of the loca-
tions. Develop a function to compute the overlap ratio for a set of locations. 
Calculate the overlap ratios of the locations for the sample data set and a 
random subset of 1000 people and their activities from the activities-”“rt 
‘and-1-v1.dat at NDSSL (2009a). Based “n y“ur resu‘ts and the w“r— “f Eu-
bank et al. (2004), on which data set should the FastGreedy algorithm give 
the best results?

5. The FastGreedy algorithm gives a good approximation for the dominating 
set problem. Develop an algorithm to return a minimum dominating set. 
Compare the speeds of the revised and the original algorithms on small 
graphs of increasing sizes (numbers of nodes). Plot these speeds verses size, 
and it functi“ns t“ the data.

6. When data sets are very large, we may wish to approximate metrics using 
random subsets of some proportion, p (0 < p  1), “f the t“ta‘ size. I’”‘e-
ment each of the techniques below for returning a random sublist of distinct 
integers from 1 through n, where the size of the sublist is approximately ⌈pn⌉, 
the smallest integer greater than or equal to pn. For example, if n = 1,615,860, 
which is the size of activities-”“rt‘and-1-v1.dat fr“’ NDSSL (2009A), and 
p = 0.001, then the size of the sublist is ⌈pn⌉ = (0.001)(1,615,860) = 1615.86 =  
1616. Note that getSub‘ist1(n, p) returns exactly ⌈pn⌉ elements, whereas  
getSublist2(n, p) returns approximately ⌈pn⌉ elements.

Technique 1—getSublist1(n, p):

 size ← pn

 personIdLst ← empty list
  while (number of elements in personIdLst) is less than size do the following:
  randInt ← random integer in {1, 2, 3, . . ., n}
  if randInt is not in personIdLst

   append randInt to personIdLst

 return personIdLst
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 b.  Compute the amount of time to execute each function for n = 1615860 
and p = 0.001. 

 c.  For i going from 1 to 10, compute the time it takes to execute getSub-

‘ist1(100000, 0.001*i), and plot the time versus the number of elements in 
the sublist, 100000 * 0.001 * i. Fit a function to this graph. Repeat this 
task for getSublist2. Discuss the results, including the pros and cons of 
each technique. Make recommendations about when to use each method.

7. We can esti’ate the ’ean c‘ustering c“eficient by eva‘uating a ’etric f“r a 
random subset of log(|P|) number of people, where |P| is the number of peo-
ple in the data set (Eubank et al. 2004). For i varying from 1 to 50, select a 
random subset of size log(|P|) · i, c“’”ute the ’ean c‘ustering c“eficient, 
and use commands to determine the time the computer took to perform these 
two tasks. Plot the time versus subset size. Observe the mean clustering coef-
icients f“r y“ur subsets. Discuss the resu‘ts.

8. Deve‘“” a si’u‘ati“n “f the s”read “f inluenza using a ”e“”‘e-”e“”‘e gra”h. 
For simplicity, assume people fall into one of three categories, susceptibles 
(S), infecteds (I), or recovereds (R); recovereds are immune from the disease. 
Besides a c“nnecti“n ’atrix, have a c“rres”“nding ‘ist “f n“de va‘ues re-
cording each person’s state as an integer, such as 0 for susceptible, 1 for in-
fected, and 2 for recovered. Start the simulation at time t = 0 with one in-
fected person and all others being susceptible. At each time step, a healthy 
”ers“n can catch the lu fr“’ an infected ad–acent n“de with a ”r“babi‘ity “f 
transmissionRate. The logic for this segment is as follows:

if (a rand“’ l“ating ”“int nu’ber between 0 and 1) < transmissionRate 

that healthy person becomes sick

 A person is sick for only one time unit. Continue the simulation until the 
disease no longer exists in the population. Record the total number of people 
wh“ caught the lu and the nu’ber “f ti’e ste”s f“r the si’u‘ati“n run. F“r a 
given value of transmissionRate, run the simulation at least 10 times and 
average the t“ta‘s (Watts and Str“gatz 1998). 

9. Deve‘“” the si’u‘ati“n discussed in Pr“–ect 8. Deine a functi“n t“ return the 
percent of the population who became sick. Have the program run nine experi-
ments with transmissionRate = 10%, 20%, 30%, . . ., 100%, and conduct each 
experiment 10 times. Also, have the code determine the average percent of 
people who became ill for each probability. Plot the data. Discuss the results.

10. Repeat the development in Project 8. At each time step, count the number of 
people in each category, S, I, and R. Plot the number of people in S, I, and R 
versus time for one run.

Technique 2—getSublist2(n, p):

 personIdLst ← empty list
 for i going from 1 through n, do the following:
  if (rand“’ l“ating ”“int nu’ber between 0 and 1) is ‘ess than p
   append i to personIdLst

 return personIdLst
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11. Reine the ’“de‘ “f Pr“–ect 8 t“ acc“unt f“r deaths in s“’e ”ercentage “f the 
infecteds and ”erf“r’ the tas— “f Pr“–ect 8, 9, “r 10.

12. Repeat any of Projects 8–11 so that a person is sick for two time steps, mak-
ing a longer infectious period. Thus, have two states for infected.

13. Deve‘“” Pr“–ect 9 and the c“rres”“nding versi“n where a ”ers“n is sic— f“r 
two time steps, making a longer infectious period. In the latter case, have two 
states f“r infected. C“’”are the resu‘ts. C“’”ute the c‘ustering c“eficient 
f“r y“ur data set. Mas“n and Verw“erd (2007) states, f“r netw“r—s with 
str“ng ‘“ca‘ c“nnectivity the ittest strains are th“se that have high trans’is-
sion rates and relatively short infectious periods.” Do your results support 
this statement?

14. Develop one of Projects 8, 10, or 11 designating percentVaccinated percent 
“f the ”e“”‘e with the highest degree as being vaccinated against the lu. 
Have the ”r“gra’ run ive ex”eri’ents with percentVaccinated = 0%, 10%, 
20%, 30%, 40%, and conduct each experiment 10 times. Also, have the code 
determine the average percent of the population who became ill for each 
probability. Plot the data. Discuss the results.

15. This ”r“–ect tests the “bservati“n that the ’ean c‘ustering c“eficient (MCF) 
for networks exhibiting the small-world property, such as most social net-
w“r—s, is signiicant‘y higher than f“r rand“’ gra”hs (Mas“n and Verw“erd 
2007). Using a rea‘istic s“cia‘ netw“r— data set, ca‘cu‘ate the MCF and the 
percentage (p) of 1s, indicating edges, in its people-people connection ma-
trix. Develop a function with parameters for a size, n, and a probability, p, to 
return a random n × n connection matrix, where p is the probability of 1 in a 
position. Calculate the MCF of a generated random graph for the number of 
people and the percentage of ones in the realistic social network. Run this 
simulation a number of times, say 100 to 1000 times, to obtain an average 
value for MCF, and compare the results with that of the realistic social 
network.

16. Using the functi“n fr“’ Pr“–ect 15 and a ixed size, n, say 20, calculate the 
’ean c‘ustering c“eficient (MCF) f“r netw“r—s with ”r“babi‘ities p = 0.0, 
0.1, 0.2, . . ., 1.0. For each probability, run the simulation a hundred times to 
obtain an average for MCF. Plot MCF versus p. Discuss the results.

17. Repeat Project 15 for mean path length instead of MCF (see Project 2).
18. Repeat Project 15 for degree distribution instead of MCF. For the random 

graphs, average the number of nodes of degree k to obtain nk.
19. Using distributions of movement patterns, Schwarzkopf and Alford (2002, 

2005) developed individual-based, correlated random walk models to ascer-
tain if adult cane toads move nomadically. At each time step, a simulated 
toad does the following:

• Decide if it is going to move or not.
• If it decides to move, decide if it returns to its most recent previous 

location.
• If it decides to move but not return to its most recent previous location, 

decide the angle to turn and the distance to move.

 With this algorithm, develop a simulation following the movements of 100 
toads and using a simulation time of 30 days with a time step of 1/2 day. 
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Consider each of three seasons (wet, late wet, dry) using movement parame-
ters from those in Table 13.5.1, which are similar to values obtained from 
observing a group of tracked cane toads in the Heathlands region of Austra-
lia. Assume the wet season lasts 4 months, late wet lasts 2, and dry lasts 6 
months. Ignore death, food, and moisture. For each season, using multiple 
simulations, compute the following path characteristics: mean total distance 
traveled, mean total displacement, and mean straightness, which is the total 
displacement divided by total distance traveled. Table 13.5.2 gives approxi-
mate mean straightness and mean total displacement per day for a group of 
traced cane toads in the region. Discuss your results, including when toads 
tend to move straighter and further. Hypothesize reasons for these results. 

Table 13.5.1 
In three seasons (wet, late wet, dry), probabilities that a toad moves; if moves, that it 
returns to most recent previous location; if moves but does not return, that it goes 
various distances at various angles; Values approximated for Heathlands from 
Schwarzkopf and Alford (2002) 

Probability Wet season Late wet season Dry season

moves 0.80 0.79 0.69

returns 0.03 0.10 0.10

distance 0 m 0.11 0.14 0.18
distance 5 m 0.25 0.34 0.16
distance 15 m 0.24 0.27 0.17
distance 35 m 0.16 0.15 0.18
distance 75 m 0.14 0.08 0.17
distance 155 m 0.05 0.02 0.12
distance 315 m 0.02 0.00 0.01
distance 635 m 0.02 0.00 0.01
distance 1275 m 0.01 0.00 0.00

angle –170° 0.12 0.22 0.28
angle –150° 0.03 0.08 0.05
angle –130° 0.03 0.07 0.03
angle –110° 0.03 0.02 0.03
angle –90° 0.03 0.03 0.03
angle –70° 0.03 0.03 0.03
angle –50° 0.02 0.02 0.03
angle –30° 0.07 0.02 0.03
angle –10° 0.06 0.02 0.04
angle 10° 0.05 0.04 0.02
angle 30° 0.06 0.02 0.03
angle 50° 0.06 0.03 0.02
angle 70° 0.06 0.02 0.04
angle 90° 0.03 0.04 0.02
angle 110° 0.05 0.04 0.04
angle 130° 0.07 0.04 0.03
angle 150° 0.05 0.08 0.05
angle 170° 0.15 0.18 0.20
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Answers to Quick Review Questions

1. a.  V = {1, 2, 3, 4, 5, 6, 7, 8, 9}
 b.  (3, 6) = (6, 3)
 c.  9
2. a.  1, 2, 4, 5, 6
 b.  (1, 2) = (2, 1) and (1, 3) = (3, 1)
 c.  5
 d.  none
3. 2, 1, 3, 6; 2, 3, 5, 6; 2, 4, 5, 6; 2, 5, 3, 6
4. a.  {(7, 8), (8, 9)}, {(7, 8), (7, 9)}, {(7, 9), (8, 9)}, {(7, 8), (7, 9), (8, 9)}
 b.  V = {7, 8, 9}, E = {(7, 8), (7, 9), (8, 9)}
 c.  (4, 5) = (5, 4)
 d.  6 = (4)(3)/2
5. a.  0.4 = 4/((5)(4)/2)
 b.  1.0 = 1/1
 c.  0 = 0/1
 d.  0
6. Yes, Figure 13.5.1 is a bipartite graph. For example, one possible partition is 

V1 = {School, Hospital, Work, Shop, Cloister} and V2 = {1, 2, 3, 4, 5, 6, 7}. 
However, the node Cloister can belong to either set.
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14
ADDITIONAL CELLULAR AUTOMATA, AGENT-BASED 
AND MATRIX PROJECTS 

Overview

In Chapters 8–13, we studied techniques, issues, and applications of computational 
science empirical models, random walk and cellular automaton simulations, agent-
based simulations, high-performance computing, and matrix modeling. Projects usu-
ally built on or were closely related to the examples discussed and developed in the 
modules. 

As with Cha”ter 7, Cha”ter 14 ”r“vides “””“rtunities f“r students t“ enhance their 
computational science problem-solving abilities through completion of additional 
extensive projects. Although not containing examples, each module in the chapter 
d“es have suficient scientiic bac—gr“und f“r students t“ c“’”‘ete ”r“–ects in the a”-
plication area. At the beginning of a module, the prerequisite material is listed. Cor-
respondingly, project sections in previous chapters suggest appropriate Chapter 14 
modules for additional projects. Thus, students can work with projects in the current 
chapter at any time after covering the prerequisites.

As with earlier projects, those of Chapter 14 are appropriate for teamwork. Inter-
disciplinary teams perform most of the research and development in computational 
science. Thus, teamwork experiences developing models and simulations in a variety 
of application areas are important for students studying computational science. 

Cha”ter 14 s a””‘icati“ns with ”r“–ects are in a variety “f scientiic areas, inc‘ud-
ing the f“‘‘“wing: ”“‘y’ers, s“‘idiicati“n, f“raging behavi“r, ”it vi”ers and heat 
diffusion, growth of mushroom fairy rings, spread of disease, HIV and the immune 
syste’, ”redat“r-”rey interacti“ns, c‘“uds, ish sch““‘ing, invasive ”‘ants, bi“inf“r-
matics, social science, and so on.





MODULE 14.1

Polymers—Strings of Pearls

Prerequisites: M“du‘e 9.5, Rand“’ Wa‘—,  and M“du‘e 8.3, “Empirical Models,” 

f“r ”arts that inv“‘ve itting “f functi“ns.

Introduction

The Mes“a’erican civi‘izati“n “f the Maya extended f“r ab“ut thirty-ive hundred 
years, between 2000 BC and the AD 1500s. When the S”anish f“und the’ during 
the sixteenth century, the Mayans were playing a very interesting ballgame with 
”“‘itica‘ and re‘igi“us signiicance that transcended the ga’e as a s”“rt. These ga’es 
were played on large courts; the oldest known is one located in Chiapas, Mexico, 
which dates fr“’ ab“ut 1400 BC. The ba‘‘s they used were ‘arge, between 12 and 18 
in. in diameter, and were made of solid rubber, likely weighing 8 to 40 lb. Most 
Westerners think that rubber originated with the Charles Goodyear’s vulcanization 
process, which cured natural rubber into a commercially useful product. As it turns 
“ut, ”e“”‘e “f Mes“a’erica were ”r“cessing rubber by 1600 BC, thirty-ive hundred 
years bef“re the irst rubber ”atent in Eng‘and. The Mayans used rubber n“t “n‘y f“r 
’a—ing ba‘‘s, but a‘s“ f“r ”aint, ’edicines, water”r““ing, and s“ “n. Interesting‘y, 
they took the latex from a local tree, Castilla elastica, and mixed it with the liquid 
from morning glory, Ipomoea alba. With stirring and the heat of the region, they 
produced rubber in a process very similar to Goodyear’s (Armstrong; Hosler et al. 
1999, Wi—i”edia 2012).

Rubber is a g““d exa’”‘e “f what scientists ter’ a natura‘ ”“‘y’er.  But, what 
is a polymer? The word is from the Greek polumeres, which means “having many 
parts” (poly, “many”; merous, “parts”; Marko). Thus, we use the term polymer to 
describe a class of chemical compounds composed of repeating chemical building 
blocks. These building blocks are identical or closely related chemical structures, 
each referred to as a monomer. Rubber is a polymer made up of repeating subunits 
(monomers) of isoprene (2-methyl-1,3-butadiene), as in Figures 14.1.1 and 14.1.2 
(Michalovic 2000). In Figure 14.1.1, n is a chemist’s shorthand to indicate that simi-
lar types of bonds link n of these subunits. So, rubber is polyisoprene. The monomer 
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isoprene is a‘s“ used t“ generate a nu’ber “f bi“‘“gica‘‘y signiicant ’“‘ecu‘es, 
such as lanosterol (precursor to various animal sterols), vitamins A and E, and caro-
tene pigments (Case Western Reserve University; Nelson and Cox 2012). 

Rubber is not the only natural polymer. Natural polymers abound in nature and 
include cellulose, starch, chitin, nucleic acids (DNA, RNA), and proteins. Chains of 
monomers make up each of these polymers. Proteins, for instance, are strings of 
a’in“ acids. Because each ’“n“’er in the ”r“tein chain can be any “ne “f the 20 
different naturally occurring amino acids, proteins are quite diverse in composition 
(Nelson and Cox 2012).

Scientists have learned to duplicate the process of polymer synthesis, polymer-
ization, so that quite a variety of synthetic polymers, such as polyethylene and poly-
styrene, exist. We can now even synthesize rubber. These polymers are found in al-
most all manufactured products and their packaging (Case Western Reserve 
University).

Some polymers, like rubber, are elastomers. Elastomers are made up of mole-
cules that are loosely cross-linked (1 in 100 molecules linked to other molecules). 
By c“ntrast, plastics have 1 in 30 cross-linked molecules; and we can shape or mold 
these stiffer, nonelastic materials (Case Western Reserve University).

Some of the most interesting developments in polymer chemistry are medically 
applicable polymers. Controlled drug delivery, for instance, combines polymers 

Deinitions A polymer is a chemical compound composed of repeating 
building blocks, which are identical or closely related chemical 
structures, called monomers.
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Figure 14.1.1 Rubber polymer with similar types of bonds linking n isoprenes
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with medicines to release medicines into the body in predetermined manners. We 

can manage release to be constant or cyclic over a prolonged time period, or we can 

cause the medicine to disperse in response to an environmental cue. These combina-

tions improve effectiveness of chemical therapies, reduce the number of administra-

ti“ns, and ensure ”atient c“’”‘iance. As an exa’”‘e, Nifedi”ine, c‘assiied as a ca‘-
cium-channel blocker, may be prescribed for treatment of angina and hypertension 

and can be administered in an extended-release tablet (ERT). This tablet looks like 

a normal tablet but consists of two layers, an inner, “active” drug layer surrounded 

by an external, inert polymer. This outer layer of polymer is osmotically sensitive. In 

the digestive tract, osmotic forces cause this outer layer to swell, pressing against the 

inner layer and forcing small amounts of the medicine out of a previously drilled 

hole in the tablet. Small, but constantly released, doses are absorbed into the circula-

tory system. This mechanism provides a controlled release of the medication over a 

24-h period. Patients have to take the medicine only once a day, and levels of the 

drug in the blood remain high enough to be effective. Other drugs, like some for 

birth c“ntr“‘, can be i’”‘anted f“r u” t“ 5 years “f de‘ivery (Brann“n-Pe””as 1997; 
Tenanbau’ 2003; Pizer, Inc. 2011; Rx‘ist).

Scientists who study polymers and those who study biology and medicine are 

teaming up to develop a wide variety of medical applications. For instance, based on 

textile industry techniques, polymer scaffolds have been developed that have proven 

most useful for cell and tissue growth. Such scaffolds have been employed to gener-

ate artiicia‘ s—in t“ treat burn ”atients. The s—in  he‘”s t“ ”revent infecti“n and 
produces chemical factors that promote faster healing. In the future, scientists may 

use such scaffolds to grow nerve cells for spinal cord injuries or to grow insulin-se-

creting cells for diabetes patients (Case Western Reserve University).

Simulations

Scientists are very interested in predicting a protein’s native structure from its amino 

acid sequence because the folding of a protein polymer with its resulting geometric 

shape determines its function. An understanding of the mechanism would be a major 

breakthrough in studying the basic science of the cell. Computational scientists are 

developing computer simulations of polymers to gain insight in solving the protein-

f“‘ding ”r“b‘e’ and “ther ”“‘y’er questi“ns (Bast“‘‘a et a‘. 1997).
Random walks are commonly used to generate 2- and 3D models of polymers. 

However, two different monomers of a polymer cannot occupy the same space at the 

same time. Thus, such a simulation generally involves a self-avoiding walk (SAW), 

which is a random walk that does not cross itself, that is, a walk that does not travel 

thr“ugh the sa’e ce‘‘ twice. F“r exa’”‘e, Figure 9.5.1 “f M“du‘e 9.5, Rand“’ 
Walk,” displays a walk that is not self-avoiding because at least once (and in this 

walk, more than once) the walker cycled back to an earlier position. In an algorithm 

to generate a self-avoiding walk, at each time step eliminating the direction from 

which the walker comes, the walker selects at random one of the remaining direc-

ti“ns. The ”r“–ects deve‘“” severa‘ such si’u‘ati“ns (G“u‘d and T“b“chni— 1988).
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Projects

1. a.  Develop a simulation and visualization to generate a 2D model of a poly-
mer with a self-avoiding walk. Terminate the simulation when the random 
direction would cause the developing path to cross itself. The visualiza-
tion should show the entire model of the polymer from the beginning of 
the random walk until the end. 

 b.  Run the simulation a number of times, recording the fraction, f(n), of 
times the simulation generates a polymer of length (number of steps) at 
least n. Using empirical modeling, derive an equation for f as a function of 
n (G“u‘d and T“b“chni— 1988).

 c.  The end-to-end distance is an important geometric property of a polymer 
that inluences the texture and “ther ”hysica‘ ”r“”erties “f the ”“‘y’er. 
Run the simulation a number of times, evaluating the root-mean-square 
displacement Rn as follows: For each walk of n steps, evaluate the square 
of the displacement (end-to-end distance) of the nth step (particle) from 
the initial position, the origin; then, over all such n-step walks, compute 
the average of the squares of the displacements; take the square root of 
this average to calculate Rn. If the nth step for trial i is to location (xn,i, yn,i), 
the square of the displacement from the origin is (sn,i)

2 = (xn,i)
2 + (yn,i)

2. 
The formula for the root-mean-square displacement is

Rn = 
s

m

n i
i

m

,( )∑
=

2

1

 where sn,i is the displacement of the nth particle from the starting position 
during trial i of m successful trials. Using empirical modeling, derive an 
equation for Rn as a function of n (G“u‘d and T“b“chni— 1988).

2. Repeat Project 1 in three dimensions, where at each step the walker selects at 
random one of six directions.

3. Re”eat Pr“–ect 1 where b“nd ang‘es are a‘‘ 90º, s“ that the rand“’ wa‘—er 
turns t“ the right “r ‘eft with each ste” (G“u‘d and T“b“chni— 1988).

4. Re”eat Pr“–ect 2 where b“nd ang‘es are a‘‘ 90º, s“ that the rand“’ wa‘—er 
turns to the right, left, up, or down with each step.

5. The technique in Pr“–ect 1 is ineficient in ca‘cu‘ating Rn (see Part c) for large 
n because of the number of aborted trials. An alternative method uses a 
weight Wn associated with each walk of n steps to skew the importance of 
underrepresented large chains. The weights in a SAW are as follows:

Deinition A self-avoiding walk (SAW) is a random walk that does not 
cross itself, that is, a walk that does not travel through the same 
cell more than once.
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• W1 = 1.
• If no step is possible at step n, Wn = 0. In this case, the walk terminates, 

and the program generates a new walk starting at the origin.
• If the walker can go in any of the three directions at step n, Wn = Wn-1.
• If the walker can go in exactly two directions at step n, Wn = 2⁄3Wn-1.
• If the walker can go in exactly one direction at step n, Wn = 1⁄3Wn-1.

 We estimate the root-mean-square displacement as follows:

Rn = 
W s

W

n i n i
i

m

n i
i

m
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,
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1

1

 where Wn,i is the value of Wn and sn,i is the displacement of the nth particle 
from the starting position during trial i of m successful trials. Using empirical 
modeling, derive an equation for Rn as a function of n (Gould and Tobochnik 
1988).

6. Repeat Project 5, attempting to produce longer polymer models by aborting 
any one random walk when the weight becomes smaller than some threshold 
value, such as 0.15. 

7. Using the technique of Project 1a, develop a collection of models for poly-
mers of some length n. Write a program that attempts to construct models of 
polymers of length 2n by attaching the head of one “polymer” to the tail of 
another. The program should reject the walk if it crosses itself. This tech-
nique is at the basis of an accelerated method to calculate Rn (see Project 1c; 
G“u‘d and T“b“chni— 1988).
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MODULE 14.2

Solidiication—Let’s Make It Crystal Clear!

Prerequisite: M“du‘e 9.5, Rand“’ Wa‘—.

Introduction

What d“ sn“wla—es and stee‘ have in c“’’“n? At irst g‘ance, we ”r“bab‘y w“u‘d 
say, not much. However, if we could look closely enough, we would see that they 
both are crystalline, possessing amazing structural similarities. Each is made of tree-
like structures called dendrites, which are formed as substance cools during the 
process of solidiication. 

Sn“wla—es are c“’”“sed “f “ne “r ’“re snow crystals. Each crystal is built of 
water ’“‘ecu‘es arranged in a very s”eciic, hexag“na‘ lattice. These crystals form 
in the c‘“uds by the c“ndensati“n “f water va”“r int“ ice. At irst, whi‘e very s’a‘‘, 
the crystals form as hexagonally shaped prisms, following the original, molecular 
symmetry. The edges of the facets of this prism grow out more rapidly than the fac-
ets themselves, leading to the formation of “limbs.” These limbs may, and usually 
do, produce other branches, leading to the dendrite, or treelike, forms. 

 A number of factors determine the precise shape of the crystal, but temperature is 
the ”ri’ary inluence. As sn“wla—es b‘“w and fa‘‘ thr“ugh the c‘“uds, they enc“un-
ter signiicant variati“ns in te’”erature, hu’idity, and ”ressure. Each sn“wla—e 
tends to have different environmental “experiences,” which lead to the development 
“f different sha”es. Why sn“wla—e sha”e is s“ te’”erature de”endent is n“t c“’-
pletely understood (Libbrecht).

The s“‘idiicati“n “f sn“wla—es is fascinating, but the ”r“cess “f s“‘idiicati“n 
has an impressive array of manufacturing applications. Despite the increased use of 
plastics, think of all the things we use everyday that are metal. Used to produce ev-
erything from soda cans to car engines, these metals and alloys are formed from 
‘iquids that have fr“zen,  “r s“‘idiied. S“‘idiicati“n, theref“re, is an i’”“rtant 
”r“cess f“r generating ’eta‘ ”r“ducts as we‘‘ as sn“wla—es. 

Dendrites form within the molten metals/alloys as they solidify during the casting 
process. These dendrites vary greatly in shape, size, and orientation. Furthermore, 
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the individual dendrites interconnect in various ways to generate a series of intricate 
microstructures. These individua‘ and c“‘‘ective variati“ns great‘y inluence the 
structura‘ qua‘ities (e.g., strength and lexibi‘ity) “f the ”r“duct (G‘ic—s’an et a‘. 
1991). There are nu’er“us h“rr“r st“ries “f castings that have br“—en a”art fr“’ 
interna‘ defects that “riginated fr“’ ther’a‘ stresses “ccurring during s“‘idiicati“n 
(Seetharamu et al. 2001). According to scientists, we would be able to understand 
(and, therefore, control) the properties of materials that solidify dendritically better 
if we could develop effective computational models of the behavior of individual 
dendrites.

Under the inluence “f Earth s gravity, ‘iquid ’eta‘ is sub–ect t“ the inluence “f 
convective currents as it c““‘s. These currents signiicant‘y a‘ter the gr“wth “f the 
dendrites, which makes modeling of “normal” dendritic growth and the effects of 
c“nvective currents “n such gr“wth virtua‘‘y i’”“ssib‘e. C“nfr“nting this dificu‘ty, 
the National Aeronautics and Space Administration (Glicksman et al. 1991) has 
teamed with scientists at Rensselaer Polytechnic Institute in the Isothermal Dendritic 
Growth Experiment (IDGE). Experiments in this program, conducted in conditions 
of low gravity that Earth orbit offers, have already shed tremendous light on den-
dritic growth. For instance, scientists, using IDGE data, will be able to separate the 
effects “f c“nvecti“n fr“’ “ther fact“rs that i’”act s“‘idiicati“n “f ’eta‘s and a‘-
loys. Such information will go far to improve computational models, which should 
guide us to improved industrial production of various metals/alloys.

Projects

1. a.  We can use the technique of diffusion-limited aggregation (DLA) to 
build a dendritic structure. In one form of the algorithm, a seed, or initial 
location for the developing dendritic structure, is in the middle of an 
m × m launching rectangle. This launching rectangle is a region in the 
middle of an n × n grid, where m < n. For example, m might be 16 and n 
might be 40. One at a time, “particles” are released from random positions 
on the launching rectangle boundary to go on random walks. If the walker 
comes in contact with another particle (i.e., a neighbor to its north, east, 
south, or west), with a designated sticking probability, the walker adheres 
to the particle, resulting in a larger structure. If the walker travels too 
close to the boundary of the grid, the simulation deletes that walker and 
releases another random walker from the launching rectangle. Use the 
DLA algorithm to develop a simulation to generate dendritic structures, 
with the number of particles for the structure as a parameter (Panoff 
2004).

 b.  Develop a visualization that shows the simulation one step at a time, in-
cluding the random walks. Develop another animation that shows only the 
particles as a new particle attaches to the growing structure. An attractive 
enhancement is for the color of the particle to be a function of its distance 
from the seed. (Follow the link “Simple DLA Example” at the Shodor 
website for an example of such a simulation with animation (The Shodor 
Educational Foundation 2002).) 
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 c.  Run the simulation and visualization a number of times for several differ-
ent sticking probabilities. Discuss the impact of the sticking probabilities 
on the resulting structures.

2. Repeat Project 1 considering the eight surrounding cells as a walker’s nearest 
neighbors. 

3. Repeat Project 1, Parts a and b, where the sticking probability is 0.33 for 
c“ntact with “ne ”artic‘e, 0.67 f“r si’u‘tane“us c“ntact with tw“ ”artic‘es, 
and 1.0 for contact with three. Run the simulation a number of times and 
discuss the results (Panoff 2004).

4. a.  Repeat Project 2, Parts a and b, where the sticking probability is based on 
the number of particles the walker contacts simultaneously. Run the simu-
lation a number of times and discuss the results (Panoff 2004).

 b.  Adjust the situation so that the sticking probability is 0.1 for contact with 
“ne ”artic‘e, 0.5 f“r tw“ ”artic‘es, and 0.9 f“r three “r ’“re ”artic‘es. Run 
the simulation and animation a number of times and discuss the results 
(Panoff 2004).

 c.  Adjust the situation so that the sticking probability is 0.01 for contact with 
one or two particles, 0.03 for three particles, and 1.0 for more than three 
particles. Run the simulation a number of times and discuss the results 
(Panoff 2004).

5. Repeat Project 1, Parts a and b, where the sticking probability is greater for 
bonds continuing in a straight line. For example, a walker is more likely to 
adhere to a north neighbor if that particle is stuck to a particle to its north. 
Similar situations exist for the other directions. Run the simulation a number 
of times and discuss the results (Panoff 2004).

6. Repeat Project 5, considering the eight surrounding cells as a walker’s near-
est neighbors (Panoff 2004).

7. Changing conditions affect crystalline formation and cause a great variety in 
the shapes. During a simulation, we can vary the sticking probability to indi-
cate such changing conditions. Do Project 2, starting with sticking probabili-
ties as in Pr“–ect 4, Part b. After f“r’ing an aggregate with a s”eciied nu’-
ber (such as 100) of particles, use sticking probabilities, as in Project 4c, for 
a s”eciied nu’ber (such as 100) “f ”artic‘es; then change t“ a different stic—-
ing ”r“babi‘ity c“nigurati“n (Pan“ff 2004).

8. Repeat any of Projects 1–6, considering the impact of wind or gravity on 
dendritic growth by having the walker travel with a greater probability in a 
particular direction (Shodor 2002).

9. Repeat any of Projects 1-8, using a launching circle of radius m instead of a 
launching rectangle. (Follow the link “Diffusion Limited Aggregation Cal-
culator” at the Shodor website for such a simulation example (The Shodor 
Educational Foundation 2002).)

10. Repeat any of Projects 1–8, using a launching circle instead of a launching 
rectangle, of radius 2rmax, where rmax is the radius of the structure so far. De-
lete a walker if it travels too close to the boundary of the grid or beyond a 
distance of 3rmax from the seed. Such adjustments should speed the simula-
ti“n (G“u‘d and T“b“chni— 1988).

11. Do Project 10, with the following additional adjustment to speed the simula-
tion by having larger step sizes further away from the structure: If a walker is 
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at a distance r > rmax + 4 from the seed, where rmax is the radius of the struc-
ture so far, then have step sizes of length r – rmax – 2; otherwise, have step 
sizes “f ‘ength 1 (G“u‘d and T“b“chni— 1988).

12. Repeat any of Projects 1 or 2, considering accumulation on a structure, such 
as the deposit of snow on a tree. Have the seed be a triangular tree-like struc-
ture or other type of structure on the bottom of the grid. Release random 
walkers from the north end of the grid with a greater likelihood of traveling 
south (Panoff 2004).
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MODULE 14.3

Foraging—Finding a Way to Eat

Prerequisite: One “f M“du‘e 10.3, S”reading “f Fire ; M“du‘e 10.4, M“ve’ent 
“f Ants Ta—ing the Right Ste”s ; “r M“du‘e 10.5, Bi“i‘’s United They Stand, 
Divided They C“‘“nize.

Introduction

If the brain was si’”‘e en“ugh t“ be underst““d
we would be too simple to understand it! 

Marvin Mins—y, MIT

Some animals must navigate over long distances, such as in the migration of birds, 
butterlies, wha‘es, “r sa‘’“n. This large-scale navigation typically utilizes celes-
tial and/or geomagnetic cues. In animals like migratory birds, circadian (endoge-
n“us, dai‘y) rhyth’s n“t “n‘y he‘” t“ initiate ’igrati“n but ’ay a‘s“ inluence an 
ani’a‘ s s”atia‘ c“urse “f ’igrati“n (Gwinner 1996).

Almost all animals must navigate over shorter distances, such as to forage or seek 
mates and/or nesting sites. Honeybees, for example, are central place foragers, 
often losing visual and auditory contact with the hive as they search for food. These 
animals must be able to return to the nest and to “remember” where they have been 
for return foraging. To do this, they rely on path integration, which means that they 
must take all the angles and distances they experience on their foraging trips and 
integrate them into “mean home vectors.” Like the dead reckoning of human pilots, 
they perform continuous spatial updating to relate their current location to the hive. 
This ”r“cess ”er’its the’ t“ return h“’e by ’“re direct r“utes. Bees a””ear t“ use 
the sun’s position and patterns of polarized light as components of a compass, but 
the calculations of distance and direction are internal (egocentric). Once the route is 
established, landmarks, which are forms of geocentric information, likely supple-
’ent the insect s interna‘ ca‘cu‘at“r (Wehner et a‘. 1996; Wehner 1996).
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Some birds, like the chickadee, store, or cache, excess food for retrieval in times 
of shortages. They are capable of remembering perhaps hundreds of locations over 
fairly large areas (up to 30 hectare (ha)) for at least a month. Evidence suggests that 
these birds might navigate to these storage sites using spatial relationships among 
objects (landmarks) short distances from the caches. Features of the cache sites 
the’se‘ves a””ear t“ be ‘ess signiicant. This series “f ’ar—ers f“r’ ge“centric ref-
erences that are stored in memory, likely in the hippocampus, as a neural representa-
tion of the bird’s environment. Many scientists refer to this representation as a cog-
nitive map. The idea of a cognitive map is a reasonably controversial proposal for 
those who study spatial navigation. It is intriguing, however, that the hippocampus 
regions of food-storing birds are larger than comparable bird species that do not 
st“re f““d (D“u”e 1994; Sherry 1996; Sherry and Duff 1996). Evidence a‘s“ exists 
that the regions of the human hippocampus enlarge in those who are highly depen-
dent on navigational skills (Maguire et al. 2000). 

Some extend the concept of a cognitive map to insects. Honeybees and ants cer-
tainly seem capable of remembering landmark locations, but whether they are capa-
ble of integrating these memories into a map seems improbable. It is more likely that 
they store a series of snapshots of the surroundings as they make their journeys, 
which they compare to the current landscape at a particular time (Wehner et al. 
1996). 

Simulations

The projects in this module develop cellular automaton methods for goal-directed 
spatial searches in which some form of adaptation occurs. Psychologists have used 
such simulations to elucidate qualitative properties of animal spatial orientation and 
learning, such as with a pigeon searching for food in an area where it found food 
previously, a rat learning its way through a changing maze, a badger returning to 
’u‘ti”‘e f““d sites when f““d is n“ ‘“nger ”resent, a d“g inding a sh“rtcut, and a 
shrew maneuvering around a detour. Such studies have revealed that a simulated 
ani’a‘ can ind its way, n“t thr“ugh s“’e insight  “f the ”r“b‘e’ as a wh“‘e, but 
through repeated local decisions based on its immediate surroundings, or values in 
neighb“ring ce‘‘s (Reid and Stadd“n 1997, 1998). Besides a””‘icati“ns t“ c“gnitive 
psychology, scientists are studying the use of such simulation algorithms in the guid-
ance systems of autonomous agents (robots) searching for land mines (Staddon and 
Chelaru).

For the searching, the robot or animal possesses a cognitive map of the area. A 
grid represents the cognitive map, and each cell contains the following information:

• Whether the cell contains a barrier, an “animal,” or neither
• An expectation value

Usually, only one cell in the grid has an animal, representing the one with the map.
A cognitive map reader is a searching algorithm that is similar to that of a dy-

namic diffusion model, such as of the diffusion of heat through a metal bar. The 
change in an e’”ty ce‘‘ s ex”ectati“n va‘ue, ∆Vt, from time t to time t + ∆t is a dif-
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fusion rate parameter r times the sum of the differences in the expectation value 
of the neighbor’s (Vk,t) and the cell’s expectation values (Vt), as follows:

∆Vt = r V V
k t t

k
,

−( )∑
=1

8

, where 0 < r < 1/8 = 0.125

As developed in Module 10.2, “Diffusion: Overcoming Differences,” for a cell’s 
temperature time t + ∆t, the expectation value at time t + ∆t si’”‘iies t“ the 
following:

 Vt+∆t = (1 – 8r)Vt + r V
k t

k
,

=
∑

1

8

, where 0 < r < 0.125 (1)

If a ce‘‘ c“ntains an ani’a‘ and a reward event “ccurs, such as inding f““d, then 
the expectation value becomes some reward value, say 1, usually for only one time 
ste”. In c“ntrast, if a n“nreward event, such as n“t inding f““d, “ccurs in an ani’a‘ 
cell, then the expectation value becomes 0. In this situation, because of diffusion 
from neighbors, a cell’s expectation value increases with time after the animal leaves 
that cell. The reward/nonreward system assures that the animal does not remain at a 
reward site. An animal consumes a reward, and the cell’s expectation value becomes 
1. H“wever, an ani’a‘ returning t“ the ce‘‘ n“ ‘“nger inds the reward, s“ that the 
expectation value becomes 0. 

In a deterministic version of the algorithm, called the hill-climbing process, at 
each time step, the animal moves to a neighboring cell that has the highest expecta-
tion value. In a stochastic version, the move to such a cell occurs with a certain 
probability.

The simulations involving cognitive maps to illustrate reinforced learning and 
ada”tive behavi“r c“ntain at ‘east tw“ ”hases. The irst ”hase “ften has the ani’a‘ 
ex”‘“ring the grid unti‘ inding a reward as the ex”ectati“n va‘ues diffuse. Then, the 
animal is removed from the grid. Perhaps the diffusion is allowed to continue with-
out the presence of the animal. Finally, the animal is returned to the grid, which 
’ight have been a‘tered, t“ search f“r its reward (Reid and Stadd“n 1997, 1998).

Projects

1. a.  Deve‘“” a ce‘‘u‘ar aut“’at“n si’u‘ati“n and visua‘izati“n “f “”en-ie‘d 
foraging with an area-restricted search. In an experiment this work is to 
simulate, a psychologist places a foraging animal into an enclosure that 
contains a food stash. Once the food has been found, the animal is re-
moved for a while. Then, the animal is returned to the area, which no 
longer contains any food. Experiments have shown that the animal goes 
direct‘y t“ the f“r’er ‘“cati“n “f the f““d. N“t inding the stash, the ani-
mal begins searching around the area where the food was. Its path appears 
erratic and looping and gradually moves further from the former stash 
site. Simulation results should mimic this behavior.

F“r the irst ”hase “f the si’u‘ati“n, initia‘ize each ce‘‘ “f a 20 × 20 
grid (cognitive map) to have some very low, uniform expectation value. 
Assume the food is in the middle of the grid and the diffusion rate param-
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eter (r) is 0.05. Have the animal start at an edge or corner and search with 
a random walk for the food until found. As discussed in the section “Sim-
ulations,” diffusion proceeds; each failure results in zeroing out the cell’s 
expectation value; and success sets the value to 1. The second phase al-
lows diffusion to continue in this grid without the animal, say, for 30 time 
ste”s. Third, ”‘ace the ani’a‘ in the sa’e starting ‘“cati“n as in the irst 
phase, and allow the simulation to run for 60 time steps (Reid and Staddon 
1997).

 b.  Run the simulation four times for diffusion rate parameters of 0.001, 0.01, 
0.05, and 0.1, respectively. Discuss the search patterns, why they occur 
according to the algorithm, and how they parallel experimental results.

2. a.  Develop a cellular automaton simulation and visualization of a desert ant 
(genus Cataglyphis) conducting an area-restricted search for its nest (see 
Project 1). The nest is in the ground with an opening less than 1 cm in di-
a’eter; and the ant inds the entrance, n“t with ”her“’“nes but with dead 
reckoning. In a psychological cognition experiment, an ant that is far from 
the nest is ca”tured, ”‘aced in a different ‘“cati“n, and re‘eased. By dead 
reckoning, the ant heads in the compass direction it should have taken 
fr“’ the ‘“cati“n where it was ca”tured. N“t inding the nest in the ex-
pected location, the ant begins searching. The path is in erratic loops of 
increasing diameters, centered at the supposed nest. However, repeatedly 
the ant returns to this location before beginning another loop.

F“r the irst ”hase “f the si’u‘ati“n, initia‘ize each ce‘‘ “f a 20 × 20 
grid (cognitive map) to have some very low, uniform expectation value 
and use a diffusion rate parameter of 0.1. Assume the nest is in the middle 
of the grid. Have the ant start at a corner and search at random for the nest. 
As discussed in the section “Simulations,” diffusion proceeds; each fail-
ure results in zeroing out the cell’s expectation value; and success sets the 
value to 1. The second phase allows diffusion to continue in this grid 
without the ant, say, for 20 time steps. Third, place the ant at the former 
nest ‘“cati“n and a‘‘“w the si’u‘ati“n t“ run (Reid and Stadd“n 1997).

 b.  Graph the ant’s distance from the origin in the third phase as a function of 
time for several hundred time steps. Discuss the meaning of the graph.

