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Chapter 4 
Applications to Chemical Bonding 

 
Group theoretical discussions presented in earlier chapters will now 

be applied to chemical bonding theories. In doing so, the following 
systematic procedure may be followed: 

1) Determine the symmetry point group of the given species. 
2) Choose an appropriate basis on which the group operations will be 

performed in order to generate a reducible representation. 
3) Reduce the resulting representation into its corresponding irreducible 

ones, using the reduction formula discussed earlier. 
4) Maneuver to reach out conclusions according to objectives. 

 
Three common applications will now be discussed, namely: 

a) Finding out a set of central atom hybrid orbitals that can be 
used in bonding. This is a procedure that is needed in 
understanding Valence Bond Theory 

b) Construction of a molecular orbital energy level correlation 
diagram of a given molecule (ion) with a given symmetry. This 
is a procedure that is needed in understanding Molecular 
Orbital Theory. 

c) Finding out Ligand Group Orbitals (LGOs) using the Projection 
Operator Method. 

 
a) Finding Hybrid Orbitals 

 
 Consider a square planer transition metal atom complex ion with D4h  
symmetry, structure I. Group theory can be used to find out the set of hybrid 
orbitals, of the central metal atom, that are used in σ-bonding system. The 
step-wise procedure is: 
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1) The square planar ion has a D4h symmetry point group, with 

symmetry operations 
dvhSiCCCCE σσσ 222222 4

"
2

'
224  

as shown in structure I above. 
2) Since the central metal atom hybrid orbitals are used in directional 

metal-ligand σ-bonds, each of these metal-ligand bonds may be 
understood as an arrow, as shown below. The result is a set of four 
arrows. This set of four arrows can now be used as a basis. 
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a4
a1

 

To generate a reducible representation, the 4-arrow basis may be used. 
All D4h symmetry operations will then be performed on the basis using 
either of the following two techniques: 
i) The discussion presented in Chapter 3 may be followed. In this 

technique, the effect of each operation (on the four-arrow basis) 
can be represented by a matrix. 

The matrix 


















4

3

2

1

a
a
a
a

 represents the basis with the four arrows before 

performing the C4(z) operation. When a C4(z) operation is performed, the 
following transformations, shown in equation (1) occur 
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and the new matrix is 








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
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. 

 The question now is: based on equation (2), what is the matrix that 
changes the original matrix into the new one? 
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

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      (2) 

 From matrix algebra, the representing matrix is: 



















0100
0010
0001
1000

    (with χ = 0) 

 This matrix represents the effect of C4(z ) operation on the basis. Other 
matrices that represent other operations can similarly be found, and their 
characters can be calculated. The reducible representation is: 

D4h E 2C4 C2 2C2
' 2C2

" i 2S4 σh 2σv 2σd 
Γσ 4 0 0 2 0 0 0 4 2 0 

 
ii) Having understood the technique discussed above, another yet 

easier technique may now be used. The character, of the matrix 
representing the effect of each operation on the basis, is equal to 
the number of unshifted arrows by that operation. To clarify this, 
we can find the character of each operation of D4h group when 
performed on the 4-arrow basis: 

 
operation  Number of unshifted arrows  Character χ  

E  4  4 
C4  0  0 
C2  0  0 
C2

'  2  2 
C2

"  0  0 
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i  0  0 
S4  0  0 
σh  4  4 
σv  2  2 
σd   0  0 

 
 Therefore, the reducible representation that results is necessarily the 
same as that shown earlier with no need for repetition. Having understood 
both techniques, it is recommended to use method (ii) since it is more 
convenient and saves time.  
 

3) Reducing the resulting representation. The Γσ shown above can now 
be reduced using the reduction formula, discussed earlier in Chapter 3. 
The reduction result is:  Γσ = A1g + B1g + Eu   

4) Referring back to the constructed reducible representation, to interpret 
these results, it is necessary to recall the D4h group Character Table. 
From the right hand columns of the D4h Character Table, it appears 
that the orbitals which belong to A1g, B1g and Eu are as: 

S  A1g 
22 yxd

−
  B1g 

px & py  Eu 
 These are the only orbitals that have symmetries belonging to the A1g, 
B1g and Eu. Therefore, one may conclude that the hybrid orbitals involved in 
bonding are (dsp2), where 22-yxd , px and py orbitals are specifically involved. 

