MOLECULAR ORBITAL THEORY MOT.

Diatomic Molecules

H_{2} of He_{2}^{+}molecules
In- N.O.T. valence es are affected by all nuclei fDelocoliged over the entire system \},
farsimpticity, inner es are localized on a parivieular
won, and some valence sis's are also moinly-localized.
Mo's. are: wane frictions ussulting from L.C. A .O's.
the combination is limited by the symmetry of the molecule and the symmetries of the abitals, thesides ency levels.
 \# N. Os. $=$ \# combining $A . O^{\prime}$. $\int\{$ conservation orbitals\} ~
sum of A. OS. \leadsto bonding $1 S_{A}+1 S_{B}=M . O_{(B)}$

in bonding; e - Density is concentrated between nuclei \rightarrow attraction
in antibonding:. is depleted, i nuclei are not well screened, : vejoulsive force

0 -orbital $=$ M. with notational C_{∞} axis $s \Longrightarrow 0$
Simitar th A.O's, the wave functions of M.O's. are namalized by multiplying by a noumalityotion constant
N such that

$$
(N v)^{2} d r=1
$$

Portability of finding the e somewhere outside the nurpens
Probability of finding the electron somewhere outside the nucleus is unity $=1$.
for bonding Mi 0 ., the normalized wave eqn. is:
but, since normalization is used,

$$
\begin{aligned}
& \therefore \quad \int \gamma_{i \beta_{A}}^{2} d \tau=\int Y_{i s \beta}^{2} d \tau=1 \\
& \therefore N^{2}\left(1+1+2 \int\left(N_{N S_{A}}+/ / / L_{B}\right) d t\right)=1 \\
& \therefore N=F \frac{1}{\left.\sqrt{2\left(1+\int r_{\text {SSA }}\right.} V_{\text {ISBn }} d \tau\right)}
\end{aligned}
$$

bycheict:
positive sign gives a positive wave function
$\left\{\int \psi_{I S A} \psi_{S_{S}} d \tau\right\}$ is called the overlap integral
If we approximate by neglecting overlap integrals, hens

De we have seen from the top ego.:

$$
\begin{aligned}
& \psi_{\sigma_{\text {bombing }}}=N\left(\psi_{1 S}+\psi_{S_{B}}\right)=\frac{1}{v_{2}}\left(\psi_{S A}+\psi_{S_{S B}}\right) \\
& \psi_{\sigma_{B}}=N\left(\psi_{S_{A}}-\psi_{S_{B}}\right)=\frac{1}{v_{2}}\left(\psi_{S_{S}}-\psi_{S_{S B}}\right)
\end{aligned}
$$

since $\psi_{\text {Combing }}=N_{A} \psi_{S A}+N_{B} \psi_{S_{S B}}=N\left(\psi_{S_{S}}+\psi_{\text {SB }}\right)$
since $H_{A}+H_{B}$ combine with the some amount, in the asutting $\%$ _orbital
however, in general, he combined A.O's. combine with different extents, thus:
$\Psi=a \psi_{1}+b \psi_{2}-c \psi_{3}+\ldots, \quad / w_{1}=$ what.obit
 th the mangeneral case, the normalization constant N is: $N=\frac{1}{\sqrt{d^{2}+b^{2}+c^{2}+\cdots}}$ $\bigcirc \quad \mathrm{H}$

consider BO . for $\mathrm{Ha}, \mathrm{H}_{2}^{(+)}$,

DiAtomic Molecules of the 2nd-Period Elements $\{$, bonding: $\}$

Assuming 3 -axis finteraction, \therefore - bonds may be formed by $+5+$ is $+P_{3} ; \sim_{2} P_{2}+P_{3}$;

$$
s+P_{3}, s+d_{3}^{2} \dot{p_{3}}+d_{3}^{2}, d d_{3}^{2}+d_{3}^{2}
$$

further move, hybriclorititals may give -bonding $\left\{s p\right.$, $s p^{2}$, sp p^{3} for one to another atom= with b_{∞} rotational symmetry

but, if zero overlap, \longrightarrow nonbonding
$\left\{\begin{array}{l}\text { M－bonding }\end{array}\right.$
how do we aq M it π－bond？
consider z－axis of interadion