3. Develop a cellular automaton simulation and visualization of a European 
badger ‘earning t“ search f“r ’u‘ti”‘e s“urces “f f““d in s”eciic ‘“cati“ns. 
The “rigina‘ ”sych“‘“gica‘ ex”eri’ent was “n an “”en ie‘d with three sec-
tions. Peanuts were spread out at the same places on the left and right sec-
ti“ns in the ie‘d f“r six nights. The badger ‘earned t“ ind the ”eanuts fr“’ 
these sections, spending very little time in the middle, empty section.

F“r the irst ”hase “f the si’u‘ati“n, initia‘ize each ce‘‘ “f a grid (c“gni-
tive map), which is three times longer than wide, to have some very low, 
uniform expectation value and use a diffusion rate parameter of 0.001. Con-
sider a total of 16 designated food locations in the left and right thirds of the 
grid. Have the badger start at an edge and search at random for the food. As 
discussed in the section “Simulations,” diffusion proceeds; each failure re-
sults in zeroing out the cell’s expectation value; and success sets the value to 
1. The second phase allows diffusion to continue in this grid without the 
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badger, say, for 300 time steps, simulating the 24-h period between searches. 
Third, place the badger again at the edge of the grid, and allow the simulation 
to run until the badger leaves the grid. Discuss the results (Reid and Staddon 
1998).

4. a.  Develop a cellular automaton simulation and visualization of a dog with 
an appropriate cognitive map exhibiting what appears to be spatial “in-
sight  in inding a sh“rtcut t“ f““d. The ”sych“‘“gica‘ ex”eri’ent starts at 
location X and has food at two places, A and B. The three locations form a 
triangle, with X being closer to A than to B. A dog on a leash is lead from 
X to A, but not allowed to eat, and lead back to X. The same process is 
repeated, taking the dog from X to B to X. Then the dog is released into the 
ie‘d. A‘th“ugh n“t trained t“ d“ s“, ’“st d“gs trave‘ fr“’ X to A, eat the 
food, and then take the shortcut from A to B instead of following the train-
ing path XAXBX.

F“r the irst ”hase “f the si’u‘ati“n, initia‘ize each ce‘‘ “f a 20 × 20 
grid (cognitive map) to have some very low, uniform expectation value 
and use a diffusion rate parameter of 0.05. Simulate the training session. 
As discussed in the section “Simulations,” diffusion proceeds; each fail-
ure results in zeroing out the cell’s expectation value; and success sets the 
value to 1. The second phase allows diffusion to continue in this grid 
without the dog, say, for 50 time steps. Third, simulate the dog’s search 
f“r b“th s“urces “f f““d. Discuss the resu‘ts (Reid and Stadd“n 1998).

 b.  Run the simulation nine times for diffusion rate parameters of 0.01, 0.05, 
and 0.1, with Phase 2 times of 50, 60, and 60 time steps each. Discuss the 
search patterns, why they occur according to the algorithm, and how they 
parallel experimental results.

5. a.  Develop a cellular automaton simulation and visualization of a detour 
problem in which a blind rat adjusts its path to food in a changed land-
scape. In one psychological experiment, a blind rat is released from a 
starting gate into an enclosed area. The starting gate is on the left wall, 
near the northwest corner, while the goal, food, is on the right wall, near 
the opposite corner. The area has a barrier wall parallel to the left and 
right walls, and the barrier has an opening not far from the south end. For 
ive ti’es, the rat is re‘eased and a‘‘“wed t“ ind the f““d, which is re”‘en-
ished f“r each training sessi“n. Its ”ath bec“’es increasing‘y ’“re efi-
cient as it learns its way. Then, the barrier is removed, and for several 
more times, the rat searches for food. With some variation, the trial rats 
quickly adjusted their trails to head straight for the food.

F“r the irst ”hase “f the si’u‘ati“n, initia‘ize each ce‘‘ “f a 20 × 20 
grid (cognitive map) to have some very low, uniform expectation value, 
and use a diffusion rate parameter between 0.001 and 0.1. Simulate a 
training session without food, in which rat completely explores the bar-
rier. Sec“nd, si’u‘ate the rat s search f“r f““d f“r ive ti’es. Each new 
trial begins immediately after success in the previous trial. Finally, have 
six trials with food but no barrier.

The computational scientists that developed and analyzed simulations 
of this experiment wrote, “The difference between smart and less smart 
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subjects lies in their ability to change their maps, not in the level of cogni-
tive processing after they’ve learned the new map.” Discuss the results of 
y“ur si’u‘ati“n as it a””‘ies t“ this state’ent (Reid and Stadd“n 1998).

 b.  Pr“duce “ther si’u‘ated ex”eri’ents with different c“nigurati“ns “f bar-
riers. Discuss your results.

6. Repeat any of Projects 1–5 with a variation of Equation 1, computation of the 
diffused expectation value in a cell, that has the diagonal neighbors contrib-
uting half as much as the north, east, south, and west neighbors.

7. Repeat any of Projects 1–6 using a stochastic instead of a deterministic ap-
proach. Thus, with some probability, an animal moves to the neighbor with 
the largest expectation value. Otherwise, the creature goes to a random 
neighbor.
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14.4

Pit Vipers—Hot Bodies, Dead Meat

Prerequisite: One “f M“du‘e 10.3, S”reading “f Fire ; M“du‘e 10.4, M“ve’ent 
“f Ants Ta—ing the Right Ste”s ; “r M“du‘e 10.5, Bi“i‘’s United They Stand, 
Divided They C“‘“nize.

Introduction

Why are engineers like Dr. John Pearce at the University of Texas studying pit viper 
pits? An important reason is that the U.S. Air Force believes that a better understand-
ing of these pits will lead to better missile defense. A snake’s pits are on each side of 
its face between the eyes, and the nostrils are extremely sensitive infrared (heat) de-
tectors. The snake is able to detect heat differences between the background and 
potential prey that are as small as a thousandth of a degree Celsius. Exactly how they 
work is not completely understood, but even blind rattlesnakes can strike warm-
b‘““ded ”rey with dead‘y accuracy. Because visua‘ and heat i’ages are received in 
the same area of the brain (optic tectum), some suggest that the snake can form a 
thermal “image” of the size and shape of the prey. The preferred food in the diet of a 
pit viper is often a small rodent, which is a warm-blooded, or homeothermic, crea-
ture. Because such ”rey usua‘‘y ’aintain a b“dy te’”erature greater than their sur-
roundings, pit vipers have a most effective hunting tool in their pits (Gracheva et al. 
2010; Ba——en and Kr“ch’a‘ 2007). 

Dr. Pearce and his colleagues are attempting to develop mathematical models of 
this predator-prey relationship. These models attempt to predict heat emitted from 
the ”rey at given distances fr“’ the sna—e and the inluence these variati“ns in heat 
emissions have on the pit receptors. The military is hoping that from these models, 
they can design more precise missile detection systems (University of Texas 2001).

Projects

1. a.  Develop a simulation and visualization of a pit viper hunting for food in a 
cool environment. Have one rodent moving and resting at random. Most 



710 14.4

’a’’a‘s have an average b“dy te’”erature “f ar“und 37 ºC. F“r exa’-
ple, the normal body temperature of a rabbit is 38.3 ºC, and that of a labo-
rat“ry ’“use is 36.9 ºC. Have “ne ”it vi”er that tends t“ ’“ve t“ward 
warmth. In the case of the same temperature in all neighboring cells, the 
snake selects a direction at random. 

 b.  Running the simulation repeatedly, determine if the temperature of the 
environment impacts the viper’s hunting ability.

2. Repeat Project 1, assuming that the rodent can, but does not consistently, 
move twice as fast as the snake.

3. Repeat Project 1 with one pit viper and several rodents. When the snake is 
hungry, it seeks food; and when full, it rests. After eating, the snake remains 
full for a while.

4. Repeat Project 1 with one pit viper and several rodents. When the snake is 
hungry, it searches for food; and when full, it seeks a warm place to rest for a 
while. 

5. Repeat one of Projects 1, 3, or 4, in which a rodent avoids a pit viper if the 
animal detects the snake. However, the prey does not always see or hear its 
predator. When avoiding the snake, an animal moves twice as fast as when 
not eluding its predator. 

6. a.  For thermal regulation in a hot dessert, a snake seeks cooler places, such 
as under rocks or in rodent boroughs. Develop a simulation and visualiza-
tion of a snake seeking such places when its body temperature becomes 
t““ h“t (say, 42 ºC) and tending t“ stay in the she‘ter unti‘ suficient‘y 
cool. Assume that the rate of heat loss or gain for a snake is proportional 
t“ its surface area (Kr“ch’a‘ and Ba——en 2003; Kr“ch’a‘ et a‘. 2004).

 b.  Plot the snake’s temperature versus time. Discuss the results
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MODULE 14.5

Mushroom Fairy Rings—Growing in Circles

Prerequisite: One “f M“du‘e 10.3, S”reading “f Fire ; M“du‘e 10.4, M“ve’ent 
“f Ants Ta—ing the Right Ste”s ; “r M“du‘e 10.5, Bi“i‘’s United They Stand, 
Divided They C“‘“nize.

Introduction 

If you see a fairy ring

In a ie‘d “f grass,
Very lightly step around,

Tip-Toe as you pass,

Last night Fairies frolicked there

And they’re sleeping somewhere near.

Auth“r Un—“wn

Sometimes in a forest or yard, mushrooms seem magically to grow in circles, which 
we call “fairy rings” (Figure 14.5.1). In this module, projects develop simulations 
along with animations for the expansion and interactions of such mushroom fairy 
rings. 

Y“u ’ight re’e’ber ex”‘“ring y“ur refrigerat“r and inding an un’ar—ed c“n-
tainer that was pushed against the back wall. Without thinking, you opened the con-
tainer t“ ind a disgusting ’ass “f green “r b‘ac— s‘i’e. S“ the w“rd fungus probably 
makes you think of something rather unpleasant, like spoiled food, or reminds you of 
kicking over “toadstools” during your childhood. In either case, if you are like most 
people, you probably do not know too much about them.

Fungi are in the business of decay. They depend on nutrients from degradation of 
the organic matter deposited by or from other organisms. Through their ability to 
break down rather complex organic molecules, fungi are also responsible for return-
ing to the soil a large quantity of nutrients for plant growth that would be unavailable 
otherwise. Ecosystems are dependent on this recycling of nutrients from the decay of 
“rganic ’atter. We a‘s“ derive “ur “wn direct beneits fr“’ fungi antibi“tics, 
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cheese, beer/wine, trufles, and “ther edib‘e ’ushr““’s. On the “ther hand, fungi 
are res”“nsib‘e f“r 70% “f a‘‘ ’a–“r cr“” diseases and a nu’ber “f diseases that af-
fect human beings and other animals (Deacon). 

Whether we appreciate them or not, we cannot avoid them. In fact, we come into 
c“ntact with the’ (“r their s”“res) with every breath we ta—e. On‘y ab“ut 99,000 “f 
the esti’ated ive ’i‘‘i“n s”ecies “f fungi have even been described (B‘ac—we‘‘ 
2011). Their ec“‘“gica‘, ec“n“’ic, and ’edica‘ signiicance ’a—es the’ w“rthy 
objects of human curiosity, and scientists worldwide are busily investigating various 
aspects of their lives.

What Are Fungi?

To consider a model that involves fungi, we need to understand some of the funda-
mentals of their biology. Hence, we include a few questions with basic answers. 

References are provided with more detailed information. We begin by answering, 
What are fungi? Fungi are multicellular (except for yeasts), spore-producing organ-
isms that depend on absorbing nutrients from their surroundings. The spores are re-
productive cells that are typically capable of germinating into new fungi. Nutrients are 
made available by the action of extracellular enzymes secreted by the fungus itself. 

What Do Fungi Look Like?

When most people think of a fungus, they think of a mushroom. Mushrooms are 
clearly one of the more recognizable forms of fungi, but most fungi do not form 
mushroomlike structures. Amazingly, most of the “body” of a fungus is usually not 
visible or obvious. Some are spread out over wide areas underground, reaching miles 
in diameter (Kruszelnicki). The mushroom is just the fruiting body of certain types 
of fungi.

The basic morphological component of all the fungi, except yeasts, is the hypha. 
A hypha is a thin (5- to 10-µm diameter; Deacon), branching tubule. Masses of 
branching hyphae form the body of the fungus, which we usually call the mycelium. 

Figure 14.5.1 Fairy Ring
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Many of the hyphae are interconnected within this mass. Much of the fungal mass is 
not visible. The mushroom that you do see is an organized mass of hyphae, which 
become spore-bearing. Hence, mushrooms in mulch or the lawn or the shelf-shaped 
structures on rotting logs are really only the “tip of the iceberg.” They produce the 
spores, but a much larger mycelium underlies the mushrooms. If we examine the 
undersurface “f the ’ushr““’ ca”,  we wi‘‘ “ften ind the ”‘ate‘i—e gills, which 
bear the spores. 

How Do Fungi Feed Themselves?

Fungi are not chemo- or photosynthetic, and they have no internal digestive system. 
S“, they ’ust abs“rb what they need fr“’ the envir“n’ent water and in“rganic 
and organic nutrients. Many of the organics are too large to be absorbed unaltered. 
Consequently, fungi produce hosts of extracellular, digestive enzymes. The enzymes 
degrade the large, and sometimes very complex, organics into molecules they can 
absorb through their cell wall and plasma membrane. 

How Do Fungi Reproduce?

The outgrowth from a spore is by asexual cell division. However, most fungi can 
also reproduce sexually through the fusing (mating) of hyphae of opposite mating 
types. Such sexually produced hyphae can organize into spore-producing structures, 
such as mushrooms.

How Do Fungi Grow?

Fungi display what is called apical growth that is, they extend “r e‘“ngate “n‘y at 
the ti” “f the hy”hae, with“ut subsequent increase in dia’eter. Branches f“r’ be-
hind the advancing tip, forming more advancing tips (Lepp and Fagg 2012). A new 
hypha grows out from a spore and, with its continuous branching, yields a circular 
growth pattern. Growth can be quite rapid, reaching 1 km of hyphae per day. This 
rapid growth is made possible because nutrients are rapidly and constantly being 
delivered toward the tips. 

The Problem

Dr. Alan Rayner, an English scientist who has studied forest fungi for years, wrote:

“I have increasingly come to regard the mycelium as a heterogenous army of 
hyphal troops, variously equipped for different roles and in varying degrees 
of communication with one another. Without a commander, other than the 
dictates of their environmental circumstances, these troops organize them-
selves into a beautifully open-ended or indeterminate dynamic structure that 
can continually respond to changing demands. Recall that during its poten-
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tia‘‘y indeinite ‘ife, a ’yce‘ia‘ ar’y ’ay ’igrate between energy de”“ts; 
absorb easily assimilable resources such as sugars; digest refractory re-
sources such as lignocellulose; mate, compete and do battle with neighbours; 
ad–ust t“ changing ’icr“c‘i’atic c“nditi“ns; and re”r“duce  (Rayner 1991).

Circular or radial growth of the mycelium allows the fungus to move into unex-
ploited areas in its search for nutrients. When the innermost part of the mass has 
exhausted the resources of that area, that portion becomes expendable. The outer 
mycelium removes and reabsorbs useful nutrients from the central region and trans-
fers them outward. The innermost hyphae die and decay. This ring-shaped growth 
”attern can be easi‘y seen “n ie‘ds “r “n g“‘f c“urse turf as what is ter’ed a fairy 
ring (Figure 14.5.1). The rate of growth of these rings varies according to the envi-
ronment (soil texture, moisture, etc.) and species. Marasmius oreades, a fairy-ring 
fungus found extensively in Europe, may increase its radius between 10 and 35 cm 
per year (Lepp and Fagg 2012). In the Midwest, fairy-ring species, including M. 
oreades, may expand their radii up to 60 cm per year (Illinois Extension Service 
1998). It sh“u‘d c“’e as n“ sur”rise that ”r“”erty “wners and extensi“n agents re-
gard them as diseases. 

Fairy rings appear in Shakespeare’s The Tempest (Act V, Scene I), when Pros-
pero shouts, “you demi-puppets that by moonshine do the green sour ringlets make, 
whereof the ewe not bites; and you whose pastime is to make midnight mushrumps, 
that rejoice to hear the solemn curfew. . ..” It was not until Dr. William Withering, 
who also gave the world the heart medication digitalis from the foxglove plant 
(Krusze‘nic—i), dug u” the buried ’yce‘ia “f fairy rings in 1792 that we —new that a 
fungus was the cause “f these ”hen“’ena. Bef“re this disc“very, “ne “f the ’“st 
c“’’“n be‘iefs was that the rings re”resented a circu‘ar ”ath “f fairies dancing
hence, the name fairy ring.

Although there are more than 50 species of fungi that can produce fairy rings, the 
most common causes are one of three species: Marasmius oreades, Agaricus camp-

estris, or Chlorophyllum molybdites. There is some variation in the appearance, de-
pending on which fungus is present. One common type is characterized by three 
distinct rings an inner ring “f sti’u‘ated grass gr“wth, a ’idd‘e ring “f dead “r 
dying grass, and an “uter ring “f sti’u‘ated grass gr“wth. B“th “f the sti’u‘ated 
zones are probably the result of release of nitrogen from the decaying organic mat-
ter. The central ring contains the dense mass of “feeding” hyphae that prevents pen-
etrati“n “f water and de”‘etes nutrients (I‘‘in“is Extensi“n Service 1998). The fruit-
ing bodies form within this ring or on the margin next to the outer stimulated zone. 
Some fungi do not produce this “dead zone.”

Because “f dead z“nes, tw“ intersecting fairy rings “ften ’erge int“ a igure-8 
pattern (Figure 14.5.2). Also, as Figure 14.5.3 depicts, a barrier can induce the mush-
rooms to grow into an arc.

How Do Fairy Rings Get Started? 

A fairy ring grows out from spores or transported soil that contains fragments of 
mycelium. The circular mass extends from this “nucleus.” Soil quality and weather 
conditions determine the rate of growth. 



Additional Cellular Automata, Agent-Based and Matrix Projects  715

Initializing the System

In many simulations, we model a grid area under consideration with an n × n lattice, 
or a 2D square array of numbers. Each cell in the lattice contains a value represent-
ing a characteristic of a corresponding location and a state in the cell’s life cycle. For 
example, in a simulation for the spread of fairy rings, a cell can contain an integer 
va‘ue, 0 9, re”resenting such states as being e’”ty, c“ntaining a s”“re, “r having 
maturing hyphae. Table 14.5.1 gives a list of possible values with associated con-
stants and their meanings.

Figure 14.5.3 Arc of mushrooms near a barrier

Figure 14.5.2 Intersecting fairy rings



716 Module 14.5

To initialize this discrete stochastic system, we can employ the following pro-
bability:

probSpore: The probability that a site initially has a spore, or that the grid site is 
SPORE = 1. Thus, probSpore is the initial spore density.

Updating Rules 

Updating rules apply to different situations. An inert site never can change states; its 
cell value remains INERT. At the next time step, an empty cell (site value EMPTY) 
may or may not have young hyphae (YOUNG or EMPTY, respectively) growing into 
it from a neighboring site with young hyphae (YOUNG). If a cell contains a spore 
(SPORE), at the next time step the spore may or may not germinate to become young 
hyphae (YOUNG or SPORE, respectively). Young hyphae (YOUNG) always age to 
become maturing hyphae (MATURING). Maturing hyphae (MATURING) may or 
may not produce mushrooms (MUSHROOMS or OLDER, respectively); but regard-
less, these hyphae (MUSHROOMS or OLDER) eventually exhaust the resources and 
begin decaying (DECAYING). The decaying hyphae (DECAYING) die (DEAD1). A 
site with newly dead hyphae (DEAD1) cannot support new growth for a while 
(DEAD2) but eventually can (EMPTY).

To develop this dynamic, discrete stochastic system, we employ the following 
probabilities:

probSporeToHyphae: The probability of a spore (site value of SPORE) germi-
nating to form young hyphae (YOUNG) at the next time step 

probMushroom: The probability that maturing hyphae (cell value MATURING) 
produce mushrooms (MUSHROOMS) at the next time step

probSpread: The probability that an empty site (cell value EMPTY) gets young 
hyphae (YOUNG) at the next time step from a neighbor that has young hyphae 

Figure 14.5.4 summarizes the states and transitions of the model in a state dia-
gram. The 10 states, such as SPORE and YOUNG, give the possible values for a cell. 

Table 14.5.1 
Possible Cell Values with Associated Constants and Their Meanings

Value Constant Meaning: The cell contains

0 EMPTY Empty ground containing no spore or hyphae
1 SPORE At least one spore
2 YOUNG Young hyphae that cannot form mushrooms yet
3 MATURING Maturing hyphae that cannot form mushrooms yet
4 MUSHROOMS Older hyphae with mushrooms
5 OLDER Older hyphae with no mushrooms
6 DECAYING Decaying hyphae with exhausted nutrients
7 DEAD1 Newly dead hyphae with exhausted nutrients
8 DEAD2 Hyphae that have been dead for a while
9 INERT Inert area where plants cannot grow
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The arrows with labels, such as probSporeToHyphae, show the probability with 
which a cell changes from one state to another in subsequent time steps. The arrow 
from EMPTY to YOUNG indicates that the situation is more complicated; if a neigh-
bor has the value YOUNG, the empty cell becomes YOUNG with a probability of 
probSpread.

Display the Simulation

For each lattice in the list that a cellular automaton simulation returns, we generate 
graphics of a rectangular grid with colors representing the states of the cells, as in 
Table 14.5.2. Animation of the resulting frames helps us to verify the model and in-
terpret the results.

EMPTY

INERT

1.0

DEAD2

DEAD1

DECAYING

OLDERMUSHROOMS

MATURING

probMushroom

1.01.0

YOUNGSPORE

1 – (neighbor is YOUNG & probSpread) 

probSporeToHyphae

1 – probSporeToHyphae

neighbor is YOUNG & probSpread 

1.0

1.0

1.0

1.0

1 – probMushroom

Figure 14.5.4 State diagram for model
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Projects

1. Develop the simulation of this module using absorbing boundary conditions. 
Include a function to show the situation aboveground. Run the simulation 
employing various initial grids, as follows:

 a.  As described in the module with various values of probSpore. Describe 
the results.

 b.  With exact‘y “ne s”“re in the ’idd‘e. Verify that the igure see’s t“ agree 
with Figure 14.5.1.

 c.  With exactly two spores that are several cells apart toward the middle. 
Verify that the rings ’erge int“ the igure-eight ”attern “bserved in na-
ture, as in Figure 14.5.2.

 d.  With exactly one spore and a barrier. Verify that the results appear to 
agree with the growth pattern in Figure 14.5.3.

2. Do Project 1 where the probability of young hyphae spreading into a site is 
proportional to the number of neighbors that contain young hyphae.

3. Adjust the simulation of this module so that new spores can form when 
mushrooms are present. Consider the following two possibilities:

 a.  The probability that a cell can obtain a spore at the next time period is 
equal to the percentage of mushrooms in the grid.

 b.  A ce‘‘ can “btain a s”“re at the next ti’e ”eri“d with a s”eciied ”r“babi‘-
ity provided one of its neighbors contains a mushroom.

4. Do Project 1 so that the length of time the hyphae are dead is probabilistic; 
and on the average, they are dead for two time steps.

5. Do Project 1 using periodic boundary conditions. 
6. D“ Pr“–ect 1 using relecting b“undary c“nditi“ns.
7. Do Project 1, where the neighbors of a cell include those cells to the north-

east, southeast, southwest, and northwest.

Table 14.5.2  
Possible Cell Values with Associated Constants and Colors

Value Constant Colors

0 EMPTY Light green
1 SPORE B‘ac—
2 YOUNG Dark grey
3 MATURING Light grey
4 MUSHROOMS White
5 OLDER Light grey
6 DECAYING Tan
7 DEAD1 Br“wn
8 DEAD2 Dark green
9 INERT Yellow
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MODULE 14.6

Spread of Disease—Sharing Bad News

Prerequisite: One “f M“du‘e 10.3, S”reading “f Fire ; M“du‘e 10.4, M“ve’ent 
“f Ants Ta—ing the Right Ste”s ; “r M“du‘e 10.5, Bi“i‘’s United They Stand, 
Divided They C“‘“nize.

Introduction

The SIR M“de‘  secti“n “f M“du‘e 4.3, M“de‘ing the S”read “f SARS C“ntaining 
Emerging Disease,” considers a model for the spread of disease. The SIR Model con-
siders the following population groups: susceptibles (S) that have no immunity from 
the disease, infecteds (I) that have the disease and can spread it to others, and recov-
ereds (R) that have recovered from the disease and are immune to further infection. 

In that module, we considered the spread of disease from a systems dynamics 
point of view. In this module, projects deal with the spread of disease using the ap-
proach of cellular automata.

Exercise

1. Suppose an individual is at each grid point. An individual can be well and 
susceptible (value SUSCEPTIBLE = 0) to a disease, sick with the disease that 
has two phases (values PHASE1 = 1 and PHASE2 = 2), or immune (value 
IMMUNE = 3). Let probSick be the probability that the individual initially is 
sick with a disease. Let ”r“bPhase1 be the probability that initially a sick 
individual is in Phase 1 of the disease. Suppose, initially, no individual is im-
mune. Write code in a computational tool to initialize the grid.

Projects

1. Develop a simulation with animation for the contagious spreading of the dis-
ease described next. Run the simulation for several probabilities and discuss 
the results.
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Suppose in a population an individual can be susceptible, infectious, or 
immune to a stomach virus. The infection lasts 2 days, and immunity lasts 
only 5 days before the individual becomes susceptible again. Assume an in-
dividual is at each grid point. In the simulation, the value at a grid point can 
be one of the following:

• 0: susceptible individual
• 1, 2: infectious individual, where the value indicates the day of infection
• 3, 4, 5, 6, 7: i’’une individua‘, where the day “f i’’unity is the ce‘‘ 

value minus 2. For example, on day 1 of immunity, the cell value is 3.

 In the simulation, initialize the grid using the following probabilities:

probSusceptible: the probability the individual is initially susceptible
probInfectious: the probability that an individual that is not susceptible is 

infectious initially

Uniformly distribute the infected individuals between day 1 and day 2 of  
the infection. In the initialization, uniformly distribute immune individuals 
with va‘ues 3 thr“ugh 7. Use c“nstants f“r the ce‘‘ va‘ues 0 thr“ugh 7, such 
as SUSCEPTIBLE = 0.

The following rules apply, where the term neighbor applies to the cell to 
the north, east, south, or west:

• If an individual is susceptible and a neighbor is infected, the individual 
becomes infected.

• The infection lasts for 2 days.
• Immunity lasts for 5 days, after which time the individual again becomes 

susceptible.

 Color the graphic as follows:

• Susceptible: full green
• Infecti“us: b‘ue; fu‘‘ b‘ue “n the irst day, ”a‘e b‘ue “n the sec“nd.
• I’’une: red; fu‘‘ red “n the irst day with successive‘y ”a‘er shades “f red 

on subsequent days,

After grid initialization, this model is deterministic, because the next state 
is always determined by the situation. If a susceptible individual is exposed 
t“ the virus, that ”ers“n wi‘‘ deinite‘y get sic— f“r exact‘y 2 days and be i’-
mune for exactly 5 days.

Systematically, run the model for various values of probSusceptible and 
probInfectious and discuss the results.

2. Develop a nondeterministic (stochastic) simulation for a situation similar to 
that in Project 1. In this case, probCatch is the probability that a susceptible 
individual who has a sick neighbor will get sick, and probBeSusceptible is 
the probability that an individual who has been immune for 5 days will be-
come susceptible. Thus, someone who is exposed to the virus might not be-
come sick, and a person might have longer immunity than 5 days. Run the 
simulation for several probabilities and discuss the results. Try to discover a 
situation in which an epidemic does not occur, that is, in which the disease 
does not spread to many people over a short period of time.
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3. Develop a nondeterministic (stochastic) simulation for a situation similar to 
that in Project 1. In this case, the probability that a susceptible individual will 
get sick is the percentage of sick neighbors. 

4. Develop a nondeterministic (stochastic) simulation for a situation similar to 
that in Project 1. In this case, the probability that a susceptible individual will 
get sick is the average level of infection of the neighbors. For example, sup-
pose the neighbor to the north is susceptible (level of infection = 0); west is 
i’’une (‘eve‘ = 0); s“uth is in the irst day “f infecti“n and very c“ntagi“us 
(level = 1); and west is in the second day of infection and less contagious 
(level = 0.5). Thus, the probability of the individual becoming sick is 
(0 + 0 + 1 + 0.5)/4 = 0.375. The ’axi’u’ ”“ssib‘e t“ta‘ ‘eve‘ is 4 and “c-
curs when a‘‘ neighb“rs are in the irst day “f infecti“n. In this case, the ”r“b-
ability of the individual catching the virus is (1 + 1 + 1 + 1)/4 = 1 = 100%.

5. Develop a simulation where initially no individuals are sick; but one indi-
vidual, “Typhoid Mary,” is a carrier who never gets sick. Mary walks at ran-
dom through the grid, and at each step she changes places with the individual 
in whose cell she steps. Use a contagion situation as in Project 1, 2, 3, or 4. 
Color Mary as yellow.



MODULE 14.7

HIV—The Enemy Within

Prerequisite: One “f M“du‘e 10.3, S”reading “f Fire ; M“du‘e 10.4, M“ve’ent 
“f Ants Ta—ing the Right Ste” ; “r M“du‘e 10.5, Bi“i‘’s United They Stand, 
Divided They C“‘“nize.

The Developing Epidemic

As every month went by, I became more convinced that we were dealing 

with something that was going to be a disaster for society.

Anth“ny S. Fauci, M. D., Direct“r, Nati“na‘ Institute  
“f A‘‘ergy and Infecti“us Diseases, 1982

When we see what has ha””ened in Africa, “ne ’ight thin—: We w“u‘d 
have d“ne anything t“ ”revent this if “n‘y we had —n“wn.  But we did, 
and we didn’t.

Peter Pi“t, UNAIDS Executive Direct“r, 2004

If y“u had been an attending ”hysician at New Y“r— s Be‘‘evue H“s”ita‘ during the 
‘ate 1970s, y“u ’ight have ad’itted severa‘ ”atients suffering fr“’ a fair‘y rare 
’edica‘ ”r“b‘e’ Pneumocystis pneumonia. At about the same time, doctors in 
California were seeing similar patients. Often these patients also were infected op-
portunistically with cytomegalovirus and/or Candida albicans (yeast). Furthermore, 
there were relatively high occurrences of a fairly rare cancer, Kaposi’s sarcoma. The 
pneumonia and this cancer were almost never seen except in patients with sup-
pressed immune systems, which apparently characterized each of these patients. The 
irst ”a”ers re”“rting “n these cases a””eared in 1981. S“ it began the AIDS e”i-
de’ic in the United States (CDC 1981; Theb“dy.c“’ 2007). 

The 1981 re”“rts did n“t gain the ”ub‘ic s attenti“n. After a‘‘, there were ‘“ts “f 
other things going on in the United States and the world. Ronald Reagan replaced 
Ji’’y Carter as ”resident; the Iranian h“stages were re‘eased; the irst shutt‘e was 
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successfu‘‘y ‘aunched; MTV irst a””eared “n cab‘e; and IBM intr“duced its irst 
PC. During 1981, the P“”e and President Reagan survived assassinati“n atte’”ts, 
but President Anwar Sadat of Egypt did not (Wikipedia 2012).

Fortunately, these medical reports did alert some in the public health community. 
In June, the irst ”atient with the new, unna’ed disease was seen at the Nati“na‘ In-
stitutes of Health (NIH); and in July, The Centers for Disease Control and Protection 
(CDC) formed a task force on “Kaposi’s Sarcoma and Opportunistic Infections.” In 
only a year, there were more than 400 cases and 155 deaths in the United States from 
this disease, which n“w had a na’e acquired immune deiciency syndrome 
(AIDS). The disease was characterized by a defective cell-mediated immune re-
sponse. The clustering of the rare opportunistic infections and the Kaposi’s sarcoma 
was a result of this weakened immune system, but the cause of the defect was un-
known. Substantial evidence, however, pointed to an infectious agent. The unknown 
agent was apparently acquired sexually, through intravenous drug use, or by transfu-
si“n. By the beginning “f 1984, 3000 cases “f AIDS were re”“rted in the United 
States, and a‘’“st 1300 had died (CDC 1983). 

In the s”ring “f 1983, scientists at the Pasteur Institute had is“‘ated a new hu’an 
retrovirus, LAV (lymphadenopathy-associated virus), but they did not claim it to be 
the cause “f AIDS. In 1984, U.S. scientists at the Nati“na‘ Cancer Institute sh“wed 
that a retrovirus (HTLV III, human T cell leukemia virus III) was the apparent cause 
“f AIDS and ‘ater c“nc‘uded that HTLV III and LAV were the sa’e (CDC 1981; 
Theb“dy.c“’ 2007).

Despite earlier predictions of a fast cure, this virus, which we now call HIV, has 
”r“ved t“ be a very tric—y cust“’er and has n“t yet succu’bed t“ hu’an genius. By 
March “f 1988, ’“re than 84,000 AIDS cases were re”“rted fr“’ 136 c“untries 
(CDC 1988).

In 2010, the CDC esti’ated that 1,148,200 adu‘ts (  13 years “f age) were ‘iving 
with HIV in the United States, with about 50,000 new cases being diagnosed each 
year. In 2009, 17,774 ”e“”‘e died, ’a—ing a t“ta‘ “f ’“re than 619,000 ”e“”‘e with 
an AIDS diagnosis having died (CDC 2012). The statistics for the world are more 
dire, es”ecia‘‘y in sub-Saharan Africa. In 2011, 1.7 ’i‘‘i“n ”e“”‘e died fr“’ HIV 
and AIDS-associated diseases, with 2.5 million new cases. In 2011 the world saw an 
esti’ated 34 ’i‘‘i“n individua‘s ‘iving with HIV ’“re than 30.7 ’i‘‘i“n adu‘ts 
and 3.3 million children. In excess of two-thirds of these live in the sub-Sahara 
(WHO) 

Attack on the Immune System

We have learned a lot about HIV and its interactions with the immune system since 
its discovery. The human immunodeiciency virus (HIV) is a type of RNA virus 
called a retrovirus. Retroviruses have some important and unusual characteristics 
that are signiicant in certain ty”es “f cancer and diseases ‘i—e AIDS. Retr“virus 
particles are made up of a core (RNA + enzymes) surrounded by a capsid (protein). 
These particles are covered with a lipid envelope, which fuses with host cell mem-
branes as the virus enters that cell. This envelope contains glycoproteins that recog-
nize and bind t“ s”eciic rece”t“rs “n the h“st ce‘‘s. These viruses are ab‘e t“ synthe-
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size DNA from their RNA template, and they carry with them an enzyme that helps 
to insert the newly synthesized viral DNA (vDNA) into a chromosome of the host 
cell. HIV is actually a special type of retrovirus, called a lentivirus (“slow viruses”), 
associated with slow, degenerative disorders. In such infections, typically a consid-
erable amount of time passes between infection and the appearance of major symp-
t“’s (NIAID 2011, 2012; Var’us 1988).

HIV infects s“’e incredib‘y signiicant ce‘‘s that ”‘ay crucia‘ r“‘es in cell-medi-
ated immunity (CMI) CD4+ T-‘y’”h“cytes, ’acr“”hages, dendritic ce‘‘s. CMI 
is one of two major arms of the immune system. It gets its name from its dependence 
“n the effect“r functi“ns “f s”eciic ty”es “f i’’une ce‘‘s. F“r exa’”‘e, CD4+ T-
lymphocytes, also known as T-helper cells, help to coordinate immune response 
through direct interactions with other cells and through the secretion of control 
chemicals. Some of these chemicals can activate certain cells, which in turn secrete 
toxins that kill tumor or virally infected cells. Others attract and activate particular 
white blood cells that engulf invading pathogens. As these cells and lymph tissue 
become damaged and disabled by HIV, the body becomes progressively more sus-
ceptible to various pathogenic agents and cancer. Consequently, death from HIV 
often occurs from AIDS-associated diseases, rather than from AIDS itself.

Plan of Attack

T“ enter a ce‘‘, the virus ’ust irst be ab‘e t“ bind t“ the ce‘‘. S“’e ce‘‘s “f the b“dy, 
including certain T-lymphocytes, possess what are termed CD4 transmembrane re-
ce”t“rs. These ce‘‘s are c‘assiied as CD4+ cells. Projecting from the HIV envelope 
is a glycoprotein, gp120, which binds t“ a CD4 rece”t“r ‘i—e a hand in a g‘“ve. Bind-
ing induces a conformational change in gp120, which promotes its binding to one of 
several coreceptor molecules located in the host cell membrane. Once the virus has 
attached securely to its target, the viral and cell membranes fuse, allowing the virus 
particle to enter the cell. 

Following entry into the cytoplasm of the cell, the capsid is removed from the 
core of the virus. The core contains RNA and several enzymes, including reverse 
transcriptase. Now activated, reverse transcriptase, using host cell raw materials, 
synthesizes a d“ub‘e strand “f DNA vDNA; vDNA is trans”“rted int“ the nuc‘eus, 
where, using an enzyme (integrase), it is inserted into a host cell chromosome. This 
piece of viral DNA, called a provirus, may remain in the chromosome passively 
(latent) or may activate and begin the production of new HIV particles.

The production of new viruses commences with the synthesis of new viral RNA 
molecules from the vDNA using the host’s polymerase. This viral messenger RNA 
is transported into the cytoplasm, where, using host’s ribosomes, enzymes, tRNA, 
and raw materials, it is translated into HIV structural proteins (core, capsid, and 
envelope) and enzymes. The viral messenger RNA, equivalent to viral genomic 
RNA, is packaged with core proteins and enzymes into new virus particles near the 
plasma membrane. Envelope proteins are incorporated into the host’s membrane, 
which encases the new virus as it buds from the cell. The last step involves the cleav-
age of core proteins and enzymes into shorter pieces by a third viral enzyme (prote-
ase). Then, the viruses are infectious, capable of invading new host cells. 
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The primary targets for HIV are these CD4+ T-lymphocytes, but the virus also 
may attack other cells important to an immune response. For instance, cells like 
macrophages and dendritic cells normally consume pathogens, presenting essen-
tial elements from the microbe on their surfaces. These elements can activate various 
types of T-cells and also stimulate the production of antibodies. Often, the virus does 
n“t destr“y ’acr“”hages and dendritic ce‘‘s. In this way, signiicant quantities “f 
virus are concealed safe from destruction in the very cells that are supposed to help 
protect the body from infection. Dendritic cells associated with the mucosa (lining) 
of major virus portals (e.g., vagina, vulva, penis, and rectum) pick up viruses and 
trans”“rt the’ t“ ‘y’”h n“des, which are sites f“r ’any ty”es “f i’’une ce‘‘s (Bug‘ 
2001; Thebody.com 2005; NIAID 2011, 2012)

Simulation of the Attack

Computational scientists are employing cellular automaton (CA) simulations to 
model the immune system and diseases that attack this system, such as AIDS. With 
CA’s stochastic nature, these scientists can use these simulations to estimate the 
distribution of the system’s behaviors as well as the averages; can easily adjust the 
complex interactions to study the course of an infection and to consider new sce-
narios, such as new drug therapies; and can express the components and processes in 
biological language (Kleinstein and Seiden 2000; Sloot et al. 2002). Moreover, in 
the case “f AIDS, CA can ’“de‘ the infecti“n s tw“ ti’e sca‘es “ver three ”hases
weeks for the primary response and years for the clinical latency with deterioration 
“f the i’’une syste’ and f“r AIDS ’uch ’“re easi‘y than an a””r“ach with dif-
ferential equations (Sloot et al.).

Projects

1. a.  Develop a cellular automata and visualization of an HIV infection. Each 
site represents one of the following:

• healthy: healthy cell
• infected-A1: infected cell that can spread the infection
• infected-A2: infected ce‘‘ in its ina‘ state bef“re dying due t“ i’’une 

system intervention
• dead: infected cell killed by immune system intervention

 The system uses the following probabilities:

• probHIV: initial probability (fraction) of infected-A1 cells
• probReplace: probability that a dead cell will be replaced by a healthy 

cell at the next time step
• probInfect: probability that a new healthy cell may be replaced by an 

infected-A1 cell

 The rules for the system are as follows:
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• A healthy cell with at least one infected-A1 neighbor becomes infected-

A1 because of infection due to contact before the immune system can 
respond.

• A healthy cell with numberOfA2 number of infected-A2 neighbors, 
where 3  numberOfA2  8, bec“’es infected-A1 because infected-

A2 cells with concentration above some threshold can contaminate a 
healthy cell.

• All other healthy cells remain healthy.
• An infected-A1 cell becomes an infected-A2 cell after responseTime, 

the number of time steps for the immune system to generate a response 
to kill the infected-A1 cell.

• An infected-A2 cell becomes a dead cell.
• A dead cell becomes a healthy cell at the next time step with a probabil-

ity of  probReplace because the immune system has great ability to re-
cover from an infection’s immunosuppressant.

• A new, healthy cell may be replaced by an infected-A1 cell with a prob-
ability of probInfect because new infected cells can come into the 
system.

 Initialize the grid using probHIV = 0.05, indicating that during the pri-
’ary infecti“n, 1 in 100 t“ 1 in 1000 T-ce‘‘s harb“r vira‘ DNA. Because 
only 1 in 104 to 1 in 105 cells in an infected person’s peripheral blood ex-
press viral proteins, use  probInfect = 10–5. Because the i’’une syste’ 
has great ability to replenish dead cells, use probReplace = 0.99. Have 
responseTime be 4 weeks, because the time for the immune system to 
generate a response to kill the infected-A1 cell is generally between 2 and 
6 weeks. Use 8 neighbors for each site and periodic boundary conditions 
(dos Santos and Coutinho 2001).

 b.  Plot the numbers of healthy, infected, and dead cells versus time from 0 
through 12 weeks and then from 0 through 12 years. To obtain the data, 
run the simulation a number of times and compute the appropriate average 
values. 

 c.  Discuss your results. For the visualization in Part a and the graphs in Part 
b, identify the stages of the infection and explain your results.