Exercise: use group theory to find out central atom hybrid orbitals in BF3 
(with D3h symmetry) and in CH4 (with Td). Discuss which specific atomic 
orbitals are involved in hybridization. 

 

b) Molecular Orbital Energy Level Diagrams 
 To know how group theory applies to molecular orbital energy level 
diagrams consider the example of [Co(NH3)6]3+ with Oh symmetry. Note 
that the discussion involves metal-ligand σ-bonding system only since the 
amine ligand is not a π-bonder. The symmetry for a set of ligand group 
orbitals (LGOs) used in σ-bonding system can be found for Oh system as 
follows. 
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 From Oh Character Table, the symmetry species of each of the nine 
central-atom-orbitals are: 

2s a1g 
4px, 4py, 4pz t1u 
3dz2, 3dx2-y2  eg 

3dxy , 3dxz, 3dyz  t2g 
 
 Then it is necessary to find out symmetries of Ligand Group Orbitals 
(LGOs) that will interact with the central metal orbitals. This can be 
achieved as follows: The six metal-ligand σ-bonds can be thought of as a set 
of six arrows as shown in structure II below: 
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      II  
The set of arrows is considered as a basis on which all Oh operations may be 
performed to generate the reducible representation: 
 

Oh E 8C3 6C2 6C4 3C2(= C4
2) i 6S4 8S6 3σh 6σd 

Γσ 6 0 0 2 2 0 0 0 4 2 
 

which reduces to: 
Γσ = A1g + Eg + T1u    (3) 

 
These are the symmetries of the so called LGO’s. The two conditions 

for orbital-orbital interaction are: 
i) The two orbitals must have comparable energy levels. 
ii) The two orbitals must have same symmetry species. 

 
 Therefore, the interactions (between the central metal atomic orbitals 
and the corresponding ligand group orbitals) must obey the symmetry 
requirements. The interactions must therefore be: 
 
Metal atomic orbitals Interaction       L.G.O. Resulting Molecular 

Orbitals 
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a1g       4s with A1g One σ and one σ* 
eg          (dz2, dx2-y2) with Eg Two σ and two σ* 
t1u         (px, py, pz) with T1u Three σ and three σ* 

t2g      3dxy , 3dxz, 3dyz none -- Non-bonding 
 where the other remaining atomic orbitals with t2g symmetry have no 
matching LGO’s, and remain as nonbonding orbitals in the σ-bonding 
system. 
 The bonding and antibonding molecular orbitals (MO’s) resulting 
from the metal orbital-ligand group orbital interactions are shown in Figure 
(4.1) below. 
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Figure (4.1): A qualitative M.O. energy level diagram 
for the σ-bonding system in Oh complexes. 
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Example:  
In a square planar metal complex, with D4h symmetry, use group theory to 
find out each of the following: 

1) Symmetries of LGOs used for σ-bonding system 
2) Symmetries of LGOs used for out-of plane π-bonding system 
3) Construct a qualitative molecular orbital energy level diagram 

showing both σ- and π-bonding systems. 
 Solution: Based on the drawing below, showing the σ-bonding basis as four 
arrows in the molecular plane, and π-bonding basis as four perpendicular 
arrows, then: 
 

M

 
The σ-bonding system: performing the D4h operations on the σ 4-arrow 
basis gives the reducible representation: 

D4h E 2C4 C2 2C2
' 2C2

" i 2S4 σh 2σv 2σd 
Γσ 4 0 0 2 0 0 0 4 2 0 

 
which reduces as  Γσ = A1g + B1g + Eu showing symmetries of all LGOs 
involved in the σ-bonding system.  
The π-bonding system: performing the operations on the π 4-arrow basis 
yields the reducible representation: 

D4h E 2C4 C2 2C2
' 2C2

" i 2S4 σh 2σv 2σd 
Γπ 4 0 0 -2 0 0 0 -4 2 0 

Which reduces to: Γπ = Eg + A2u + B2u  
 
From the D4h character table, we know that the symmetries for the metal 
atomic orbitals being: 
4s  A1g; 4px & 4py Eu;   4 pz  A2u;  3dz2 A1g; dx2-y2 B1g; dxy B2g; dxz & dyz Eg.    
Thus based on symmetry and geometrical considerations, the following 
interactions will occur: 
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Symmetry Metal orbital(s) Interacting 

