	MOLECULAR ORBITAL THEORY) MO.T.
9	Distomic molecules
	the over the entire systems,
	for simplicity, inner e's are localized on a particular atom, and some valence o's are also mainly localized.
	M.O.s. are; were functions resulting from U.C. A. O.s. whe combination is limited by the symmetry of the molecule and the symmetries of the orbitals, besides energy levels.
	and the symmetries of the abitals, besides energy levels. H 4H 15 4 15g ~ two L. D. Ocembinations
	# M.Os. = # sombining A.Os. & conservation of orbitals
	Som of A.Os. Toomling 15g + 15g = M.O.(B) (a) (a) (avxi bonding) of (1/2 (1/2)) (b) (c) (c) M.O. (avxi bonding) of (1/2) (1/2)
	in bonding; endensity is concentrated between nuclei > attraction in anti-bonding: is depleted; muchi are not well
	o _ orbitale = M.O. with rotational C sxis &= 0
	similar to A.O's. , the wave functions of M.O's. are namalized by multiplying by a normalization constant
	1 grobability of finding the & somewhere outside the nucleus
	001

Probability of finding the electron somewhere outside the nucleus is unity = 1.

bonding M.O., the normalized wave egn, is [N(415+4158)] of = N (415+2434+42) de ~ (Sysola + 2 (415 415 de + (415 de) " Svinde = Svisp de +1+ 2 (chas alis) de V2 (I+ STISA YISA de) cheice: the positive sign gives a positive wave function [No West is called the overlyp integral approximate by neglecting overlap integrals, then? 4 (45 + 4158) = - 12 (45 + 458) the resulting to - abital

Thonding . do we call it II - bond? one nodal consider 3-axis of interaction S bond: 33 Such 28 congounds of iguadruple bonds. Question: what about CEC M. O. E. Levels atomic orbitals of two stoms combine together it (51) the same symmetry
(1) comparable energy levels Income of Xa(T is in he and period), order of some of the energy levels depends on #es & relative energies. is depends on mixing of SAS abitals of the same Chyporidization eimilar to the ease \$157 15 inth enter m.O. (b) 2006 ~ B.O. = 1

Inner Shells --→ non-bonding

but in Xn (such st at), the two sp hybrid

some hybrid orbital is used for bonding to the other X

stom, this latherid abital must be sp with greater p

character (on with 2 1).

The other hybrid orbital must be sp with greater

s character, this decontains the lone pairs

The obifference in energy between the two sp abitals

Heteronuclear Molecules (B. Douglas Heteronuclear diefornics can esimilarly be described #mprised & can be calculated as before n.o. energy level diagrams morning (hyporishization) within the same atom agnificant energy level difference be exists y atoms In M.O.E. Level diagrams, (e.g. CO) orbital energies fre lower for the more electronegative stom (0) (Pa, Py) @1 (a) Carbon (C) work B. O. = 3 More pairs OC =00

It is interesting to know why co is a leaves send Longting ges via Crather than o it is & but he to thigh energy it is more like I than s, (mainly p-character) is it is not very tightly bound to anderes, be donated energy to other Lewis neids as thy (0) is at lower energy, i, mainly character : rightly bound to onucleus is con't be exertly donated offer lewis wills. if we look st the of bond it is a polar bond, with a density directed to more than to carbon, because the oxygen is more electronegative than Carbon, whereas IT abitals are more directed to carbon (whis applies to both T/x + TT y ", Fracidity shaffer 3-8xis the same thing applies to a bond: \bigcirc 0<

NO (nitricoxile) NO: (025) (025) (Typ) (Typy) (Typy) (Typy) NO t is similar to CO