2. a.  Revise Project 1 to model an HIV infection in the presence of a drug 
therapy regime, which attempts to block viral replication within the cells. 
Assume therapy begins at week 300. A therapy has an associated integer 
rank level, ran—Leve‘ (0  ran—Leve‘  8), indicating the effectiveness 
of the drug, with 0 being the most effective. This rank level models the 
drug’s ability to suppress viral replication and presents a limit to the num-
ber of infected-A1 neighbors that can become infected. At the time of 
thera”y, the irst ru‘e in Pr“–ect 1 changes t“ be the f“‘‘“wing (S‘““t et a‘. 
2002):

• During drug therapy, a healthy cell with ran—Leve‘ number or more of 
infected-A1 neighbors becomes infected-A1 with a probability of 
(1 – probRespond) * ran—Leve‘/8, where probRespond is a response-to-
therapy-related probability.
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 b.  Consider a probRespond function that is a constant probability for a set 
nu’ber “f ti’e ste”s and then bec“’es a signiicant‘y s’a‘‘er c“nstant. 
Run the simulation for various values of ran—Leve‘, and discuss the re-
sults. Discuss the impact of the therapy on the simulation visualization 
and on the graphs of the numbers of healthy, infected, and dead cells ver-
sus time.

 c.  Repeat Part b employing a decreasing linear function for probRespond. 
Because probRespond(t) is a probability at time t of treatment, its range is 
between 0.0 and 1.0.
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MODULE 14.8

Predator-Prey—“Catch Me If You Can”

Prerequisite: F“r Pr“–ects 1 and 7, “ne “f M“du‘e 10.3, S”reading “f Fire ; 
M“du‘e 10.4, M“ve’ent “f Ants Ta—ing the Right Ste”s ; “r M“du‘e 10.5, 

Bi“i‘’s  United They Stand, Divided They C“‘“nize.  F“r Pr“–ects 2 6,  
M“du‘e 10.4, M“ve’ent “f Ants Ta—ing the Right Ste”s.

Introduction

We have already dealt with predator-prey models in Module 4.2 but from a system 
dynamics point of view. Projects in this module consider the same subject from the 
perspective of cellular automata.

Ab“ut 1970, J“hn C“nway deve‘“”ed the Game of Life, a 2D cellular automaton 
with rules for the births and deaths of an imaginary species. This program was the 
irst “r “ne “f the irst t“ execute “n a ”ara‘‘e‘ c“’”uter, a syste’ c“nsisting “f ’u‘-
tiple processors working together to solve a problem. The rules for the mythical life 
form in the Game of Life are as follows, where the nearest neighbors are the eight 
surrounding cells:

• A site that is not alive but has exactly three living neighbors has a birth.
• A site that is alive and has exactly two or three living neighbors stays alive.
• All other sites die or stay dead.

Conway carefully developed these rules to enable situations in which patterns grow 
and evolve over many time steps without becoming stagnant or chaotic. Some pat-
terns, called life forms, persist throughout the simulation. Still lifes do not change 
unless other cells interfere, while some life forms exhibit periodic behavior and oth-
ers move across the grid. Project 1 develops the Game of Life and explores several 
life forms. Other projects explore more realistic predator-prey environments (Wiki-
pedia 2012).
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Projects

Deve‘“” a ce‘‘u‘ar aut“’at“n si’u‘ati“n f“r each “f the f“‘‘“wing.

1. a.  Develop a simulation and animation for Conway’s Game of Life with pe-
riodic boundaries. Run the simulation several times with random initial 
grids. Then, incorporate the following life forms into grids, and describe 
their behavior (Wikipedia 2012).

 b.  B‘“c—: A square “f f“ur ‘ive ce‘‘s
 c.  Trafic ‘ight: Three c“nsecutive ‘ive ce‘‘s in a r“w “r a c“‘u’n
 d.  Glider: Three consecutive live cells in a row with another live cell to the 

north of the leftmost cell and another live cell to the northeast of the latter 
cell

 e.  Other life forms, such as those by Eric Weisstein (2002)
2. a.  Develop a simulation with visualization in which a cell can be a predator, 

a prey, or empty. Use eight nearest-neighbor cells. Initialize the grid with 
a given population density (probability) for a cell being of each type. Each 
time step of the simulation has two phases: change of state and move-
ment. The rules for change of state are as follows:

• If a prey “meets” (i.e., has as a neighbor) a predator, the predator eats 
the prey (i.e., the prey’s site becomes empty). If more than one predator 
is encountered, a random predator neighbor is selected to dine.

• A predator dies (i.e., the predator’s site becomes empty) when it has 
gone too long (i.e., a given number of time steps) without food.

• During movement, avoid collision as in the text of Module 10.4, 
M“ve’ent “f Ants Ta—ing the Right Ste”s.  

 b.  Run the simulation a number of times for various population densities, 
and discuss the results.

3. a.  Develop a simulation with visualization involving predators, which can 
be in a hungry or full state, and prey. Use four nearest-neighbor cells. 
Each cell can contain up to four hungry predators, four full predators, and 
four prey individuals, so that a cell can hold from none to 12 individuals. 
Initialize the grid with given population densities (probabilities) for com-
ponents of each cell. At each time step of the simulation, the animals un-
dergo predation/reproduction, then direction selection, and then move-
ment. The rules for predation/reproduction are applied in the following 
order (Alfonseca and Ortega 2000):

• If no prey individuals are in the same cell, a hungry predator dies.
• If at least two prey individuals are in a cell, a hungry predator is in the 

cell, and less than four full predators are in the cell, then a hungry pred-
ator eats one prey individual and becomes full.

• If no prey individuals are in the same cell, a full predator becomes 
hungry.

• If at least two prey individuals are in a cell, a full predator is in the cell, 
and fewer than three hungry predators are in the cell, then a full preda-
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tor eats one prey individual, reproduces a hungry predator, and be-
comes a hungry predator.

• If two or three prey individuals are in a cell, a prey reproduces. 

 The rule for direction selection is as follows (Alfonseca and Ortega 2000):

• Each individual turns in a random direction (north, east, south, or west) 
to which no other individual from that category (hungry predator, full 
predator, or prey) has turned.

Note that the algorithm avoids collisions by having at most four animals 
in each category moving in different directions.

 b.  Graph the population densities of predators and prey versus time.
 c.  Graph the number of predators versus the number of prey.
4. a.  Develop a simulation with visualization involving wolves, sheep, and 

grass on a grid. A cell is empty or contains one of the following items: a 
male wolf, a female wolf, a female wolf with pup, a male sheep, a female 
sheep, a female sheep with lamb, or grass. Associated with each animal is 
an integer food ration, or amount of stored energy from food, up to some 
maximum value. Assume a population density for each item. The rules are 
as follows (He et al. 2003):

• A sheep moves into a neighboring empty site, preferring one with grass.
• A lamb leaves its mother and moves into a neighboring empty site. At 

random this new sheep is a male or female, and its food ration is the 
same as that of the mother.

• A wolf moves into a neighboring empty site.
• A pup leaves its mother and moves into a neighboring empty site. At 

random, this new wolf is a male or female, and its food ration is the 
same as that of the mother.

• If its ration of food is less than the maximum, a sheep eats neighboring 
grass and increases its ration to the maximum amount.

• If a female sheep has at least a designated amount of food ration (such 
as 2), is of reproduction age (such as 8), and has a male sheep of repro-
duction age as a neighbor, she becomes a female sheep with lamb.

• If its ration of food is less than the maximum (such as 3), a wolf eats a 
neighboring sheep and increases its ration to the maximum amount.

• If a female wolf has at least a certain amount of food ration (such as 2), 
is of reproduction age (such as 8), and has a male wolf of reproduction 
age as a neighbor, she becomes a female wolf with pup.

• An independent baby matures in a certain number of time steps, such as 
8.

• An animal’s food ration decreases by 1 at each time step.
• An animal dies when its food ration becomes 0.
• Grass grows in a certain number of time steps, such as 4.

Av“id c“‘‘isi“ns as in the text “f M“du‘e 10.4, M“ve’ent “f Ants
Taking the Right Steps.” Initialize the grid at random with certain densi-
ties of each item and with random food rations and ages for each animal. 
Run the simulation a number of times, obtaining situations in which the 
sheep, wolves, and grass coexist with oscillating densities; in which the 
sheep become extinct; and in which all animals die.
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 b.  Graph the population densities of sheep, wolves, and grass versus time. 
 c.  Adjust the program to run the simulation a number of times, computing 

and storing the average number of sheep, wolves, and grass at each time 
step. Plot these averages versus time. Discuss the results.

5. a.  Develop a simulation with visualization involving mobile predators and 
stationary prey. For example, algae that grow on rocks in intertidal areas 
are a favorite food of some snails. Assume initial population densities for 
predators and prey. Each predator has a direction to which it turns, a 
length of time until giving birth (reproduction time), and a length of time 
until starving (starvation time). The rules are as follows (Gaylord and 
Nishidate 1996):

• If a predator’s reproduction and starvation times are both 0, the preda-
tor gives birth and dies. For simplicity, we assume only one child.

• If a predator’s starvation time is 0 and reproduction time is positive, the 
predator dies.

• Prey grows in an empty site with a certain probability.
• If a predator’s reproduction time is 0, its starvation time is positive, and 

a neighboring site with a prey is available, then the predator moves to 
that site and ‘eaves a chi‘d in the “‘d site. B“th ”arent and chi‘d get 
maximum reproduction and starvation times. 

• If a predator’s reproduction time is 0, its starvation time is positive, and 
an empty neighboring site is available, then the predator moves to that 
site with maximum reproduction time and with starvation time decre-
mented by 1 and leaves a child in the old site with maximum reproduc-
tion and starvation times.

• If a predator’s reproduction and starvation times are positive and a 
neighboring site with prey is available, then the predator moves to that 
site with reproduction time decremented by 1 and starvation time set to 
the maximum.

• If a predator’s reproduction and starvation times are positive and an 
empty neighboring site is available, then the predator moves to that site 
with its times decremented by 1.

• If a predator does not move, its times decrement by 1.

 During movement, avoid collision as in the text of Module 10.4, “Move-
’ent “f Ants Ta—ing the Right Ste”s.  

 b.  Run the simulation and visualization a number of times for various popu-
lation densities and discuss the results.

 c.  Adjust the program to run the simulation a number of times, computing 
and storing the average number of individuals in each species at each time 
step. Plot these averages versus time, and plot the number of predators 
versus the number of prey. Adjust the number of predators and prey to 
obtain graphs that resemble those in Figures 4.2.3 and 4.2.4 of Module 
4.2, “Predator-Prey Model.” 

6. Adjust Project 5 to allow for a prey population in which each individual is 
mobile and can give birth. 

7. a.  Simulations can help illuminate ecosystem problems when a species be-
comes extinct or varies greatly in size. Consider a hierarchy of species, 



734 Module 14.8

numbered 1, 2, . . ., m, where species i is higher on the food chain than 
species i –1 and m  2. Thus, s”ecies i – 1 is food or prey for species i, 
and species i is predator for species i – 1. Develop a predator-prey cellular 
automaton simulation and visualization for an ecosystem. Each cell is 
empty or contains exactly one animal. Initially, with probability prob-

Speciesi, a cell contains an individual from species i, and the sum of these 
probabilities is less than 1. Use eight surrounding cells as neighbors and 
the following rules (Yang 2003): 

• If a cell has no predator and no prey neighbors, then the cell obeys the 
rules of Conway’s Game of Life (see Project 1).

• If a cell contains a live animal and the predator neighbors outnumber 
the prey neighbors, then the animal in this cell dies.

• If the prey neighbors outnumber the predator neighbors, then the cell 
stays or becomes alive.

• If the number of prey neighbors equals the number of predator neigh-
bors, a positive number, then the state of the cell does not change.

• With probability probDiei, a cell containing species i dies.

 b.  For m = 2, adjust the program to run the simulation a number of times, 
computing and storing the average number of individuals in each species 
at each time step. Plot these averages versus time, and plot the number of 
predators versus the number of prey. Adjust the number of predators and 
prey to obtain graphs that resemble those in Figures 4.2.3 and 4.2.4 of 
Module 4.2, “Predator-Prey Model.” 

 c.  For m > 2, run the simulation and visualization several times with prob-

Diei = 0 for all species. Then, after making probDiei a small, positive 
number for one species, repeat the experiment. Discuss the results.

 d.  For m > 2, adjust the program to run the simulation a number of times, 
computing and storing the average number of individuals in each species 
at each time step. Run the simulation a number of times with probDiei = 0 
for all species, and plot the average number of individuals in each species 
versus time. Then, after making probDiei a small, positive number for one 
species, repeat the experiment. Discuss the results.

 e.  For m > 2, adjust the program to run the simulation a number of times, 
computing and storing the average number of individuals in each species 
at each time step. Plot the average number of individuals in each species 
versus time. Then, after increasing probSpeciesi for some species i and 
adjusting the corresponding probabilities for the other species, repeat the 
experiment. Discuss the results.
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MODULE 14.9

Clouds—Bringing It All Together

Prerequisite: F“r Pr“–ects 1 7, “ne “f M“du‘e 10.3, S”reading “f Fire ; M“du‘e 
10.4, M“ve’ent “f Ants Ta—ing the Right Ste”s ; “r M“du‘e 10.5, Bi“i‘’s
United They Stand, Divided They C“‘“nize.  F“r Pr“–ect 8, the secti“n “n 

Sequentia‘ A‘g“rith’ f“r the N-B“dy Pr“b‘e’  fr“’ M“du‘e 12.2, Para‘‘e‘ 
Algorithms.” 

Introduction

The C‘“uds c“nsign their treasures t“ the ie‘ds;
And, softly shaking on the dimpled pool 

Pre‘usive dr“”s, ‘et a‘‘ their ’“isture l“w 
In large effusion, o’er the freshen’d world.

Ja’es Th“’s“n, The Seasons,  

S”ring  (‘ines 27 30)

Clouds. Their endless variety and beauty inspire human beings to dream, to imagine, 
and t“ write ”“etry. They he‘” t“ c““‘ the earth by relecting sun‘ight, but they a‘s“ 
he‘” t“ —ee” it war’ by tra””ing heat radiated fr“’ the earth s surface. But, what are 
clouds? Scientists tell us that they are collections of water droplets and ice, as well as 
n“naque“us s“‘ids and ‘iquids (A‘c“rn 2007). During the su’’er, air near the earth 
is warmed and rises. As the air rises, it expands and cools, generating relative hu-
midity of 100%, or saturated air. The moisture required for saturation decreases as 
the air temperature decreases. After saturation is achieved, further cooling triggers 
water vapor to condense into small droplets. These droplets, and sometimes ice crys-
tals, may form by condensing on suspended aerosols (salt, dust, pollution, etc.). The 
”r“ducts “f a‘‘ this c“ndensati“n are ‘ight, luffy cumulus clouds. Known as fair-
weather c‘“uds, they are characterized by lat bases and d“ n“t give rise t“ any rain 
(A‘c“rn 2007; UIUC 1997; Od’an 2004; SSEC 2004; Geerts 2009). 

However, if cumulus clouds are overlain by large quantities of cold, unstable air, 
the warm air may continue to ascend as mighty updrafts. As a consequence, clouds 
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develop further vertically and are transformed into taller, cumulonimbus forms. Cu-
mulonimbus clouds, their anvil-shaped tops reaching altitudes exceeding 12,000 m, 
appear as towers and sometimes in lines called squall lines. In these “thunderheads,” 
water droplets continue to condense, and updrafts in the cloud carry the smaller ones 
upward. The countless droplets collide with each other as they move. Some of these 
collisions result in droplets merging to form larger droplets. This process is referred 
to as coalescence. The droplets that are large enough begin to fall through the cloud, 
colliding and coalescing as they tumble downward. Some of these are large enough 
t“ ’a—e it t“ the earth s surface. If ‘iquid, we ter’ it rain (UIUC 1997; Br“wn 2003).

Projects

Deve‘“” a ce‘‘u‘ar aut“’at“n si’u‘ati“n f“r each “f the f“‘‘“wing ”r“–ects. Be sure 
during a time step that a droplet is not coalesced into more than one other droplet.

1. a.  Develop a 2D cellular automaton simulation and visualization of coales-
cence of droplets in a cross section of a cloud. Each grid point contains a 
number representing the droplet’s size or indicating that the cell is empty. 
At a step of the simulation, each droplet moves in a random direction. If 
more than one droplet moves into a cell, the droplets coalesce. The size of 
the new droplet is the sum of their sizes. Initialize the grid with droplets 
according to a probability that corresponds to the relative humidity, 
which is (partial vapor pressure)/(saturation vapor pressure) for a particu-
lar temperature. At initialization, give each droplet a normally distributed 
rand“’ size (Gay‘“r and Nishidate 1996).

 b.  Produce a histogram of the size distribution of droplets at the end of the 
simulation.

 c.  Produce a graph of the average size of droplets versus time. Discuss your 
indings. What wi‘‘ ha””en eventua‘‘y if y“u a‘‘“w y“ur si’u‘ati“n t“ run 
long enough?

2. The simulation in Project 1 eventually produces one large droplet, which is 
an unrea‘istic resu‘t (Gay‘“r and Nishidate 1996).

 a.  Repeat Project 1 and achieve a steady-state distribution of droplet sizes by 
adding small droplets with a designated probability throughout the 
simulation.

 b.  Achieve a steady-state distribution of droplet sizes by removing larger 
drops with a certain probability.

 c.  Achieve a steady-state distribution of droplet sizes using the techniques of 
Parts a and b.

3. Repeat Project 1 and achieve a steady-state distribution of droplet sizes by 
breaking each larger droplet into two droplets with a certain probability. The 
new droplet forms in a random vacant neighbor and is of random size. The 
sum of the sizes of the two droplets equals the size of the original droplet 
(Gay‘“r and Nishidate 1996).

4. Repeat Project 1, including the formation of rain and eight neighbors per cell. 
Have the ground toward the south. Do not allow medium-sized droplets to 
move to the north, northeast, or northwest. Medium-large droplets can fall 
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only to the south, southeast, or southwest. Large droplets can head only to-
ward the south. Remove droplets that travel off the south boundary, indicat-
ing that they have fallen to the ground. Continually add small droplets to the 
grid at random with a certain probability.

5. a.  Develop a 2D cellular automaton simulation and visualization of cloud 
evolution, such as one might view from the ground. Thus, the cross sec-
ti“n is a h“riz“nta‘ s‘ice “f the c‘“ud. Each ce‘‘ has three B““‘ean va‘ues 
(Dobashi et al. 2000):

• humidity: true if the cell contains enough water for cloud droplets
• cloud: true if the cell has cloud droplets
• act: true if the vapor in the cell is ready to transition to cloud droplets

The following are probabilities in the simulation:

• probHumidity: probability that a noncloud cell has enough humidity to 
transition to cloud

• probExtiction: probability that a cloud cell becomes a noncloud cell
• probAct: probability that a cell that is not ready to act (i.e., to transition 

from vapor to cloud) becomes ready

The transition rules are as follows:

• If a cell’s value of act is false, the cell’s humidity value remains the 
same at the next time step.

• If cloud or act is true in a cell, cloud is true at the next time step.
• If act is not true in a cell but humidity is true and at least one neighbor’s 

value of act is true, then the cell’s value of act becomes true.
• With probability probHumidity, a cell’s humidity value becomes true.
• If humidity is true, it remains true.
• If cloud is true, then with probability probExtiction, cloud becomes 

false.
• With probability probAct, a cell’s act value becomes true.
• If act is true, it remains true.

 Initialize the grid at random with only the middle cell having cloud as true.
 b.  Add wind to your simulation by letting ve‘“city be an integer indicating 

wind velocity from left to right across the grid. Thus, the state of a cell in 
column j at one time step is the state of cell in column (j – ve‘“city) at the 
previous time step.

6. Develop a 3D version of Project 5.
7. Deve‘“” a 2D ce‘‘u‘ar aut“’at“n si’u‘ati“n and visua‘izati“n “f the irst 

step in the formation of precipitation, condensation, or deposition, of vapor 
on particles, called condensation nuclei, to form droplets. The nuclei are 
typically tiny (from 0.05 to 0.5 µm in radius) solid particles, such as dust, 
s’“—e, “r sa‘t. The ”r“cess, which “ccurs in high hu’idity, is fast at irst but 
then s‘“ws. S”eciica‘‘y, ex”eri’ents have sh“wn that the rate “f change “f 
the radius (r) of a cloud particle is proportional to 1/r. For a normal nucleus, 
which neither attracts nor repels water, if the relative humidity (RH; see Proj-
ect 1 f“r deiniti“n) is ‘ess than 100%, eva”“rati“n exceeds c“ndensati“n s“ 
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that the droplet shrinks. However, some of the nuclei attract water molecules 
and thus promote condensation at RH less than 100%. Also, if the RH is 
equals 100%, with a normal nucleus, the droplet grows. Condensation is im-
portant until the cloud particle becomes a cloud droplet with a radius of about 
100 µm. At that time, the collision-coalescence process (see Project 1) be-
c“’es ’“re signiicant (Geerts 2009; McC“r’ac— 1999).

For the simulation, initially have a cluster of several cells representing the 
condensation nucleus and other cells picked at random indicating vapor with 
the number of such vapor particles based on RH. Have vapor particles move 
at random. If a vapor particle has a neighbor that is part of the growing drop-
let, the vapor particle condenses on the droplet with a designated probability 
based on conditions. Repeat the simulation a number of times with various 
condensation nuclei. Allowing the simulation to run for a while, discuss the 
ultimate shapes of the droplets.

8. Develop a simulation of the precipitation process in a relatively warm cloud 
with temperatures above freezing. We call droplets with radii larger than 
0.25 mm raindrops, and those with radii larger than 2 mm frequently split in 
two. Suppose an updraft of air pushes smaller droplets up into the cloud. 
Larger droplets, which have higher terminal velocities, fall. For instance, the 
ter’ina‘ s”eed “f a c‘“ud dr“”‘et with radius 0.05 ’’ is 27 c’/s; with a ra-
dius “f 0.1 ’’, the ter’ina‘ s”eed “f a dr“”‘et is 70 c’/s; whi‘e a raindr“” 
of radius 1 mm has a terminal speed of 550 cm/s. Some particles that appear 
on a collision path, such as a large falling collector drop and a much smaller 
rising droplet, do not collide; but the smaller droplet streamlines past the 
larger one. Collision eficiency is E = d2/(r1 + r2)

2, where d is the critical 
distance, or distance between the center lines of the drop and droplet, and r1 
and r2 are the corresponding radii. For a coordinate system in which the xz-
plane is horizontal, suppose the collector drop and smaller droplet are at lo-
cations (x1, y1, z1) and (x2, y2, z2), respectively. Assume that the collector  
drop is going straight down and the droplet is going straight up. Then, the 
critical distance is the distance between the two points projected onto the xz-

plane, namely, x x z z
2 1

2

2 1

2−( ) + −( ) .

Even if collision occurs, coalescence might not occur because sometimes 
the droplets bounce off each other. Studies indicate that droplets tend to be-
come charged during thunderstorms, and droplets with opposite charges are 
more likely to coalesce. Collisions can also cause a drop to break apart. 
Drops involved in the collision/coalescence process usually have radii no 
larger than 2.5 mm. Coalescence eficiency is the portion of collisions that 
result in the droplets sticking together. Laboratory experiments indicate that 
if the radius of a collector drop is less than 0.4 mm or the radius of a droplet 
is ‘ess than 0.2 ’’, then c“a‘escence eficiency is ab“ut 1.0. If the c“‘‘ect“r 
dr“” s radius is between 1 ’’ and 2.5 ’’, then c“a‘escence eficiency is 
less than 0.2. When the radius of the droplet is about 60% that of the drop, 
c“a‘escence eficiency is s’a‘‘, but the c“‘‘isi“n eficiency is c‘“se t“ 1.0. 
Collection eficiency is the ”r“duct “f the c“‘‘isi“n and c“a‘escence eficien-
cies (Br“wn 2003; Geerts 2009).
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MODULE 14.10

Fish Schooling—Hanging Together, Not Separately

Prerequisite: One “f M“du‘e 10.4, M“ve’ent “f Ants Ta—ing the Right Ste”s ; 
M“du‘e 11.2, Agents “f Interacti“n Steering a Danger“us C“urse ; “r  
M“du‘e 13.5 “n The Next F‘u Pande’ic O‘d Ene’y, New Identity.

Introduction

Imagine yourself suspended in the splendid blue of the Caribbean, gazing out over a 
beautifu‘, underwater garden. Y“u are diving “n “ne “f nature s treasures a c“ra‘ 
reef. These gardens are the most diverse places in the ocean, home to one in four 
known marine species of plants and animals. You look out over the massive coral 
heads, decorated with sea fans and whips, various worms, and sea urchins and teem-
ing with ish. A ye‘‘“wtai‘ da’se‘ish darts in and “ut “f a crevice t“ ”r“tect its terri-
t“ry fr“’ riva‘ s”ecies. S’a‘‘ herds “f ”arr“tish are grazing ‘“ud‘y “n the c“ra‘, 
converting the algae into energy for themselves and the hard skeletal material into 
sand. Butterly ish br“wse the reef f“r s’a‘‘ invertebrates, and a ”air “f French an-
ge‘ish ’unches “n s“’e “f the ’any s”“nges tuc—ed ab“ut the reef. 

As you glide along the coral walls, you see a small school of blue chromises, 
moving as if they were articulated parts of one organism. Suddenly, in unison, they 
scurry away, and you wonder why. Soon, you know why. To your left you see the 
reas“n a beautifu‘ sch““‘ “f –ac—s are heading f“r that area “f the reef. The 
chromises have left to avoid this oncoming mass of predators. You wonder at the 
precision with which this group of 50 swims, turning left, then right, up and down. 
They seem almost choreographed. 

Fish schooling has fascinated human observers for years. Fish schools are social 
tr“u”es “f ish, frequent‘y “f c“’”arab‘e age and size, trave‘ing as units, ’“ving in 
synchrony in the same direction. We wonder why schooling is so common in various 
ish s”ecies (80%) and a‘s“ h“w ish are ab‘e t“ c““rdinate such behavi“r (Br““—s 
and Yasukawa; Stout). 

There are several hypothesized advantages for schooling behavior. Two of the 
’“st c“’’“n ex”‘anati“ns are f“raging eficiency and ”r“tecti“n fr“’ ”redat“rs. 
Many eyes increase the chances “f inding f““d. Every“ne f“‘‘“ws th“se “f the gr“u” 
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who locate food. They are also able to overwhelm some prey in a group, whereas 
they would have less chance for success individually. While foraging, there are also 
’any eyes t“ watch f“r ”“tentia‘ ”redat“rs. M“re“ver, whi‘e gr“u”s “f ish are ’“re 
easily detected by predators, the large group may resemble a single, larger organism 
and disc“urage attac— (Br““—s and Yasu—awa; Greenie‘d-B“yce 2012; Stöc—er 
1998, 1999; St“ut).

Recent‘y, scientists have disc“vered that ish in their swi’’ing ’“ti“ns create 
eddies. Sch““‘ing ish ex”‘“it the energy “f eddies created by their neighb“rs t“ ”ush 
them forward (Liao et al. 2003). So, it seems that schooling also decreases energy 
expenditure for foraging. 

H“w ish are ab‘e t“ c““rdinate their ’“ve’ents s“ that they can res”“nd instan-
taneously to changes in direction and speed of their schoolmates is complex. Most 
ish, es”ecia‘‘y th“se that sch““‘, have eyes “n the sides “f their heads. This ‘“cati“n 
is advantage“us t“ detecting changes in ‘atera‘ events. Additi“na‘‘y, ish ”“ssess a 
‘atera‘ ‘ine syste’ “n their lan—s that is sensitive t“ ”ressure changes. Swi’’ing 
movements of the school generate water displacement that is detected by this system 
as changes in pressure (Stout).

Simulations

Scientists are atte’”ting t“ understand bi“‘“gica‘ aggregati“ns, such as ish sch““‘s 
and bird l“c—s, and t“ deter’ine ”ertinent bi“‘“gica‘ and ’echanica‘ features and 
evolutionary behaviors. However, observing individual and group behavior in the 
‘ab“rat“ry and nature is quite cha‘‘enging because “f the inherent dificu‘ties in 3D 
tracking of animals in air and water. What they do know has enabled scientists to 
devise trafic ru‘es  “f an individua‘ ani’a‘ s res”“nse t“ its neighb“rs. Using 
these, computational scientists have developed mathematical models and computer 
simulations of a group’s dynamics. Typically, such a simulation assigns forces that 
act upon the direction and speed of an individual, while the environment and actions 
of close neighbors moderate these forces. With these studies, scientists hope to de-
termine the mechanics of relationships between individual behaviors and group spa-
tia‘ ”atterns. A‘s“, with ’“re detai‘ed “bservati“ns “f aggregati“ns, such as ish 
schools, and better simulations of observed behaviors, computational scientists hope 
t“ deter’ine the behavi“ra‘ a‘g“rith’s that s“’e ani’a‘s, such as ish, e’”‘“y (Par-
rish et al. 2002).

Projects

Deve‘“” a ce‘‘u‘ar aut“’at“n, agent-based, “r ’atrix-based s“cia‘-netw“r— si’u‘a-

tion for each of the following:

1. Deve‘“” a 2D si’u‘ati“n and visua‘izati“n “f ish sch““‘ing (“r bird l“c—-
ing) behavi“r. Su””“se each ish f“‘‘“ws three ru‘es:

• C“hesi“n ru‘e: A ish ’“ves t“ward the ’ean ”“siti“n “f its c‘“sest 
neighbors.” 
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• Se”arati“n ru‘e: A ish d“es n“t get c‘“ser than s“’e ’ini’u’ distance t“ 
any neighbor.

• A‘ign’ent ru‘e: A ish heads in the ’ean directi“n t“ which its c‘“sest 
neighbors” head. 

The se”arati“n ru‘e has ”ri“rity “ver the “ther tw“ ru‘es. If ”“ssib‘e, a ish 
swims in the direction to which it is headed. Employ periodic boundaries, 
and initia‘ize the ish with rand“’ ”“siti“ns and “rientati“ns. 

Because “f ‘i’ited ”“siti“n ch“ices “n a grid, f“r a ce‘‘u‘ar aut“’at“n 
implementation, use Moore neighborhoods for the closest neighbors; omit 
the cohesion rule; implement the separation rule by not allowing collision; 
and c“nsider each ish t“ have “ne “f eight directi“ns, re”resented as the in-
tegers 1–8, in which it could be headed.

2. Re”eat Pr“–ect 1, c“nsidering the b“undaries as wa‘‘s that the ish sh“u‘d 
av“id. Thus, when a ish ’“ves c‘“se  t“ a wa‘‘, say within tw“ ce‘‘s “f the 
wall, it turns in a random direction that does not take it closer to the wall.

3. Re”eat Pr“–ect 1 “r 2, ta—ing int“ acc“unt the inluence “f a shar—. When n“t 
c‘“se t“ ish, the shar— ’“ves at rand“’. When c‘“se t“ a ish, the shar— 
’“ves t“ward the ”rey, and the ish ’“ves away fr“’ the shar—. Have the 
ish and shar— ’“ve faster when in c‘“se ”r“xi’ity t“ each “ther, and have 
the shar— ’“ve faster than the ish. If a shar— catches a ish, the ”redat“r eats 
the prey.

4. Re”eat Pr“–ect 1, having the ish ’“ve fr“’ “ne wa‘‘ t“ward ”art “f the “”-
posite wall, which is an entrance to a cave. Fish can go through the entrance 
t“ safety. Once in the cave, a ish is n“ ‘“nger a ”artici”ant in the si’u‘ati“n. 
C“nsider the “ther b“undaries as wa‘‘s that the ish sh“u‘d av“id. Y“ur si’u-
‘ati“n sh“u‘d a‘s“ ta—e int“ acc“unt the inluence “f a shar— as in Pr“–ect 3.

5. Re”eat Pr“–ect 2. Initia‘‘y, have a‘‘ ish head in the sa’e directi“n. After 
severa‘ ti’e ste”s, turn a certain ”ercentage “f the ish in a different direc-
tion. Run the simulation a number of times with various percentages. Discuss 
h“w ”art “f ish turning in a different directi“n i’”acts the behavi“r “f the 
school (Huse et al. 2000).

6. Re”eat any “f Pr“–ects 1 5, c“nsidering “n‘y neighb“rs t“ the sides “f a ish 
and n“t ta—ing int“ acc“unt the inluence “f neighb“rs t“ the fr“nt and rear, 
which are “ut “f a ish s ie‘d “f view.

7. Deve‘“” a 2D si’u‘ati“n and visua‘izati“n “f ish sch““‘ing behavi“r in a 
c“ra‘ bed. Each ish re’ains c‘“se t“ its nearest neighb“r. Any ish that is 
beyond some threshold distance from its nearest neighbor is subject to shark 
attac—. In the visua‘izati“n, use different c“‘“rs t“ indicate sch““‘ing ish, 
shar—, and ‘“ner ish.
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MODULE 14.11

Spaced Out—Native Plants Lose to Exotic Invasives

Prerequisite: One “f M“du‘e 10.3, S”reading “f Fire ; M“du‘e 10.4. M“ve’ent 
“f Ants Ta—ing the Right Ste”s ; “r M“du‘e 10.5, Bi“i‘’s United They Stand, 
Divided They C“‘“nize.  Pr“–ect 14 requires “ne “f the ”receding ’“du‘es and 
M“du‘e 13.4, Pr“bab‘e Cause M“de‘ing with Mar—“v Chains.

There are no other Everglades in the world. They are unique...in the 

simplicity, the diversity, the related harmony of the forms of life they 

enclose. The miracle of the light pours over the green and brown expanse 

of saw grass and of water, shining and slow-moving below, the grass and 

water that is the meaning and the central fact of the Everglades of Florida. 

Mar–“ry St“ne’an D“ug‘as, The Everg‘ades: River “f Grass

Introduction

Many tourists to South Florida go to Everglades National Park. The park, composed 
“f ab“ut ha‘f “f the hist“rica‘  Everg‘ades, was estab‘ished in 1947. The hist“rica‘ 
Everglades consisted of about three million acres, part of an enormous watershed 
that was ’“re than ive ’i‘‘i“n acres. During the ear‘y twentieth century, sett‘ers 
drained much of the wetlands for housing and agriculture. Furthermore, they chan-
ne‘ed the water t“ ensure a c“nstant, d“’estic su””‘y “f water and t“ c“ntr“‘ l““d-
ing. The upper one-third of the original three million acres is still used primarily to 
grow sugar cane. Another half million acres was also managed with canals, dams, 
and dy—es f“r l““d c“ntr“‘ (ETE 2005).

One of the largest wetlands in the world and so unique and ecologically impor-
tant, the Everglades has been designated a World Heritage Site, an International 
Bi“s”here Reserve, and a Wet‘and “f Internati“na‘ I’”“rtance (NPS Subtr“”ica‘ 
2012). Bi“‘“gica‘‘y, the high‘y diverse area is h“’e t“ ’any s”ecies “f ”‘ants and 
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animals, including 350 species of birds, and is a convenient resting spot for countless 
migratory birds. The Everglades is the most important breeding area for wading 
birds in North America and the largest mangrove ecosystem in the Western Hemi-
sphere (NPS Ecosystem 2012). Moreover, water from the Everglades helps to sup-
ply the considerable agricultural activities and drinking water for south Florida. As 
water passes through this ecosystem, various pollutants and excess nutrients from 
farms, lawns, and golf courses are removed. Then, this water replenishes the aquifers 
(NWF 2012). The Everglades has been described as a mosaic of nine interdependent 
ecosystems, characterized prior to settlement by a slow-moving sheet of water pass-
ing thr“ugh it fr“’ La—e O—eech“bee t“ the F‘“rida Bay. This sheet-l“w  is ha’-
pered by the many dams and diversions relentlessly encouraged by business and 
agricultural interests and carried out by the U.S. Army Corps of Engineers. To re-
store the normal biological processes (e.g., nutrient cycling) and vegetation patterns, 
the return “f the n“r’a‘ sheet-l“w is critica‘ (NPS 2012).

The Everglades is threatened by encroaching development, with its unquenchable 
thirst for water and space and its associated waste, habitat destruction, and pollution. 
A little progress has been made in recent years to restore some of the natural water 
l“w, which gives us h“”e that this unique area ’ight survive and he‘” us survive. 
H“wever, there is a seri“us threat t“ the Everg‘ades that is ”erha”s ‘ess “bvi“us
biological pollution by exotic, invasive plant species. Many of these plants were re-
leased intentionally, and others have escaped accidentally.

Native to Australia, Melaleuca trees (Me‘a‘euca quinquenervia) were introduced 
t“ F‘“rida in 1906 t“ he‘” reduce wet‘and area and t“ ”r“vide ti’ber. N“t rea‘‘y suit-
able for timber, these trees were then sold as ornamentals. Growing in dry or wet 
habitats, Melaleuca is a ”r“‘iic seed ”r“ducer and has s”read quic—‘y thr“ugh the 
Everglades, forming rather dense forests and forcing out native seedlings and trees. 
Stress“rs, ‘i—e ire fr“’ ‘ightening stri—es “r ’anage’ent burns, “ften ”r“’”t re-
lease of millions of seeds, from which lots of thick plots of trees develop. Melaleuca 
now covers about one-half million acres of the Everglades and continues to expand 
that territory.

Transplanted species of plants are generally kept in check in their native habitat 
by competition, consumption, or disease. Normal biological and physical checks are 
not present in novel habitats, and the introduced plants tend to spread without re-
straint. Generally, the invasive plants are able to out-compete native plants and may 
prevent the natives from growing and/or reproducing. Not only can this incursion 
cause reduction in biodiversity, but the animals of the local community also may not 
be ab‘e t“ ind needed f““d, she‘ter, and s“ “n. Ex“tic ”‘ants ’ay a‘s“ a‘ter native 
networks and processes (e.g., food webs and interactions, biogeochemical cycles, 
and physical factors/conditions) that are required to maintain the integrity and func-
ti“na‘ re‘ati“nshi”s “f the c“’’unity (Stein and F‘ac— 1996). 

Invasives, both plant and animal, also affect agricultural and recreational areas. In 
Florida, losses to agriculture and recreation are estimated to be about $200 million 
(NPS Nonnative 2012). Nationwide, a study produced by Pimentel et al. (2005) esti-
mates the total economic impact of invasive species to be about $120 billion per 
year, which does not include the loss of services provided by healthy ecosystems 
(e.g., ”uriicati“n “f air and water). M“re“ver, n“t restricted t“ the United States, the 
problem of invasives is a worldwide challenge that continues to grow with increas-
ing international exchange and trade. 
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Competition for Space

T“ exa’ine the r“‘e “f s”atia‘ c“nigurati“n in ”‘ant c“’’unity c“’”etiti“n, Si‘ver-
t“wn et a‘. (1992) ”erf“r’ed ce‘‘u‘ar aut“’at“n si’u‘ati“ns “f the c“’”etiti“n 
a’“ng ive grasses, Lolium perenne, Agrostis stolonifera, Holcus lanatus, Poa trivi-
alis, and Cynosurus cristatus, based on data from Thórhallsdóttir (1990). The ‘atter 
had ”erf“r’ed an invasive s”ecies ex”eri’ent, ”‘anting the ive grasses in ad–acent 
hexagonal plots. Table 14.11.1 contains the relative biomasses of neighboring spe-
cies after 18 months. As the sums in the last column indicate, Agrostis and Poa are 
the dominant invasive species. However, the sums in the last row indicate that Lo-

lium, Cynosurus, and Poa, in that order, are most likely to be invaded, or replaced. 
M“re s”eciica‘‘y, the irst c“‘u’n va‘ues indicate that Lolium is most likely to be 
invaded by Poa and least likely to be supplanted by Cynosurus. Also, the second row 
provides evidence that Agrostis is more likely to invade Cynosurus than to replace 
Holcus.

Table 14.11.1 
Rates of replacement (pij) of native species by invader, which are proportions by biomasses 
of invaders in native plots 18 months after initiation of an experiment by Thórhallsdóttir 
(1990; Si‘vert“wn et a‘. 1992)

Native Species

Lolium Agrostis Holcus Poa Cynosurus Sum

In
v
a
d

er

Lolium 0.02 0.06 0.05 0.03 0.16
Agrostis 0.23 0.09 0.32 0.37 0.81
Holcus 0.06 0.08 0.16 0.09 0.39
Poa 0.44 0.06 0.06 0.11 0.67
Cynosurus 0.03 0.02 0.03 0.05 0.13
Sum 0.76 0.18 0.24 0.58 0.60

With this experimental data, the computational scientists used the rate of replace-
ment of a native species j by an invader i, pij in row i and column j of Table 14.11.1, 
to estimate the probability that the invader i will replace the current species j in a cell 
at the next time step. The calculation of the probability and the rule for replacement 
are as follows. 

For a site with species j, a neighbor in its von Neumann neighborhood is picked at 
random. Suppose that the neighboring cell contains species i and that m is the num-
ber of the site’s neighbors (1–4) that contain species i. The probability that species i 
will replace species j in the site at the next time step is the weighed probability 
pijm/4, where pij is the proportion in row i and column j of Table 14.11.1.

For example, suppose a site contains Lolium, and its neighbors to the north, east, 
south, and west are Lolium, Poa, Agrostis, and Poa, respectively. If the cell to the 
north with Lolium is selected at random, at the next time step the site continues to 
contain Lolium. If the cell with Agrostis is picked, the probability that the site will be 
invaded by Agrostis at the next ti’e ste” is 0.23(1/4) = 0.0575, because “n‘y “ne “f 
the four neighboring cells contains Agrostis and the rate of replacement in the 
Agrostis row and Lolium column is 0.23. However, if one of the two neighbors 
growing Poa is chosen at random, the probability that the site will be invaded by Poa 
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at the next time step is 0.44(2/4) = 0.22. Using this rule, a 40 × 40 grid, von Neu-
’ann neighb“rh““ds, 600 si’u‘ati“n ste”s, and vari“us c“nigurati“ns, the ”r“–ects 
wi‘‘ re”r“duce s“’e “f the si’u‘ati“ns described in Si‘vert“wn et a‘. (1992) and 
consider the authors’ conclusions.