LGO 
Resulting MO(s) 

A1g 4s   A1g One σ and one σ* MOs 
    
Eu 4px & 4py  Eu Two σ and two σ* MOs 
B1g dx2-y2  B1g One σ and one σ* MOs 
A2u 4 pz   A2u One π and one π* MOs 
Eg dxz & dyz  Eg Two π and two π* MOs 
    
A1g 3dz2  No geometry 

matching 
Non bonding  

B2g dxy No 
symmetry 
matching 

Non-bonding 

 
The resulting molecular orbital energy level diagram can now be easily 
constructed based on these interactions. 
 
 
 

c) The Projection Operator Method 
The above discussion explained how group theory can be used to find 

out symmetries for LGOs used in bonding. It showed also how molecular 
orbital energy level diagrams can be constructed based on group theory. 
However, the LGO wave functions themselves have not been found, nor 
were the balloon shapes of the LGOs. In order to do so, a technique so-
called Projection Operator Method is needed.     

 

To explain these ideas, let us find the σ-LGO's for the square planar 
AuCl4

– ion with D4h point group. Figure (4.2) shows the structure of the ion. 
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Figure (4.2): Schematics showing (a)  AuCl4
– ion and (b) σ-basis 

functions of D4h point.  

The step-wise process is as follows: 

Step 1: Using the set of 4 atomic orbitals shown above (Figure 4.2) as 
a basis, the group operations for D4h are performed. 

Step 2: Using reduction formula discussed earlier (Chapter 3) the 
correct reducible representation can then be constructed as: 

Γσ = A1g + B1g + Eu 

Step 3: Choosing one σ orbital (e.g. σ1 in this case) and performing all 
symmetry operations separately on it. The E operation, for instance, leaves 
σ1 unchanged while C4 shifts it to the place of σ2. By performing all D4h 
operations separately on σ1, then: 

 
E C4 C4

3 C2 C2
'1 C2

'2 C2
"1 C2

"2 i S4 S4
3 σh σv

1 σv
2 σd

1 σd
2 

σ1 Σ2 σ4 σ3 σ1 σ3 σ2 σ4 σ3 Σ2 σ4 σ1 σ1 σ3 σ2 σ4 
The table shows Effects of all symmetry operations as separately 

performed onto σ1 in D4h symmetry. Note that each symmetry operation is 
written separately without a class, and then performed separately. 
Step 4: To find the linear combinations of σ orbitals with A1g representation, 
each generated orbital is multiplied by the character of each operation 
corresponding to A1g (+1 in this case) as shown in D4h Character Table.  
This gives: 

A1g:   σ1     σ2     σ4     σ3     σ1     σ3     σ2     σ4     σ3     σ2     σ4     σ1     σ1     σ3     σ2     σ4 

By simple addition of same items, then: 

Ψσ (A1g):    4 σ1      4 σ2     4 σ3     4 σ4    

The values are then written in simplest possible ratio as: 

Ψσ (A1g):     σ1        σ2          σ3        σ4 

The wave function for resulting LGO is thus normalized as: 
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Ψ (A1g) = 
4

1  (σ1 + σ2 + σ3 + σ4)    (3) 

Step 5: Construct the LGO corresponding to other symmetry species B1g in 
a similar manner to that done for A1g. In this case the values shown in Table 
(4.1) are multiplied by characters corresponding to B1g of the D4h Character 
Table. The LGO belonging to B1g is thus: 

Ψ (B1g) = 
4

1  (σ1 – σ2 + σ3 – σ4)   (4) 

Step 6: Construct the two doubly degenerate LGOs (Eu), one by one, as 
follows: 
The First Eu LGO: can be obtained using a similar procedure as described 
in Step 4 above, but using character values of Eu in this case. The result is 
shown in equation 5 below. 

