Chapter 2 Symmetry Point Groups

In mathematics, a *group* is a set of elements which satisfy certain characteristics. If we know the complete set of symmetry operations of a given system, this set of operations forms a *symmetry point group* if the following requirements are all met:

- 1) The product of any two operations is itself an operation in the group. This is called the property of *closure*.
- 2) There must be an identity operation *E* in the set.
- 3) Every operation in the set must have an inverse operation that exists in the set. The inverse operation, when performed after a given operation, cancels its effect. In equation (1) the operation A^{-1} is an inverse for operation A:

$$A^{-1} \times A = E \tag{1}$$

4) Multiplication of operations of the set must be associative, as shown in equation (2), but not necessarily commutative.

$$F \times (B \times A) = (F \times B) \times A \tag{2}$$

Taking into account the given characteristics of symmetry groups, we can easily prove that the set of operations ($C_{2(z)}$, σ_{xz} , σ_{yz} and E) in water molecule (structure VI in Chapter 1) is a symmetry group. All requirements (1 - 4) are met here. The property of closure can be confirmed by the so-called *symmetry multiplication table* as shown below:

	E	$C_{2(z)}$	σ_{xz}	σ_{yz}
E	E	$C_{2(z)}$	σ_{xz}	σ_{yz}
$C_{2(z)}$	$C_{2(z)}$	E	σ_{yz}	σ_{xz}
σ_{xz}	σ_{xz}	σ_{yz}	E	$C_{2(z)}$
σ_{yz}	σ_{yz}	σ_{xz}	$C_{2(z)}$	E

Requirement (1) is met by knowing that any operation can be multiplied by any other operation to give an operation that itself is a member of the set. The presence of E satisfies requirement (2). Requirement (4) is also met in case of a triple (or higher) product. This can be subdivided in any way we like without changing the result, equation (3):

$$\sigma_{xz} \times \sigma_{yz} \times C_{2(z)} =$$

$$(\sigma_{xz} \times \sigma_{yz}) \times C_{2(z)} = C_{2(z)} \times C_{2(z)}$$

$$\sigma_{xz} \times \sigma_{yz} \times C_{2(z)} = \sigma_{xz} \times \sigma_{xz}$$

$$= E$$
(3)

Thus, the set of operations that exist in water molecule is a symmetry point group, so called $C_{2\nu}$ group, as we see later. It has previously been stated that every operation must be represented by a matrix. The resulting operation must also be represented by a matrix that is a product of two (or more) representing matrices.

Classification of Symmetry Groups

Symmetry groups are classified into the following categories:

1) Simple groups of order 2:

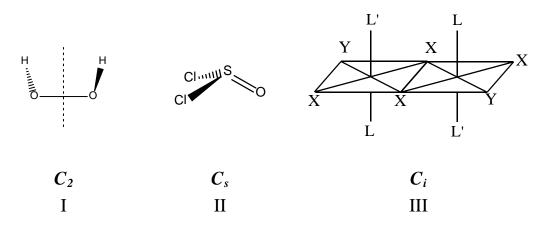
These groups contain only one operation in addition to E, with an order (2). This class of groups includes only three group types:

 C_s group: contains E and one σ only.

 C_i group: contains E and i only.

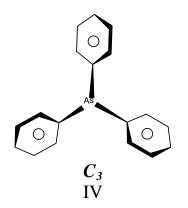
 C_2 group: contains *E* and C_2 only.

Examples of these symmetry groups are shown in structures I, II and III below:



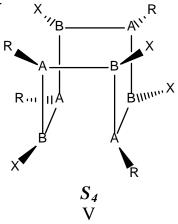
2) C_n groups:

In this class, the molecule has the identity operation, together with a set of C_n^1 , C_n^2 , C_n^3 , ..., C_n^{n-1} operations only. The order of the group is (*n*). An example of such groups is shown in structure IV below. It should be noted that the molecule IV is not a planar molecule.



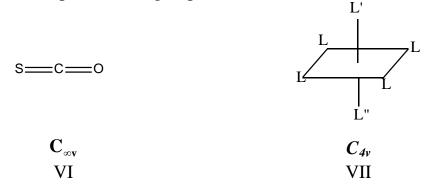
3) S_n groups:

An S_n molecule has a C_n operation and a plane perpendicular to C_n , but none of these two operations exists independently. Such a group exists in molecules with even-values for n, and the order of the group is n. Structure V is an example.



4) C_{nv} groups:

A C_{nv} group has a main axis of rotation (C_n), an identity (*E*) and *n* vertical reflection planes (σ_v) that intercept along the main axis. The order of such a group is 2n. Examples of such groups are structures VI and VII:

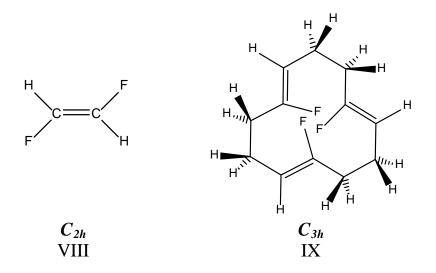


5) C_{nh} groups:

A C_{nh} group contains identity E, main axis C_n and a horizontal plane σ_h that is perpendicular to C_n . The order of such a group is 2n, since it has:

$$C_n^1$$
 , C_n^2 , ..., , C_n^{n-1} , $C_n^n = E$
 σ_h
 S_n^1 , S_n^2 , ..., , S_n^{n-1} , $S_n^n = E$

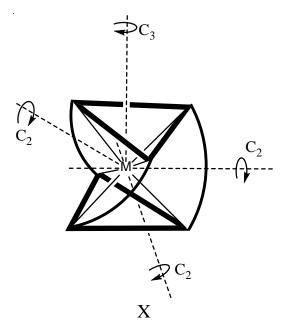
examples of C_{nh} symmetry are structures VIII and IX:



6) D_n groups:

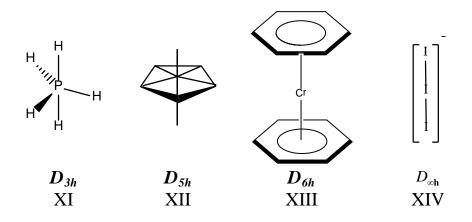
A D_n group has identity operation E, a C_n axis and nC_2 's lying in a plane perpendicular to C_n . The order of such groups is 2n, since they contain: C_n^1 , C_n^2 , ..., $C_n^n = E$, and nC_2

Good examples of D_n symmetry are tris-chelated complexes such as $[Co(en)_3]^{3+}$ and $[Co(acac)_3]$, structure X. These complexes have antiprismatic structure, with a vertical C_n axis of rotation, and $3C_2$ axes in a plane perpendicular to C_n .



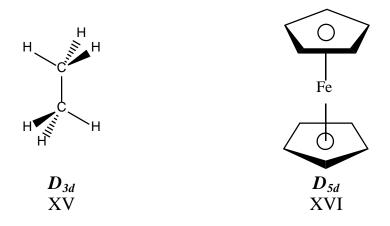
7) D_{nh} groups:

In addition to E, C_n and perpendicular nC_2 , the D_{nh} group contains a horizontal plane of symmetry perpendicular to the C_n axis. The order of such a group is 4n. Examples of these groups are structures XI-XIV:



8) D_{nd} groups:

In addition to E, C_n and perpendicular nC_2 , a D_{nd} group contains n vertical planes σ_d that intercept along the main axis. Note that the vertical planes are so called *dihedral planes* since each of them bisects the angle between two neighboring C_2 's. The order of such a group is 4n. Examples of D_{nd} symmetry are ferrocene XV and ethane XVI in their staggered form.



- 9) High symmetry groups:
- a) The linear groups: In the previous C_{nv} and D_{nh} symmetry point groups, systems with especially high symmetries such as $C_{\infty v}$ and $D_{\infty h}$ linear species have been encountered. The $C_{\infty v}$ point group involves a C_{∞} and $\infty \sigma_{v}$. The $D_{\infty h}$ involves C_{∞} , ∞C_{2} and σ_{h} .
- b) Other common species with especially high symmetries are the *Tetrahedral* T_d and *Octahedral* O_h groups.

The tetrahedral point group (T_d) : this group has an order of (24), with symmetry operations namely as:

- Four × two C_3 axes (each Cartesian axis has $C_3^{\ 1}$, $C_3^{\ 2}$, and $C_3^{\ 3} = E$)

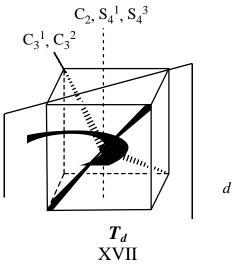
 $-Six \sigma_d$'s

- Three × two S_4 axis (each Cartesian one with $S_4^{\ l}$, $S_4^{\ 2} = C_2$,

 S_4^{3} and $S_4^{4} = E$)

– Three C_2 axes

The symmetry operations for T_d point group are shown in structure XVII below:

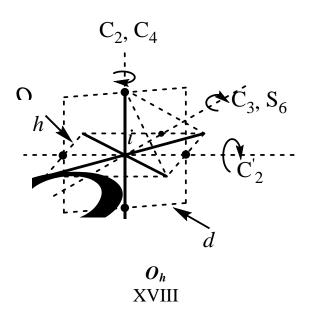


Examples of T_d symmetry are ClO_4^- , $NiCl_4^{2-}$, CH_4 and SiF_4 .

The octahedral point group (O_h) : This group has an order of (48), namely:

-E $-Four \times two C_3 (C_3^{-1}, C_3^{-2}, C_3^{-3} = E)$ $-Three \times three C_4 (C_4^{-1}, C_4^{-2} = C_2, C_4^{-3}, C_4^{-4} = E)$ $-Six C_2^{-} (each bisecting two edges of the octahedron)$ -One i $-Three \times two S_4 (S_4^{-1}, S_4^{-2} = C_2, S_4^{-3}, S_4^{-4} = E)$ $-Four \times two S_6$ $-Three \sigma_h (\sigma_{xy}, \sigma_{xz}, \sigma_{yz})$ $-Six \sigma_d$

Structure XVIII below shows examples of O_h symmetry operations.



Exercises: In Exercise 1 of Chapter 1, find out the highest order symmetry point group for each species.