Projects

1. a.  Deve‘“” a si’u‘ati“n and ani’ati“n f“r the ive grasses described in the 
secti“n C“’”etiti“n f“r S”ace.  In the initia‘ c“nigurati“n, have a ce‘‘ s 
grass be selected at random with equal probability for each species.

 b.  Plot the frequency of each species for each time step.
 c.  Run the simulation a number of times, say 100, and determine the average 

frequency of each species for time steps 0, 100, 200, 300, 400, 500, and 
600.

 d.  Discuss the results.

In Pr“–ect 1, grasses initia‘‘y “ccurred at rand“’, n“t in c“’’unities. Si‘vert“wn et 
a‘. (1992) investigated starting c“’’unity c“nigurati“ns with each s”ecies a””ear-

ing in eight c“ntigu“us r“ws. F“r Pr“–ects 2 4, re”eat Pr“–ect 1 with the indicated 
c“nigurati“n.

2. In this initia‘ c“nigurati“n, the ’“st invasive s”ecies, Agrostis, appears in 
the top eight rows of the grid. The next eight rows contain Holcus, the spe-
cies least likely to be invaded by Agrostis; that is, in the species with the 
smallest p-value in Agrostis’ row of Table 14.11.1. We proceed in a similar 
fashion to obtain Lolium for the next eight rows, followed by Cynosurus and 
Poa. Each species community is unlikely to invade the species below it.

3. In this initia‘ c“nigurati“n, the ’“st invasive s”ecies, Agrostis, appears in 
the top eight rows of the grid. The next eight rows contain Lolium, the spe-
cies least likely to replace its neighbor to the north; that is, in Agrostis’ col-
umn, Lolium is one of the two species with the least p-value. Then, from 
Lolium s c“‘u’n data, we ind that Cynosurus is least likely to invade Lo-

lium. Proceeding in a similar fashion, the bottom two communities are Hol-

cus and Poa.
4. In this initia‘ c“nigurati“n, we ran— the s”ecies fr“’ highest t“ ‘“west by the 

overall ability to invade (row total) minus the overall susceptibility to inva-
sion (column total). Thus, the order is as follows: Agrostis, Holcus, Poa, 
Cynosurus, Lolium.

5. Deve‘“” si’u‘ati“ns f“r each “f the c“nigurati“ns in Pr“–ects 1 4, and f“r 
each generate plots of species frequencies versus the time step. Compare and 
contrast the results. Discuss the effect that aggregation has on the rate at 
which stronger competitors are able to push out weaker ones. Discuss the 
relationships between two dominants and the impact of the presence of a 
third species on that relationship. Discuss the impact of having low-ranking 
competitors in close contact with each other.

6. Repeat Project 1 for another pattern of species communities and discuss the 
results.
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7. a.  Project 2 from Module 13.4, “Probable Cause: Modeling with Markov 
Chains,” modeled succession in a forest with Markov chains. Using a time 
ste” “f a generati“n and Tab‘e 13.4.4 (H“rn 1975), deve‘“” a ce‘‘u‘ar au-
tomaton rule similar to that in section “Competition for Space.” A cell can 
be in an adult-tree or sapling state for any of the species. 

 b.  Develop a cellular automaton simulation and animation using the rule 
fr“’ Part a f“r the trees. F“r si’”‘iicati“n, y“u ’ay ‘i’it the nu’ber “f 
s”ecies t“ be fewer than 11. In the initia‘ c“nigurati“n, have a ce‘‘ s s”e-
cies be selected at random proportional to the species count in the last row 
“f Tab‘e 13.4.6 (H“rn 1975). F“r exa’”‘e, the su’ “f the c“unts “n that 
r“w is 3286; the s”ecies c“unt f“r BTA (bigt““th as”en) is 104; and 
104/3286 = 0.0316. Thus, there is a 3.16% chance that a cell will contain 
a BTA tree. Once the s”ecies is deter’ined, have a 50-50 chance “f the 
tree being an adult or a sapling.

 c.  Plot the frequency of adult trees for each species for each of 350 time 
steps.

 d.  Run the simulation a number of times, say, 100, and determine the aver-
age frequency of each species for time steps 0, 50, 100, 150, 200, 250, 
300, and 350.

 e.  Discuss the results. Compare your results to those of Horn’s data for sev-
eral sub-forests of varying ages in Institute Woods in Table 13.4.6 (Horn 
1975).

8. Re”eat Pr“–ect 7 using the weighted ”r“babi‘ities discussed in Part c “f Pr“–-
ect 2 in M“du‘e 13.4, Pr“bab‘e Cause M“de‘ing with Mar—“v Chains.

9. Re”eat Pr“–ect 7 “r 8 using an initia‘ c“nigurati“n si’i‘ar t“ that “f Pr“–ect 
2.

10. Re”eat Pr“–ect 7 “r 8 using an initia‘ c“nigurati“n si’i‘ar t“ that “f Pr“–ect 
3.

11. Re”eat Pr“–ect 7 “r 8 using an initia‘ c“nigurati“n si’i‘ar t“ that “f Pr“–ect 
4.

12. Using the ”r“babi‘ities “f Pr“–ect 7 “r 8, deve‘“” si’u‘ati“ns f“r each “f the 
c“nigurati“ns in Pr“–ects 7b, 9, 10, and 11; f“r each, generate ”‘“ts “f s”e-
cies frequencies versus the time step. Compare and contrast the results. Dis-
cuss the effect that aggregation has on the rate at which stronger competitors 
are able to push out weaker ones. Discuss the relationships between two 
dominants and the impact of the presence of a third species on that relation-
ship. Discuss the impact of having low-ranking competitors in close contact 
with each other.

13. Re”eat Pr“–ect 7 “r 8 f“r an“ther ”attern “f s”ecies c“’’unities and discuss 
the results.

14. a.  Using the Table 14.11.1 data, develop a Markov chain model of this for-
est’s succession and determine the stable equilibrium percentages. Dis-
cuss the results.

 b.  Using some initial distribution of species and the transition matrix from 
Part a, plot the estimated number of trees of each species for 20 genera-
tions. Repeat this work for two other initial distributions. Discuss the 
results.
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MODULE 14.12

Re-Solving the Problems with  
Cellular Automaton Simulations

Prerequisite: One “f M“du‘e 10.3, S”reading “f Fire ; M“du‘e 10.4, M“ve’ent 
“f Ants Ta—ing the Right Ste”s ; “r M“du‘e 10.5, Bi“i‘’s United They Stand, 
Divided They C“‘“nize.

Introduction

In M“du‘es 14.6 and 14.8, S”read “f Disease  and Predat“r-Prey Catch Me If 
You Can,’ ” respectively, we considered those categories of applications originally 
solved using system dynamics modeling by then employing cellular automaton (CA) 
simulations. Typically, we can solve problems in a variety of ways, and, often, dif-
ferent a””r“aches i‘‘u’inate different facets. M“re“ver, “ur c“nidence gr“ws if tw“ 
solutions arrive at similar conclusions. 

In this module, we list other projects, originally solved using agent-based model-
ing, t“ a””r“ach using CA si’u‘ati“ns. The secti“n “n Agent-Based M“de‘ing  
fr“’ M“du‘e 11.2, Agents “f Interacti“n Steering a Danger“us C“urse,  dis-
cusses the differences between agent-based modeling and cellular automaton simu-
‘ati“ns. Signiicant‘y, at each ste”, the f“r’er swee”s thr“ugh each agent, whi‘e the 
latter processes each cell of a CA grid. However, many problems previously consid-
ered using agent-based modeling, can be solved using CA simulations.

Projects

For each project, do the following parts along with any other indicated parts:

a.  Develop a cellular automaton simulation and animate the results.
b.  Perform the simulation a number of times, such as 100 times, and average the 

results.
c.  Discuss your results.
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F“r Pr“–ects 2 7, a‘s“ d“ the f“‘‘“wing ”arts:

d–f.  Run the si’u‘ati“n re”eated‘y and ”r“duce igures si’i‘ar t“ Figures (d) 
11.2.3, (e) 11.2.4, and (f) 11.2.5. Discuss the results, including compari-
sons of your results with those of Module 11.2.

One a””r“ach is t“ have each ce‘‘ st“re the ty”e “f envir“n’ent, such as far’ “r 
desert; the presence or absence of an animal, such as a beef cow or toad; the state of 

the ani’a‘, inc‘uding such variab‘es as infecti“n status, weight, and energy; and 
perhaps other cell characteristics, such as amount of moisture.

Pr“–ects 1 7 refer t“ ”r“b‘e’s fr“’ M“du‘e 11.2, Agents “f Interacti“n Steering 
a Dangerous Course.” 

1. The example discussed in Module 11.2
2. Project 2 3. Project 3 4. Project 4
5. Project 5 6. Project 8 7. Pr“–ect 9

Pr“–ects 8 23 refer t“ ”r“b‘e’s fr“’ M“du‘e 11.4, Intr“ducing the Cane T“ad
Ab‘e Invader.

8. The example discussed in Module 11.4
9. Project 1 10. Project 2 11. Project 3

12. Project 4 13. Project 5 14. Project 6
15. Pr“–ect 7 16. Project 8 17. Pr“–ect 9
18. Project 10 19. Project 11 20. Project 12
21. Project 13 22. Project 14 23. Project 15
24. Project 16 25. Pr“–ect 17 26. Project 18
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Re-Solving the Problems with Agent-Based Simulations

Prerequisite f“r Pr“–ects 1 44, 53-62, 92 108, 122 151: M“du‘e 11.2, Agents “f 
Interacti“n Steering a Danger“us C“urse ; Prerequisite f“r Pr“–ects 45 52, 
63 91, 109 121: M“du‘e 11.4, Intr“ducing the Cane T“ad Ab‘e Invader.

Introduction

In the tutorials for agent-based (AB) modeling, we considered several problems, 
such as unconstrained growth, that were originally solved using system dynamics 
’“de‘ing. This different a””r“ach “f AB si’u‘ati“ns f“‘‘“ws agents instead “f c“n-
sidering ”“”u‘ati“ns as a wh“‘e. M“re“ver, AB ’“de‘ing, which genera‘‘y inc‘udes 
a greater quantity of detail, is better able to capture complex interactions, to model 
s”atia‘ interacti“ns, and t“ ”r“vide s”eciicity that can aid in decisi“n-’a—ing. 

As the secti“n Agent-Based M“de‘ing  fr“’ M“du‘e 11.2, Agents “f Interac-
ti“n Steering a Danger“us C“urse,  indicates, an“ther technique, ce‘‘u‘ar aut“’a-
ton (CA) simulation, is very similar to agent-based modeling. While an iteration of a 
CA si’u‘ati“n swee”s thr“ugh each grid ce‘‘, an iterati“n “f an AB si’u‘ati“n u”-
dates the state of each agent. Interestingly, virtually every problem that can be solved 
with CA ’eth“ds can be s“‘ved using AB techniques.

Viewing a problem from another perspective often enhances our understanding of 
the ”r“b‘e’ and increases “ur c“nidence in the c“nc‘usi“ns. In this ’“du‘e, we ‘ist 
projects, originally solved using system dynamics modeling, cellular automaton 
si’u‘ati“ns, “r ’atrix-based ’“de‘ing, t“ a””r“ach using AB ’“de‘ing. 

Projects

F“r each ”r“–ect, un‘ess “therwise indicated, have the a””r“”riate agents ’“ve at 
random. Do the following along with any other indicated parts:

 a.  Develop an agent-based simulation.
 b.  Plot the number of agents versus time.
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 c.  Perform the simulation a number of times, such as 100 times, and average 
the results.

 d.  Discuss your results.
1. With a growth rate of 0.1, model the growth of an organism constrained by 

space so that only one organism can reside in a cell. Is the graph of the num-
ber of organisms versus time similar to the logistic curve discussed in Mod-
ule 2.3? What is the carrying capacity?

Pr“–ects 2 8 refer t“ ”r“b‘e’s fr“’ M“du‘e 2.5.

2. Example in the section “One-Compartment Model of Repeated Doses”
3. Project 2 4. Project 3 5. Project 4
6. Project 5 7. Project 6 8. Project 12
9. Exa’”‘e in M“du‘e 4.1. Besides BTS and WTS agents, inc‘ude a Food agent 

that gr“ws a””r“”riate‘y. The BTS sh“u‘d have a greater ‘i—e‘ih““d than 
WTS of eating neighboring food. Each type of shark requires a certain 
amount of energy, which the food provides. Each time step without food di-
minishes a shark’s energy.

Pr“–ects 10 14 refer t“ ”r“b‘e’s fr“’ M“du‘e 4.2.

10. Project 2 11. Project 3 12. Project 6 
13. Project 4. Have both predators and prey constrained by space so that only 

one organism can reside in a cell.
14. Project 12

Pr“–ects 15 25 refer t“ ”r“b‘e’s fr“’ M“du‘e 4.3.

15. SIR example of Module 4.3
16. Project 1 17. Project 2 18. Project 3
19. Project 4 20. Project 5 21. Project 6
22. Project 8 23. Project 10 24. Project 11
25. Project 12

Pr“–ects 26 30 refer t“ ”r“b‘e’s fr“’ M“du‘e 4.4.

26. Module example 27. Project 1 28. Pr“–ect 7
29.  Project 8 30.  Project 12

Pr“–ects 31 33 refer t“ ”r“b‘e’s fr“’ M“du‘e 4.5.

31. Module example 32. Pr“–ect 7 with n = 2
33. Project 8
34. M“du‘e 7.1, Pr“–ect 1  35. M“du‘e 7.1, Pr“–ect 2
36. M“du‘e 7.6, Pr“–ect 1 37. M“du‘e 7.10, Pr“–ect 1
38. M“du‘e 7.10, Pr“–ect 2 39. M“du‘e 9.2, Pr“–ect 2
40. M“du‘e 9.2, Pr“–ect 4

Pr“–ects 41 44 refer t“ ”r“b‘e’s fr“’ M“du‘e 9.5.

41. Project 4 42. Project 6 43. Pr“–ect 7
44. Project 8

Pr“–ects 45 52 refer t“ ”r“b‘e’s fr“’ M“du‘e 10.2.

45. Example in module 46. Project 1 47. Project 3
48. Project 4 49. Project 5 50. Project 6
51. Pr“–ect 7 52. Project 8
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Pr“–ects 53 62 refer t“ ”r“b‘e’s fr“’ M“du‘e 10.3.

53. Example in module 54. Project 1 55. Project 2
56. Project 3 57. Project 4 58. Project 5
59. Pr“–ect 9 60. Project 10 61. Project 11
62. Project 12

Pr“–ects 63 73 refer t“ ”r“b‘e’s fr“’ M“du‘e 10.4.

63. Project 1 64. Project 2 65. Project 3 66. Project 4
67. Project 5 68. Project 6 69. Pr“–ect 7 70. Project 8
71. Project 12 72. Project 13 73. Project 14

Pr“–ects 74 89 refer t“ ”r“b‘e’s fr“’ M“du‘e 10.5.

74. Module example 75. Project 1 76. Project 2 77. Project 3
78. Project 4 79. Project 5 80. Project 6 81. Pr“–ect 7
82. Project 8 83. Pr“–ect 9 84. Project 10 85. Project 11
86. Project 12 87. Project 13 88. Project 14 89. Project 16

Pr“–ects 92 97 refer t“ ”r“b‘e’s fr“’ M“du‘e 13.3.

92. Age-structured module example 93. Stage-structured module example
94. Project 1 95. Project 2 96. Project 3 97. Project 6
98. Module 13.4, Project 3 99. Module 13.4, Project 4 

100. Module 14.1, Project 1 101. Module 14.1, Project 3 

Pr“–ects 102 108 refer t“ ”r“b‘e’s fr“’ M“du‘e 14.2. 

102. Project 1 103. Project 2 104. Project 3 105. Project 4
106. Pr“–ect 7 107. Project 8 108. Project 12

Pr“–ects 109 115 refer t“ ”r“b‘e’s fr“’ M“du‘e 14.3. 

109. Project 1 110. Project 2 111. Project 3 112. Project 4
113. Project 5 114. Project 6 115. Pr“–ect 7

Pr“–ects 116 121 refer t“ ”r“b‘e’s fr“’ M“du‘e 14.4. 

116. Project 1 117. Project 2 118. Project 3 119. Project 4
120. Project 5 121. Project 6

Pr“–ects 122 126 refer t“ ”r“b‘e’s fr“’ M“du‘e 14.5. 

122. Project 1 123. Project 2 124. Project 3 125. Project 4
126. Pr“–ect 7 

Pr“–ects 127 131 refer t“ ”r“b‘e’s fr“’ M“du‘e 14.6. 

127. Project 1 128. Project 2 129. Project 3 130. Project 4
131. Project 5 132. M“du‘e 14.7, Pr“–ect 1
133. M“du‘e 14.7, Pr“–ect 2 

Pr“–ects 134 139 refer t“ ”r“b‘e’s fr“’ M“du‘e 14.8. 

134. Project 2 135. Project 3 136. Project 4 137. Project 5
138. Project 6 139. Pr“–ect 7
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Pr“–ects 140 151 refer t“ ”r“b‘e’s fr“’ M“du‘e 14.11. 

140. Project 1 141. Project 2 142. Project 3 143. Project 4
144. Project 5 145. Project 6 146. Pr“–ect 7 147. Project 8
148. Pr“–ect 9 149. Project 10 150. Project 11 151. Project 12



MODULE 14.14

Computational Code-Breaking— 
Deciphering Our Own Mysteries

Prerequisites: Secti“ns “n Pr“teins,  Nuc‘eic Acids,  and Fr“’ Genes t“ 
Pr“teins  fr“’ M“du‘e 7.14, C“ntr“‘ Issues The O”er“n M“de‘ ; and M“du‘e 
13.4, Pr“bab‘e Cause M“de‘ing with Mar—“v Chains.  Pr“–ect 1 requires “n‘y 
the indicated ’ateria‘ fr“’ M“du‘e 7.14.

Bioinformatics

A newly developing area of computational science, called bioinformatics, deals 
with the organization of biological data, such as in databases, and the analysis of 
such data, which “ften ’a—es extensive use “f ”r“babi‘ities. Bi“‘“gica‘ syste’s ”r“-
vide us with complexity that challenges our ability to interpret data. To help unravel 
these complexities, the Human Genome Project set out to map all the human ge-
nome, no simple goal if we consider that our genetic code consists of 20,000 to 
25,000 genes, composed of about three billion nucleotides. It is remarkable that the 
program completed the mapping of the human genome in only 13 years, the last 
chromosome completed and published in 2006. Now, this tremendous accomplish-
ment seems like the easy part in our attempts to unravel the complexities of our-
selves. The data generated by this project, which is now combined with data from 
the genomes of other organisms, is accumulating with ever-increasing volume and 
complexity. To analyze these data and derive any understanding will require the de-
velopment of genomic-scale technologies. Even with such technologies, biological 
research in this area is likely to take decades. 

A few of the research areas of genetics that will be pursued and expanded include 
the following:

•  Gene number, exact locations, and functions
•  Gene regulation
•  DNA sequence organization
•  Chromosomal structure and organization



758 Module 14.14

•  Noncoding DNA types, amount, distribution, information content, and functions
•  Coordination of gene expression, protein synthesis, and posttranslational events
•  Interaction of proteins in complex molecular machines
•  Predicted versus experimentally determined gene function
•  Evolutionary conservation among organisms
•  Protein conservation (structure and function)
•  Proteomes (total protein content and function) in organisms
•  Correlation of SNPs (single-base DNA variations among individuals) with 

health and disease
•  Disease-susceptibility prediction based on gene sequence variation
•  Genes involved in complex traits and multigene diseases
•  Complex systems biology, including microbial consortia useful for environ-

mental restoration
•  Developmental genetics, genomics

As indicated in Prerequisites  f“r this ’“du‘e, M“du‘e 7.14, C“ntr“‘ Issues
The Operon Model,” contains useful biological background for problems in bioin-
formatics. In the current module, we approach a number of bioinformatics problems 
using Mar—“v chains, such as the BLAST a‘g“rith’ f“r searching gen“’ic data-
bases and the GeneMark algorithm for locating genes.

Mutations

A mutation in a DNA sequence can occur with the insertion or deletion of a base or 
the substitution of one base for another. One type of substitution, called a transi-
tion, occurs between purines, from A to G or from G to A, or between pyrimidines, 
from T to C, or vice versa. A transversion substitution occurs between a purine and 
a pyrimidine, or vice versa. In a substitution, a transition is much more likely to 
occur than a transversion.

Locating Genes with Markov Models 

The most dependable method of discovering a gene in a new genome is observing a 
close homolog, or a gene from the same ancestral origin, in another organism. How-
ever, when homologs to known genes do not exist, we must employ computational 
’eth“ds t“ he‘” identify genes (Sa‘zberg et a‘. 1998). 

In mammals, the sequence of bases CG frequently transforms to (methyl-C)G 
and then mutates to TG. Thus, the pair CG appears less that we would expect from 
random occurrences of C and G independently. However, this process of transfor-
mation from CG to TG is suppressed in small regions, called CpG islands, up-
stream of, or before, many genes; so CpG islands can be employed to locate genes. 
The “p” in “CpG” indicates a phosphate that links the two bases C and G in DNA. 
The c‘assica‘ deiniti“n “f a C”G is‘and is a DNA seg’ent “f ‘ength 200 that has CG 
occurring 50% of the time and a ratio of observed-to-expected number of CpG’s 
ab“ve 0.6 (Gardiner-Garden and Fr“’’er 1987). 
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We can use Markov chains to determine whether a short segment of genomic data 
is from a CpG island or not. First, we use training sequences that we know contain 
CpG islands, called positive (+) samples, to derive for each base four probabili-
ties the ”r“babi‘ities that A, C, G, and T f“‘‘“w the base. F“r exa’”‘e, c“nsider the 
sequence ACGTCTATTC, which is exceptionally small for the sake of illustration. 
To calculate the probability that T is followed by A, written as P(xi = A | xi-1 = T) or 
P(A | T), we divide the number of occurrences of TA in the sequence, here 1, by the 
number of pairs that begin with T, here 4 (TC, TA, TT, and TC). Thus, P(A | 
T) = ¼ = 0.25 for this sequence. That is, 25% of the time the next base after T is A. 
Moreover, the sum of the probabilities P(A | T) + P(C | T) + P(G | T) + P(T | T) =  
0.25 + 0.50 + 0.00 + 0.25 = 1.00.

Figure 14.14.1a presents a transition matrix for such positive samples determined 
from 60,000 nucleotides from a database of human DNA sequences with 48 CpG 
islands. As in the example in the last paragraph, the sum of the elements on each row 
is 1.00, while the column sum is not necessarily 1.00. In that matrix, the probability 
of the pair CG (or the probability that G occurs, given that C has just appeared) is 
0.274, written as P+(xi = G | xi-1 = C) = P+(G | C) = 0.274. We a‘s“ e’”‘“y training 
sequences for known negative (–) samples to derive another transition matrix, such 
as in Figure 14.14.1b. Thus, for these training sequences, the probability that the 
sequence CG “ccurs in the ”“sitive sa’”‘es with C”G is‘ands is 0.274, whi‘e we ind 
that such a sequence is much less likely (probability of P-(G | C) = 0.078) t“ “ccur in 
the negative samples that do not contain CpG islands.

Quick Review Question 1

Compute the transition matrix using the training sequence ACGTCTATTC.

We can now use Markov chains to determine if a short sequence, x = (x1x2x3. . .xn) 
is more likely to come from a positive or a negative sample by considering the ratio 
of the probability that the sequence is from a positive sample over the probability 
that the sequence is from a negative sample:

P x

P x

 | positive model

 | negative model

( )
( )

If this ratio is greater than 1, the sequence is more likely to be from a CpG island.
To derive the formulas for the numerator and denominator, let us consider a very 

short sequence of four bases x = (x1x2x3x4). Regardless of the positive or negative 

Figure 14.14.1 
P“ssib‘e transiti“n ’atrix f“r (a) ”“sitive and (b) negative sa’”‘es (Durbin et a‘. 1998)

a b
xi xi

+ A C G T – A C G T

xi-1

A 0.180 0.274 0.426 0.120

xi-1

A 0.300 0.205 0.285 0.210

C 0.171 0.368 0.274 0.188 C 0.322 0.298 0.078 0.302

G 0.161 0.339 0.375 0.125 G 0.248 0.246 0.298 0.208

T 0.079 0.355 0.384 0.182 T 0.177 0.239 0.292 0.292
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model, the probability that x occurs, P(x1x2x3x4), is P(x4 occurs after x1x2x3 and x1x2x3 
occurs). As we saw earlier, P(x4 occurs after x1x2x3 and x1x2x3 occurs) is P(x4 | x1x2x3)
P(x1x2x3), or the probability that x4 occurs, given that the sequence x1x2x3 just ap-
peared, times the probability that x1x2x3 occurs. Thus, we have the following:

 P(x1x2x3x4) = P(x4 | x1x2x3)P(x1x2x3)  (1)

Now, with Markov chains, x4 depends only on the value of its immediate predeces-
sor, x3, so that P(x4 | x1x2x3) = P(x4 | x3), and we can simplify Equation 1 as follows:

 P(x1x2x3x4) = P(x4 | x3)P(x1x2x3) (2)

We then repeat the process to compute P(x1x2x3):

P(x1x2x3) = P(x3 occurs after x1x2 and x1x2 occurs) 

 = P(x3 | x1x2)P(x1x2) = P(x3 | x2)P(x1x2) (3)

Substituting (3) into (1), we have the following:

 P(x1x2x3x4) = P(x4 | x3)P(x3 | x2)P(x1x2) (4)

Using the same reasoning, we have

 P(x1x2) = P(x2 | x1)P(x1) (5)

and, ina‘‘y,

 P(x1x2x3x4) = P(x4 | x3)P(x3 | x2)P(x2 | x1)P(x1) (6)

The probability of the sequence x1x2x3x4 is “unzipped” from right to left as the prod-
uct of the probability of obtaining x4 given that x3 is immediately preceding, the 
probability of x3 given x2 is immediately preceding, the probability of x2 given x1 im-
mediately preceding, and the probability of x1. Generalizing, we have the following 
formula:

 P(x1x2x3. . .xn) = P(xn | xn-1)P(xn-1 | xn-2) ⋮ P(x3 | x2)P(x2 | x1)P(x1) (7)

The probability of x1, P(x1), is the proportion of the time x1 occurs in a sequence or 
the total number of occurrences of x1 over the total number of bases in the sequence. 
For example, in Quick Review Question 6a of Module 13.4, we determined that base 
C a””ears 7 ti’es in the sequence s1 of 20 bases, so that P(C) = 7/20. We use the 
training sequences to determine such probabilities. Moreover, the Markov matrices, 
as in Figure 14.14.1, contain the other probabilities. Again, for the sake of example, 
suppose we have the probabilities of bases in training sequences that contain CpG 
islands as in Figure 14.14.2a. Then, we can calculate the probability that the se-
quence ACGTC is from a CpG island as follows:

P+(ACGTC) = P+(C | T)P+(T | G)P+(G | C)P+(C | A)P+(A)

We ca‘cu‘ate the irst f“ur ”r“babi‘ities using the transiti“n ’atrix f“r the ”“sitive 
model in Figure 14.14.1a and the probability of A using Figure 14.14.2a, as follows:
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P+(ACGTC) = P+(C | T)P+(T | G)P+(G | C)P+(C | A)P+(A)

 = 0.355 ∙ 0.125 ∙ 0.274 ∙ 0.274 ∙ 0.258

 = 0.00085953

Figure 14.14.2  
Probability of bases for (a) positive (frequencies from gene-rich human 
chr“’“s“’e 19) and (b) negative sa’”‘es (frequencies fr“’ reference hu’an 
genome sequence; Guide t“ the Hu’an Gen“’e 2010)

a b

P+(A) = 0.258
P+(C) = 0.242
P+(G) = 0.242
P+(T) = 0.259

P–(A) = 0.295
P–(C) = 0.205
P–(G) = 0.205
P–(T) = 0.296

Similarly, we calculate the probability that ACGTC does not come from a CpG 
island using probabilities Figures 14.14.1b and 14.14.2b, as follows:

P–(ACGTC) = P–(C | T)P–(T | G)P–(G | C)P–(C | A)P–(A)

 = 0.239 ∙ 0.208 ∙ 0.078 ∙ 0.205 ∙ 0.295

 = 0.00023449

The calculations indicate a greater probability that ACGTC contains a CpG island 
than not. Moreover, the quotient of the probabilities being greater than 1 also indi-
cates a CpG island:

P

P

PACGTC | positive model

ACGTC | negative model

ACGTC( )
( )

= + (( )
( ) = =

−P ACGTC

0 00085953

0 00023449
3 6655

.

.
.

Quick Review Question 2

Using the transition matrices from Figure 14.14.1 and probabilities from Figure 
14.14.2, calculate the following:

a.  P+(CCGTCGA) 
b.  P–( CCGTCGA)
c.  The quotient of Parts a and b
d.  Is CCGTCGA more likely to be from a CpG island or not?

However, the sequence ACGTC is much shorter than the usual sequence of 200 
to 250 bases. If we were to multiply together 200 probabilities, each less than 1, the 
result would be on the order of 10–200. To avoid such a small magnitude number, the 
use of division, and a large number of multiplications, we employ logarithms. With 
the logarithm of a quotient being the difference of the logarithms, we can replace a 
division with a subtraction:

ln ln ln
P

P
P P+

−
+ −

( )
( )







= ( )( ) − ( )( )ACGTC

ACGTC
ACGTC ACGTC
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Moreover, the log of a product is the sum of the logs:

 ln(P+(ACGTC)) = ‘n(0.355 ∙ 0.125 ∙ 0.274 ∙ 0.274 ∙ 0.258)

 = ‘n(0.355) + ‘n(0.125) + ‘n(0.274) + ‘n(0.274) + ‘n(0.258)

 = 7.0591

 ln(P–(ACGTC)) = ‘n(0.239 ∙ 0.208 ∙ 0.078 ∙ 0.205 ∙ 0.295)

 = ‘n(0.239) + ‘n(0.208) + ‘n(0.078) + ‘n(0.205) + ‘n(0.295)

 = –8.3581

Thus, we have

ln(P+(ACGTC)) – ln(P–(ACGTC)) = 7.0591  ( 8.3581) = 1.2990

We then normalize this score by dividing by the length of the sequence to obtain 
1.2990/5 = 0.2598. The ‘arger this length-normalized log-odds score is the more 
‘i—e‘y that the sequence is fr“’ a C”G is‘and (Tang 2007; Gr“”‘ and Hus“n 2005).

Quick Review Question 3

Calculate the length-normalized log-odds score for the sequence CCGTCGA of 
Quick Review Question 2.

GeneMark

The technique of locating genes from the previous section, “Locating Genes with 
Markov Models,” is a 1st-order Markov model because the method predicts each 
base using one preceding base in the DNA sequence. For this method, as in Figure 
14.14.1a, with positive training sequences that contain CpG islands, 42 = 16 proba-
bilities of base y occurring given base x immediately preceding were calculated. 
Similarly, as in Figure 14.14.1b, 16 probabilities were obtained using negative train-
ing sequences that do not contain such islands. Moreover, as in Figure 14.14.2, the 
probabilities of each base occurring in a positive sequence and in a negative se-
quence were required, resulting in an additional 4 + 4 = 8 probabilities.

The gene-inding ”r“gra’ GeneMark, which is a 5th-order Markov model, 
e’”‘“ys ive ”revi“us bases t“ ”redict a base (GeneMar— 2012). C“’”ared t“ the 32 
probabilities in Figure 14.14.1, GeneMark must use 46 = 4096 ”r“babi‘ities f“r ”“si-
tive and 4096 f“r negative training sequences. M“re“ver, c“’”arab‘e t“ Figure 
14.14.2, the program must also compute the probability of each sequence of 5 bases 
occurring in positive and negative training sequence, or 2(45) = 2048 probabilities. 

Deinition The length-normalized log-odds score for a sequence x is

ln
( )

( )
| |

P x

P x
x+

−
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Thus, GeneMar— ca‘cu‘ates 4096 + 4096 + 2048 = 10,240 ”r“babi‘ities fr“’ the 
training sequences alone. Project 3 discusses the GeneMark algorithm in greater 
detail.

Projects

1.  (Read the section “Mutations” and the sections “Proteins,” “Nucleic Acids,” 
and Fr“’ Genes t“ Pr“teins  fr“’ M“du‘e 7.14, C“ntr“‘ Issues The O”-
eron Model.” From the text’s website, download the PAM1 matrix, PAM1.
dat, in Table 14.14.1 and the frequency data, freq.dat, in Table 14.14.2.) 
Finding similar sequences in genomic databases can help us determine the 
biochemistry, physiology, and function of a gene or the protein it produces. 
In searching such databases, algorithms produce scores that allow us to dif-
ferentiate sequences that are related to a query sequence from those that are 
not. One of the main algorithms for database searching is BLAST (Basic 
L“ca‘ A‘ign’ent Search T““‘; BLAST 2012), which uses a PAM (Point Ac-
cepted Mutations) sc“ring ’atrix. In the 1970s, a research tea’ ‘ead by 
Margaret Dayhoff carefully studied the evolution of sequences of amino 
acids. PAM or PAM 1 is the length of time for 1% of the amino acids to 
mutate. One estimate is that a PAM is about a million years. The PAM1 ma-
trix is a Markov chain transition matrix with column and row headings of the 
amino acids, where entries represent the amount of evolution over one PAM 
period of time, or for one mutation per hundred amino acids. Thus, the ij-el-
ement is the probability that the amino acid in the ith row will replace the 
amino acid in the jth column after the evolutionary time PAM. A PAM120 
matrix, which BLAST uses, c“ntains inf“r’ati“n “n the a’“unt “f ev“‘u-
tion over 120 PAM periods of time. We can obtain this matrix by raising the 
PAM1 matrix to the 120th power. Use a computational tool as needed to 
complete the following parts. 

 a.  The values are multiplied by 10,000 for clarity. For example, the element 
in the irst r“w f“r A‘a (A) and third c“‘u’n f“r Asn (N) is 3. Thus, the 
probability that the amino acid Asn mutates to the amino acid Ala in about 
a million years (one PAM epoch) is 3/10,000 = 0.0003 = 0.03%. Draw a 
partial state diagram using the four amino acids in the top left corner of 
the matrix. 

 b.  Calculate PAM120, M. The matrix is usually written with each element 
multiplied by 100 and rounded to the nearest integer.

 c.  Each element of the PAM120 scoring matrix, S, which BLAST uses, is 
obtained using the following formula:

Sij = round(10 log10(Mij/fi))

 where fi is the frequency of the amino acid in row i and M is the PAM120 
matrix from Part b. We will compute S, called a log odds-scoring matrix, 
using the frequencies in Tab‘e 14.14.2. Because we d“ n“t —n“w what ca’e 
irst, ’a—e this ’atrix sy’’etric, using the va‘ues “n and be‘“w the diag“-
nal. For example, the score for a mutation over 120 PAM periods from R to 
N should be the same as the mutation over that period from N to R (Mo-
mand 2006). 
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 d.  Write a function to return the relative position of an amino acid parameter. 
For example, N is the third amino acid listed in Table 14.14.1, so the func-
tion returns 3.

 e.  Write a function to accept two amino acids, such as N and A, as argu-
ments and to return the corresponding PAM120 score using the PAM120 
scoring matrix, S, from Part c.

 f.  The BLAST a‘g“rith’ searches a database f“r sequences that have a 
“good,” nongapping local alignment with a segment of the query se-
quence. The program starts by breaking the query sequence into all pos-
sible sequential triplets, or 3-mers, or words of length 3. For example, if 
the query sequence is s = RHQMN, we have three 3-mers, RHQ, HQM, 
and QMN. Write a function that has a query sequence parameter and re-
turns a list of all its 3-mers.

 g.  The BLAST ”r“gra’ “btains the ev“‘uti“nary sc“res f“r a‘‘ ”“ssib‘e (20)
(20)(20) = 8000 amino acid triplets in relation to each of the 3-mers in the 
query sequence and compiles a list of all words that have a score greater 

Table 14.14.1 
PAM1 matrix with values multiplied by 10,000. The element in row i, column j is the probability that row 
i’s amino acid will replace column j s a’in“ acid in 1 PAM. Ada”ted fr“’ Figure 82 in Dayh“ff (1978)

A R N D C Q E G H I L K M F P S T W Y V

A 9867 2 9 10 3 8 17 21 2 6 4 2 6 2 22 35 32 0 2 18

R 1 9913 1 0 1 10 0 0 10 3 1 19 4 1 4 6 1 8 0 1

N 4 1 9822 36 0 4 6 6 21 3 1 13 0 1 2 20 9 1 4 1

D 6 0 42 9859 0 6 53 6 4 1 0 3 0 0 1 5 3 0 0 1

C 1 1 0 0 9973 0 0 0 1 1 0 0 0 0 1 5 1 0 3 2

Q 3 9 4 5 0 9876 27 1 23 1 3 6 4 0 6 2 2 0 0 1

E 10 0 7 56 0 35 9865 4 2 3 1 4 1 0 3 4 2 0 1 2

G 21 1 12 11 1 3 7 9935 1 0 1 2 1 1 3 21 3 0 0 5

H 1 8 18 3 1 20 1 0 9912 0 1 1 0 2 3 1 1 1 4 1

I 2 2 3 1 2 1 2 0 0 9872 9 2 12 7 0 1 7 0 1 33

L 3 1 3 0 0 6 1 1 4 22 9947 2 45 13 3 1 3 4 2 15

K 2 37 25 6 0 12 7 2 2 4 1 9926 20 0 3 8 11 0 1 1

M 1 1 0 0 0 2 0 0 0 5 8 4 9874 1 0 1 2 0 0 4

F 1 1 1 0 0 0 0 1 2 8 6 0 4 9946 0 2 1 3 28 0

P 13 5 2 1 1 8 3 2 5 1 2 2 1 1 9926 12 4 0 0 2

S 28 11 34 7 11 4 6 16 2 2 1 7 4 3 17 9840 38 5 2 2

T 22 2 13 4 1 3 2 2 1 11 2 8 6 1 5 32 9871 0 2 9
W 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 9976 1 0

Y 1 0 3 0 3 0 1 0 4 1 1 0 0 21 0 1 1 2 9945 1

V 13 2 1 1 3 2 2 3 3 57 11 1 17 1 3 2 10 0 2 9901

Table 14.14.2 
Normalized Frequencies of Amino Acids (Nakhleh 2010)

Ala Arg Asn Asp Cys Gln Glu Gly His Ile
8.7% 4.1% 4.0% 4.7% 3.3% 3.8% 5.0% 8.9% 3.4% 3.7%

Leu Lys Met Phe Pro Ser Thr Trp Tyr Val
8.5% 8.1% 1.5% 4.0% 5.1% 7.0% 5.8% 1.0% 3.0% 6.5%
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than or equal to a certain threshold parameter. For example, using the 
PAM250 scoring matrix in Table 14.14.3, the scoring of QMN relative to 
”airs QMN, DLL, QSW, and BME is 12, 3, 2, and 8, res”ective‘y, as the 
following computations indicate: 

Q M N
Q M N
4 + 6 + 2 = 12

Q M N
D L L
2 + 4 + (–3) = 3

Q M N
Q S W
4 + (–2) + (–4) = –2

Q M N
B M E
1 + 6 + 1 = 8

Table 14.14.3 
The PAM250 sc“ring ’atrix f“r a’in“ acids. B is used when “ne cann“t distinguish between D 
and N because of amino acid analytical processing. Similarly, Z is used when it is ambiguous 
whether the amino acid is E or Q. X represents an unknown or nonstandard amino acid. Thus, the 
matrix has 23 rows and 23 columns.

A R N D C Q E G H I L K M F P S T W Y V B Z X

A 2
R –2 6
N 0 0 2
D 0 –1 2 4
C –2 –4 –4 –5 12
Q 0 1 1 2 –5 4
E 0 –1 1 3 –5 2 4
G 1 –3 0 1 –3 –1 0 5
H –1 2 2 1 –3 3 1 –2 6
I –1 –2 –2 –2 –2 –2 –2 –3 –2 5
L –2 –3 –3 –4 –6 –2 –3 –4 –2 2 6
K –1 3 1 0 –5 1 0 –2 0 –2 –3 5
M –1 0 –2 –3 –5 –1 –2 –3 –2 2 4 0 6
F –4 –4 –4 –6 –4 –5 –5 –5 –2 1 2 –5 0 9
P 1 0 –1 –1 –3 0 –1 –1 0 –2 –3 –1 –2 –5 6
S 1 0 1 0 0 –1 0 1 –1 –1 –3 0 –2 –3 1 2
T 1 –1 0 0 –2 –1 0 0 –1 0 –2 0 –1 –3 0 1 3
W –6 2 –4 7 –8 –5 7 7 –3 –5 –2 –3 –4 0 –6 –2 –5 17
Y –3 –4 –2 –4 0 –4 –4 –5 0 –1 –1 –4 –2 7 –5 –3 –3 0 10
V 0 –2 –2 –2 –2 –2 –2 –1 –2 4 2 –2 2 –1 –1 –1 0 –6 –2 4
B 0 –1 2 3 –4 1 2 0 1 –2 –3 1 –2 –5 –1 0 0 –5 –3 –2 2
Z 0 0 1 3 –5 3 3 –1 2 –2 –3 0 –2 –5 0 0 –1 –6 –4 –2 2 3
X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A R N D C Q E G H I L K M F P S T W Y V B Z X
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 If the user picks a threshold value of 5, the program would select QMN 
and BME and “ther higher sc“ring 3-’ers but n“t DLL and QSW as ev“-
lutionary matches. Develop a function to accept two 3-mers and to return 
the evolutionary PAM120 score. These scores will differ from those in 
Table 14.14.3.

 h.  Develop a function to have three parameters, a 3-mer (mer), a list of 
3-mers (merLst), and a threshold value (threshold), and to return a list of 
all 3-mers from merLst whose evolutionary score relative to mer is greater 
than or equal to threhold. For example, as Part g illustrates, if mer is 
QMN, merLst is {QMN, DLL, QSW, BME}, and threshold is 5, then the 
functi“n returns {QMN, BME}. Use the PAM120 sc“ring ’atrix fr“’ 
Part c.

 i.  Write a function to return a list of the 8000 possible amino acid triplets.
 j.  The sec“nd ste” in the BLAST a‘g“rith’ is t“ scan the database f“r ‘“ca-

ti“ns “f high sc“ring w“rds fr“’ the irst ste” (see Part g). F“r exa’”‘e, 
the high sc“ring w“rd BME “ccurs at ‘“cati“n 6 in the sequence NRSQH-
BMELDLDMFPMST. Develop a function that has as parameters a list 
of 3-mers (merLst) and a sequence (sequence) and that returns a list of 
integer starting locations for all occurrences 3-mers from merLst in 
sequence.

 k.  The third ste” “f the BLAST a‘g“rith’ is t“ extend each “f the seeds in 
both directions until the subsequence score reaches a maximum value ac-
cording to the matrix scoring. Using a heuristic, the program stops an 
extension if the score falls below a certain amount less than the highest 
score so far. For example, suppose the query sequence is in part . . .SRMC-
DRHQMNCFPS. . ., and the program located the high-scoring word 
RHQ in the database sequence . . .NRSQHRHQLDLDMF. . .. Table 
14.14.4 sh“ws h“w we extend fr“’ the seed RHQ t“ ind a seg’ent ”air 
(DRHQMN and HRHQLD) with a maximum PAM250 score 
(1 + 6 + 6 + 4 + 4 + 2 = 23). DRHQMN and HRHQLD are a locally 
maximal segment pair, or a segment from the query sequence and a seg-
ment from a database sequence with a score that cannot become larger 
through shrinking or expanding the segments. We repeat this extension 
process for all seeds looking for all segment pairs with scores above some 
threshold. The algorithm is fast in part because it does not consider gaps 
and uses heuristics involving threshold values. 