Ψ1(Eu) = 
2

1 (σ1 – σ3)   (5) 

The Second Eu LGO: 
 The second LGO of the doubly degenerate Eu pair, can be constructed 
by applying any D4h operation that shifts all σ’s to new places. Starting with 
the first degenerate LGO, σ1 – σ3, performing C4 on it gives σ2 – σ4. Thus 
the second LGO of the doubly degenerate Eu is expected to be: 

Ψ2(Eu) = 
2

1 (σ2 – σ4)   (6) 

In order to be accepted as an LGO, the second one must be orthogonal with 
the first LGO. That is to say  

∫ Ψ1Ψ2 dτ = 0        (7) 

By substituting equations (5) and (6) in (7) then: 

∫ Ψ1Ψ2 dτ  =   (1/2)∫ (σ1 – σ3)( σ2 – σ4) dτ =    

(½)∫ (σ1 σ2- σ1 σ4- σ2 σ3+ σ3 σ4)dτ =  

(½)[ ∫σ1σ2dτ - ∫σ1σ4dτ - ∫σ2σ3dτ + ∫σ3σ4dτ     (8) 

Atomic orbitals are orthogonal, thus each of the integrals ∫σ1σ2dτ ,  ∫σ1σ4dτ  
,  ∫σ2σ3dτ  and  ∫σ3σ4dτ  is equal to zero.  
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Therefore  
(½)[ ∫σ1σ2dτ - ∫σ1σ4dτ - ∫σ2σ3dτ + ∫σ3σ4dτ  = 0    (9) 

From equation (9), the condition shown in equation (7) is satisfied. This 
means that the first and the second Eu LGO’s are orthogonal, and that the 
second one constructed above is acceptable.   
Figure (4.3) shows the balloon representations for all σ LGOs in a D4h 
symmetry, as defined by the equations (3 – 6). 
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Figure (4.3): Schematics showing balloon representations 

for all σ LGOs of D4h point group. 

 

Step 7: Recheck the solutions: After wave functions for all LGOs are 

calculated, they should be rechecked for errors. The sum of squared values 

of coefficients, of each original atomic orbital, in the resulting LGOs should 

be equal to 1. Therefore, based on equations (3-6), the squared values of 

coefficients of each original atomic orbital are shown below: 
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Atomic Orbital (Coefficient)2 in LGO Total 

 A1g B1g First Eu LGO Second Eu  

σ1 1/4 ¼ 1/2 -- 1 

σ2 1/4 ¼ -- 1/2 1 

σ3 1/4 ¼ 1/2 -- 1 

σ4 1/4 ¼ -- 1/2 1 

From these calculations, it is obvious that the total number of resulting 

LGOs equals the total number original atomic orbitals. Thus, the whole 

process obeys the principle of conservation of atomic orbitals. 

Example:  
Consider the Cr(C6Me6)(C6H6) molecule with a C6v symmetry. Use group 

theory to find out LGOs for the H-atoms involved in σ-bonding system in 

this molecule. 

Solution: 

Figure (4.4a) shows the structure for the molecule, whereas Figure (4.4b) 

shows the six H-atomic orbitals to be used in σ-bonding system with the six 

carbon atoms.  
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Figure (4.4): A schematic showing (a) Cr(C6Me6)(C6H6) molecule with 

C6v symmetry,  and (b) different H atom σ-orbitals.  

Using the six H-atomic orbitals a basis, the resulting reducible 

representation is: 

Γσ = A1 + B1 + E1 + E2    (10) 

Using σ3 as a reference basis function, then group operations will shift 

σ3 as: 

E C6 C6
5 C3 C3

2 C2 σv
(1) σv

(2) σv
(3) σd

(1) σd
(2) σd

(3) 
σ3 σ4 σ2 σ5 σ1 σ6 σ5 σ1 σ3 σ6 σ2 σ4 

 

After multiplications with proper characters of the A1 and B1, the 

LGOs for A1 and B1 are: 

Ψ(A1)  = 
6

1  (σ1 + σ2 + σ3 + σ4 + σ5 + σ6)   (11) 

Ψ(B1)  = 
6

1  (σ1 – σ2 + σ3 – σ4 + σ5 – σ6)   (12) 

The species E1 and E2 are doubly degenerate ones, which mean that each has 

two LGOs to be found.  Therefore the first E1 LGO is: 
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First Ψ(E1) = 
12
1  (– σ1 + σ2 + 2σ3 + σ4 – σ5 – 2σ6)  (13) 

And the first E2 LGO is: 

First Ψ(E2) = 
12
1  (– σ1 – σ2 + 2σ3 – σ4 – σ5 + 2σ6)  (5) 