Finch of conyoounds I／M Mududrupte bonds since $28 R_{2} \mathrm{Cl}_{8}^{-2}\{10,2 \pi, 18$ bonds together $\{$ ．
Question：what about：$C \equiv C$
11．D．\＆．Levels
atomic orbitals of two atoms combine together if they hove
$\{\{1)$ the same symmetry
1）comparable enengy levels
rnesse of $x_{2}(x$ is in the ind period），onderg some of the energy levels alepends on He＇s q relative energies．
：－depends on mixing of $S F r$ abitals of the same atom （hybridization）
$\mathrm{Li}_{2} \leadsto$ no problem， $2 \mathrm{~s} \mp \mathrm{Ts} \rightleftharpoons$ M．O．（7）
similar to the caredis率 is intr
the zee＇s enter m．O．（b）No dr \Longrightarrow BrO．$=l$ Inner Shells－－－ $\boldsymbol{\top}$ non－bonding
see table 4.1 P.140

$$
\text { Bed } \underset{\mathrm{Be}: 15^{2} 2 s^{2}}{ } \mathrm{~B}, \mathrm{O}_{1}=\text { zeros }, \quad \text { \#ending }=\# e^{-}
$$

 B_{2} thas/two unpaired es's
the two "1 (b) arbifals must be lower than Dips
(proramigneti.)
$C_{2} \equiv$ diamagnetic $\sigma_{2 s}^{2} \sigma_{25}^{* 2} \pi_{x}^{2} \pi_{y}^{2}$
$N_{2} \longrightarrow$ diamagnetic, $B, O=3$ regardless of the energy levels of $\pi_{2 P_{k, y}}$ o ${ }_{2 P_{3}}$
bent since $N_{2}+$ Lias a single $e^{-}, 1 \sigma_{P_{z}}$ is higher than $\pi_{p x}$ of espy
$\therefore \operatorname{Din}_{0} \sigma_{25}^{2} \sigma_{2 s}^{*^{2}} \pi_{2 p_{x}}^{2} \pi_{2 p_{y}}^{2} \sigma_{p_{z}}^{2}$
Q2 \rightarrow ptramagnetic $\cdot(n 0((5 / p))$ nixing
U.B.T. $\Longleftrightarrow: \ddot{\theta} \Longrightarrow 0: \therefore$ diamagnetic
N.O.T. ~ 2 tho mapaired e's

$$
\therefore a_{n}: \int_{i s}^{2} \sigma_{25}^{*} \sigma^{2} \pi_{x}^{2} \pi_{y}^{2} \pi_{x}^{*} \pi_{y}^{*}
$$

\therefore hare, relative energies of $\sigma_{p_{z}}$ of π_{x}, y are reversed here (for O and also for f_{2}) compared to N_{2},

Note that O_{n}^{+}is shoiterthon O_{n} band, Why??? O_{2}^{-}is longer than On_{n}, why??

Incuse of $B_{2}, C_{2}+N_{2}^{+}$it is evident that $\Pi_{x, y}$
hive lower energies than $\sigma_{p_{3}}$. This is probably tue to low difference in energy between 25 of $2 p$ orbitals in atomic $B, C q \mathrm{~N}$. Thus, mixing of 25 \& $2 p$ occurs (hybridigotion)
\therefore os has some p character, $4 \sigma_{s}$ has some s character
$\therefore \sigma_{B}$ is lowered further in energy, \& $\sigma_{p_{3}}$ is raized in purity.

without $2 s / 4 p$ mixing
with ret up mixing
N_{2}

Consider N_{2}
within each N-atom, mixing (hybridization) of $2 s ~ \& ~ 2 p ~$ to give two sP hybrid orbitals $\{$ but actually not equivalent $50: 50 \%$ in each erse? the resulting sp orbitals will inter combination with afritals on the other \underline{N} atom:
A) A result, the energy of the bonding abital will be stabilized further, and antibonding destabilized further.

Consequently, $\sigma_{2 p_{3}}$ is zaiged, and $\pi_{x, y}$ abitale are loviered.

3 -axis of interaction

 Note that when s ap ore hybridised, to give two sp hybrid orbitals, the two sp hybrid orbitals must have equal energy, such os $\overbrace{s p}^{C} C \int_{s p}$ in $\mathrm{H}_{1} \mathrm{C}_{2}$ molecules.

Bye in X_{2} (such N_{2}), the two sp hybrid orbitals are different in energy
orbitals are different in energy
but in X_{2} (such of Asa), the two sp hytriolabitals re not equal in energy:
\rightarrow one hybrid orbital is used for bonding to the other X atom, this kupprid orbital must be sp with greater p character $\left(\phi_{h y}\right.$ with $\left.\lambda<1\right)$.
\rightarrow the other hybrid orbital must be sp with greater s character, this contains the tone pairs The ofifference in energy between the two sp orbitals
thus depends on the relative energies of the s sp oukitates.
if z increases \qquad \Rightarrow in the period,

$$
\begin{aligned}
& \therefore \text { energyseperation increases } \longrightarrow \text { between } 2 s \text { app } \\
& \therefore 25 \text { (mar penetrating) decreases } \\
& \text { in energy }
\end{aligned}
$$

it greater energy sepperation
ices mixing occurs.
\therefore greater energy separation?
Similarly, B_{2} is ilo treated

$$
\therefore \text { in } 0_{2} \text { \&Fr, } 25 a+2 p \text { arefhiging separated }
$$

no ship mixing occurs
ir $\sigma_{p_{3}}$ his lower energy than $\pi_{x, y}$

Grieg to $0, f \rightarrow N_{0}$ spmixing
going to \leftarrow, C, N mixing (yes)

Heteronudear Molecules
Atomic + Moleduter structure
Heferonuclear diefoniof can simi arly be described.
8.0. क \#mpaired è can be calentated as bepore-from the M.O.energy level diagramof.