Develop a function that has parameters of two sequences and an inte-
ger starting location and returns a list containing the starting location, 
length, and PAM 120 score (see Part c) of a locally maximal segment pair.

Table 14.14.4 
Finding the locally maximal segment pair from sequences SRMCDRHQMNCFPS and 
NRSQHRHQLDLDMF, starting at location 6 and using the PAM250 scoring matrix

In query: S D M C D R H Q M N C F P S
In database: N R S Q H R H Q L D L D M F
PAM250 Score: 1 –1 –2 –5 1 6 6 4 4 2 –6 –6 –2 –3
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l.  Write a ”r“gra’ t“ i’”‘e’ent the BLAST a‘g“rith’ as ”resented in this 
project. Input should include a query sequence, a list of database se-
quences, and a thresh“‘d va‘ue. Obtain sequences fr“’ a BLAST database 
at NCBI (BLAST 2012).

2. (From the text’s website, download ProbabilitiesHuman.txt, which contains 
the probabilities from Figures 14.14.1 and 14.14.2, respectively. Also, down-
‘“ad a‘‘ “r ”art “f the DNA sequence “n chr“’“s“’e 19 “f the hu’an ge-
nome at http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?ORG=hum&MA
PS=ide“gr,est,‘“c&LINKS=ON&VERBOSE=ON&CHR=19.) E’”‘“y the 
techniques of the section on “Locating Genes” to score each subsequence of 
length 200. Have your program determine the most likely candidates for sub-
sequences being in CpG islands. Determine if your candidates occur in CpG 
islands as indicated at http://genome.ucsc.edu/cgi-bin/hgTracks?position 
=chr19:571325-583493&hgsid=264592883&—n“wnGene=”ac—&hgFind 
.matches=uc002loy.3. As of this writing, such areas appear in green on the 
diagram (Homo Sapiens 2001, UCSC 2009).

3. (From the text’s website, download AE005174v2.txt (from AE005174v2.fas 
at htt”://www.gen“’e.wisc.edu/sequencing/“157.ht’), which c“ntains the 
DNA sequence for Escherichia coli (E. coli), and Escherichia_c“‘i_O157 

H7_”‘as’id_”O157.txt, which contains training data generated by generated 
by GeneMar—SP‘usRBS “n E. coli O157H7, as described in the secti“n 
GeneMar—  (B“r“d“vs—y Lab“rat“ry 2005). GeneBan— at NCBI c“ntains 

sequence inf“r’ati“n “n Escherichia c“‘i O157:H7 EDL933, c“’”‘ete ge-
n“’e  (htt”://www.ncbi.n‘’.nih.g“v/nucc“re/AE005174). By c‘ic—ing “n 
any of the gene ‘in—s, create a data i‘e “f a sequence “f 200 bases i’’edi-
ate‘y bef“re “ne “f the genes and create an“ther data i‘e “f a sequence “f 200 
bases inside a gene (Escherichia coli 2001; Enterohaemorrhagic 2001).) 
Using the algorithm described in the section “GeneMark” to score each se-
quence as c“ntaining “r n“t c“ntaining a C”G is‘and. E’”‘“y the irst c“‘-
umn of data in Escherichia_c“‘i_O157H7_”‘as’id_”O157.txt.

4. (From the text’s website, download Escherichia_c“‘i_O157H7_”‘as’id_
”O157.txt, described in the previous project.) For homogeneous Markov 
models involving genomic sequences, probabilities are not dependent upon 
sequence location, while for inhomogeneous Markov models, they are. A 
reading frame brea—s a sequence “f nuc‘e“tides int“ c“d“ns. Because we 
can start the alignment in three possible places on an mRNA strand, three 
reading frames exist for such a strand. For example, suppose mRNA contains 
the sequence of bases, AACTGTTAG. . .. We could have the reading frame 
begin with AAC, as in AAC-TGT-TAG. . .; or one base further with ACT-
GTT-AG. . .; “r tw“ bases bey“nd with CTG-TTA-G. . .. Because DNA has 
two strands, one complementary to the other, we have six possible reading 
frames from which transcription can occur. As described in the section “Gen-
eMark,” develop a program that generates transition matrices and probabili-
ties for the six possible reading frames for training sequences and select the 
model with the highest score. The GeneMark program considers seven pos-
sibilities, these six and a model of noncoding DNA.

http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?ORG=hum&MAPS=ideogr,est,loc&LINKS=ON&VERBOSE=ON&CHR=19
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?ORG=hum&MAPS=ideogr,est,loc&LINKS=ON&VERBOSE=ON&CHR=19
http://genome.ucsc.edu/cgi-bin/hgTracks?position=chr19:571325-583493&hgsid=264592883&knownGene=pack&hgFind.matches=uc002loy.3
http://genome.ucsc.edu/cgi-bin/hgTracks?position=chr19:571325-583493&hgsid=264592883&knownGene=pack&hgFind.matches=uc002loy.3
http://genome.ucsc.edu/cgi-bin/hgTracks?position=chr19:571325-583493&hgsid=264592883&knownGene=pack&hgFind.matches=uc002loy.3
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Answers to Quick Review Questions

1.  xi

 A C G T
  A 0.00 0.50 0.00 0.50
 xi-1

 C 0.00 0.00 0.50 0.50
  G 0.00 0.00 0.00 1.00
  T 0.25 0.50 0.00 0.25 

2. a.  P+( CCGTCGA) = 4.7767 ∙ 10–5 = 0.368 ∙ 0.274 ∙ 0.125 ∙ 0.355 ∙ 0.274 ∙ 
0.161 ∙ 0.242

 b.  P–( CCGTCGA) = 4.5822 ∙ 10–6 = 0.298 ∙ 0.078 ∙ 0.208 ∙ 0.239 ∙ 0.078 ∙ 
0.248 ∙ 0.205

 c.  10.4245
 d.  CCGTCGA is more likely to be from a CpG island because the quotient is 

greater than 1.
3. 0.3349 = ‘n((0.368 ∙ 0.274 ∙ 0.125 ∙ 0.355 ∙ 0.274 ∙ 0.161 ∙ 0.242)/(0.298 ∙ 

0.078 ∙ 0.208 ∙ 0.239 ∙ 0.078 ∙ 0.248 ∙ 0.205))/7 = (‘n(0.368) + ‘n(0.274) +  
‘n(0.125) + ‘n(0.355) + ‘n(0.274) + ‘n(0.161) + ‘n(0.242)  ‘n(0.298)   
‘n(0.078)  ‘n(0.208)  ‘n(0.239)  ‘n(0.078)  ‘n(0.248)  ‘n(0.205) )/7
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MODULE 14.15

Social Networks—Value in Being Well Connected

Prerequisite: M“du‘e 13.5, The Next F‘u Pande’ic O‘d Ene’y, New Identity.  
Part “f Pr“–ect 4 requires M“du‘e 8.3, E’”irica‘ M“de‘s.

Introduction

Birds be‘“nging t“ the fa’i‘y Paridae are c“’’“n “n a‘‘ the c“ntinents exce”t f“r 
Australia and South America. There are at least 55 species, and if you live in the 
eastern United States, y“u wi‘‘ ‘i—e‘y rec“gnize s“’e “f the’ chic—adees and tit-
’ice. In Eng‘and, there are s“’e rather fa’“us ’e’bers “f this bird fa’i‘y the 
tits, especially the blue tit (Cyanistes caeruleus). During the ear‘y 1920s ”e“”‘e ‘iv-
ing in Swaythling, a small town in southern England, observed these birds opening 
the f“i‘ ‘ids “n b“tt‘es “f de‘ivered ’i‘—. B‘ue tits are urbanized, curi“us birds, “ften 
attracted to sources of food provided by human inhabitants. They eat insects, seeds, 
or just about anything nutritious. For instance, they can peel back bark to look for 
insects, ”ierce l“wer bases f“r nectar, and ”re”are f“‘ded ”a”er f“r f““d st“rage. 
Relative to other birds, this family contains some rather “cerebral” members. The tits 
have large brains for their body size, so this lid-opening behavior might not surprise 
th“se fa’i‘iar with the’ (Lefebvre and B““gert 2010).

For the next 25 years, more sightings of this behavior were reported in various 
‘“cati“ns in Great Britain, Ire‘and, and “n the c“ntinent. Scientists w“ndered if the 
”r“‘iferati“n “f this behavi“r was trans’itted cu‘tura‘‘y did they ‘earn fr“’ each 
“ther (Fisher and Hinde 1949; Hinde and Fisher 1951)? Actua‘‘y, ’any s”ecies “f 
birds took advantage of the rich cream in the milk bottles prior to World War I. The 
bottles then had no lids, so access to this nutritious treat did not require a big brain. 
However, not all the birds were able to pierce the lids, once they were installed (de 
Geus 1999). 

The very rapid spread of this behavior suggested cultural transmission. To con-
ir’ cu‘tura‘ trans’issi“n, we need, besides ra”id s”read, a ‘arge s”atia‘ range and a 
s”read ”attern that dis”‘ays a ‘“gistic (s-sha”ed) curve the s”read ‘agging at irst 
(1921 1936), f“‘‘“wed by a stee” increase (1937 1947), and ending with the curve 
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‘eve‘ing “ut. The s”read c“nf“r’ed t“ the irst tw“ ”attern as”ects but did n“t dis-
play a slowdown. Perhaps there were so many places for the behavior to spread that 
it –ust —e”t ”r“‘iferating fr“’ discrete Eng‘ish ‘“ca‘ities, acr“ss Great Britain, and 
into other countries. In fact, the pattern, which conforms to such a model, should 
revea‘ a ri””‘e effect dis”‘ays “f the behavi“r extending fr“’ Swayth‘ing, as the 
ri””‘es generated by dr“””ing a ”ebb‘e in water. This ri””‘e c“nigurati“n was n“t 
observed. In fact, no obvious pattern for the spread could be discerned. Scientists 
have c“nc‘uded that the behavi“r ”attern relects the “ccurrence “f the sa’e n“ve‘ 
behavior originating independently at different sites. The spreading of the behaviors 
would take place from each origin by the imitation of the behavior by observers. 
This more complex explanation of the pattern includes autonomous invention and 
‘earning, inc‘uding s“cia‘ ‘earning (Lefebvre and B““gert 2010). 

Interestingly, some of the other species, like English robins, which partook freely 
of the cream in open bottles, never developed this behavior successfully. It has been 
“bserved that r“bins are ’“re territ“ria‘ than tits. Tits, after their y“ung have ledged, 
tend t“ f“rage in s’a‘‘ l“c—s, ”r“viding ’“re “””“rtunities f“r s“cia‘ ‘earning. Birds 
that are very territorial for long periods of the year do not expose themselves to as 
’any “””“rtunities t“ ‘earn fr“’ “thers (de Geus 1999).

Various tit species are still subjects of study to understand their social interac-
ti“ns. At ‘east tw“ gr“u”s at the University “f Oxf“rd are c“nducting ie‘d studies 
designed to describe and understand better the complexities of the birds’ social net-
works. It would seem that, at least with tits, there are such networks that would par-
allel those of Facebook, Twitter, and so on. One might even say that the tits are all 
“atwitter.” 

In a collaborative project between the Departments of Zoology (Edward Grey 
Institute of Field Ornithology) and Engineering Science (Machine Learning Re-
search Group) at Oxford, scientists collected massive amounts of data for a wild 
population of great tits (Parus major) in Wytham Woods, near Oxford city. During 
the nesting seas“n, the scientists ”‘aced RFID (radi“-frequency identiicati“n) tags 
on all nestlings and on captured adult birds. For two subsequent winters, they de-
”‘“yed sunl“wer seed feeders, s”aced at even distances a‘“ng a grid “ver the study 
site. The feeders had data ‘“ggers that rec“rded the visits and the ti’es f“r s”eciic 
birds. The data generated over a million records for more than 1200 great tits. From 
analysis of this spatio-temporal data, the researchers were able to extract the struc-
ture of the birds’ social network. They hypothesized that birds would visit a feeder 
preferentially in s’a‘‘ l“c—s, and increases in “bserved density w“u‘d be equiva‘ent 
to a gathering event of birds that were socially connected. What their data demon-
strated, which ”ara‘‘e‘ed ie‘d “bservati“ns, was that the birds did indeed f“rage with 
their friends. The birds seemingly selected the birds with which they wanted to so-
cialize and even to mate (Psorakis et al. 2012). It almost seems as if the great tits 
have their “wn ie‘d versi“n “f Faceb““—.

Lucy Aplin, an Australian D.Phil. student, also worked at Oxford on wild popula-
tions of several tit species. She led a group of researchers investigating populations 
“f the ’“st c“’’“n tit s”ecies in c“”ses near Wytha’ W““ds. B‘ue tits (Cyanistes 

caeruleus), great tits (Parus major), and marsh tits (Poecile palustris), all members 
“f the Paridae, c“’’“n‘y f“rage in ’ixed l“c—s. Birds in the study area were tagged 
with trans”“nders, and sunl“wer feeders with data ‘“ggers were insta‘‘ed at tw“ ‘“-
cations in each study area. The researchers could gather times for each bird’s visit 
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and detect associations. From these data, a matrix of associations, or social network, 
was constructed. The birds became familiar with the locations of the feeders over the 
2-month period, but then, the scientists removed the feeders for 2 weeks. Subse-
quently, the feeders were repositioned (at night) within the study site in new, unfa-
’i‘iar ‘“cati“ns. After 3 days the feeders were re’“ved, and after 7 days they were 
returned t“ new, unfa’i‘iar ‘“cati“ns. Data were c“‘‘ected in f“ur tria‘s “n the irst 
birds to locate the new food source. The association matrix studies determined non-
directional associations of foraging birds, whereas the discovery experiments deter-
’ined the inlux “rder at the unfa’i‘iar sites. These ex”eri’ents sh“u‘d be re‘ated 
only if social connections of the birds were important to discovery. In other words, 
friends te‘‘ friends. What the gr“u” f“und was that s“cia‘ c“nnecti“ns were deinite‘y 
involved in discovery. Information passed according to the network of social asso-
ciations (Aplin et al. 2012). So, at least for these tit species, social connections are a 
form of social security. It gives an additional perspective for the old idiom, birds of 
a feather l“c— t“gether.

Projects

Severa‘ “f the ”r“–ects reference Stanf“rd Large Netw“r— Dataset C“‘‘ecti“n (SNAP 
2012), a research re”“sit“ry “f datasets f“r ‘arge s“cia‘ and inf“r’ati“n netw“r—s. 
Each referenced SNAP download page contains information about the correspond-

ing dataset.

1. (Download dataset ca-GrQc.txt.gz from http://snap.stanford.edu/data/ca-
GrQc.txt.gz.) The Stanford Large Network Dataset Collection stores the 
General Relativity and Quantum Cosmology collaboration network dataset 
with scientiic c“‘‘ab“rati“ns between auth“rs ”a”ers sub’itted t“ Genera‘ 
Relativity and Quantum Cosmology category” (SNAP 2012; ca-GrQc 2012). 
In this undirected graph, if authors i and j coauthored a paper, an edge exists 
between nodes i and j. 

For each of the following parts, calculate the metric, answer the indicated 
questions, and discuss the results and meaning of the metric in the context of 
the problem.

 a.  For this dataset, graph the degree distribution and determine a function 
that its this distributi“n. Is the netw“r— sca‘e free? If s“, deter’ine the 
largest hubs.

 b.  Find a minimal dominating set.
 c.  Ca‘cu‘ate the ’ean c‘ustering c“eficient.
 d.  Determine the numbers of nodes and edges in the largest connected 

component.
 e.  Find the mean shortest-path length and the diameter (see Module 13.5, 

The Next F‘u Pande’ic O‘d Ene’y, New Identity, Pr“–ect 2). D“es 
this network exhibit the small-world property? 

2. (Download dophins.gml from (CASOS 2012) at http://www.casos.cs.cmu 
.edu/c“’”utati“na‘_t““‘s/datasets/externa‘/d“‘”hins/index11.”h”.) The i‘e 
dolphins.gml contains an undirected social network of frequent associations 

http://www.casos.cs.cmu.edu/computational_tools/datasets/external/dolphins/index11.php
http://www.casos.cs.cmu.edu/computational_tools/datasets/external/dolphins/index11.php
http://snap.stanford.edu/data/ca-GrQc.txt.gz
http://snap.stanford.edu/data/ca-GrQc.txt.gz
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between 62 dolphins in a community living off Doubtful Sound, New Zea-
land, as compiled by” Lusseau et al. (2003). Repeat Project 1 for this 
dataset.

3. (Download faceb““—.tar.gz and readme-Ego.txt from http://snap.stanford 
.edu/data/egonets-Facebook.html.) The Stanford Large Network Dataset 
Collection stores a “Social circles: Facebook” dataset of circles, or friends 
lists, from Facebook (SNAP 2012; ego-Facebook 2012). A social circle is a 
category of friends, such as family members, schoolmates, or club members. 
Each i‘e na’e in the dataset begins with an integer, nodeId, indicating the 
ID of a focal individual, an ego, for the associated ego network, or personal 
netw“r—, which is undirected. The c“‘‘ecti“n “f i‘es avai‘ab‘e f“r d“wn‘“ad 
at ego-Facebook (2012) contains data for 10 ego networks with ego IDs 0, 
107, 348, 414, 686, 698, 1684, 1912, 3437, and 3980 and a t“ta‘ “f 4039 
Facebook users. In an ego network, the ego is a friend with every other node 
individual, called an alter. 

A i‘e ending with .edges lists the edges in the ego network for the nodeId 
individua‘. F“r exa’”‘e, the irst ‘ine “f 0.edges contains 236 186. Thus, the 
individual with ID 0, in this case the ego, is friend with individuals 236 and 
186, two of 0’s alters. Moreover, the undirected edge (236, 186) indicates 
that 236 and 186 are friends with each other. Filenames ending with .circles 
na’e and ‘ist the eg“ s circ‘es. F“r exa’”‘e, the i‘e 0.circ‘es indicates that 
ego 0 has 24 circles of friends (circ‘e0 through circle23), and circle3 repre-
sents a circ‘e with 0 and a‘ters 51, 83, and 237. A .featname i‘e ‘ists yes/n“ 
feature names in the ego network. To preserve anonymity, features have 
been anonymized, or made anonymous. For example, 0.featna’e lists 224 
features; features 77 and 78 refer t“ gender ( an“ny’ized feature 77  and 
an“ny’ized feature 78 ); and features 24 thr“ugh 52 re‘ate t“ the ”“ssib‘e 

sch““‘s that netw“r— ’e’bers have attended. The i‘e 0.eg“feat presents in a 
binary fashi“n the features “f eg“ 0. With 0 in ”“siti“n 77 and 1 in ”“siti“n 
78, the eg“ is “f gender an“ny’ized feature 78 ; and 1 in ”“siti“n 39 indi-
cates a sch““‘ afi‘iati“n “f an“ny’ized feature 39.  A i‘e ending in .feat 
has a line representing the features for each alter. Each line begins with the 
alter’s ID and continues with a binary representation of the alter’s features. 
Thus, 0.feat has 347 ‘ines, “ne f“r each “f its a‘ters, 1 thr“ugh 347; and “n 
‘ine 2, 1 f“r ”“siti“n 78 indicates a‘ter 2 has gender an“ny’ized feature 78.  
Consequently, ego 0 and alter 2 are the same gender.

 a.  F“r “ne “f the eg“s, ca‘cu‘ate the ’ean c‘ustering c“eficients “f each “f 
its circles and of its ego network. Do variations in the values indicate any-
thing about friendships? Discuss the results.

 b.  One metric for the strength of the tie between two individuals is the num-
ber of features they have in common. For one of the egos, calculate the 
mean tie strength between the ego and its alters and the mean tie strength 
between the eg“ and the entire netw“r— “f 4039 users. D“es the eg“ a”-
pear to have more in common with its friends than with the general net-
work population?

 c.  Calculate the tie strength (see Part b) between one of the egos and each of 
its alters. Calculate the pairwise mean tie strength among the 10 alters 

http://snap.stanford.edu/data/egonets-Facebook.html
http://snap.stanford.edu/data/egonets-Facebook.html
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with the highest ego-alter tie strengths, the 10 alters with the lowest ego-
alter tie strengths, and the 10 alters in the midrange of ego-alter tie 
strengths. Discuss the implications of the results.

 d.  For one of the egos, calculate the mean tie strength (see Part b) between 
pairs of ego network members. For each of the ego’s circles, calculate the 
mean tie strength between pairs of circle members. Discuss the implica-
tions of the results.

 e.  For one of the egos and each of its circles, calculate the average of each 
feature. For example, for ego 0 and circle3 with ’e’bers 51, 83, 237, the 
average in position 50 is 0.5; two of the four answered yes to attending 
school “anonymized feature 50.” Repeat the calculation among all the ego 
network members. Discuss the results.

 f.  Repeat any of Parts a–e for all the egos. Discuss the overall results.
4. (Download dataset Wi—i-V“te.txt.gz from http://snap.stanford.edu/data/wiki-

Vote.html.) The Stanford Large Network Dataset Collection stores a “Wiki-
pedia vote network” dataset of voter data for Wikipedia administrator elec-
tions (SNAP 2012; wiki-Vote 2012). Volunteers around the world 
collaboratively write articles for Wikipedia, a free online encyclopedia, and 
users can vote whether a candidate is to become an administrator or not. 

After header d“cu’entati“n, each ‘ine “f the i‘e wiki-Vote.txt contains 
”airs “f nu’bers, such as 110 929, indicating that user 110 cast a v“te in the 
e‘ecti“n f“r candidate user 929.

The i‘e wikiElec.ElecBs3, which c“ntains data “n 2794 e‘ecti“ns and 
103,663 v“tes fr“’ 7066 users, uses the f“‘‘“wing data f“r’at:

# E: is election successful (1) or not (0)

# T: time election was closed

# U: user id (and username) of editor that is being considered for 

promotion

# N: user id (and username) of the nominator

# V: <vote(1:support, 0:neutral, –1:oppose)> <user_id> <time> 

<username>

F“r exa’”‘e, the f“‘‘“wing e‘ecti“n data indicate that the user with id 929 
lost the election with a neutral vote from user id 23, a support vote from 865, 
and an oppose vote from 110:

E 0

T 2006-06-15 04:33:59

U 929 poiuytman

N –1 UNKNOWN

V 0 23 2005-05-05 00:59:00 cryptoderk

V 1 865 2005-05-05 01:05:00 grace

V –1 110 2005-05-05 05:17:00 kingturtle

⋮

Consider a weighted directional graph with user ids as the nodes, arrows 
from voters to candidates, and weights indicating the type of vote (1: support, 
0: neutral, –1: oppose).
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 a.  Compute the undirected degree distribution, and with empirical modeling 
and graphing the results, obtain a function that captures the trend of the 
distribution. Is the undirected network scale free? Identify the hubs.

 b.  Compute the out-degree distribution, and with empirical modeling and 
graphing the results, obtain a function that captures the trend of the distri-
bution. Is the directed network scale free? Discuss the results.

 c.  Compute the out-degree distributions for each of the weights, –1, 0, and 1, 
and obtain graphs that capture the trends of the distributions. Discuss the 
results.

 d.  On the average, do more users cast votes in elections where the candidate 
is successful or unsuccessful?
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GLOSSARY OF TERMS

AB Agent-based.
absolute error Abs“‘ute va‘ue “f the difference betwewen the exact answer and 

the computer answer.
absolute refractory period Ti’e during an AP when a‘‘ the s“diu’ gates are 

open and an ensuing stimulus, no matter how strong, cannot initiate another AP.
absorbing boundary conditions C“nditi“ns s“ that a‘‘ gh“st ce‘‘s “f a ce‘‘u‘ar 

automaton or agent-based grid have the same constant value. 
acceleration due to gravity A””r“xi’ate‘y 9.81 ’/s2, where up is considered 

the positive direction.
acceleration Rate “f change “f ve‘“city with res”ect t“ ti’e.
action potential (AP) A very ra”id change in the ’e’brane ”“tentia‘ a‘“ng the 

plasma membrane of a nerve, endocrine, or muscle cell (excitable cells).
adjacency matrix F“r a gra”h with n nodes, an n × n matrix, where the element 

in row i and column j indicates the number of edges between node i and node j.
adjacent In a gra”h, ”r“”erty “f tw“ vertices that have an edge c“nnecting the’. 
adrenalin E”ine”hrine. 
aerobic respiration Ce‘‘u‘ar res”irati“n, where “xygen serves as the ina‘ e‘ec-

tron acceptor during the oxidation of organic molecule to obtain energy. This type 
of respiration uses the Krebs cycle and the electron transport chain, both found in 
the mitochondria.

agent-based simulation Si’u‘ati“n technique in which each ani’a‘/entity is 
modeled as an autonomous, decision-making agent that has a state, which is rep-
resented by a set of state variables, or attribute values, and behaviors, which con-
trol its actions. A method or procedure, which is associated with a class, or breed 
or group, of agents, is a function that captures some or all of an agent’s behavior. 
Agents often operate in an environment that arranges cells in a rectangular grid.

agent An aut“n“’“us, decisi“n-’a—ing entity in an agent-based si’u‘ati“n.
amino acid M“‘ecu‘e with a centra‘ carb“n (α carbon), which bonds with 4 

che’ica‘ gr“u”s an a’in“ gr“u” (–NH3
+), a carboxyl group (–COO–), a hydro-

gen (H), and a variable side-chain (R-group).
amino group  NH3

+.
ampere (A)  Unit “f current f“r a charge “f “ne c“u‘“’b (1 C) t“ ”ass thr“ugh a 

region in one second (1 s).
amplitude Of an “sci‘‘ating functi“n, the ’axi’u’ va‘ue “f the functi“n fr“’ 

the horizontal line going through the middle of the function.
angular acceleration Rate “f change “f angu‘ar ve‘“city.
angular velocity Rate “f change “f an ang‘e with res”ect t“ ti’e.
anthropogenic Of hu’an “rigin.
antiderivative Functi“n F if Fʹ(t) = f(t), or the derivative of F is f.
antigen-presenting cell S”ecia‘ized i’’une ce‘‘ that can ”resent antigens “n its 

surface for interaction with T-cells.
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antigen-speciic T-cell T-ce‘‘, “r T-‘y’”h“cyte, that bears rece”t“rs that bind 
s”eciica‘‘y t“ an antigen.

antigen Substance which the b“dy rec“gnizes as f“reign and which can bind t“ 
s”eciic rece”t“rs “n i’’une ce‘‘s. Many antigens are a‘s“ i’’un“gens, which 
can initiate a s”eciic i’’une res”“nse.

AP Acti“n ”“tentia‘.
apical growth In fungi, extensi“n “r e‘“ngati“n “n‘y at the ti” “f hy”hae.
aposematic coloration Bright c“‘“rati“n “ften dis”‘ayed by ”rey as a warning 

of their toxic composition.
artiicial water point Water re”“sit“ry created f“r ‘ivest“c—, such as a tr“ugh “r 

dam. 
assignment statement State’ent that causes the c“’”uter t“ st“re the va‘ue “f 

an expression in a memory location associated with a variable.
associative property Pr“”erty where gr“u”ing in additi“n “r ’u‘ti”‘icati“n 

does not matter: (a + b) + c = a + (b + c) and (ab)c = a(bc).
atm Abbreviati“n f“r at’“s”here. 
atmosphere Layer “f gases surr“unding the earth. As a ’easure’ent, “ne at’“-

sphere (1 atm) is the atmospheric pressure at sea level.
ATP synthase Enzy’e, using the energy fr“’ an e‘ectr“che’ica‘ gradient, which 

synthesizes ATP from ADP and phosphate. 
atria In the hu’an heart, the tw“ u””er cha’bers that receive b‘““d returning 

from the body and lungs.
average velocity Rati“ “f the change in ”“siti“n t“ the change in ti’e.
Avogadro’s Number 6.02214 × 1023, the number of carbon (C) atoms in exactly 

12 g of carbon-12 (12C).
AWP Artiicia‘ water ”“int.
axon Cyt“”‘as’ic extensi“n “f a neur“n that can trans’it signa‘s away fr“’ the 

cell body toward other neurons or effector cells.
Barnes-Hut algorithm Divide-and-c“nquer ”ara‘‘e‘ a‘g“rith’ e’”‘“ying c‘us-

tering that is a simulation of the N-B“dy Pr“b‘e’. 
base Nitr“gen base.
base pair Tw“ bases “n different strands “f DNA that b“nd with each “ther.
basic reproductive number (R0) Initia‘ re”r“ductive nu’ber with “ne infec-

tious individual and all others being susceptible.
behavior In agent-based si’u‘ati“ns, acti“ns “f an agent.
binary number system Nu’ber syste’ with base 2; used by ’“st c“’”uters.
bioilms C“’’unities “f very s’a‘‘ “rganis’s that adhere t“ a surface in an aque-

ous environment.
bioinformatics A new‘y deve‘“”ing area “f c“’”utati“na‘ science that dea‘s with 

the organization of biological data, such as in databases, and the analysis of such 
data, which often makes extensive use of probabilities.

biomagniication Cu’u‘ative increase in the c“ncentrati“ns “f a substance in 
successively higher levels of the food chain.

biosphere A‘‘ ‘iving things.
bipartite graph A gra”h with vertices ”artiti“ned int“ tw“ sets, where arcs are 

only between vertices in different sets.
bit 0 “r 1 in the binary nu’ber syste’.
BLAST Basic ‘“ca‘ a‘ign’ent search t““‘.
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blood pressure Hydr“static (luid) ”ressure that ’“ves the b‘““d thr“ugh the 
circulation.

BMI B“dy ’ass index.
body mass index (BMI) Anthr“”“’etric ’easure, deined as 703 ’u‘ti”‘ied 

ti’es the weight in ”“unds and divided by the square “f height in inches. BMI is 
used to indicate if someone is at a healthy weight.

Boyle’s law F“r gas at a ”articu‘ar te’”erature, PV = K, where P is pressure, V is 
volume, and K is a constant.

Brownian Motion The behavi“r “f a ’“‘ecu‘e sus”ended in a ‘iquid.
CA Ce‘‘u‘ar aut“’at“n.
calculus Mathe’atics “f change.
canopy The u””er’“st branches and ‘eaves “f a tree that b‘“c— sun‘ight. A‘s“, in 

plant communities, it is the upper portion formed collectively by the plants’ 
crowns. 

capacitance Abi‘ity t“ st“re charge.
capacitor E‘ectr“nic circuit e‘e’ent f“r st“ring charge.
capsid Pr“tein c“ating that c“vers the c“re “f a virus.
carbohydrates Organic ’“‘ecu‘es c“’”“sed “f the e‘e’ents carb“n (C), hydr“-

gen (H), and oxygen (O) in the ratio of one C to two H to one O.
carbon cycle M“ve’ent “f carb“n fr“’ “ne earth subsyste’ t“ an“ther.
carboxyl group  COO-. 
cardiac output Pr“duct “f the str“—e v“‘u’e and the heart rate.
carrying capacity Maxi’u’ ”“”u‘ati“n size that an envir“n’ent can su””“rt 

indeinite‘y.
CD4+ T-lymphocytes T-‘y’”h“cytes that bear CD4+ rece”t“rs, which have i’-

portant functions in both humoral and cell-mediated immunity. CD4+ cells acti-
vate cyt“t“xic T-ce‘‘s, B-ce‘‘s (”r“duce antib“dies), and antigen-”resenting ce‘‘s. 

cell body Part “f a neur“n that c“ntains the nuc‘eus and cyt“”‘as’, n“t inc‘uding 
axons and dendrites.

cell-mediated immunity (CMI) Part “f the i’’une res”“nse, ’ediated by T-
cells, that is directed against virally-infected cells, intracellular bacteria, and can-
cer cells. 

cell In ce‘‘u‘ar aut“’at“n and agent-based si’u‘ati“ns, individua‘ e‘e’ent “f a 
grid.

cellular automaton (plural, automata) Ty”e “f c“’”uter si’u‘ati“n that is a 
dynamic computational model and is discrete in space, state, and time, where 
s”ace is re”resented as a regu‘ar, inite grid and a discrete state is ass“ciated with 
each grid element (cell).

central place forager Ani’a‘ that, after trave‘ing in search f“r f““d, a‘ways 
returns to a central place.

central processing unit (CPU) Part “f a c“’”uter that ”erf“r’s the arith’etic 
and logic.

Charles’s Law PV = nRT, where P is pressure, V is volume, T is temperature in 
kelvin (K), n is the number of moles, and R is the constant 0.0832 atm/(mol K).

child In radi“activity, substance f“r’ed by radi“active decay fr“’ an“ther sub-
stance.

chromosome A thread‘i—e strand “f nuc‘eic acid, with ass“ciated ”r“teins, that 
carries genetic information (genes).
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circulatory system Syste’ “f interc“nnected s”aces and tubes that trans”“rt lu-
ids in multicellular animals.

clustering coeficient F“r vertex v, where A is the set of nodes adjacent to node 

v in graph G, C(v) = 
number of edges of  in subgraph with set of nodes 

number

G A

  of edges in complete graph with ( ) nodesn A
.

clustering Partiti“ning data int“ subsets, “r c‘usters, s“ that the e‘e’ents “f a clus-
ter have some common trait, such as proximity.

CMI Ce‘‘-’ediated i’’unity.
coalescence eficiency Pr“duct “f the c“‘‘isi“n and c“a‘escence eficiencies; 

the portion of collisions that results in the droplets of rain sticking together.
coalescence Merging “f rain dr“”‘ets t“ f“r’ ‘arger dr“”‘ets.
coarse granularity Machine with few ”r“cess“rs, each executing ’any instruc-

tions simultaneously, so that the ratio of computation time to communication time 
is large.

codons Gr“u”s “f three nuc‘e“tides in ’essenger RNA s”ecifying an a’in“ acid.
coeficient of drag C“nstant “f ”r“”“rti“na‘ity in Newt“nian fricti“n.
coenzymes Organic c“fact“rs that ass“ciate with enzy’es and he‘” the’ cata-

lyze.
cognitive map Series “f ’ar—ers f“r’ing ge“centric references that are st“red in 

an animal’s memory as a neural representation of the animal’s environment.
collision eficiency In c‘“uds, E = d2/(r1 + r2)

2, where d is the distance between 
the center lines of a drop and a droplet, where r1 and r2 are the radii of the droplets.

common logarithm L“garith’ t“ the base 10, usua‘‘y written ‘“g n; log n = m if 
and only if 10m = n.

community A‘‘ the s”ecies ‘iving in an area.
competition Strugg‘e between individua‘s “f a ”“”u‘ati“n “r between s”ecies f“r 

the same limited resource.
complete A gra”h in which exact‘y “ne edge exists between each ”air “f n“des.
component-wise Vect“r “”erati“n ”erf“r’ed c“’”“nent by c“’”“nent, “r c“-

ordinate by coordinate.
computational science E’erging interdisci”‘inary ie‘d that is at the intersec-

tion of the sciences, computer science, and mathematics.
computer cluster S’a‘‘ syste’s with a few ”r“cess“rs t“ su”erc“’”uters with 

thousands of processors having the distributed-memory MIMD architecture.
computer simulation Having a c“’”uter ”r“gra’ i’itate rea‘ity in “rder t“ 

study situations and make decisions.
concurrent processing Having ass“ciated, ’u‘ti”‘e CPUs w“r—ing c“ncur-

rently, or simultaneously.
condensation nuclei Partic‘es u”“n which water va”“r is de”“sited t“ f“r’ rain 

droplets.
condensation De”“siti“n “f va”“r “n ”artic‘es (c“ndensati“n nuc‘ei) t“ f“r’ 

droplets.
conditional probability F“r P(E2 | E1), the probability of event E2 given event 

E1.
connected A gra”h in which there exists a ”ath fr“’ any vertex t“ any “ther 

vertex. 
connection matrix F“r a gra”h with n nodes, an n × n matrix, where the element 
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in row i and column j is 1 if an edge exists between node i and node j and is 0 
otherwise.

continuous distribution Pr“babi‘ity distributi“n with c“ntinu“us va‘ues.
continuous model M“de‘ in which ti’e changes c“ntinu“us‘y as “””“sed t“ 

discretely.
contractility Abi‘ity t“ sh“rten, as in heart ’usc‘es.
controlled drug delivery C“’bining a ”“‘y’er with a ’edicine f“r re‘ease “f 

drug into the body in predetermined manners.
convective current Current within a ’ediu’ caused by a difference in te’”era-

ture.
core In viruses, the centra‘ c“’”‘ex that c“ntains its genetic ’ateria‘ (DNA “r 

RNA) and various proteins. 
cosine F“r a ”“int (x, y) on a circle with radius r and angle t off the positive x-axis, 

cos t = x/r.
cost function Functi“n “f quantity that returns the t“ta‘ c“st in ”r“ducing the 

items.
coulomb Unit “f e‘ectric charge. 
CpG island S’a‘‘ regi“n where transf“r’ati“n fr“’ CG t“ TG is su””ressed, 

upstream of many genes on a DNA sequence.
CPU Centra‘ ”r“cessing unit. 
C-terminal End “f a ”r“tein that has a free carb“xy‘ gr“u”.
cumulonimbus Ta‘‘, anvi‘-sha”ed c‘“uds.
cumulus clouds Light, luffy c‘“uds with lat bases that d“ n“t give rise t“ any 

rain.
current Rate “f change “f charge with res”ect t“ ti’e, ’easured in a’”eres (A).
Dalton’s law The ”artia‘ ”ressure “f a gas is the ”r“duct “f the fracti“n “f the gas 

in the mixture and the total pressure of all gases, excluding water vapor.
data partitioning In ”ara‘‘e‘ ”r“cessing, technique where the r““t ”r“cess s”‘its 

data into nonoverlapping subsets and sends each subset to a different process.
decay chain Sequence “f severa‘ radi“active decay events, ”r“ducing in the end 

a stable product.
decay constant C“nstant “f ”r“”“rti“na‘ity in a unc“nstrained ’“de‘ f“r decay.
decimal number system Nu’ber syste’ using the base 10.
decompression sickness Painfu‘ and ‘ife-threatening c“nditi“n ex”erienced by 

divers who return to the surface of the water too rapidly after deep-water dives; 
also known as the bends. This condition results from nitrogen bubbles expanding 
as pressure decreases during ascent.

deibrillator Medica‘ device that causes a ”redeter’ined a’“unt “f current t“ 
l“w acr“ss the heart s“ that n“r’a‘ e‘ectrica‘ ”atterns are rest“red.

deinite integral   

and   

where ∆t = (b   a)/n and a = t0 < t1 < ∙ ∙ ∙ < tn = b.
degree distribution In a gra”h, P(k) = nk/n, where n is the number of nodes in a 

graph and nk is the number of nodes of degree k. 
degree of a vertex In a gra”h, the nu’ber “f ti’es the vertex is an end”“int “f 

an edge. 
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dehydrogenase C‘ass “f enzy’es which cata‘yze “xidati“n “f substrates by re-
moving hydrogen or electrons, often in energy-producing pathways.

dendrite Cyt“”‘as’ic extensi“n “f a neur“n that can trans’it signa‘s t“ward the 
cell body along the plasma membrane.

dendrites S’a‘‘, tree‘i—e structures that f“r’ during the ”r“cess “f s“‘idiicati“n 
of crystalline structures; thin, branched extensions from the cell body of a neuron, 
responsible for reception of neural signals.

dendritic cells  S”ecia‘ ty”es “f antigen-”resenting ce‘‘ (APC), ‘“cated in s—in 
and mucosal membranes that activate T-lymphocytes.

dependent variable Variab‘e that re‘ies “n “ther variab‘es.
depolarized Neur“n “r “ther excitab‘e ce‘‘ in which gated channe‘s f“r Na+ are 

opened and Na+ l““ds int“ the ce‘‘, te’”“rari‘y ’a—ing the inside ’“re ”“sitive 
than the outside.

derivative F“r a functi“n f(t), the derivative at t is f t
f t h f t

hh
'( ) lim

( ) ( )
=

+ −
→0

, pro-

vided the limit exists; instantaneous rate of change of a function with respect to  
an independent variable; geometrically, the slope of the tangent line to the curve  
f at t.

deterministic behavior Behavi“r “f syste’s that is ”redictab‘e.
deterministic model M“de‘ that is ”redictab‘e.
diagonal In an n × n square matrix M, the set of elements {m11, m22, . . . , mnn}.
diastolic pressure Pressure in the arteries as the ‘eft ventric‘e re‘axes.
differential calculus One “f the tw“ branches “f ca‘cu‘us dea‘ing with ”r“b‘e’s 

involving the derivative.
differential equation Equati“n c“ntaining “ne “r ’“re derivatives.
diffusion rate parameter C“nstant, r, for rate of diffusion, such as in the model  

∆site r
i

= ∑
−1

8

(neighbori  site), where 0 < r < 1/8 = 0.125

diffusion-limited aggregation (DLA) Si’u‘ati“n technique t“ bui‘d a dendritic 
structure by adding one random walking particle at a time.

diffusion Dis”ersa‘; the s”reading “f s“’ething ’“re wide‘y. In bi“‘“gy, the ”as-
sive movement of molecules or particles from regions of higher concentration to 
regions of lower concentration. 

directed graph G = (V, E) consisting of a set V of vertices and a set E of directed 
edges connecting pairs of vertices.

discrete distribution Distributi“n with discrete va‘ues.
discrete model M“de‘ in which ti’e changes in incre’enta‘ ste”s.
disintegration constant Decay c“nstant.
disintegrations per minute (dpm) A standard ex”ressi“n “f radi“active decay. 
distributed processing Severa‘ ”r“cess“rs, ”erha”s at great distances fr“’ each 

other, communicating via a network and working concurrently.
distribution of numbers Descri”ti“n “f the ”“rti“n “f ti’es each ”“ssib‘e “ut-

come or each possible range of outcomes occurs on the average.
distributive property a(b + c) = ab + ac.
divide-and-conquer algorithm A‘g“rith’ that divides a ”r“b‘e’ int“ sub”r“b-

lems of the same form, and then divides theses into subproblems of the same form, 
etc. The s’a‘‘ ”r“b‘e’s are s“‘ved, and the ina‘ s“‘uti“n is asse’b‘ed.