The second E1 LGO species can be found from the first E1 LGO, by 

performing any suitable operation, such C6 operation, on it. The operation 

shifts individual basis functions as follows: σ1  σ2 , σ2  σ3 , σ3  σ4 , σ4 

 σ5 , σ5  σ6 , σ6  σ1. Therefore, the first Ψ(E1) is transformed as:  

(– σ1 + σ2 + 2σ3 + σ4 – σ5 – 2σ6)  (– 2σ1 – σ2 + σ3 + 2σ4 + σ5 – σ6)   

The expected second E1 LGO wave function will thus be:  

Second Ψ(E1) = 
12
1  (– 2σ1 – σ2 + σ3 + 2σ4 + σ5 – σ6)   

To be accepted, this LGO must be orthogonal to the other E1 LGO. Testing 

for orthogonality shows that: 

 

12
1 •

12
1 ∫(–σ1 + σ2 + 2σ3 + σ4 –σ5 –2σ6)•(–2σ1 –σ2 + σ3 + 2σ4 + σ5 –σ6)dτ =  

12
1 • (2 – 1 + 2 + 2 – 1 + 2) ≠ 0  

The resulting second E1 LGO is not orthogonal with the first counterpart, is 

thus unacceptable.   

The correct second E1 LGO could be obtained as follows: 
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Performing linear combination on the second (unacceptable) E1 LGO and 

the first E1 LGO gives: 

5421

654321

654321

11

3333

)224224(
)22(

)(first)1()(second)2(

σσσσ

σσσσσσ
σσσσσσ

−−+
−−−−−−−−−−−−−−−−−
+−−−+

+−−+++−
=Ψ×+Ψ×− EE

 

Where the terms (-2) and (1) appearing in the first line are arbitrary 

terms chosen by trial and error so as to give results that satisfy orthogonality. 

The term values have specifically been chosen in this example in order to 

cancel off largest coefficients appearing in the first E1 LGO.  

The correct second E1 LGO (orthogonal to all other LGOs) is thus: 

Second      Ψ(E1) = 
4

1  (σ1 + σ2 – σ4 – σ5)     (6) 

By using the same technique, the second E2 LGO can be found as: 

Second      Ψ(E2) = 
4

1  (σ1 – σ2 + σ4 – σ5)    (7) 

The six wave functions for all LGOs are summarized in Figure (4.5). 
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Figure (4.5): Schematics showing balloon representations for 

all six LGOs resulting from H-atomic orbitals in the C6v 
molecule. 

 
Exercises: 
1) For each of the following species, use group theory to find out hybrid 
orbitals for the central metal atom. 
  

C

H

H H
H

 

O

H H  
Pt

Cl

ClCl

Cl
2-

 

Fe

L

L

L

L
L

 

Ni

Cl

Cl Cl
Cl

2-

 
Td C2v D4h D3h Td 

 

2) Considering the BF3 molecule with D3h symmetry:  

a) use group theory to find out symmetries for molecular orbitals 
involved in:  

i) σ-bonding system. 
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ii) π-bonding system (out-of-plane) 

b) Use the D3h Character Table to find out which orbitals of B atom will 
be used in σ- and π-bonding systems in the BF3 molecule.  

c) Construct a schematic molecular orbital energy level diagram for 
BF3molecule, showing both σ- and π-bonding systems together. 

3) Consider the H2O molecule with C2v symmetry: 

a) Use group theory to find out symmetries for LGOs used in σ-bonding 
for the molecule. 

b) Construct a schematic molecular orbital energy level diagram for the 
H2O molecule. 

4) Find out symmetries for out-of-plane π-bonding molecular orbitals 
involved in each of the following cyclic systems: 

C3H3
+ (D3h); C4H4 (D4h).  

(Hint: In each cyclic system, use the set of pz atomic orbitals for C atoms 
present as a starting basis, perform all symmetry operations on the basis to 
construct the suitable reducible representation and use the reduction formula 
to reduce the representation).     

5) Use the projection operator method to find out wave functions and 
balloon shapes for: 

a) LGOs used for σ-bonding system in H2O molecule.  

b) π-LGOs in a D4h M(CO)4 symmetry 

c) σ- and out-of-plane π-LGOs used for M-CO bonding only in a D2h 
trans-M(CO)2L2 compound. 

 