Incases maing (hyfribization) within the same atorn, and if significent energy level difference doe exists between obritals of $\times 4$ atoms, Hybridization approsch
is preferable.

In M.O.E. Level didgrams, (e.g. (O) abital energies Are lower for the mare electronegative atom (0) :

Note thot $\phi_{h y}$ f(C) is comparable in enengy tw $\phi_{h y}$ s (0) whors they combine to give of of o ${ }^{*}$ MO's. whoreqs, $\phi_{h y_{2}}(c)$ of $\phi_{h y_{1}(0) \text { are only nonbonding }}^{(O)}$ Thus, they vemकin locqlized on C o O sepprotedy occupying the bone ptirs $9 C=0$)

It is interesting, to know why donating $2 e^{\frac{s}{s}}$ via © rather than o
this is secquse $=$:
thy z $^{(C)}$ is at relatively high energy, and although it is of but hue to its high energy, it is move like $\frac{p}{1}$ than s, (mainly p-character), $i x$ is is not very tightly bound to onuleve, iritcan be donated easily to other Lewis acids.

DRy, (0) is at lower energy, \therefore mainly s
obisactiar \therefore tightly bound to onndens,
\therefore cant be eqsily donated to ter hens's acids.

Furthermore, if we hook at the TT bond in CO it is polar bond, with e-density directed to oxygen move than to Carbon, because the oxygen is mare electronegative than Carbon, whereas \#* orbitals are mare dire del to carbon:

the same thing applies to a-tond:

the nombonding abitals ore distributed in a localized miner

note that the π_{x} a πy are in perpendicular planes, but may form some kind of x cylinder around the σ bond $2 x$ is $(z-2 x$ is), however, there is a node in the peylinder.. overall

Another example is $H-F$ molecule
H-f is Theteronucleardiatomic molecule

$$
\text { H has } 1 s^{\prime} \text {, Fhas } 1 s^{2} 2 s^{2} 2 p_{x}^{2} 2 p_{y}^{2} 2 p_{3}^{\prime}
$$

$15(H) \neq 2 p_{3}$ of f may combine together although they
 the the ruling σ bonding M.O, is mare closely elated to I than to IH

This, the $H^{\text {the }} F^{- \text {Se }}$ bond is A polar covalent.
bond.
HF has a dipole moment $D=$ Sext $\neq 0$
where: $D=$ lipolemoment
$\delta_{e}=$ point charge ($+\delta_{e} a-S_{e}$ on H or f)
$r=$ distance between $\delta_{e}+-\delta_{e}$)
In HF, D is measured to be $1,91 \times 10^{-18} e, s .4$
but $r=0.092 \mathrm{~nm}, \quad$, $\delta=\frac{1.91 \times 10^{-18}}{0.92 \times 10^{-8} \times 4.8 \times 10^{-10}}=0,422$
i Hf is thought of as $\quad 1+\frac{1+432}{-0.432} f^{-0.42}$

In wave-mechanical description, the resulting orbitals from C.C.A.O. are:

$$
\psi_{\text {bonding }}=\psi_{1 s(H)}+\lambda \psi_{2 P_{3}(F)}
$$

(b) op $\psi_{\text {anxibonding }}=\lambda \psi_{\psi_{(H)}(t)}-\psi_{2 p_{3}(F)}$ (t.) (3)

$$
\text { where }(\lambda>1)
$$

however, these equations are not normalized os in H_{2} molecules.
dfernatively,
however; essen with elements $\frac{d}{}$ avell calculated x, t, the EA valves are not occur exile int assured.
do independently
Example NO (nitric oxide)

$$
\begin{gathered}
\text { No: }\left(\sigma_{25}\right)^{2}\left(\sigma_{2 s}^{*}\right)\left(\sigma_{2 p_{3}}\right)^{2}\left(\pi_{2 p_{x}}\right)^{2}\left(\pi_{2 p_{y}}\right)^{2}\left(\pi_{2 p_{x}}\right)^{1} \\
\text { with B.O. }=2.5
\end{gathered}
$$

NO^{+}is similar to CO