DLA Diffusi“n-‘i’ited aggregati“n.
dominant eigenvalue The ‘argest eigenva‘ue f“r a ’atrix.
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dot product F“r vect“rs x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), x · y = x1 · y1 +  
x2 · y2 + · · · + xn · yn.

double-precision number F‘“ating-”“int nu’ber using twice as ’any bits in a 
computer representation than a single-precision number; typically contains 14 or 
15 signiicant digits and has ’agnitude between 10–308 and 10308.

downwelling Pr“cess where currents ’“ve “cean surface water t“ ‘“wer de”ths.
dpm Disintegrati“ns ”er ’inute; a ’easure “f radi“active decay.
drag coeficient C“eficient “f drag.
drag F“rces that resist the ’“ve’ent “f an “b–ect thr“ugh a luid.
dynamic model M“de‘ that changes with ti’e.
dynamical disease Disease in which b‘““d ce‘‘ c“unts ’ay “sci‘‘ate, ”erha”s in 

an involved or chaotic manner.
e Part “f ex”“nentia‘ n“tati“n, where aen represents a × 10n, a is a decimal frac-

tion, and n is the ex”“nent; sy’b“‘ f“r 2.718281…; base f“r the natura‘ ‘“garith’.
ecological niche C“’”‘ete r“‘e that a s”ecies ”‘ays in an ec“syste’.
effector cells Ce‘‘s that res”“nd t“ sti’u‘i, f“r exa’”‘e, ’usc‘e and g‘and ce‘‘s. 

In the immune system, they are cells that are activated to provide protection, e.g. 
plasma cells, T-helper cells, and cytotoxic T-cells.

eigenvalue F“r square ’atrix M, constant λ, where Mv = λv for eigenvector v.
eigenvector F“r square ’atrix M, vector v, where Mv = λv for eigenvalue λ.
elastomer A ”“‘y’er that can return t“ its “rigina‘ sha”e, f“‘‘“wing def“r’ati“n.
electrical potential V“‘tage difference acr“ss a ’e’brane.
electron transport system Syste’ that re’“ves and ”asses a‘“ng e‘ectr“ns and 

protons from reduced coenzymes. Often the movement of electrons will provide 
suficient energy t“ create a ”r“t“n gradient, which can be used t“ synthesize ATP.

electronic potential P“tentia‘ energy ”er unit charge at a ”“int, “r the w“r— ”er 
unit charge t“ bring a ”“sitive charge fr“’ ininity t“ the ”“int.

embarrassingly parallel algorithm A‘g“rith’ in which c“’”utati“n can be 
divided into many completely independent parts with virtually no communication.

empirical model M“de‘ e’”‘“ying “n‘y data t“ ”redict, n“t ex”‘ain, a syste’ 
and consisting of a function that captures the trend of the data.

envelope Outer c“ating ’ade u” “f ‘i”ids and ”r“teins that surr“unds s“’e virus 
particles.

environmental subsystem An interde”endent ”art “f the earth s syste’.
enzyme kinetics Quantitative study “f enzy’e activity.
enzyme Organic cata‘yst in a che’ica‘ reacti“n f“r a bi“‘“gica‘ syste’.
EP Equi‘ibriu’ ”“tentia‘.
EPC Eu‘er s ”redict“r-c“rrect“r ’eth“d, “r Runge-Kutta 2 ’eth“d.
epidemic ratio Rate “f infecti“n “ver rate “f rec“very.
epinephrine (adrenalin) Che’ica‘ ’essenger “f the sy’”athetic nerv“us sys-

tem, including the adrenal medulla, released during times of stress. A major effect 
is to increase heart rate.

equilibrium potential F“r any i“n, the ’e’brane ”“tentia‘ where there is n“ net 
diffusion of the ion across the membrane.

equilibrium solution S“‘uti“n “f a differentia‘ equati“n where the derivative is 
always zero; solution of a difference equation where the change of the dependent 
variable is always zero.
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equilibrium vector A vect“r, v, of a Markov chain associated with a transition 
matrix T, where Tv = v. 

Euler’s method Meth“d “f nu’eric integrati“n that esti’ates P(t) as P(t –  
∆t) + P’(t –  ∆t) ∆t, where ∆t is the change in t.

Euler’s predictor-corrector method (EPC) Runge-Kutta 2 ’eth“d.
exploitative competition C“’”etiti“n where “ne individua‘ (s”ecies) reduces 

the availability of the resource to the other.
exponential function Functi“n “f the genera‘ f“r’ P(t) = P0a

rt, where P0, a, and 
r are real numbers.

exponential notation F‘“ating-”“int nu’ber re”resented as a deci’a‘ fracti“n 
times a power of 10.

F Farad.
FAD F‘avin adenine dinuc‘e“tide.
fairy ring Natura‘‘y “ccurring arc “f ’ushr““’s arising at the ”eri”hery “f a radi-

ally spreading underground mycelium.
farad (F) Measure “f ca”acitance, equiva‘ent t“ having a ca”acit“r h“‘d a charge 

of 1 C for a potential difference of 1 V across its conductors, or 1 F = 1 C/V.
feedback loop In a ’“de‘, a cyc‘ica‘ l“w fr“’ syste’ t“ syste’.
ine granularity Machine with ’any ”r“cess“rs, each executing re‘ative‘y few 

instructions, so that the ratio of computation time to communication time is small.
inite difference equation Equati“n “f the f“r’ (new va‘ue) = (“‘d va‘ue) +  

(change in value); a discrete approximation to a differential equation.
inite geometric series an–1 + ∙∙∙ + a2 + a1 + a0 for a ≠ 1 and ”“sitive integer n 

where a is the base.
ishing maximum economic yield (FMEY) Maxi’u’ ”r“it “f ishing as it 

re‘ates t“ ec“n“’ic yie‘d in the G“rd“n-Schaefer ishery ”r“ducti“n ’“de‘.
ishing maximum sustainable yield (FMSY) The c“st “f ishing eff“rt t“ ”r“-

duce a ’axi’u’ yie‘d in the G“rd“n-Schaefer ishery ”r“ducti“n ’“de‘.
itting data Obtaining a functi“n that r“ugh‘y g“es thr“ugh a ”‘“t “f data ”“ints 

and captures the trend of the data.
lavin adenine dinucleotide (FAD) A ’a–“r c“enzy’e inv“‘ved in “xidati“n-

reducti“n reacti“ns “f ’etab“‘is’. By ta—ing “n tw“ e‘ectr“ns and tw“ ”r“t“ns, it 
is converted to a reduced form, FADH2.

loating-point number Rea‘ nu’ber ex”ressed with a deci’a‘ ex”ansi“n and 
st“red in a c“’”uter in a ixed nu’ber “f bits.

lux Transfer “f carb“n “r “ther e‘e’ent fr“’ “ne reserv“ir t“ an“ther.
FMEY Fishing ’axi’u’ ec“n“’ic yie‘d.
FMSY Fishing ’axi’u’ sustainab‘e yie‘d.
free energy Energy avai‘ab‘e f“r ce‘‘u‘ar w“r—.
functional response  Predat“r s behavi“ra‘ reacti“n t“ changes in ”rey density.
fungus (plural, fungi) Mu‘tice‘‘u‘ar (exce”t f“r yeast), s”“re-”r“ducing “rgan-

ism that depends on absorbing nutrients from its surroundings.
gametocyte Sexua‘ stage “f the ’a‘arian ”arasite that circu‘ates free‘y in a h“st s 

blood and that the female mosquito obtains in her blood meal. Male and female 
gametocytes fuse in the mosquito’s gut to form an oocyst, which divides to pro-
duce sporozoites. 

gated channels I“n channe‘s that require s”eciic sti’u‘i t“ “”en the gates.
Gaussian distribution N“r’a‘ distributi“n.



Glossary of Terms 785

gene In ce‘‘s, a c“ntigu“us secti“n “f a chr“’“s“’a‘ DNA that enc“des inf“r’a-
tion to build a protein or an RNA molecule. In RNA viruses, genes are made up of 
contiguous sections of RNA.

generalist Predat“r that ’ay use a‘ternative ”rey as densities “f their ”ri’ary 
prey decline. More generally, a species that can live in a wide variety of environ-
mental conditions and exploit varied resources for survival.

genetic code Re”resents a c“rres”“ndence between nuc‘e“tide tri”‘ets and the 
amino acids they specify.

genome A c“’”‘ete set “f chr“’“s“’es in a ce‘‘ that c“ntains the “rganis’ s 
hereditary information.

ghost cell In ce‘‘u‘ar aut“’at“n and agent based si’u‘ati“ns, a ce‘‘ that is ”art “f 
grid’s extension to accommodate boundary conditions.

global simulation variable A variab‘e that a‘‘ agents can access in an agent-
based simulation. 

global warming Gradua‘ increase in average te’”erature “f the earth s at’“-
sphere and oceans.

glycogen Branched ”“‘y’er “f g‘uc“se used as a st“rage carb“hydrate by ani’a‘s.
glycolysis Initia‘ sequence “f che’ica‘ reacti“ns “f g‘uc“se “xidati“n that resu‘ts 

in the production of two molecules of pyruvate, ATP, and NADH.
gp 120 G‘yc“”r“tein that ”r“trudes fr“’ the surface “f HIV and binds t“ CD4+ T 

cells.
granularity In a ”ara‘‘e‘ c“’”uter syste’, the rati“ “f c“’”utati“n ti’e t“ c“’-

munication time, which is related to the number of processors. See coarse granu-

larity and ine granu‘arity.
graph A directed “r undirected gra”h.
greenhouse effect War’ing “f the at’“s”here caused by the tra””ing “f infra-

red radiation by greenhouse gases. 
greenhouse gas At’“s”heric gas that abs“rbs infrared radiati“n, ”reventing the 

radiation’s loss to space.
grid A “ne-, tw“-, “r three-di’ensi“na‘ array “f sites, “r ce‘‘s, used in ce‘‘u‘ar 

automaton or agent-based simulations. 
ground A circuit reference ”“int; “ften the negative ter’ina‘ “f a battery.
half-life In radi“activity, the ”eri“d “f ti’e that it ta—es f“r a radi“active substance 

to decay to half of its original amount; in drug dosage, amount of time for a body 
to eliminate half of the drug.

henry (H) Unit “f ’easure “f inductance, where 1 H = 1 V s/A (v“‘t sec“nd/a’”).
Henry’s law F“r the a’“unt “f any gas in a ‘iquid at a ”articu‘ar te’”erature,  

Vg/VL = sPg, where Vg is gas volume, VL is liquid volume, s is the solubility coef-
icient f“r the gas in that ‘iquid, and Pg is the pressure of the gas.

hill-climbing process Pr“cess in ce‘‘u‘ar aut“’at“n “r agent-based si’u‘ati“ns 
by which at each time step, an animal/entity moves to a neighboring cell that has 
the highest value.

HIV Hu’an i’’un“deiciency virus.
homeothermic Ter’ used t“ describe an ani’a‘ that can ’aintain its c“re b“dy 

temperature at a nearly constant level regardless of the environmental tempera-
ture.

homolog A gene fr“’ the sa’e ancestra‘ “rigin as that fr“’ an“ther s”ecies; each 
member of a pair of chromosomes.
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Hooke’s law Within the e‘astic ‘i’it “f a s”ring, F = –ks, where F is the applied 
force, k is the spring constant, and s is the displacement (distance) from the spring’s 
equilibrium position.

host Organis’ wh“se b“dy su””‘ies n“urish’ent and she‘ter f“r an“ther.
hubs N“des with high degrees in sca‘e-free netw“r—s.
human immunodeiciency virus (HIV) Ty”e “f RNA virus be‘“nging t“ the 

retr“viruses that is the causative agent “f AIDS (acquired i’’une deiciency syn-
drome).

hydrosphere A‘‘ water “f the earth, inc‘uding b“dies “f water, ice, and water 
vapor in the atmosphere.

hyperpolarization Ma—ing the ’e’brane ”“tentia‘ even ’“re negative.
hypha (plural hyphae) Funga‘ i‘a’ent that is the basic ’“r”h“‘“gica‘ c“’”“-

nent of all fungi, except yeasts.
hypnozoite D“r’ant ‘ife stage “f s“’e s”ecies “f ’a‘arian ”arasites that deve‘“” 

from merozoites. Once out of dormancy, they may reinvade other liver cells, 
where they produce more merozoites. 

ideal gas laws Laws that describe the behavi“rs “f an idea‘ gas.
ideal gas Gas in which the v“‘u’e “f its at“’s is insigniicant in c“’”aris“n t“ 

the total volume of the gas and in which atom interactions are negligible except for 
the energy and momentum exchanged during collisions.

impulse Pr“duct “f the thrust and the ‘ength “f ti’e “f f“rce a””‘icati“n.
incident In a gra”h, an edge e is incident to vertex v if v is an endpoint of e. 
indeinite integral f t dt F t C( ) ( )∫ = + , where Fʹ(t) = f(t) and C is an arbitrary 

constant.
independent events Events where the “ccurrence “f “ne event has n“ i’”act “n 

the occurrence of the other.
independent variable Variab‘e “n which “ther variab‘es de”end.
individual ishing quota (IFQ) Part “f the t“ta‘ a‘‘“wab‘e catch that ’ust be 

“wned by ”e“”‘e wh“ ish in “rder t“ ”artici”ate in ishing “”erati“ns. These qu“-
tas are properties, which may be bought and sold.

individual-based simulation Agent-based si’u‘ati“n.
inductance Abi‘ity, ’easured in henrys, “f a circuit e‘e’ent t“ st“re energy and 

“””“se changes in current l“wing thr“ugh it.
inductor Circuit e‘e’ent, such as a c“i‘ “f wire, that da’”ens sudden changes in 

current.
infected Individua‘ within a ”“”u‘ati“n that has a disease and can s”read it t“ “th-

ers.
initial condition Va‘ue “f the de”endent variab‘e when the inde”endent variab‘e 

is zero.
instantaneous velocity F“r ”“siti“n s(t) at time t = b, the number the average 

velocity, s b s b t

t

( ) ( )− − ∆
∆

, approaches as ∆t comes closer and closer to 0 (provided 

the ratio approaches a number).
integral calculus Branch “f ca‘cu‘us that dea‘s with ”r“b‘e’s inv“‘ving the inte-

gral.
interference competition Direct interacti“n between individua‘s (s”ecies), 

where one interferes with or denies access to a resource.
interpolation  C“’”uting inter’ediate data va‘ues between existing data va‘ues.
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ion channels S”ecia‘ channe‘s in ce‘‘ ’e’branes “n‘y ”er’itting certain i“ns 
through when they are open.

isolated point In a gra”h, a ”“int wh“se degree is 0. 
isolation Se”arati“n “f a ”ers“n wh“ has a c“’’unicab‘e disease (e.g., a SARS 

patient) from those who are healthy and susceptible.
keystone predator D“’inant ”redat“r; ”redat“r that has a ’a–“r inluence “n the 

community structure.
kinetic friction F“rce that tends t“ s‘“w a b“dy in ’“ti“n.
Kirchhoff’s current law Su’ “f the currents int“ a –uncti“n equa‘s the su’ “f the 

currents out of that junction.
Kirchhoff’s voltage law In a c‘“sed ‘““”, the su’ “f the changes in v“‘tage is zer“.
Krebs’s cycle Pathway in energy ’etab“‘is’ in which e‘ectr“ns are re’“ved 

from pyruvate and placed onto oxidized coenzymes.
lactate fermentation F“‘‘“wing g‘yc“‘ysis, the c“nversi“n “f ”yruvate int“ ‘ac-

tate, which reoxidizes coenzyme NADH to NAD+, which is needed for glycolysis 
to continue.

large-scale navigation Guided ’“ve’ent “f an ani’a‘ “ver ‘“ng distances.
lattice Grid.
launching rectangle  Surr“unding a deve‘“”ing si’u‘ated dendritic structure in 

diffusion-limited aggregation, a rectangle from which new particles are released.
law of mass action A ’“de‘ f“r a s“‘uti“n in equi‘ibriu’ in which the rate “f 

change of a reaction is proportional to the product of the concentrations of inter-
acting molecules.

leak channels I“n channe‘s that are essentia‘‘y “”en a‘‘ the ti’e.
length of a path In a gra”h, the nu’ber “f edges.
Leslie matrix A ’atrix “f the f“‘‘“wing f“r’, where a‘‘ entries Fi and Pi are non-

negative: 

F F F F F

P

P

P

n n

n

1 2 3 1

1

2

1

0 0 0 0

0 0 0 0

0 0 0 0

⋯

⋯

⋯

⋮ ⋮ ⋮ ⋮ ⋮

⋯

−

−























. 

ligand-gated channels I“n channe‘s “”en in res”“nse t“ binding s”eciica‘‘y t“ 
a chemical signal.

limit Genera‘‘y, a nu’ber a””r“ached by f(x) as x approaches some number c.
linear combination Linear c“’binati“n “f x1, x2, .., and xn is the sum 

a1x1 + a2x2 + ∙ ∙ ∙ + anxn, where a1, a2, . . ., an are constants.
linear congruential method Meth“d t“ generate ”seud“rand“’ integers fr“’ 0 

up to, but not including, the modulus using r0 = seed and rn = (multiplier × rn–1 + in-

crement) mod modulus, for n > 0, where seed, modulus, and multiplier are positive 
integers, and increment is a nonnegative integer.

linear damping F“r the ’“ti“n “f a ”endu‘u’, the assu’”ti“n that da’”ing 
force is proportional to the angular velocity.

linear equation a1x1 + a2x2 + ∙ ∙ ∙ + anxn = c, where ai and c are numbers for i = 1, 
2, …, n.

linear function Functi“n wh“se gra”h is a n“nvertica‘ straight ‘ine, which has the 
form y = mx + b, where m is the slope and b is the y-intercept.
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linear least-squares regression Line that best ca”tures  the trend “f the data, 

(x1, y1), (x2, y2), …, (xn, yn); line y = mx + b, where b
x y x y x

n x x

i i i i i

i i

= ∑∑ − ∑ ∑

∑ − ∑( )
2

2 2
 and 

m
n x y x y

n x x

i i i i

i i

= ∑ − ∑ ∑

∑ − ∑( )2 2
.

linear regression Linear ‘east-squares regressi“n.
linear speedup In high ”erf“r’ance c“’”uting, situati“n where the s”eedu” 

factor for n processes is n.
lipophilic Ter’ used t“ describe a substance that can c“’bine with “r diss“‘ve in 

fat (lipid).
lithosphere Outer s“‘id ”art “f the earth, inc‘uding the crust and t“”’“st ’ant‘e.
loading dose Initia‘ d“sage “f a drug that is ’uch higher than the ’aintenance 

dosage.
logarithm L“garith’ t“ the base b of n, written logbn, is m if and only if bm = n.
logarithmic function Functi“n, ‘“gb(n) = m, that is the inverse of the exponential 

function g(x) = bx, so that bm = n.
logical operator Sy’b“‘ (such as AND, OR, and NOT) used to combine or ne-

gate expressions that are true or false.
logistic function Functi“n t“ ’“de‘ ”“”u‘ati“n, P t

MP

M P e P
rt

( ) =
−( ) +−

0

0 0

, where 

M is the carrying capacity, P0 is the initial population, r is the continuous growth 
rate, and t is time.

loop Seg’ent “f an a‘g“rith’ that is executed re”eated‘y.
lymphocyte White b‘““d ce‘‘, either a B-ce‘‘ “r a ty”e “f T-ce‘‘. Functi“ns in-

clude regulation of the immune response, production of antibodies, cytotoxicity.
macrophage S”ecia‘ized white b‘““d ce‘‘ that ingests ce‘‘u‘ar debris and ”ath“-

gens. It degrades the ingested material, processes it, and displays foreign sub-
stances on its surface. T-cells can interact with the presented material and activate 
an immune response.

magnitude  F“r a l“ating-”“int nu’ber ex”ressed in n“r’a‘ized ex”“nentia‘ n“-
tation as a × 10n, 10n.

Malthusian model Unc“nstrained ’“de‘.
mantissa Signiicand. 
marginal cost Instantane“us rate “f change “f the c“st with res”ect t“ quantity.
marginal revenue Instantane“us rate “f change “f revenue with res”ect t“ quan-

tity.
Markov chain A sequence “f variab‘es X1, X2, X3, … in which the value of any 

variable, Xn+1, depends only on the value of its immediate predecessor, Xn.
Markov matrix Transiti“n ’atrix.
matrix (plural, matrices) A rectangu‘ar array “f nu’bers. 
maximum therapeutic concentration (MTC) Largest a’“unt “f a drug that is 

helpful without having dangerous or intolerable side effects.
mean arterial pressure Average ”ressure during an a“rtic ”u‘se cyc‘e.
MEC Mini’u’ effective c“ncentrati“n.
membrane potential E‘ectrica‘ ”“tentia‘.
merozoite Life stage “f ’a‘arian ”arasite ”r“duced asexua‘‘y fr“’ s”“r“z“ites “r 

other merozoites, released into the blood, where it may infect other host cells.
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message-passing multiprocessor Syste’ in which the ”r“cess“rs c“’’uni-
cate through message passing.

messenger RNA A ’“‘ecu‘e “f RNA that carries genetic inf“r’ati“n fr“’ DNA 
in the nucleus to a ribosome for protein synthesis.

method In agent-based ’“de‘ing, a functi“n that ca”tures s“’e “r a‘‘ “f an 
agent’s behavior.

methylation Che’ica‘ additi“n “f a ’ethy‘ gr“u” (CH3) to another atom or mol-
ecule.

methylmercury Organic f“r’ “f ’ercury, synthesized fr“’ ’eta‘‘ic “r e‘e’enta‘ 
mercury by sulfate-reducing bacteria in sediments. Aquatic organisms absorb this 
form of mercury, which tend to accumulate in the top components of a food chain 
(ish).

Michaelis-Menten constant  Measure “f the afinity “f an enzy’e f“r a ”articu-
lar substrate; the concentration of substrate, where the velocity of the reaction is 
equal to half of the maximum velocity (Vmax).

Michaelis-Menten equation Equati“n that describes the re‘ati“nshi” in an enzy-
matic reaction between substrate concentration [S] and reaction velocity (v), as 

follows: v
V

K
m

=
+

max
[ ]

[ ]

S

S
, Vmax is the maximum velocity.

microstructure During s“‘idiicati“n “f crysta‘‘ine structures, c“’”‘ex f“r’ed by 
interconnections of dendrites.

MIMD Mu‘ti”‘e instructi“n strea’s, ’u‘ti”‘e data strea’s c“’”uter architecture.
minimum dominating set F“r a ”e“”‘e-‘“cati“ns gra”h, a s’a‘‘est set “f ‘“ca-

tions that a given proportion of the population visits.
minimum effective concentration (MEC) Least a’“unt “f drug that is he‘”fu‘.
mitochondria Me’brane-b“und ce‘‘u‘ar c“’”art’ents that are the sites “f ’“st 

energy production in aerobic (using oxygen) cells.
mod Functi“n t“ return the re’ainder in integer divisi“n.
modeling A””‘icati“n “f ’eth“ds t“ ana‘yze c“’”‘ex, rea‘-w“r‘d ”r“b‘e’s in 

order to make predictions about what might happen with various actions.
modulus  Divis“r when ca‘cu‘ating the re’ainder in integer divisi“n f“r the ’“d 

function.
molar One ’“‘e/‘iter (’“‘/L).
molarity The c“ncentrati“n “f a s“‘ute in a s“‘vent; the nu’ber “f ’“‘es “f s“‘ute 

per liter of solution.
mole (mol) The quantity “f a substance c“ntaining 6.02214 × 1023 units (atoms, 

molecules, or some other unit); molecular weight of a substance in grams.  
monomer Che’ica‘ bui‘ding b‘“c— “f a ”“‘y’er.
monosaccharide Carb“hydrate c“’”“sed “f a sing‘e sugar unit, which is “ften 

’ade u” “f a ive- “r six-carb“n s—e‘et“n.
Monte Carlo simulation Si’u‘ati“n ’“de‘ inv“‘ving an e‘e’ent “f chance.
Moore neighborhood In a tw“-di’ensi“na‘ grid “f a ce‘‘u‘ar aut“’at“n “r 

agent-based simulation, a set of eight surrounding cells and the site itself.
most signiicant digit Left’“st “f the signiicant digits “f a nu’ber.
motor neuron Neur“n that carries signa‘s away fr“’ the centra‘ nerv“us syste’ 

(brain and spinal cord) to effector cells (e.g., muscle cells, glands) and “effects” a 
response (e.g., muscle contraction, secretion).
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mRNA Messenger RNA.
MTC Maxi’u’ thera”eutic c“ncentrati“n.
multicompartment model In ’“de‘ing drug d“sage, re”resentati“n “f the b“dy 

with more than one compartment.
multiprocessor C“’”uter syste’ with ’“re than “ne ”r“cess“r.
mushroom Fruiting b“dy “f certain ty”es “f fungi.
mutually exclusive events Events that cann“t “ccur at the sa’e ti’e. 
mycelium B“dy “f a fungus.
myocardial infarction Medica‘ ter’ f“r a heart attac—.
N-body problem Pr“b‘e’ concerning the interactions and movements of a num-

ber of objects, or bodies, in space.
N-terminal End “f a ”r“tein that has a free a’in“ gr“u”.
NAD+ (nicotinamide adenine dinucleotide) Ma–“r c“enzy’e inv“‘ved in 

oxidation-reduction reactions of metabolism. NAD+ accepts 2 electrons and 1 
proton to become NADH.

natural logarithm L“garith’ t“ the base e, usually written ln n; ln n = m if and 
only if em = n.

neighbor In a ce‘‘u‘ar aut“’at“n “r agent-based si’u‘ati“n, “ne “f the ce‘‘s that 
surrounds a lattice site.

neurons Functi“na‘ nerve ce‘‘s (th“se that c“nduct signa‘s).
Newton (N) Measure “f f“rce, where 1 N = 1 —g ’/s2.
Newton’s gravitational constant G = 6.67 × 10-11m3kg-1s-2 in F = 

Gm m

r

1 2

2 , the 

magnitude of the gravitational force between two bodies with masses m1 and m2 at 
a distance r apart.

Newton’s third law of motion F“r every acti“n, there is an equa‘ and “””“site 
reaction. 

Newton’s law of heating and cooling Rate “f change “f the te’”erature “f an 
object with respect to time is proportional to the difference between the tempera-
tures of the object and of its surroundings.

Newton’s second law of motion F“rce F acting a body of mass m gives the 
body acceleration a according to the formula F = ma.

Newtonian friction M“de‘ f“r drag “n a ‘arger “b–ect ’“ving thr“ugh a luid 
which is expressed as F = 0.5CDAv2, where C is a constant of proportionality (the 
c“eficient “f drag, “r drag c“eficient) re‘ated t“ the sha”e “f the “b–ect, D is the 
density “f the luid, and A is the object’s projected area in direction of movement.

nitrogen bases Adenine (A), guanine (G), cyt“sine (C), and thy’ine (T) in DNA 
or uracil (U) in RNA.

nitrogen narcosis  Sudden feeing of judgment-impairing euphoria experienced 
by divers resulting from increased residual nitrogen in the blood.

node P“int in a gra”h.
normal distribution A distributi“n “f nu’bers with a ”r“babi‘ity density func-

tion 
1

2

2
2

πσ
µ σ

e
x− −( ) ( )/

, where µ is the mean and s is the standard deviation.

normalized number Nu’ber in ex”“nentia‘ n“tati“n with the deci’a‘ ”“int i’-
’ediate‘y ”receding the irst n“nzer“ digit.

nucleic acids DNA and RNA; sing‘e “r d“ub‘e chain “f nuc‘e“tides.
nucleotide A c“’”“und ’“‘ecu‘e ’ade u” “f a sugar (either de“xyrib“se f“r 

DNA or ribose for RNA), a phosphate, and a nitrogen base.
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octtree Tree with each n“de having branches descending t“ at ’“st eight n“des; 
in the Barnes-Hut A‘g“rith’, each n“de c“rres”“nds t“ a subcube in the 3D ”arti-
tioning process.

ohms (Ω) Measure “f the resistance “f a resist“r; 1 Ω = 1 V/A (v“‘t/a’”); the  
resistance of a circuit in which a potential difference of 1 V produces a current  
of 1 A.

one-compartment model In ’“de‘ing drug d“sage, si’”‘iied re”resentati“n 
of the body as one homogenous compartment, where distribution is instantaneous.

one-term model In e’”irica‘ ’“de‘ing, a functi“n with “ne inde”endent variab‘e 
that can capture the trend of data whose plot is always concave up or always con-
cave down.

optic tectum R““f “f the ’idbrain that receives visua‘ i’ages. It a‘s“ receives 
“heat images” in pit vipers.

overlow Err“r c“nditi“n that “ccurs when there are n“t en“ugh bits t“ ex”ress a 
value in a computer.

oxidation Re’“va‘ “f e‘ectr“ns “r hydr“gens fr“’ a ’“‘ecu‘e.
oxidative phosphorylation Pr“ducti“n “f ATP using the ”r“t“n gradient estab-

lished by the electron transport system.
pacemaker Gr“u” “f ce‘‘s (sin“atria‘ n“de) ‘“cated in the right atriu’ “f the 

heart that conducts impulses through the right and left atria, signaling these cham-
bers to contract and pump blood into the ventricles.

PAM The ‘ength “f ti’e f“r 1% “f the a’in“ acids t“ ’utate.
PAM1 matrix A Mar—“v chain transiti“n ’atrix with c“‘u’n and r“w headings “f 

the amino acids where entries represent the amount of evolution over one PAM 
period of time, or for one mutation per hundred amino acids.

parallel processing C“‘‘ecti“n “f c“nnected ”r“cess“rs in c‘“se ”hysica‘ ”r“x-
imity working concurrently.

parameter sweeping The executi“n “f a ’“de‘ f“r each e‘e’ent in a set “f ”a-
rameters or of collections of parameters to observe the resulting change in model 
behavior.

parasympathetic nervous system Subdivisi“n “f the aut“n“’ic nerv“us sys-
tem that generally opposes the effects of the sympathetic nervous system. Major 
effects of parasympathetic activity include increasing digestive activities and de-
creasing heart rate.

parent In radi“activity, substance fr“’ which a sec“nd substance f“r’s by radi“-
active decay.

path integration When an ani’a‘ ta—es a‘‘ the ang‘es and distances it ex”eri-
ences on a foraging trip and integrates them into a mean home vector.

path In a gra”h, the sequence “f vertices and edges fr“’ “ne vertex t“ an“ther.
peptide bond B“nd f“r’ed thr“ugh the interacti“n “f an a’in“ gr“u” “f “ne 

amino acid with the carboxyl group of another; bond that links amino acids.
period Length “f ti’e t“ c“’”‘ete a fu‘‘ cyc‘e “f an “sci‘‘ating functi“n, such as 

a function describing the motion of a spring or pendulum.
periodic boundary conditions C“nditi“ns s“ that a b“rder ce‘‘ “f a ce‘‘u‘ar 

automaton or agent-based grid is considered to have the corresponding cell on the 
opposite border as a neighbor. Grid considered to wrap as a torus, so that on a grid 
row, the leftmost site has the rightmost cell as its west neighbor and vice versa; 
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similarly, on a column, the topmost site has the bottommost cell as its north neigh-
bor, and vice versa.

pheromone Che’ica‘ ”r“duced by ani’a‘s that send s”eciic signa‘s t“ “ther 
members of the same species.

pinkeye A high‘y infecti“us disease that aflicts catt‘e and “ther ani’a‘s.
pits Pair “f surface c“ncavities, ‘“cated between the eyes and n“stri‘s “f certain 

snakes (pit vipers), that house extremely sensitive innervated “heat detectors” for 
hunting.

pixel Picture e‘e’ent; d“t “n a c“’”uter ’“nit“r s screen.
planktonic S“‘itary ’icr“be that is n“t ”art “f a bi“i‘’; gr“u”s “f ’icr““rgan-

is’s that l“at in fresh and sa‘twater envir“n’ents.
plasma F‘uid ”“rti“n “f the b‘““d, c“ntaining sus”ended b‘““d ce‘‘s and c‘“tting 

factors.
plastic L“ng-chain carb“n ”“‘y’er that has a high degree “f cr“ss ‘in—ing.
platelet B‘““d ce‘‘ that he‘”s the b‘““d t“ c‘“t.
Poiseuille’s Equation M“de‘ f“r b‘““d l“w in an arteri“‘e: Q

r P

L
=

π
η

4

8

∆
, where 

Q is the b‘““d l“w thr“ugh a vesse‘ “ver ti’e, r is the cross-sectional area of the 
vessel, ∆P is the pressure gradient, h is the viscosity of the blood, and L is the ves-
sel length.

polarized Resting neur“n “r “ther excitab‘e ce‘‘ in which the “utside is ’“re ”“s-
itive than the inside.

polymer C‘ass “f che’ica‘ c“’”“unds c“’”“sed “f re”eating che’ica‘ bui‘ding 
blocks.

polymerization Pr“cess “f ”“‘y’er synthesis.
polynomial function of degree n Functi“n “f the f“r’ f(x) = anx

n + ∙ ∙ ∙ + a1x + 
 a0, where an, …, a1, a0 are real numbers and n is a nonnegative integer.

postconditions C“nditi“ns that describe the state “f the syste’ when the func-
ti“n inishes executing, any err“r c“nditi“ns, and the inf“r’ati“n the functi“n re-
turns or otherwise communicates.

potential difference Difference in e‘ectr“nic ”“tentia‘ between tw“ ”“ints.
power law A functi“n f, where if f(x) is proportional to xb for some constant b. 
precision In ’athe’atics, nu’ber “f signiicant digits in an nu’ber.
preconditions C“nditi“ns that ’ust be true f“r the functi“n t“ behave ”r“”er‘y.
predation When “ne s”ecies (”redat“r) —i‘‘s and c“nsu’es an“ther s”ecies (”rey).
predator Organis’ that c“nsu’es an“ther “rganis’ (”rey) f“r f““d.
predictor variable In ‘inear regressi“n, the inde”endent variab‘e.
pressure Weight “f ’atter ”er unit area.
prey Organis’ that is c“nsu’ed by an“ther “rganis’ (”redat“r) f“r f““d.
probabilistic behavior Behavi“r “f syste’s with an e‘e’ent “f chance.
probabilistic model M“de‘ that exhibits rand“’ effects.
probability function F“r a discrete distributi“n, returns the ”r“babi‘ity “f “ccur-

rence of a particular argument; for a continuous distribution, indicates the proba-
bi‘ity that a given “utc“’e fa‘‘s inside a s”eciic range “f va‘ues.

probability matrix Transiti“n ’atrix. 
probability of an event The chance “f the event s “ccurrence, a nu’ber be-

tween 0 and 1, inclusive.
probability vector A vect“r wh“se c“’”“nents are n“nnegative and su’ t“ 1.
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procedure Meth“d.
process Tas— “r a ”iece “f a ”r“gra’ that executes se”arate‘y.
processor Part “f a c“’”uter that ”erf“r’s the arith’etic and ‘“gic.
proit T“ta‘ gain fr“’ ”r“ducing and se‘‘ing a given quantity “f ite’s.
protein synthesis The ”r“ducti“n “f ”r“teins.
proteins Basic ’“‘ecu‘es “f ‘ife, ’ade u” “f chains “f a’in“ acids and ”erf“r’-

ing many critical functions in the cell and organism.
prototyping I’”‘e’entati“n “f a ”re‘i’inary versi“n “f a s“‘uti“n “r ”art “f a 

solution.
provirus Vira‘ DNA that ’ay re’ain in the chr“’“s“’e ”assive‘y (‘atent) “r ’ay 

activate and begin the production of new viral particles, as in HIV.
pseudocode A structured “ut‘ine, in Eng‘ish, “f a c“’”uter ”r“gra’ s design.
pseudorandom numbers Rand“’ nu’bers.
pulmonary circulation Circu‘at“ry ‘““” that trans”“rts b‘““d t“ and fr“’ the 

lungs.
purine Base A “r G.
pyrimidine Base C, T, “r U.
pyruvate Three-carb“n ”r“duct “f g‘yc“‘ysis, resu‘ting fr“’ the s”‘itting and “xi-

dation of glucose.
quadratic function Functi“n “f the f“r’ f(x) = a2x

2 + a1x + a0, where a2, a1, and 
a0 are real numbers.

quadtree Tree with each n“de having branches descending t“ at ’“st f“ur n“des; 
in the Barnes-Hut a‘g“rith’, each n“de c“rres”“nds t“ a subsquare in the 2D ”ar-
titioning process.

quarantine  Li’itati“n “n freed“’ “f ’“ve’ent “f an individua‘ f“r a ”eri“d “f 
time to prevent spread of a contagious disease to other susceptible members of a 
population.

R-group A variab‘e side-chain in an a’in“ acid.
radiative forcing F“r g‘“ba‘ war’ing, increased infrared abs“r”ti“n and war’-

ing as a result of increased concentration of greenhouse gases.
random numbers Part “f a sequence “f nu’bers that a””ear rand“’ but that an 

algorithm actually produces.
random walk The a””arent‘y rand“’ ’“ve’ent “f an entity, ta—ing sing‘e ste”s 

in apparently random directions.
rate of absorption F“r gas abs“r”ti“n by tissues, dPtissue/dt = k(Plungs   Ptissue), 

where Plungs is the partial pressure of the gas in the lungs, Ptissue is the partial pres-
sure of the gas in the tissue, and k = ln(2)/thalf, where thalf is the time for the tissue 
to absorb or release half of the partial difference of the gas.

real number Nu’ber that can be ex”ressed with a deci’a‘ ex”ansi“n and used t“ 
measure continuous quantities.

recovered An individua‘ n“ ‘“nger having a disease and i’’une t“ further infec-
tion in an SIR model.

recursion Pr“cess “f a functi“n “r tas— ca‘‘ing itse‘f.
red blood cell B‘““d ce‘‘ used f“r “xygen trans”“rt between the ‘ungs and tis-

sues.
reference dose A’“unt “f a substance that ’ay be ingested “n a dai‘y basis f“r 

a lifetime with no adverse effects on health. 
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reinement Adding ’“re c“’”‘exity, such as e‘i’inating si’”‘ifying assu’”-
tions, to a model.

relecting boundary conditions C“nditi“ns where the b“undary tends t“ ”r“”-
agate the current ‘“ca‘ situati“n. Va‘ues “n the “rigina‘ irst r“w “ccur again “n the 
new irst r“w “f gh“st ce‘‘s, and si’i‘ar situati“ns “ccur “n the ‘ast r“w and the 
irst and ‘ast c“‘u’ns.

relective boundary conditions Relecting b“undary c“nditi“ns.
relative error Abs“‘ute err“r divided by the abs“‘ute va‘ue “f the exact answer, 

provided the exact answer is not zero.
relative humidity Rati“ “f the actua‘ water va”“r ”ressure t“ the va”“r ”ressure 

that would occur if the air were saturated at the same ambient temperature. 
relative refractory period Ti’e during an AP when the s“diu’ channe‘s be-

come inactivated, the potassium channels begin to close, and an AP can be initi-
ated, if a suficient‘y str“ng sti’u‘us is a””‘ied.

relative sensitivity Sensitivity.
repolarization The ”r“cess in which v“‘tage-gated ”“tassiu’ channe‘s “”en, and 

potassium ions diffuse out of the neuron, helping to make the internal potential to 
become more negative.

reproductive number Ex”ected nu’ber “f sec“ndary infecti“us cases resu‘ting 
from an average infectious case once an epidemic is in progress.

reservoir P“rti“n “f the at’“s”here, hydr“s”here, ‘ith“s”here, “r bi“s”here where 
various forms of an element of a biogeochemical cycle are stored; any living or 
non-living agent that serves as a continuing source of infection.

resistance Measure’ent “f the abi‘ity “f a resist“r t“ reduce the l“w “f charges.
resistor Device used t“ c“ntr“‘ current in e‘ectrica‘ circuits by i’”arting resis-

tance. 
respiratory distress syndrome Inla’’at“ry disease “f the ‘ung, characterized 

by a sudden onset of edema and respiratory failure.
response variable In ‘inear regressi“n, the de”endent variab‘e.
resting potential E‘ectrica‘ ”“tentia‘ “f a resting nerve ce‘‘.
retrovirus Ty”e “f enve‘“”ed, RNA virus that uses reverse transcri”tase t“ c“nvert 

its RNA into DNA in the host cell.
revenue T“ta‘ a’“unt “f inc“’e fr“’ se‘‘ing a given quantity “f ite’s.
reverse transcriptase Enzy’e used by retr“viruses t“ f“r’ a c“’”‘e’entary 

DNA sequence (cDNA) from viral RNA.
ribosome M“‘ecu‘ar ’achine that c“ntains the a””aratus t“ trans‘ate gr“u”s “f 

c“d“ns int“ s”eciic a’in“ acid sequences.
RLC circuit E‘ectrica‘ circuit with a resist“r, an induct“r, and a ca”acit“r.
RNA polymerase An enzy’e that synthesizes RNA fr“’ a DNA te’”‘ate.
root process In high-”erf“r’ance c“’”uting, a ”r“cess that c“’’ands a‘‘ “ther 

processes. 
root In ’athe’atics, unique t“” n“de in a (r““ted) tree; in high-”erf“r’ance c“’-

puting, root process.
round down F“r a n“r’a‘ized nu’ber, t“ truncate the signiicand t“ the desired 

nu’ber “f signiicant digits.
round up F“r a n“r’a‘ized nu’ber, t“ truncate the signiicand t“ the desired nu’-

ber “f signiicant digits, adding “ne t“ the ‘ast “f the re’aining signiicant digits.
round-off error Pr“b‘e’ “f n“t having en“ugh bits t“ st“re an entire l“ating-”“int 
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number and approximating the result to the nearest number that can be repre-
sented.

round F“r a n“r’a‘ized nu’ber, t“ r“und t“ ”recisi“n k is usually to round down 
if the (k + 1)st signiicant digit is ‘ess than 5 and t“ r“und u” “therwise.

RP Resting ”“tentia‘.
rules In a ce‘‘u‘ar aut“’at“n si’u‘ati“n, s”ecify ‘“ca‘ re‘ati“nshi”s and indicate 

how cells are to change state; regulate the behavior of the system.
Runge-Kutta 2 method Meth“d “f nu’eric integrati“n that e’”‘“ys a c“rrecti“n 

to each Euler’s method estimate.
Runge-Kutta 4 method Meth“d “f nu’eric integrati“n, where each a””r“xi’a-

tion is a weighted average of four estimates.
scalability Ca”abi‘ity “f a c“’”uter syste’ with ex”anded hardware res“urces t“ 

exhibit better performance.
scale-free networks Netw“r—s that f“‘‘“w the ”“wer ‘aw P(k) ∝ k-r with r > 1. 
schooling Behavi“r “f certain s”ecies “f aquatic ani’a‘s t“ swi’ in ‘arge gr“u”s 

for protection against predators or for foraging. 
scientiic notation Ex”“nentia‘ n“tati“n in which the deci’a‘ ”“int is ”‘aced i’-

’ediate‘y after the irst n“nzer“ digit.
seed In a ’eth“d f“r generating ”seud“rand“’ nu’bers, an initia‘ va‘ue; in diffu-

sion-limited aggregation, an initial simulated dendritic structure.
self-avoiding walk (SAW) A rand“’ wa‘— that d“es n“t cr“ss itse‘f, that is, a 

walk that does not travel through the same cell twice.
sensitivity The sensitivity “f λ to parameter P in a transition matrix is the instan-

taneous rate of change of λ with respect to P, which is approximately 
λ λ
new

new

−
−P P

, 

where Pnew is the new value of P close to P and λnew is the resulting new value of λ.
sequential processing Sing‘e ”r“cess“r w“r—ing “n “ne ”r“gra’.
serum F‘uid ”“rti“n “f the b‘““d that re’ains after the b‘““d c‘“ts.
shared memory multiprocessor Syste’ in which tw“ “r ’“re ”r“cess“rs c“’-

municate through shared memory.
signiicand F“r a l“ating-”“int nu’ber ex”ressed in ex”“nentia‘ n“tati“n as  

a × 10n, the integer formed by dropping the decimal point from a.
signiicant digits F“r a l“ating-”“int nu’ber, a‘‘ digits exce”t ‘eading zer“s; f“r 

an integer, all digits except leading and trailing zeros.
simple harmonic oscillator Syste’ that satisies the f“‘‘“wing ”r“”erties: The 

system oscillates around an equilibrium position. The equilibrium position is the 
point at which no net force exists. The restoring force is proportional to the dis-
placement. The restoring force is in the opposite direction of the displacement. 
The motion is periodic. All damping effects are neglected.

simple pendulum Pendu‘u’ where the ’ass f“r the b“b is c“ncentrated at a 
point, the stiff string has no mass, and friction does not exist.

sine F“r ”“int (x, y) on a circle with radius r and angle t off the positive x-axis,  
sin t = y/r.

single-precision number F‘“ating-”“int nu’ber using ha‘f as ’any bits in a 
c“’”uter re”resentati“n as a d“ub‘e-”recisi“n nu’ber; ty”ica‘‘y c“ntains 6 “r 7 
signiicant digits and has ’agnitude between 10-38 and 1038.

sink In a bi“ge“che’ica‘ cyc‘e, the destinati“n “f an e‘e’ent c“’ing fr“’ a 
source.
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SIR model S”read “f disease ’“de‘ that c“nsiders the susce”tib‘e, infected, and 
recovered population groups.

site Ce‘‘.
size of a graph The nu’ber “f n“des in the gra”h.
size of a vector The nu’ber “f e‘e’ents.
slope F“r a n“nvertica‘ ‘ine, a change in y over the corresponding change in x.
small-world property A gra”h ”r“”erty in which the average sh“rtest ”ath ‘ength 

is on the order of magnitude of log n or smaller, where n is the number of nodes.
solidiication Bec“’ing s“‘id.
soma Ce‘‘ b“dy.
source In a bi“ge“che’ica‘ cyc‘e, the “rigin “f an e‘e’ent as it l“ws t“ a sin—.
speciic impulse I’”u‘se ”er ”“und “f burned fue‘, “r the qu“tient “f i’”u‘se 

and the change in the fuel’s weight.
speed Magnitude “f ve‘“city; the abs“‘ute va‘ue “f the change in ”“siti“n with 

respect to time.
speedup factor Executi“n ti’e “f an a‘g“rith’ “n a sequentia‘ c“’”uter “ver 

execution time of a comparable algorithm on a system with multiple processors.
spore In fungi, a re”r“ductive ce‘‘ that ty”ica‘‘y is ca”ab‘e “f ger’inating int“ a 

new individual.
sporozoite Life stage “f ’a‘arian ”arasite that accu’u‘ates in the sa‘ivary g‘ands 

of the female mosquito. A female mosquito inoculates her human host with this 
stage, which invades liver cells.

squall line Line “f st“r’s with a we‘‘-deve‘“”ed gust fr“nt at the ‘eading edge.
square matrix An n × n matrix.
stable solution  Solution q to a differential equation dP/dt or a difference equa-

tion ∆P, where there is an interval (a, b) containing q, such that if the initial popu-
lation is in that interval, then P(t) is inite f“r a‘‘ t > 0 and lim ( )

t

P t q
→∞

= .

standard deviation In statistics, a ’easure “f the a’“unt “f variati“n “f data 
from the mean; for a normal distribution of data, about 68.3% of the numbers are 
within one standard deviation of the mean.

standard error bars Sy’’etric err“r bars that are tw“ standard deviati“ns in 
length.

state In a ce‘‘u‘ar aut“’at“n si’u‘ati“n, characteristics “f a ce‘‘.
static model M“de‘ that d“es n“t c“nsider ti’e.
steady-state vector Equi‘ibriu’ vect“r.
stochastic behavior Behavi“r “f syste’s with an e‘e’ent “f chance.
stochastic model M“de‘ that exhibits rand“’ effects.
Stokes’ friction M“de‘ f“r fricti“n “n the ”artic‘e that is a””r“xi’ate‘y ”r“”“r-

tional to its velocity.
stroke volume V“‘u’e “f b‘““d that the ‘eft ventric‘e e–ects u”“n c“ntracti“n.
subdiagonal In an n × n square matrix M, the set of elements {m21, m32, . . . ,  

m n(n–1)}.
subgraph S is a subgraph of graph G if S is a graph and every node and edge of S 

is in G. 
substrate M“‘ecu‘e that is acted u”“n by an enzy’e; surface f“r gr“wth. 
substrate-level phosphorylation Synthesis “f ATP fr“’ ADP and P, where the 
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P used to make ATP has come from an organic compound that has a higher energy 
level than does ATP.

susceptible Individua‘ within a ”“”u‘ati“n that has n“ i’’unity t“ a disease.
sympathetic nervous system Subdivisi“n “f the aut“n“’ic nerv“us syste’ re-

sponsible for mobilizing the body’s energy when stressed or aroused. Major ef-
fects of sympathetic activity include raising of blood pressure and increasing heart 
rate.

synapse Juncti“n between ter’ina‘ butt“ns and “ther neur“ns “r effect“r ce‘‘s.
systemic circulation Circu‘at“ry ‘““” carrying b‘““d t“ and fr“’ the b“dy (ex-

cept for the lungs).
systemic vascular resistance Resistance “r i’”edi’ent “f the b‘““d vesse‘s in 

the syste’ic circu‘ati“n t“ the l“w “f b‘““d.
systolic pressure Highest ”ressure exerted as the ‘eft ventric‘e c“ntracts.
T-cell (T-lymphocyte) White b‘““d ce‘‘ that ’atures in the thy’us and bears an-

tigen-s”eciic rece”t“rs “n its surface. T-ce‘‘s ”artici”ate in b“th the ce‘‘-’ediated 
and humoral immune responses.

T-helper cell White b‘““d ce‘‘ (‘y’”h“cyte) that ’ediates b“th ce‘‘-’ediated i’-
munity and antibody production. It is a cell that displays one of two protein struc-
tures on the surface of a human cell, allowing HIV to attach, enter, and thus infect 
the cell. 

T-lymphocyte T-ce‘‘.
tangent F“r ”“int (x, y) on the unit circle and angle t off the positive x-axis,  

tan t = y/x.
terminal buttons At the branched ends “f an ax“n; interface with the “ther neu-

rons or effector cells by way of the synapse.
terminal speed C“nstant s”eed a fa‘‘ing “b–ect reaches due t“ fricti“n.
therapeutic range Drug c“ncentrati“n between the ’ini’u’ effective c“ncen-

tration and the maximum therapeutic concentration.
thermal conduction Heat transfer in an “b–ect due t“ a te’”erature gradient.
thrust Mechanica‘ f“rce caused by the acce‘erati“n “f a ’ass “f gas and in the “”-

”“site directi“n t“ gas l“w.
transcription The synthesis “f RNA.
transient equilibrium In radi“active decay fr“’ substanceA to substanceB, 

when the ratio of the mass of substanceB to the mass of substanceA is almost con-
stant.

transition matrix A ’atrix in which a‘‘ the entries are n“nnegative and the su’ 
of the elements in each column (or each row) is 1. 

transition rules In a ce‘‘u‘ar aut“’at“n si’u‘ati“n, s”ecify ‘“ca‘ re‘ati“nshi”s 
and indicate how cells are to change state; regulate the behavior of the system.

transition In DNA ’utati“n, a ty”e “f substituti“n that “ccurs between ”urines “r 
between pyrimidines.

translation C“nversi“n “n the rib“s“’e “f a mRNA sequence into a sequence of 
amino acids for the protein.

transmission constant Infecti“n rate indicating the infecti“usness “f a disease.
transversion In DNA ’utati“n, a ty”e “f substituti“n that “ccurs between a ”u-

rine and a pyrimidine, or vice versa.
tree In ’athe’atics, a r““ted tree, “ften ca‘‘ed a tree, is a c“nnected, hierarchica‘ 
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structure of nodes (points), which contain information, and edges connecting them 
that has no cycles and has a unique node, the root, at the top.

triplet A sequence “f three nuc‘e“tides.
truncate F“r a n“r’a‘ized nu’ber, t“ ch“” “ff a‘‘ digits “f the ’antissa bey“nd 

the desired nu’ber “f signiicant digits.
truncation error Err“r that “ccurs when a truncated, “r inite, su’ is used as an 

a””r“xi’ati“n f“r the su’ “f an ininite series.
two-compartment model In ’“de‘ing drug d“sage, re”resentati“n “f the b“dy 

as two chambers (e.g., gastrointestinal tract and blood).
type-1 predator functional response Res”“nse where the ”redat“r c“nsu’es 

a constant proportion of prey, regardless of prey density.
type-2 predator functional response Res”“nse where the ”redat“r c“nsu’es 

less as it nears satiation, which determines the upper limit on consumption.
type-3 predator functional response Res”“nse where ”redati“n increases 

slowly at low prey density, increases rapidly at higher densities, but levels off at 
satiation, even if prey density continues to increase.

unconstrained model M“de‘ where n“ ‘i’iting fact“r exists; unc“nstrained “r 
exponential growth/decay model, where the rate of change of an amount is directly 
proportional to the amount.

underlow Err“r c“nditi“n that “ccurs when the resu‘t “f a c“’”utati“n is t““ 
small for a computer to represent.

undirected graph G = (V, E) consisting of a set V of vertices and a set E of edges 
connecting pairs of vertices. 

uniform distribution Discrete distributi“n in which a‘‘ ”“ssib‘e “utc“’es have an 
equal chance of occurring; continuous distribution in which equal-length intervals 
of outcomes have an equal chance of occurring.

unstable solution S“‘uti“n, q, to a differential equation dP/dt or a difference 
equation ∆P that is not stable.

upwelling When dee” currents bring c““‘, nutrient-rich b“tt“’ “cean water t“ the 
surface.

V V“‘t.
validation Pr“cess that estab‘ishes if a syste’ satisies the ”r“b‘e’ s require-

ments.
vasoconstriction Decrease in b‘““d vesse‘ dia’eter.
vasodilation Increase in b‘““d vesse‘ dia’eter.
vector In bi“‘“gy, an ani’a‘ that trans’its a ”ath“gen, “r s“’ething that causes  

a disease, to another animal; in mathematics, ordered n-tuple of numbers,  
(v1,v2,…,vn).

velocity Instantane“us ve‘“city.
venous return F‘“w “f b‘““d t“ the heart.
ventricle In the hu’an heart, “ne “f tw“ ‘“wer cha’bers that ”u’” b‘““d t“ the 

body and the lungs.
ventricular ibrillation Cha“tic e‘ectrica‘ disturbance in the heart ventric‘e.
veriication Pr“cess which deter’ines if a s“‘uti“n w“r—s c“rrect‘y.
vertex (plural vertices) P“int in a gra”h.
Vmax Li’it “f the rate “f an enzy’atic reacti“n.
volt (V) Unit “f ’easure “f ”“tentia‘ difference.
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voltage difference Difference in e‘ectr“nic ”“tentia‘ between tw“ ”“ints.
voltage-gated I“n channe‘s wh“se gates “”en due t“ changes in v“‘tage.
voltage F“r a ”“int in an e‘ectrica‘ circuit, the v“‘tage difference between a ”“int 

and a circuit reference point, the ground.
von Neumann neighborhood In a tw“-di’ensi“na‘ grid “f a ce‘‘u‘ar aut“’a-

ton or agent-based simulation, a set of cells directly to the north, east, south, and 
west of a grid site and the site itself.

weight The f“rce “n an “b–ect due t“ gravity.
white blood cell B‘““d ce‘‘ that is ”art “f the b“dy s defense ’echanis’ against 

infections.
y-intercept Va‘ue “f y when x = 0 in the equation of a line, y = mx + b; where the 

graph of a function crosses the y-axis.





ANSWERS TO SELECTED EXERCISES 

Chapter 2

Module 2.2

2. a. 15000e0.02(20) = 22377.4
 b. 24.9, 15024.9; 24.94, 15049.8; 24.98, 15074.8
7. a. Q = Q0 e

-0.0239016t

Module 2.3

1. b. P(t) = 
e MP

M P e P

rt

rt

0

0 0
− +  2. a. π/2 + πn, where n is an integer

Module 2.5

4. b. 0.099021
5. b. Assuming elimination_constant = 0.0315, 50.90 ’g

Chapter 3

Module 3.1

1. a. v = ds/dt, a = d2s/dt2 = dv/dt = 9.81 ’/s2, s0 =11 m. v0 = 15 m/s
 b. v = 9.8t + 15, s = 4.9t2 + 15t + 11 

Module 3.2

2. a. m
d s

dt
km

2

2
= −

Module 3.3

1. a. 1 b.  c. F = –mg  e. d2( )/dt2 = –g /l

Module 3.4

2. dv/dt = –Isp g (dm/dt)/m + g –  0.5CDAv2/m, where C is the drag c“eficient, 
A is the rocket’s cross-sectional area, and the density of the atmosphere is 
D = 1.225e–0.1385y, where y is altitude < 100 km.



802 Answers to Selected Exercises 

Chapter 4

Module 4.1

1. a. dW/dt = aW - bWB, dB/dt = cB –  dWB, W0 = 20, B0 = 15
b. a = bB and c = dW, where b and d are any nonnegative real numbers

Module 4.2

2. ∆s = (ks * s(t –  ∆t) –  khs * h(t –  ∆t) * s(t –  ∆t)) * ∆t

 ∆h = (ksh * s(t –  ∆t) * h(t –  ∆t) - ksh * s(t –  ∆t) * h(t –  ∆t)2/M) * ∆t

Module 4.3

2. dSQ/dt = qk(1 –  b)IUS/N0 –  uSQ 11. a. 310 = 59,049

Module 4.4

2. d(human_hosts)/dt =  (”r“b_bit)(”r“b_vect“r)(uninfected_humans) 
 − (rec“very_rate)(human_hosts) 
 − (malaria_induced_death_rate)(human_hosts) 
 − (immunity_rate)(human_hosts)

Module 4.5

1. d[E]/dt = –d[ES]/dt 6. a. d[S]/dt = –k1[E][S]n + nk2[ES]

Chapter 5

Module 5.2

1. 0.6385 × 105 13. Magnitude = 1025, precision = 6 16. 4, 6
22. 0.1 × 10–5 t“ 0.999 × 105 24. a. 0.001 b. 0.0160% c. 0.009
d. 0.144% 27. a. 0.36000000094 × 105 b. 0.36000 × 105

c. 0.94 × 10–4 d. 0.26 × 10–8 29. 6.23; 12.4; 0.625%
34. a. –1/3 = −0 333.  b. –0.4161

Chapter 6

Module 6.2

1. P2 = 324 at t = 16 h
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Module 6.3

1. Starting with P1 = 212 at t = 8 h, P2 = 449.44 at t = 16 h

Module 6.4

1. Starting with P1 = 222.24 at t = 8 h, P2 = 493.906 at t = 16 h

Chapter 9

Module 9.2

1. 6 4 a. 219, 244, 36 b. 0.627507, 0.69914, 0.103152
10. 20.0 * rand + 6.0 14. INT(21.0 * rand + 6.0)

Chapter 10

Module 10.3

1. Have two constants for burning, such as BURNING1 and BURNING2. Re-
place the rule for BURNING with two rules: If the site is BURNING1, then 
return BURNING2. If the site is BURNING2, then return EMPTY.

4. spread has 11 parameters: site, N, NE, E, SE, S, SW, W, NW, probLightning 
and probImmune. The rule for determining if a tree will burn at the next time 
step begins as follows: if site is TREE and (N, NE, E, SE, S, SW, W, or NW is 
BURNING)

Module 10.4

2. The ant g“es bac— and f“rth between its irst ce‘‘ and the ce‘‘ it initia‘‘y se-
lected at random from its neighbors, none of which had any chemical at the 
start of the simulation. As the ant leaves a cell, the amount of chemical in-
creases by DEPOSIT. Thus, after the irst ti’e ste”, the ce‘‘ fr“’ which it 
just came has the maximum amount of chemical in the neighborhood.

Chapter 12

Module 12.1

3. 0.25 log n
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Module 12.2

1. Algorithm for Process i in Calculation of Scalar Product av: return avi

7. The divide phase is identical to that for the divide-and-conquer algorithm for 
adding numbers. The conquer phase is the same except that each process re-
turns the number of occurrences of a particular element in its subarray, which 
the receiving process adds to its number of occurrences.

9. a. rn = (81rn–1) ’“d 349, f“r n > 0

Chapter 13

Module 13.2

1. (21, –28, 56, 0) 4. ( 6, 0, 29, 2) 12. 125
27. a = 8, b = 4, c = ½ 28. a. 2 × 3 b. 0, 3, no such element, –2

29. 
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Module 13.3

1. a. Shrinking b. By 1.6% ”er year
 c.  47.47%, 21.01%, 17.58%, and 13.94% because su’ = 2.35 + ( 1.04) 

+  ( 0.87) + ( 0.69) = 4.95 and ( 2.35, 1.04, 0.87, 0.69)/( 4.95) =  
(0.4747, 0.2101, 0.1758, 0.1394)

2. b. (2030, 652, 287)
3. b. 0.4583 dominant eigenvalue and the annual growth rate; decline
 d.  1.3417 because the d“’inant eigenva‘ue “f the Les‘ie ’atrix with  0.1   

0.1(0.1) = 0.9(0.1) = 0.09 re”‘acing 0.1 is 0.4449 and (0.4449   0.4583) / 
(0.09   0.1) = 1.34

4. c. 32.53% = 0.3253 = 1   0.6747
 d.  21.44% = 0.2144 = 1   (0.7370 + 0.0486) because stage 2 turt‘es survive 

and remain at stage 2, survive and advance to stage 3, or die in any one year.
5. a.  0.1 is the probability that in one year a stage 1 animal survives and ad-

vances to stage 2. 0.2 is the probability that in one year a stage 2 animal 
survives and remains at stage 2. (Other descriptions are left to the reader.)
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Module 13.4

1. a. 

0 84 0 55 0 40 0 15

0 04 0 26 0 06 0 07

0 03 0 03 0 35 0 02

0 09 0 16 0

. . . .

. . . .

. . . .

. . .119 0 76.



















 b. (0.25, 0.25, 0.25, 0.25)
2. a. 1 – 3α 

 b. 

1 3

1 3

1 3

1 3

−
−

−
−



















α α α α
α α α α
α α α α
α α α α

 d. 

. . . .

. . . .

. . . .

. . . .

01 03 03 03

03 01 03 03

03 03 01 03

03 03 03 01



















 

  with (0.25, 0.25, 0.25, 0.25) ultimate distribution of bases
3. a. 1 – α – 2
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← (left- facing arrow), 24
β- catenin, 329 332
β- galactosidase, 322
∆P, 35, 37
∆population, 20–22
∆s, 17 18
∆t, 17 18
Σ (sigma), 356
Ω (“h’), 272, 275

A (a’”ere “r a’”), 271, 275
absolute error, 185
absolute refractory period, 285
absorbing boundary condition, 

423–424
acceleration due to gravity, 63, 

64, 103
acceleration, 62–65
Acquired I’’une Deiciency 

Syndr“’e (AIDS), 724
acti“n ”“tentia‘, 283 287
activated channel, 285
adherens –uncti“ns, 329
ad–acency ’atrix, 669 671
adjacent, 662–663
aerobic respiration, 300: ATP 

synthase, 299; e‘ectr“n 
trans”“rt, 299; Krebs s 
Cyc‘e, 299; ’it“ch“ndria, 
299; NADH, 298; “xidative 
”h“s”h“ry‘ati“n, 299

age- structured model, 
611 619

agent, 490, 516; behavi“rs, 
490, 495 501, 517 518; en-
vir“n’ent, 490, 515 516, 
518 519; g‘“ba‘ si’u‘ati“n 
variab‘es, 490, 518 519; 
grid, 490; states, 490, 494
495, 516; state variab‘es, 
490, 519

agent- based ’“de‘ing, 489
508, 514 529

agent- based simulation 
753 756

AIDS (Acquired Immune De-
iciency Syndr“’e), 
723 728

air: density, 66; pressure at sea 
level, 243

alkaptonuria, 164
a‘ter, 773
ambient pressure, 246
a’in“ gr“u”, 317
a’” (A), 271; a’”ere, 275
amplitude, 350
ana‘ysis “f ”r“b‘e’, 9, 149

150, 449
ana‘ytica‘ s“‘uti“n, 25 27
anch“r, 94
angu‘ar acce‘erati“n, 91 94
an“ny’ized, 773
Anopheles mosquito, 148
ant movement simulation, 

455 457; ’“de‘ing, 449
455; ”her“’“nes, 449; se‘f- 
“rganizing, 449; sensing, 
452–453; solving model, 
455; visua‘izati“n, 456 457; 
walking, 454–455

anthr“”“genic, 257, 302
antibi“tic resistance, 290 295
a”ica‘ gr“wth, 713
aposematic coloration, 118
area, Monte Carlo simulation 

“f, 378 380; ’easure “f 
quality, 380; throwing darts, 
378 379

area- restricted search, 705
Argentine ants, 116
arith’etic err“rs, 188 189
array, 405, 406
arrow, left- facing (←), 24
as”irin, 46 48, 56 57
assign’ent: “”erat“r, 187; 

state’ent, 187
ass“ciative ”r“”erties, 192
atmosphere (atm), 243
atmosphere, 252
ATP, 297 298; synthase, 299

atria, 264
autonomic nervous system, 

265
avoidance- or- wait strategy, 

450
axon 282; terminals 283

barnacle, 640–641
Barnes- Hut A‘g“rith’, 

570 574
base 10, 183
base 2, 183
base ”air, 319
basic reproductive number, 

141–142
bends, 249
behavi“rs, agent, 490, 

495 502
Berkeley Madonna diagram, 

21
big data, 555
binary, 183
bi“i‘’, 462 463; b“undary 

c“nditi“ns, 466 467; 
gr“wth, 467 471; c“nsu’”-
ti“n, 471 472; si’u‘ati“n, 
472 478

bi“inf“r’atics, 757 758
bi“‘“gica‘ aggregati“ns, 742
bi“’agniicati“n, 301
biosphere, 252
bi”artite gra”h, 668 669
bit, 183
BLAST (Basic L“ca‘ A‘ign-

’ent Search T““‘), 763 767
b‘““d ce‘‘ ”“”u‘ati“ns, 237

241; destructi“n c“eficient, 
238; destruction rate, 238; 
Lasota production function, 
239; Mac—ey and G‘ass ”r“-
duction function, 241; 
model, 238–240; model pa-
ra’eters, 238 239

b‘““d l“w, 266 267; ’ean 
velocity of, 266; Poiseulle’s 
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b‘““d l“w (cont.)
Equati“n, 267; ”ressure gra-
dient, 267

blood pressure, 265; cardiac 
output, 265; diastolic pres-
sure, 265; heart rate, 265; 
mean arterial pressure, 265; 
stroke volume, 265–266; 
systemic vascular resist-
ance, 265–266; systolic 
pressure, 265

blood vessel: cross- sectional 
area “f, 267; ‘ength “f, 267

b‘““d: l“w, 266 277; nitr“gen 
in, 247; ”ressure, 265; vis-
c“sity, 267; v“‘u’e “f, 247

blue crab, 584–586
b“b, 90
body mass index, 304
B“x- Mu‘‘er- Gauss Meth“d, 

396 397
B“y‘e s Law, 245 246
Briggs- Ha‘dane ’“de‘, 173
Br“wnian M“ti“n, 406
bungee –u’”, 78 79
buoyancy, 88

C (c“u‘“’b), 270 271
Candida albicans, 723
cane t“ads, 512 537; artiicia‘ 

watering points (AWPs), 
514, 516; consumption, 
522–524; invasion hubs, 
514; metamorphs (toadlets), 
513, 534–535; modeling, 
515–532; movement, 524–
527; si’u‘ati“n driver, 520

canopy, 262
ca”acitance, 273, 275, 287; ca-

”acit“r, 273; farads, 273
ca”acit“r, 273
ca”sid, 724
carb“hydrate, 297; ’etab“-

‘is’, 297 300
carbon cycle, 252–254; down-

we‘‘ing, 253; lux, 253; hy-
drocarbons, 253; photosyn-
thesis, 252; reservoirs, 253; 
sink, 253; upwelling, 253

carb“n dating, 29 30
carbon dioxide (CO2), 

252–253

carb“xy‘ gr“u”, 317
chromosome, 321
cardiac output, 265–268
cardiovascular system, 264
carrying capacity, 34–36
β- catenin, 329 332
CD4 transmembrane recep-

t“rs, 725
CD4+ T- ‘y’”h“cytes, 725
ce‘‘, 394,405, 406, 491
cell body, 282
ce‘‘- ’ediated i’’unity, 725; 

CD4 transmembrane recep-
t“rs, 725; CD4+ T- 
‘y’”h“cytes, 725; dendritic 
ce‘‘s, 726; g”120, 725; ’ac-
r“”hages, 726

cellular automaton simula-
tions, 405–406, 514, 660, 
751 752; b“undary c“ndi-
tions, 423–426; cell, 405, 
406; ghost cell, 423; grid, 
405, 406; lattice, 405, 406; 
Moore neighborhood, 421–
422; neighbors, 421, 428; 
rules, 405, 406; site, 405, 
406; von Neumann neigh-
borhood, 421–422

Ce‘sius te’”erature, 246 247
centra‘ ”‘ace f“ragers, 703
central processing unit (CPU), 

545 547
chain, radioactive, 233
change in ”“”u‘ati“n, 19
channels, 282–285; activated, 

285; gated, 283; inactivated, 
285; leak, 283; ligand- gated, 
284; voltage- gated, 283

chaparral, 435
charge, 275
Char‘es s Law, 246 247
child in radioactive chain, 233
circ‘es ‘ist, 773
circulation, 264
c‘“uds, 736 740; c“a‘escence, 

737; c“a‘escence eficiency, 
739; c“‘‘ecti“n eficiency, 
739; c“‘‘ect“r dr“”, 739; 
c“‘‘isi“n eficiency, 739; 
c“ndensati“n, 738; c“nden-
sati“n nuc‘ei, 738; critica‘ 
distance, 739; cu’u‘“ni’-

bus, 737; cu’u‘us c‘“uds, 
736; de”“siti“n, 738; rain-
dr“”s, 739

c‘ustering, 548, 571, 666 668
c‘ustering c“eficient, 661, 

668, 680 682, 773
c“a‘escence, 737; eficiency, 

739; re‘ative hu’idity, 737
coarse granularity, 550
codon, 321
c“eficient “f drag, 66
c“enzy’es, 298
c“gnitive ’a”, 704
c“‘‘ecti“n eficiency, 739
c“‘‘ect“r dr“”, 739
c“‘‘isi“n eficiency, 739
c“‘“n structure, 327
colon cancer model, 326–333; 

aden“carcin“’a 327; ’uta-
ti“ns 327; Wnt ”athway 327

c“‘“n cry”t 327; differentiat-
ing cells 328; proliferating 
cells 328; stem- cell niche 
327 328; structure 328

c“’’ensa‘, 291
common logarithm, 345–346; 

log n, 345–346
community, 111
c“’”etiti“n, 111 197; ex”‘“it-

ive, 112, 116; interference, 
112, 116; inters”eciic, 112; 
intras”eciic, 112; s”ace, 
747 748

c“’”‘e’entary bases, 319
c“’”‘e’entati“n, 319
complete graph, 666–668
component- wise vector opera-

ti“n, 557
computational science, 3–5
c“’”uter si’u‘ati“n, 376
concatenation, 423
concentration, 46–50
concurrent processing, 543–

553, 439; architecture, 548
549; centra‘ ”r“cessing unit, 
545; metrics, 550–551; pro-
cess“r, 545 547; ty”es “f, 
547

c“ndensati“n, 738; nuc‘ei, 738
conditional probability, 644
c“nduct“r, 271
c“nnected gra”h, 666 667
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c“nnecti“n ’atrix, 669 671
connectivity, 585
constrained growth, 34–43
contact (social) network, 661
c“ntinu“us distributi“n, 392

393; ”r“babi‘ity density 
functi“n, 392 393

c“ntinu“us gr“wth rate, 19
continuous model, 8
contractility, 265
c“nvective currents, 700
c“re, 545 546, 724
coronavirus, 131
corrector, 212–215
c“sine, 348 350; ”eri“d, 349
c“st, 308; ixed, 308; functi“n, 

308; marginal, 311–312
c“u‘“’b (C), 270, 271
covariates, 654
C”G is‘and, 758
critica‘ distance, 739
Crypts of Lieberkühn, 604
C- ter’ina‘, 317
Cultural Revolution in China, 

121
cu’u‘“ni’bus, 737; c“a‘es-

cence, 737; squa‘‘ ‘ines, 
737

cu’u‘us c‘“ud, 736
current, 270 274, 275; direc-

ti“n “f, 271
cyt“’ega‘“virus, 723

Dalton’s Law, 244–245
damped spring, 84
data errors, 182
data partitioning, 558–561
decay constant, 233
dec“’”ressi“n sic—ness, 249
decrease strategy for collision, 

459
deibri‘‘at“r, 270; circuit, 270
degree of node, 662
degree distribution, 661, 664, 

677 679
dehydr“genases, 297
de‘eti“n ’utati“n, 758
dendrites, 282, 699
dendritic ce‘‘s, 726
density functi“n, 392, 393
density: of air, 118; of atmos-

phere, 154; of water, 118

deoxyribonucleic acid (DNA) 
317

de”endent variab‘e, 9, 20
depolarized membrane, 283
de”“siti“n, 738
destructi“n c“eficient, 238
deterministic behavior, 8
deterministic model, 8
diastolic pressure, 265
difference equation, 20–22
differential cell adhesion, 604
differentia‘ equati“n 19 20
differentiated, 604
diffusion, 418–434
diffusion- limited aggregation 

(DLA), 479, 700
diffusion model, 418–428; rate 

”ara’eter, 422, 705
diffusion rate parameter, 422, 

705
Dilantin, 48–50, 55–56
direct‘y ”r“”“rti“na‘, 19
discrete distributi“n, 392 396; 

probability density function, 
392, 393

discrete model, 8
disease, s”read “f, 720 722; 

infecteds, 720; rec“vereds, 
720; SIR M“de‘, 720; sus-
ce”tib‘es, 720

disintegration constant, 233
dis— equati“n, 127
distributed ’e’“ry, 548 549
distributed ”r“cessing, 547
distributi“n, 390 403; B“x- 

Mu‘‘er- Gauss Meth“d, 396
397; c“ntinu“us, 392 393; 
discrete, 392 396; ex”“nen-
tia‘, 398; Gaussian, 396
397; Maxi’u’ Meth“d, 
402; n“r’a‘, 396 397; re-
jection method, 400–401; 
Root Method, 402; statisti-
ca‘, 390; unif“r’, 391

distributive ”r“”erty, 192
dithering, 601; matrix, 601
divide- and- conquer algo-

rithms, 561–564
DLA (diffusion- limited aggre-

gati“n), 479, 700
DNA, 317
d“’inant eigenva‘ue, 618 619

d“t ”r“duct, 589 590
double- precision number, 184
downwelling, 253
dP/dt, 19 20
drag, 66 67; c“eficient “f, 66
drug delivery, controlled, 

694 695
drug d“sage, 45 57; ha‘f- ‘ife, 

29 30; ’axi’u’ thera”eu-
tic concentration, 46; mini-
mum effective concentra-
tion, 46; minimum toxic 
concentration, 46; one- 
compartment model, 48–50; 
therapeutic range, 46; two- 
compartment model, 54

dru’, 94
dynamic model, 8; continuous, 

8; discrete, 8
dynamic systems, 15
dyna’ica‘ diseases, 237

ecological niche, 111
edge, 661
effector cells, 282
eg“, 773; netw“r—, 773
eigenva‘ue, 618 619
eigenvect“r, 618 619
e‘ast“’ers, 694
e‘ectric charge, 271, 273, 275
e‘ectrica‘ circuit, 270 279
electrical potential, 282
e‘ectr“n trans”“rt syste’, 299; 

ATP synthase, 299; “xida-
tive ”h“s”h“ry‘ati“n, 299

e‘ectr“nic ”“tentia‘, 271
e‘ectr“n, 270
e‘e’ent, 586 587
embarrassingly parallel algo-

rithm, 556–558; adding two 
vect“rs, 556 557

endangered s”ecies, 609
environmental stochasticity, 

629
e’”irica‘ ’“de‘, 352 371; 

’u‘titer’, 366 367; NIST 
datasets, 352; one- term, 
357 365; sequence “f trans-
f“r’ati“ns, 359

endothelial factors, 266
enve‘“”e, 724
envir“n’ent, agent 490
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environmental subsystems, 
252

enzy’e 317
enzy’e c“ncentrati“n, 169
enzy’e —inetics, 164 177; dif-

ferential equations, 166; 
Michae‘is- Menten, 169
171; ’“de‘, 167

enzyme, 164
enzyme- substrate complex, 

165
EPC, 215
epidemic ratio, 503
e”ine”hrine, 266, 267
equi‘ibriu’, 39; secu‘ar, 235; 

s“‘uti“n, 39; transient, 235
equilibrium potential, 282– 

283
equi‘ibriu’ vect“r, 647
err“r ”r“”agati“n, 189 192
err“r, 182 200, 207 208, 216, 

227
esca”e’ent gear, 94
Euler’s Method, 204–211; 

err“r, 207 208
Euler’s Predictor- Corrector 

(EPC) Method, 212–216; al-
gorithm, 215; corrector, 
212–215; error, 216

evasion, 303
Everg‘ades, 745 746
excitatory signals, 284
ex”ectati“n va‘ue, 705
exploitive competition, 112, 

116
exponential distributions, 

382–384
exponential function, 343–345
exponential notation, 184
ex”“sed, 137

F (farads), 273,
Faceb““—, 773 774; a‘ter, 

773; an“ny’ized, 773; cir-
c‘es ‘ist, 773; eg“, 773; eg“ 
netw“r—, 773; friends ‘ist, 
773

FADH2, 299
fairy ring, 711 719; c“nstants, 

718; dis”‘ay, 717; initia‘iza-
ti“n, 715 716; ”r“babi‘ities, 
716; si’u‘ati“n, 715 718; 

state diagra’, 717; u”dating 
ru‘es, 716 717

fa‘‘ing, 61 71
farads (F), 273
fecal shedding, 654
fecundity, 613
feedbac— ‘““”, 69
fer’entati“n, 298; ‘actate, 298
ine granu‘arity, 550
inite difference equati“n, 21

22, 35, 37, 119 120
inite ge“’etric series, 53 54, 

655
ire si’u‘ati“n, 435 447; a‘g“-

rith’, 437,440, 442; ani’a-
tion, 442–443; applying 
function, 441; cell, 436; cell 
initiati“n a‘g“rith’, 437; 
cell values, 436; constants, 
436; grid, 436; grid ex-
tended, 439; ‘attice, 440
443; neighb“r, 438 439, 
443; periodic boundary con-
diti“ns, 439 440; ”r“babi‘i-
ties, 437; s”read, 437; u”-
dating ru‘es, 437 439; v“n 
Neumann neighborhood, 
437

ish sch““‘ing, 741 744; bi“-
‘“gica‘ aggregati“ns, 742

ishing ec“n“’ics, 307 316; 
cost, 308; Fishing Maxi-
mum Economic Yield, 313; 
Fishing Maximum Sustaina-
b‘e Yie‘d, 313; ixed c“st, 
308; Gordon- Schaefer Fish-
ery Production Curve, 312; 
marginal cost, 311–312; 
marginal revenue, 311–312; 
”rice ”er ite’, 309; ”r“it, 
310–311; quantity, 308; rev-
enue, 308–310

Fishing Maximum Economic 
Yield, 313

Fishing Maximum Sustainable 
Yield, 313

itting data, 338, 368
ixed c“st, 308
l“ating ”“int nu’ber, 183; 

c“’”aris“n “f, 193; frac-
tional part, 183; mantissa, 
183; signiicand, 183

Floyd’s algorithm, 683–684
lux, 253
f““d rati“n, 732
f“raging behavi“r, 703 708; 

centra‘ ”‘ace f“ragers, 703; 
c“gnitive ’a”, 704; ‘arge- 
sca‘e navigati“n, 703; ”ath 
integrati“n, 703; si’u‘a-
ti“ns, 704 705

f“rce, directi“n “f, 567
f“r’u‘ating ’“de‘, 9 10, 

150 155, 449 455
fossil fuels, 253–254
fractional part, 183
free energy, 298
friction, 66
friends ‘ist, 773
fruct“se 1,6- bis”h“s”hate, 298
functi“na‘ res”“nse, 127
functions, 338–351
fungi, 711 713; fairy ring, 

711, 714; gi‘‘s, 713; gr“wth, 
713; hy”ha, 712; ’ush-
r““’, 712; ’yce‘iu’, 712; 
nuc‘eus, 714; re”r“ducti“n, 
713; s”“res, 712

Ga’e “f Life, 730; ‘ife- f“r’s, 
730; sti‘‘- ‘ifes, 730

gametocytes, 148
Garrod, Archibald, 164
gated channel, 283
Gaussian distribution, 

396 397
gene 321
GeneMar—, 762
genera‘ist, 127
generating function, 382
genetic code 321
genome 321
geometric series, 52–54
ghost cells, 423
gi‘‘s, 713
g‘“ba‘ war’ing, 256 259; 

c“nsequences “f, 257 258
g‘yc“gen, 297
g‘yc“‘ysis, 298; dehydr“ge-

nases, 298; fruct“se 1,6 bis-
”h“s”hate, 298; NADH, 
298

global simulation variables, 
490
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Gompertz differential equa-
tion, 40, 210

Gordon- Schaefer Fishery Pro-
duction Curve, 312–313

g”120, 725
graph, 661–666
granularity, 550; coarse, 550; 

ine, 550
greedy a‘g“rith’, 674
green sea turtle, 608–610
greenhouse effect, 256
greenh“use gases, 257; car-

b“n di“xide, 257; ’ethane, 
257, 258; nitr“us “xide, 
257, 259

grid, 405, 406, 490, 514
grid- based individual- base 

model, 514–515, 660; be-
havior, 514; cell, 514; envi-
ronment, 514; grid, 514; 
rule; 514; state, 514

gr“und “f circuit, 271
gr“wth, 19; rate, 19

H (henry), 274, 274, 275
habitat saturati“n ’“de‘, 629
ha‘f- ‘ife, 29 30, 46 48
half- time, 248
harmonic motion, 83
heart rate, 265; autonomic 

nervous system, 265; epi-
ne”hrine, 267; ”ace’a—er, 
265; vagus nerve, 265

heat diffusi“n, 421 423, 704; 
Newton’s Law of Heating 
and Cooling, 422; simula-
tion, 428–431

heavy metal, 301
henry (H), 274, 274, 275
Henry s Law, 247 248
Hg (mercury), 301
high- performance computing 

(HPC), 544; metrics, 
550–551

hi‘‘- c‘i’bing ”r“cess, 705
HIV, 723 729; attac—ing i’-

’une syste’, 724 726; 
Candida albicans, 723; 
cell- mediated immunity, 
725; cyt“’ega‘“virus, 723; 
Ka”“si s sarc“’a, 723; 
Pneumocystis pneumonia, 

723; retr“virus, 724; si’u-
‘ati“n, 726; structura‘ ”r“-
teins, 725

Hodgkin- Huxley, 281–282; 
’“de‘ 285 287

homogeneous Markov model, 
655

h“’“‘“g, 758
H““—e s Law, 79
hormones, local, 266
host, 148
hub, 664
hydrocarbons, 253
hydrosphere, 252
hy”ha, 712
hyperpolarization, 284
hypnozoites, 148

ideal gas laws, 244–248; 
B“y‘e s Law, 245 246; 
Char‘es s Law, 246 247; 
Dalton’s Law, 244–245; 
Henry s Law, 247 248

ideal gas, 244
IFQ (Individual Fishing 

Quota), 308
implementation errors, 183
i’”“sed v“‘tage, 271
impulse, 101
inactivated channels, 285
incident, 662
independent events, 644
inde”endent variab‘e, 9, 20
index, 190, 586 587, 672
individual- based epidemiology 

simulation, 660
Individual Fishing Quota 

(IFQ), 308
inducer, 323
inductance, 274; henry, 274; 

induct“r, 274
induct“r, 274
infecteds, 133, 135, 137, 720
ininite series ex”ansi“n, 

194 195
inluenza, 659 660
inhibitory signals, 284
initial condition, 20
initial velocities of a reaction, 

169
inserti“n ’utati“n, 758
instantane“us gr“wth rate, 19

instantaneous rate of change, 
19

integer part, 384
integration techniques, 218
interference competition, 112, 

116
interpolation, 366
intras”eciic c“’”etiti“n, 112
invasives, 745 746
ion channel, 282
isolated node, 662
is“‘ati“n, 137
Isp (s”eciic i’”u‘se), 101

Jukes- Cantor model, 650

Ka”“si s sarc“’a, 723
Ke‘vin te’”erature, 246 247
keystone predator, 128
Kimura model, 650
kinetic friction, 66
Kirchhoff’s Current Law, 

277 278
Kirchh“ff s V“‘tage Law, 275  

276; RLC circuit, 275 276
Km, 169
Krebs s Cyc‘e, 299; and 

FADH2, 299;and 
NADH298; and substrate- 
‘eve‘ ”h“s”h“ry‘ati“n, 299

lac operon, 322 - 323; β- 
galactosidase, 322; operator, 
322; permease, 322; pro-
moter, 322; repressor gene, 
322; repressor protein, 322

‘actate, 298; dehydr“genase, 
298; fer’entati“n, 298

‘arge- sca‘e navigati“n, 703
Lasota production function, 

β61, β6β, 239
lattice, 405, 406, 440–443, 

699, 715
‘aunching rectang‘e, 700
leak channels, 283
‘east- squares it, 355
left- facing arrow (←), 24
Lefkovitch Matrix, 610, 620, 

622–623
Lehmer, D. J., 382
length- normalized log- odds 

sc“re, 762
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Leslie Matrix, 610, 613–614, 
622–623

‘entivirus, 725
‘ife f“r’s, 730
ligand- gated channel, 284
linear combination, 354
linear congruential method, 

382–383; generating func-
ti“n, 387; Leh’er, D. J., 
382; mod, 382; modulus, 
382; multiplier, 383; seed, 
382

‘inear da’”ing, 94
‘inear equati“n, 597
linear empirical model, 

353–355
‘inear functi“n, 339 340
‘inear regressi“n, 356 357; 

predictor variable, 356; re-
sponse variable, 356

linear speedup, 551
lipophilic, 304
Lipsitch model, 136
lithosphere, 252
ln n, 346
loading dose, 55
locally maximal segment pair, 

766
log n, 345–346
logarithm: to base 10, 345–

346; to base e, 346; com-
mon, 345–346; function, 
345 347; natura‘, 346

‘“gistic equati“ns, 37 38
‘“gistic functi“n, 347
‘““”, 189; variab‘e, 189 190
‘““se‘y c“u”‘ed, 547
Lotka- Volterra Model, 

119 120

Mackey and Glass production 
function, 241

’acr“”hages, 726
magnitude of gravitational 

force between two bodies, 
566 567; Newt“n s gravita-
tional constant, 566

magnitude, 184
’a‘aria, 147 163; ‘ife cyc‘e, 

149; ’“de‘, 150 159
Ma‘thusian ’“de‘, 19
Manhattan Pr“–ect, 378

mantissa, 183
marginal cost, 311–312
marginal revenue, 311–312
Markov (chain) models, 640–

646, 758; irst- “rder, 762; 
ifth- “rder, 762; GeneMar—, 
762; h“’“gene“us, 767; in-
h“’“gene“us, 767; training 
sequences, 759

matrix (plural matrices), 
590 598

matrix multiplication, 
593 596

’atrix su’, 591
Maximum Method, 402
maximum sustainable yield, 

42
maximum therapeutic concen-

tration, 46
’ean, 380, 396
mean arterial pressure, 265
mean shortest path length, 661
megalops, 585
Me‘a‘euca trees, 746
’e’ber, 586 587
membrane potential, 282
mercury (Hg), 301; budget 

302–303;evasion, 303; natu-
ral emission, 303; oxidized, 
301; particulate, 302; partic-
ulate removal, 303; pollu-
tion, 301–305; riverine 
l“w, 303; t“xicity, 301 305

’er“z“ites, 148 149
’essage- ”assing, 548 549; 

sca‘abi‘ity, 549
messenger RNA (mRNA), 321
metapopulation, 585
methane (CH4), 258 259
methylation, 301
methylmercury, 301–305; li-

pophilic, 304; reference 
doses, 304; toxicity, 
301–305

Michae‘is- Menten, 169 171; 
c“nstant, 169; equati“n, 169

’icr“structures, 700
MIMD, 548 549
minimum dominating set, 661, 

674 677
minimum effective concentra-

tion, 46

minimum toxic concentration, 
46

’it“ch“ndria, 299
mod function, 382
’“de‘ c‘assiicati“ns, 8
’“de‘ing, 7 11, 149 159, 

449 457; ana‘ysis, 9, 149
150, 449; assu’”ti“ns, 9, 
30, 150 151, 450; data, 9, 
150, 449 450; err“rs, 182
183; equations and func-
ti“ns, 9 10, 153 155, 
452–455; interpretation, 
10, 157 159, 456 457; 
maintenance, 11; process, 
9 11; re‘ati“nshi”s, 152
153, 451 452; re”“rt, 9, 
30–31; solution, 10, 155–
157, 455 456; ste”s “f, 
9 11; sub’“de‘s, 9, 451
452; validation, 10; varia-
b‘es, 9, 151 152, 450 451; 
veriicati“n, 10, 157 159, 
456; visualization, 
456 457

’“de‘ing ”r“cess, 9 11
modulus, 382
’“‘es, nu’ber “f, 247
’“n“’er, 693 694
’“n“saccharide, 297
M“nte Car‘“ si’u‘ati“n, 377

378; genesis, 378; Manhat-
tan Pr“–ect, 378; U‘a’, 
Stanis‘aus, 378; v“n Neu-
’ann, J“hn, 378

M““re neighb“rh““d, 517
’“r”h“gens 329
’“st signiicant digit, 184
motor neuron, 282–283
multicompartment model, 54
multiplier, 383
multiterm empirical model, 

366–368
’ushr““’, 712
’utati“n, 758; by de‘eti“n, 

758; by inserti“n, 758; by 
substituti“n, 758; transiti“n, 
758; transversi“n, 758

mutually exclusive events, 643
’yce‘iu’, 712
myocardial infarcti“n, 270
myogenic factors, 266
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N (newton), 65
NAD+, 298
NADH, 298
Na+ − K+ − ATPase ”u’”,  

283
Napier, John, 345
natural logarithm, 346; ln n, 

346
N- B“dy Pr“b‘e’, 566 574; 

Barnes- Hut A‘g“rith’, 
570 574; c‘uster, 548, 571; 
f“rce directi“n, 567; “cttree, 
571; quadtree, 571; sequen-
tia‘ a‘g“rith’, 566 570; tra-
versa‘, 573

neighbor, 421, 428
nerve impulse, 281
neutr“n, 270
neurohumoral factor, 266
newton (N), 65
Newtonian friction, 66
Newton’s Gravitation Law, 

104
Newton’s gravitational con-

stant, 566
Newton’s Law of Heating and 

Cooling, 31, 422
Newton’s Second Law of Mo-

ti“n, 65, 91, 101
Newton’s Third Law of Mo-

tion, 100
nicotinamide adenine dinucle-

otide (NAD+), 298
nitr“gen: narc“sis, 249; s“‘u-

bi‘ity c“eficient f“r, 247
nitrogen base, 318
nitrous oxide (N2O), 257, 259
n“de, 548, 661, 726, 772, 773
nonhomogneous Markov 

model, 655
n“r’a‘ distributi“n, 396 397
normalized number, 184
N- ter’ina‘ 317
nucleotide, 318, 320
nuc‘eus, 714, 725, 738,739

O(∆t), 208
“cttree, 571
ohm (Ω), 272, 275
Oh’ s Law, 272
on the order of ∆t, 208
one- compartment model, 46–

54; repeated doses, 48–54; 
single dose, 46–48

“ne- ter’ ’“de‘, 357 365
““cyst, 148 149
operator 322
“”er“n ’“de‘, 317 321; in-

ducer 323; lac 322; operator 
322; promoter 322; repres-
sor 323; gene 322; repressor 
protein, 322; RNA polymer-
ase 322; structural genes 
322

“verl“w, 188
overlap ratio, 685
“xidati“n, 297
oxidative phosphorylation, 

299
”ace’a—er, 265, 279
PAM (Point Accepted Muta-

ti“ns), 763; PAM1, 763; 
PAM1 ’atrix, 763; 
PAM120 ’atrix, 763; 
PAM120 scoring matrix, 
763

parabola, 340
”ara‘‘e‘, 547
parallel algorithm, 555–580; 

data ”artiti“n, 558, 559
561; divide- and- conquer, 
561–564; embarrassingly 
”ara‘‘e‘, 556 558, 574; ran-
dom number generation, 
564 566, 574

parameter sweeping, 623
parasympathetic nervous sys-

tems, 265
parent in radioactive chain, 

233
”artia‘ ‘ife cyc‘e ’“de‘, 627
”artia‘ va”“r ”ressure, 737
”artiti“ning, 558, 559 561, 

571
”arts ”er bi‘‘i“n (””b), 259
”arts ”er ’i‘‘i“n (””’), 257
”atch, 491
path, 665
”ath integrati“n, 703
path length, 665
”endu‘u’ c‘“c—, 94 95; an-

ch“r, 94; dru’, 94; esca”e-
’ent gear, 94; ”eri“d, 94; 
st“”, 94; weight, 94

”endu‘u’, 90 98
”e“”‘e- ‘“cati“n gra”h, 673
”e”tide b“nd, 317
”eri“d, 94, 349 350
periodic boundary conditions, 

423, 439 440
pharmacokinetics, 46
”her“’“ne, 449
phosphorylation: oxidative, 

299; substrate- ‘eve‘, 299; 
photosynthesis, 252

”in—eye (b“vine), 488 489
”it vi”er, 709 710
”ixe‘, 574, 601
”‘as’a, 46, 237
Plasmodium falciparum, 

147 148
”‘astics, 694
”‘ate‘ets, 237
Pneumocystis ”neu’“nia, 723
Point Accepted Mutation 

(PAM), 763
P“iseui‘‘e s Equati“n, 267
polarized membrane, 283
Polymerase Chain Reaction 

(PCR), 406
”“‘y’erizati“n, 694
”“‘y’er, 693 697; c“ntr“‘‘ed 

drug de‘ivery, 694 695; 
e‘ast“’ers, 694; extended 
re‘ease tab‘et, 695; ’“n“-
’er, 693 694; ”‘astics, 
694; ”“‘y’erizati“n, 694; 
root- mean- square displace-
’ent, 696; se‘f- av“iding 
wa‘—, 695 696; si’u‘ati“n, 
695; weight in SAW, 
696 697

polynomial function, 342–343; 
degree of, 342; quadratic 
function, 340–342

position, 62–65
”“stc“nditi“ns, 407
”“tentia‘ difference, 271
”“tentia‘, 271
power law, 664
””b (”arts ”er bi‘‘i“n), 259
””’ (”arts ”er ’i‘‘i“n), 257
precision, 183–184
”rec“nditi“ns, 407
predation, 118
predator, 118
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predator functional response, 
127; Ty”e I, 127; Ty”e II, 
127; Ty”e III,127

”redat“r- ”rey, 118 130, 730
735; f““d rati“n, 732; Ga’e 
“f Life, 730

predictor variable, 356
pressure, 243–244
”ressure gradient, 267
”reva‘ence “dds rati“, 295
prey, 118
”rice ”er ite’, 309
probabilistic behavior, 8
probabilistic model, 8
probability, 642–645
probability density function, 

392 393
”r“babi‘ity functi“n, 392 393
probability vector, 646
”r“cess, 548 549
”r“cessing, 547 549; ty”es “f, 

547 548; distributed, 547; 
”ara‘‘e‘, 547; sequentia‘, 
547

”r“cess“r, 545 547
”r“it, 310; functi“n, 310 311
projection matrix, 613
promoter, 322
”r“tein, 317; synthesis 321
”r“”“rti“na‘, 19
”r“teas“’es, 329
”r“tein, structura‘, 725
”r“t“n, 270
prototyping, 381
”r“virus, 725
”seud“rand“’ nu’ber, 377, 

382
pulmonary circulation, 264
”urine, 319
”yri’idine, 319
”yruvate, 298

quadratic function, 340–343; 
parabola, 340

quadtree, 571
quantity, 308
quarantine, 136

R (reproductive number), 
141–142

R0 (basic reproductive num-
ber), 141–142

radiative f“rcing, 257
radioactive chain, 233–236; 

child, 233; model, 233; par-
ent, 233

raindr“”s, 739
rand“’ nu’ber, 377, 382, 

386, 390 403; ”ara‘‘e‘ gen-
erator, 564–565; range, 
383–385

random walk, 405–414; ani-
mation, 408–410; average 
distance covered, 410–411; 
Br“wnian M“ti“n, 406

ran—, 576
rate of absorption of gas, 

248 249
rate “f change, 17 19
rate “f infecti“n, 496
rate “f rec“very, 496
ratio of computation to com-

munication, 550
reaction- diffusion, 452, 464
reacti“n rate, 169
reading fra’e, 767
rec“vered, 133, 720
recursion, 402
recursive, 576
red b‘““d ce‘‘s, 237
red- green- b‘ue (RGB) c“‘“r 

’“de‘, 429
reference doses (RfD’s), 304
reine’ent, 10
relecting (relective) b“undary 

conditions, 423
Rejection Method, 400–401
relative error, 185
relative refractory period, 285
re‘ative hu’idity, 737; ”artia‘ 

va”“r, 737; saturati“n va”“r 
”ressure, 737

relative sensitivity, 621–622
repeated doses, 48–54; mathe-

’atics “f, 50 54; inite ge“-
metric series, 52–54

report, 10–11, 30–31
repressor 323; gene 322; pro-

tein, 322
reproduction rate, 613
reproductive number, 141– 

142
reservoir, 253
resistance, 272, 275; “h’s, 

272, 275; Oh’ s Law, 272; 
resist“r, 272

resist“r, 272
respiratory distress syndrome 

(RDS), 132
repolarization, 285
response variable, 356
retr“virus, 724; ca”sid, 724; 

c“re, 724; enve‘“”e, 724; 
‘entivirus, 725; ”r“virus, 
725; reverse transcri”tase, 
725; structura‘ ”r“teins, 725

revenue, 308; functi“n, 309
310; marginal, 312–313

reverse c“’”‘e’entati“n, 319
reverse transcri”tase, 725
Revised Euler’s Method, 206
RfD’s (reference doses), 304
R- gr“u”, 317
ribonucleic acid (RNA), 318
ribose, 318
ribosome, 321
RLC circuit, 275 276
RNA, 318; messenger, 321
RNA polymerase, 322
r“c—ets, 99 108
root, 558
root- mean- square displace-

’ent, 696
root (root process), 558
root method, 402
round down, 186
r“und- “ff err“r, 187
round up, 186
rules, 405, 406
Runge- Kutta 2, 212 217; a‘-

gorithm, 215–216; correc-
tor, 212; error, 216

Runge- Kutta 4, 218 229; a‘-
g“rith’, 226; err“r, 227; es-
ti’ate, 225 227; irst esti-
mate (∂1), 218 219; f“urth 
estimate (∂4), 223–225; sec-
ond estimate (∂2), 219 221; 
third estimate (∂3), 221–223

SARS, 131–146; model, 
132–141

satiati“n, 127
saturati“n va”“r ”ressure, 737
SAW (self- avoiding walk), 

695 696
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sca‘abi‘ity, 549
sca‘ar, 557, 588 589
sca‘ar ’u‘ti”‘icati“n, 591
scale- free network, 664
scientiic n“tati“n, 184
scuba diving, 243–251
secular equilibrium, 235
seed in DLA, 700
seed in random number gener-

ation, 382
SEIR M“de‘, 137
self- avoiding walk (SAW), 

695 696
se‘f- “rganizing, 449
sensitivity analysis, 621–622
separation of variables, 26
sequentia‘ ”r“cessing, 547
serum, 46
Severe Acute Respiratory Syn-

drome (SARS), 131–146
shared ’e’“ry, 548 549
sigma (Σ), 356
signiicand, 183
signiicant digit, 184
simple harmonic motion, 83
simple harmonic oscillator, 83
si’”‘e ”endu‘u’, 91
si’”‘iicati“n, 9
si’u‘ati“n, 376 382; disad-

vantages, 377; when t“ use, 
376 377

sine, 348 350; ”eri“d, 349
single dose, 46–48
single- precision number, 184
sink, 253
SIR ’“de‘, 132 136, 720; in-

fecteds, 133, 720; rec“v-
ereds, 133, 720; susce”ti-
b‘es, 133, 720

site, 405,406
s—ydiving, 70 72
s‘“”e, 339; “f tangent ‘ine, 205
small- world property, 666
sn“w crysta‘, 699
social (contact) network, 661
s“cia‘ netw“r—s, 661, 770 775
sodium channel, 284
sodium ions, 282, 285
s“‘idiicati“n, 699 702; c“n-

vective currents, 700; den-
drites, 699; diffusi“n- ‘i’ited 
aggregati“n, 700; ’icr“-

structures, 700; seed in DLA, 
700; sn“w crysta‘s, 699

s“‘ubi‘ity c“eficient f“r nitr“-
gen, 247

s“‘uti“n, 10 11, 20, 155 157, 
455–456; analytical, 25–28; 
equi‘ibriu’, 39; stab‘e, 39; 
unstab‘e, 39

soma, 282
source, 253
spatial correlation of velocity, 

605
s”eciic i’”u‘se (Isp), 101
speed, 64
speedup factor, S(n), 550–552, 

560, 563; linear speedup, 
551, 557

s”“re, 712
s”“r“z“ites, 148 149
s”ring, 79 84; da’”ed, 84; 

“verda’”ed, 87; unda’”ed, 
81 82; underda’”ed, 87

squa‘‘ ‘ines, 737
square ’atrix, 595
square root function, 343
stab‘e s“‘uti“n, 39
stage- structured model, 

619 621
standard error bar, 605
standard deviation, 380
standard error of the mean 

(SEM), 536
static model, 8
state variab‘e, agent, 490
states, agent, 490, 494 495
statistical distributions, 

390 393
steady- state level, 238
STELLA diagram, 21
stem cell, 604
ste’- ce‘‘ niche, 327
stepping stone model, 655
sti‘‘ ‘ife, 730
st“chastic behavi“r, 8, 722
st“chastic ’“de‘, 8, 722
Stokes’s friction, 66
st“”, 94
straightness, 688
stroke volume, 265
structural genes, 322
subgra”h, 666 667
substituti“n ’utati“n, 758

substrate, 297; c“ncentrati“n, 
166, 169; - ‘eve‘ ”h“s”h“ry‘-
ati“n, 299

surface air consumption (SAC) 
rate, 246

survival rate, 613
susce”tib‘es, 133, 720
SVR (systemic vascular resist-

ance), 266
sy’’etric, 596
sympathetic nervous system, 

265
synapse, 282
system dynamics, 15, 660
systemic circulation, 264
systemic vascular resistance 

(SVR), 266; regulatory fac-
tors, 266

systolic pressure, 265

tangent, 348, 351
terminal button (axon termi-

nals), 282–283
ter’ina‘ s”eed, 69
T- he‘”er ce‘‘s, 725
therapeutic range, 46
ther’a‘ c“nducti“n, 418 419
threatened s”ecies, 609
threshold matrix, 600
thrust, 100; average, 105
tie strength, 773
tight‘y c“u”‘ed, 547
ti‘e, 491
time delay, 105
torr, 244
training sequences, 759; ”“si-

tive (+) sa’”‘es, 759; nega-
tive (−) sa’”‘es, 759

transcription, 321
transcri”ti“n fact“r, 329
transient equilibrium, 235
transit cell, 604
transition matrix, 613, 

645–650
transiti“n ’utati“n, 758
transition rules, 405, 406
translate (translation), 321
transmission constant, 134
transversi“n ’utati“n, 758
tree traversa‘, 572
trigonometric functions, 348–

351; amplitude, 350; cosine, 
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trigonometric functions (cont.)
348 350; ”eri“d, 349 350; 
sine, 348–350; tangent, 348, 
351

triplet, 321
truncate, 185
truncati“n err“r, 194
two- compartment model, 54
Types I, II, and III predator 

functi“na‘ res”“nse, 127

ubiquitins, 329; ubiquitinated, 
329; ubiquitinating en-
zy’es, 329

U‘a’, Stanis‘aus, 378
unconstrained decay, 28–30; 

ha‘f- ‘ife, 29 30
unc“nstrained gr“wth, 17 33; 

analytical solution, 25–28; 
simulation program, 24–25

undamped vertical spring, 81
underl“w, 188
undirected graph, 661–662
unif“r’ distributi“n, 391
unstab‘e s“‘uti“n, 39

u”dating ru‘es, 437 439
u”strea’, 758
upwelling, 253

V (v“‘t), 271
vagus nerve, 265
validation, 10
vasoconstriction, 266
vasodilation, 266
vasopressin- angiotensin sys-

tem, 266
vect“r, 586 590; su’ “f, 557; 

ani’a‘, 148, 489; vect“r 
(ordered n- tu”‘e), 557 587

ve‘“city, 17 19, 62 64
venous return, 266
Vensim diagram, 21
ventricle, 264–266ventricular 

ibri‘‘ati“n, 270
veriicati“n, 10
verify s“‘uti“n, 10, 157 159, 

456
vertex (plural vertices), 661
vesse‘ ‘ength, 267
Vmax, 169

v“‘t (V), 271
v“‘tage, 271, 275
v“‘tage difference, 271
voltage- gated channels, 283
v“n Neu’ann, J“hn, 378
von Neumann neighborhood, 

421 422, 517, 747

water, density of, 66
weight, 65
weight in ”endu‘u’ c‘“c—, 94
weight in SAW, 696
white b‘““d ce‘‘, 237
Wikipedia vote network 

(Wi—i- V“te), 774
Wnt ”athway, 327, 330 332; 

adherens –uncti“ns, 329; β- 
catenin, 329; ’“r”h“gens, 
329; signa‘s, 329; transcri”-
ti“n fact“r, 329

y- interce”t, 339

zoeae, 585

Ω (“h’), 272, 275


	Cover
	Half Title
	Title
	Copyright
	Dedication
	CONTENTS
	Preface
	Text Prerequisites
	Learning Features
	Using the Material
	A Possible Course Outline
	Supplementary Materials
	Acknowledgments

	1 OVERVIEW
	Module 1.1 Overview of Computational Science
	Projects
	References

	Module 1.2 The Modeling Process
	Introduction
	Model Classifications
	Steps of the Modeling Process
	Exercises
	References


	2 SYSTEM DYNAMICS PROBLEMS WITH RATE PROPORTIONAL TO AMOUNT
	Module 2.1 System Dynamics Tool—Tutorial 1
	Download
	Introduction

	Module 2.2 Unconstrained Growth and Decay
	Introduction
	Rate of Change
	Differential Equation
	Difference Equation
	Simulation Program
	Analytical Solution: Introduction
	Analytical Solution: Explanation with Indefinite Integrals (Optional)
	Analytical Solution: Explanation with Derivatives (Optional)
	Completion of the Analytical Solution
	Further Refinement
	Unconstrained Decay
	Reports for System Dynamics Models
	Exercises
	Projects
	Answers to Quick Review Questions
	Reference

	Module 2.3 Constrained Growth
	Introduction
	Carrying Capacity
	Revised Model
	Equilibrium and Stability 
	Exercises
	Projects
	Answers to Quick Review Questions
	References

	Module 2.4 System Dynamics Tool—Tutorial 2
	Download
	Introduction

	Module 2.5 Drug Dosage
	Downloads
	Introduction
	One-Compartment Model of Single Dose
	One-Compartment Model of Repeated Doses
	Mathematics of Repeated Doses
	Sum of Finite Geometric Series
	Two-Compartment Model
	Exercises
	Projects
	Answers to Quick Review Questions
	References


	3 FORCE AND MOTION
	Module 3.1 Modeling Falling and Skydiving
	Downloads
	Introduction
	Acceleration, Velocity, and Position
	Physics Background
	Friction during Fall
	Modeling a Skydive
	Assessment of the Skydive Model
	Exercises
	Projects
	Answers to Quick Review Questions
	References

	Module 3.2 Modeling Bungee Jumping
	Downloads
	Introduction
	Physics Background
	Vertical Springs
	Modeling a Bungee Jump
	Exercises
	Projects
	Answers to Quick Review Questions
	References

	Module 3.3 Tick Tock—The Pendulum Clock
	Download
	Introduction 
	Simple Pendulum
	Linear Damping
	Pendulum Clock
	Exercises
	Projects
	Answers to Quick Review Questions
	References

	Module 3.4 Up, Up, and Away—Rocket Motion
	Download
	Introduction
	Physics Background
	System Dynamics Model
	Exercises
	Projects
	Answers to Quick Review Questions
	References


	4 SYSTEM DYNAMICS MODELS WITH INTERACTIONS
	Module 4.1 Competition
	Download
	Community Relations
	Introduction to Competition
	Modeling Competition
	Exercises
	Projects
	Answers to Quick Review Questions
	References

	Module 4.2 Predator-Prey Models
	Download
	Introduction
	Lotka-Volterra Model
	Particular Situations
	Exercises
	Projects
	Answers to Quick Review Questions
	References

	Module 4.3 Modeling the Spread of SARS—Containing Emerging Disease
	Downloads
	Introduction
	SIR Model
	SARS Model
	Reproductive Number
	Exercises
	Projects
	Answers to Quick Review Questions
	References 

	Module 4.4 Modeling a Persistent Plague—Malaria
	Download
	Introduction
	Background Information
	Analysis of Problem
	Formulating a Model: Gather Data
	Formulating a Model: Make Simplifying Assumptions
	Formulating a Model: Determine Variables and Units
	Formulating a Model: Establish Relationships
	Formulating a Model: Determine Equations and Functions
	Solving the Model
	Verifying and Interpreting the Model’s Solution
	Exercises
	Projects
	Answers to Quick Review Questions
	References

	Module 4.5 Enzyme Kinetics—A Model of Control
	Download
	Introduction
	Enzymatic Reactions
	Differential Equations
	Model
	Moles vs. Molar
	Results
	Michaelis-Menten Equation
	Modeling Inhibition
	Exercises
	Projects
	Answers to Quick Review Questions
	References


	5 COMPUTATIONAL ERROR
	Module 5.1 Computational Toolbox—Tools of the Trade: Tutorial 1
	Download
	Introduction

	Module 5.2 Errors
	Introduction
	Data Errors
	Modeling Errors
	Implementation Errors
	Precision
	Absolute and Relative Errors
	Round-off Error
	Overflow and Underflow
	Arithmetic Errors
	Error Propagation
	Violation of Numeric Properties
	Comparison of Floating-Point Numbers
	Truncation Error
	Exercises
	Projects
	Answers to Quick Review Questions
	References


	6 SIMULATION TECHNIQUES
	Module 6.1 Computational Toolbox—Tools of the Trade: Tutorial 2
	Download
	Introduction

	Module 6.2 Euler’s Method
	Download
	Introduction
	Reasoning behind Euler’s Method
	Algorithm for Euler’s Method
	Error
	Exercises
	Projects
	Answers to Quick Review Questions
	References

	Module 6.3 Runge-Kutta 2 Method
	Introduction
	Euler’s Estimate as a Predictor
	Corrector
	Runge-Kutta 2 Algorithm
	Error
	Exercises
	Projects
	Answers to Quick Review Questions
	References

	Module 6.4 Runge-Kutta 4 Method
	Introduction
	First Estimate, ∂1, Using Euler’s Method
	Second Estimate, ∂2
	Third Estimate, ∂3
	Fourth Estimate, ∂4
	Using the Four Estimates
	Runge-Kutta 4 Algorithm
	Error
	Exercises
	Projects
	Answers to Quick Review Questions
	References 


	7 ADDITIONAL SYSTEM DYNAMICS PROJECTS
	Overview
	Module 7.1 Radioactive Chains—Never the Same Again
	Introduction
	Modeling the Radioactive Chain
	Projects
	Answers to Quick Review Questions
	Reference

	Module 7.2 Turnover and Turmoil—Blood Cell Populations
	Introduction
	Formation and Destruction of Blood Cells
	Basic Model
	Model Parameters
	Projects
	Answers to Quick Review Questions
	References

	Module 7.3 Deep Trouble—Ideal Gas Laws and Scuba Diving
	Pressure
	Ideal Gas
	Dalton’s Law
	Boyle’s Law
	Charles’s Law
	Henry’s Law
	Rate of Absorption
	Decompression Sickness
	Projects
	Answers to Quick Review Questions
	References

	Module 7.4 What Goes Around Comes Around—The Carbon Cycle
	Introduction
	Flow between Systems
	Fossil Fuels
	Projects
	References

	Module 7.5 A Heated Debate—Global Warming
	Greenhouse Effect
	Global Warming
	Greenhouse Gases
	Consequences
	Projects
	References

	Module 7.6 Plotting the Future—How Will the Garden Grow?
	The Problem
	Project
	Reference 

	Module 7.7 Cardiovascular System—A Pressure-Filled Model
	Circulation
	Blood Pressure
	Nervous Systems
	Stroke Volume
	Venous Return
	Systemic Vascular Resistance
	Blood Flow
	Projects
	References

	Module 7.8 Electrical Circuits—A Complete Story
	Defibrillators
	Current and Potential
	Resistance
	Capacitance
	Inductance
	Circuit for Defibrillator
	Kirchhoff’s Voltage Law
	Kirchhoff’s Current Law
	Projects
	Answers to Quick Review Questions
	References

	Module 7.9 Transmission of Nerve Impulses—Learning from the Action Potential Heroes
	Introduction
	The Neuron—Basic Structure and Function
	Initiating an Action Potential
	Hodgkin and Huxley Model
	Projects
	References

	Module 7.10 Feeding the Problem—Antibiotic Resistance
	Introduction
	Projects
	References

	Module 7.11 Fueling Our Cells—Carbohydrate Metabolism
	Glycolysis
	Recycling NAD+s
	Aerobic Respiration
	Projects
	References

	Module 7.12 Mercury Pollution—Getting on Our Nerves
	Introduction
	Projects
	References 

	Module 7.13 Managing to Eat—What’s the Catch?
	Introduction
	Economics Background
	Gordon-Schaefer Fishery Production Function
	Projects
	Answers to Quick Review Questions
	References

	Module 7.14 Control Issues—The Operon Model
	Proteins
	Nucleic Acids
	From Genes to Proteins
	Projects
	References

	Module 7.15 Troubling Signals—Colon Cancer
	Introduction
	Colon Cancer
	Modeling Crypt Dynamics
	Projects
	References


	8 DATA-DRIVEN MODELS
	Module 8.1 Computational Toolbox—Tools of the Trade: Tutorial 3
	Download
	Introduction

	Module 8.2 Function Tutorial
	Download
	Introduction
	Linear Function
	Quadratic Function
	Polynomial Function
	Square Root Function
	Exponential Function
	Logarithmic Functions
	Logistic Function
	Trigonometric Functions

	Module 8.3 Empirical Models
	Downloads
	Introduction
	Linear Empirical Model
	Predictions
	Linear Regression
	Nonlinear One-Term Model
	Solving for y in a One-Term Model
	Multiterm Models
	Advanced Fitting with Computational Tools 
	Exercise
	Projects
	Answers to Quick Review Questions
	References


	9 SIMULATING WITH RANDOMNESS
	Module 9.1 Computational Toolbox—Tools of the Trade: Tutorial 4
	Download
	Introduction

	Module 9.2 Simulations
	Download
	Introduction
	Disadvantages of Computer Simulations
	Element of Chance
	Measure of Quality
	Simulation Development
	Multiplicative Linear Congruential Method (Optional)
	Different Ranges of Random Numbers
	Exercises
	Projects
	Answers to Quick Review Questions
	References

	Module 9.3 Random Numbers from Various Distributions
	Downloads
	Introduction
	Statistical Distributions
	Discrete Distributions
	Normal Distributions
	Exponential Distributions
	Rejection Method
	Exercises
	Projects
	Answers to Quick Review Questions
	References

	Module 9.4 Computational Toolbox—Tools of the Trade: Tutorial 5
	Downloads
	Introduction

	Module 9.5 Random Walk
	Downloads
	Introduction
	Algorithm for Random Walk
	Animate Path
	Average Distance Covered
	Relationship between Number of Steps and Distance Covered
	Exercises 
	Projects
	Answers to Quick Review Questions
	References


	10 CELLULAR AUTOMATON DIFFUSION SIMULATIONS
	Module 10.1 Computational Toolbox—Tools of the Trade: Tutorial 6
	Download
	Introduction

	Module 10.2 Diffusion—Overcoming Differences
	Downloads
	Introduction
	Problem
	Initializing the System
	Heat Diffusion
	Boundary Conditions
	Applying a Function to Each Grid Point
	Simulation Program
	Display Simulation
	Exercises
	Projects
	Answers to Quick Review Questions
	References

	Module 10.3 Spreading of Fire
	Downloads
	Introduction
	Problem
	Initializing the System
	Updating Rules
	Periodic Boundary Conditions
	Applying a Function to Each Grid Point
	Simulation Program
	Display Simulation
	Exercises
	Projects
	Answers to Quick Review Questions
	References

	Module 10.4 Movement of Ants—Taking the Right Steps
	Downloads
	Introduction
	Analysis of Problem
	Formulating a Model: Gather Data
	Formulating a Model: Make Simplifying Assumptions
	Formulating a Model: Determine Variables
	Formulating a Model: Establish Relationships and Submodels
	Formulating a Model: Determine Functions—Sensing
	Formulating a Model: Determine Functions—Walking 
	Solving a Model—A Simulation
	Verifying and Interpreting the Model’s Solution—Visualizing the Simulation
	Exercises
	Projects
	Answers to Quick Review Questions
	References

	Module 10.5 Biofilms—United They Stand, Divided They Colonize
	Downloads
	Introduction
	The Problem
	Nutrient Grid
	Nutrient Boundary Conditions
	Biofilm Initialization
	Biofilm Boundary Conditions
	Biofilm Growth
	Consumption of Nutrients
	Simulation Program
	Display Simulation
	Example Problem
	Assessment of the Model
	Computing Power
	Projects
	Answers to Quick Review Questions
	References


	11 AGENT-BASED MODELS
	Module 11.1 Agent-Based Tool: Tutorial 1
	Download
	Introduction

	Module 11.2 Agents of Interaction: Steering a Dangerous Course
	Downloads
	Introduction
	Problem
	Agent-Based Modeling
	Formulating the Simulation Model
	Overall Design of the Simulation
	Model Environment
	Agents and Their States
	Agent Behaviors
	Example Problem
	Repeated Simulations
	Model Refinement
	Exercise
	Projects 
	Answers to Quick Review Questions
	References

	Module 11.3 Agent-Based Tool: Tutorial 2
	Download
	Introduction

	Module 11.4 Introducing the Cane Toad—Able Invader
	Download
	Introduction
	The Problem
	Grid-Based Individual-Based Model
	Model of Environment
	Agents
	Toad’s State
	Toad Behavior
	Constants and Global Simulation Variables
	Initial Environment
	Simulation Driver
	Phase 0: Initialization
	Phase 1: Consumption
	Phase 2: Movement
	Phase 3: Complete Cycle
	Visualization of Example Problem
	Multiple Simulations
	Assessment of Model
	Exercise
	Projects
	Answers to Quick Review Questions
	References


	12 HIGH-PERFORMANCE COMPUTING
	Module 12.1 Concurrent Processing
	Introduction
	Analogy
	Types of Processing
	Communication
	Metrics
	Exercises
	Project
	Answers to Quick Review Questions
	References

	Module 12.2 Parallel Algorithms
	Introduction
	Embarrassingly Parallel Algorithm: Adding Two Vectors
	Data Partitioning: Adding Numbers
	Divide and Conquer: Adding Numbers 
	Parallel Random Number Generator
	Sequential Algorithm for the N-Body Problem
	Barnes-Hut Algorithm for the N-Body Problem
	Exercises
	Projects
	Answers to Quick Review Questions
	References


	13 MATRIX MODELS
	Module 13.1 Computational Toolbox—Tools of the Trade: Tutorial 7
	Download
	Introduction

	Module 13.2 Matrices for Population Studies—Linked for Life
	Downloads
	Population Matrices and High-Performance Computing
	Vectors
	Vector Addition
	Multiplication by a Scalar
	Dot Product
	Matrices
	Scalar Multiplication and Matrix Sums
	Matrix Multiplication
	Square Matrices
	Matrices and Systems of Equations
	Exercises
	Projects
	Answers to Quick Review Questions
	References

	Module 13.3 Time after Time—Age- and Stage-Structured Models
	Downloads
	Introduction
	The Problem
	Age-Structured Model
	Leslie Matrices
	Age Distribution over Time
	Projected Population-Growth Rate
	Stage-Structured Model
	Algorithms
	Sensitivity Analysis for the Age-Structured Example
	Sensitivity Analysis for the Stage-Structured Example
	Applicability of Leslie and Lefkovitch Matrices
	Need for High-Performance Computing
	Exercises
	Projects
	Answers to Quick Review Questions
	References 

	Module 13.4 Probable Cause—Modeling with Markov Chains
	Introduction
	Problems from Psychology to Genetics
	Probability
	Transition Matrix
	Exercises
	Projects
	Answers to Quick Review Questions
	References

	Module 13.5 The Next Flu Pandemic—Old Enemy, New Identity
	Downloads
	Introduction
	The Problem
	Graphs
	Paths
	Clustering
	Bipartite Graphs
	Matrix Representation of Graphs
	People-Location Graphs
	Minimal Dominating Set
	Degree Distribution
	Clustering Coefficient
	Example Problems
	Assessment of Model
	Computing Power
	Projects
	Answers to Quick Review Questions
	References


	14 ADDITIONAL CELLULAR AUTOMATA, AGENT-BASED AND MATRIX PROJECTS
	Overview
	Module 14.1 Polymers—Strings of Pearls
	Introduction
	Simulations
	Projects
	References

	Module 14.2 Solidification—Let’s Make It Crystal Clear!
	Introduction
	Projects
	References

	Module 14.3 Foraging—Finding a Way to Eat
	Introduction
	Simulations
	Projects
	References 

	Module 14.4 Pit Vipers—Hot Bodies, Dead Meat
	Introduction
	Projects
	References

	Module 14.5 Mushroom Fairy Rings—Growing in Circles
	Introduction
	What Are Fungi?
	What Do Fungi Look Like?
	How Do Fungi Feed Themselves?
	How Do Fungi Reproduce?
	How Do Fungi Grow?
	The Problem
	How Do Fairy Rings Get Started?
	Initializing the System
	Updating Rules
	Display the Simulation
	Projects
	References

	Module 14.6 Spread of Disease—Sharing Bad News
	Introduction
	Exercise
	Projects

	Module 14.7 HIV—The Enemy Within
	The Developing Epidemic
	Attack on the Immune System
	Plan of Attack
	Simulation of the Attack
	Projects
	References

	Module 14.8 Predator-Prey—“Catch Me If You Can”
	Introduction
	Projects
	References

	Module 14.9 Clouds—Bringing It All Together
	Introduction
	Projects
	References

	Module 14.10 Fish Schooling—Hanging Together, Not Separately
	Introduction
	Simulations
	Projects
	References

	Module 14.11 Spaced Out—Native Plants Lose to Exotic Invasives
	Introduction
	Competition for Space 
	Projects
	References

	Module 14.12 Re-Solving the Problems with Cellular Automaton Simulations
	Introduction
	Projects

	Module 14.13 Re-Solving the Problems with Agent-Based Simulations
	Introduction
	Projects

	Module 14.14 Computational Code-Breaking—Deciphering Our Own Mysteries
	Bioinformatics
	Mutations
	Locating Genes with Markov Models
	GeneMark
	Projects
	Answers to Quick Review Questions
	References

	Module 14.15 Social Networks—Value in Being Well Connected
	Introduction
	Projects
	References


	Glossary
	Answers to Selected Exercises
	Index 



