## Chapter 2

## Symmetry Point Groups

In mathematics, a group is a set of elements which satisfy certain characteristics. If we know the complete set of symmetry operations of a given system, this set of operations forms a symmetry point group if the following requirements are all met:

1) The product of any two operations is itself an operation in the group. This is called the property of closure.
2) There must be an identity operation $E$ in the set.
3) Every operation in the set must have an inverse operation that exists in the set. The inverse operation, when performed after a given operation, cancels its effect. In equation (1) the operation $A^{-1}$ is an inverse for operation $A$ :

$$
\begin{equation*}
A^{-1} \times A=E \tag{1}
\end{equation*}
$$

4) Multiplication of operations of the set must be associative, as shown in equation (2), but not necessarily commutative.

$$
\begin{equation*}
F \times(B \times A)=(F \times B) \times A \tag{2}
\end{equation*}
$$

Taking into account the given characteristics of symmetry groups, we can easily prove that the set of operations $\left(C_{2(z)}, \sigma_{x z}, \sigma_{y z}\right.$ and $\left.E\right)$ in water molecule (structure VI in Chapter 1 ) is a symmetry group. All requirements ( $1-4$ ) are met here. The property of closure can be confirmed by the socalled symmetry multiplication table as shown below:

|  | $E$ | $C_{2(z)}$ | $\sigma_{x z}$ | $\sigma_{y z}$ |
| :---: | :---: | :---: | :---: | :---: |
| $E$ | $E$ | $C_{2(z)}$ | $\sigma_{x z}$ | $\sigma_{y z}$ |
| $C_{2(z)}$ | $C_{2(z)}$ | $E$ | $\sigma_{y z}$ | $\sigma_{x z}$ |
| $\sigma_{x z}$ | $\sigma_{x z}$ | $\sigma_{y z}$ | $E$ | $C_{2(z)}$ |
| $\sigma_{y z}$ | $\sigma_{y z}$ | $\sigma_{x z}$ | $C_{2(z)}$ | $E$ |

Requirement (1) is met by knowing that any operation can be multiplied by any other operation to give an operation that itself is a member of the set. The presence of $E$ satisfies requirement (2). Requirement (4) is also met in case of a triple (or higher) product. This can be subdivided in any way we like without changing the result, equation (3):

$$
\begin{align*}
\sigma_{x z} \times \sigma_{y z} \times C_{2(z)} & = \\
\left(\sigma_{x z} \times \sigma_{y z}\right) \times C_{2(z)} & =C_{2(z)} \times C_{2(z)} \\
\sigma_{x z} \times \sigma_{y z} \times C_{2(z)} & =\sigma_{x z} \times \sigma_{x z} \\
& =E \tag{3}
\end{align*}
$$

Thus, the set of operations that exist in water molecule is a symmetry point group, so called $\boldsymbol{C}_{2 v}$ group, as we see later. It has previously been stated that every operation must be represented by a matrix. The resulting operation must also be represented by a matrix that is a product of two (or more) representing matrices.

## Classification of Symmetry Groups

Symmetry groups are classified into the following categories:

## 1) Simple groups of order 2 :

These groups contain only one operation in addition to $E$, with an order (2). This class of groups includes only three group types:
$C_{s}$ group: contains $E$ and one $\sigma$ only.
$C_{i}$ group: contains $E$ and $i$ only.
$C_{2}$ group: contains $E$ and $C_{2}$ only.
Examples of these symmetry groups are shown in structures I, II and III below:

$C_{2}$
I

$C_{s}$
II

$C_{i}$
III

## 2) $C_{n}$ groups:

In this class, the molecule has the identity operation, together with a set of $C_{n}^{1}, C_{n}^{2}, C_{n}^{3}, \ldots, C_{n}^{n-1}$ operations only. The order of the group is (n). An example of such groups is shown in structure IV below. It should be noted that the molecule IV is not a planar molecule.


## 3) $S_{n}$ groups:

An $\boldsymbol{S}_{\boldsymbol{n}}$ molecule has a $C_{n}$ operation and a plane perpendicular to $C_{n}$, but none of these two operations exists independently. Such a group exists in molecules with even-values for $n$, and the order of the group is $n$. Structure V is an example.

$S_{4}$
V
4) $\boldsymbol{C}_{n v}$ groups:

A $C_{n v}$ group has a main axis of rotation $\left(C_{n}\right)$, an identity $(E)$ and $n$ vertical reflection planes ( $\sigma_{v}$ ) that intercept along the main axis. The order of such a group is $2 n$. Examples of such groups are structures VI and VII:

5) $\boldsymbol{C}_{n h}$ groups:

A $\boldsymbol{C}_{n h}$ group contains identity $E$, main axis $C_{n}$ and a horizontal plane $\sigma_{h}$ that is perpendicular to $C_{n}$. The order of such a group is $2 n$, since it has:

$$
\begin{aligned}
& C_{n}^{1}, C_{n}^{2}, \ldots \ldots \ldots, C_{n}^{n-1}, C_{n}^{n}=E \\
& \sigma_{h} \\
& S_{n}^{1}, S_{n}^{2}, \ldots \ldots \ldots, S_{n}^{n-1}, S_{n}^{n}=E
\end{aligned}
$$

examples of $\boldsymbol{C}_{\boldsymbol{n h}}$ symmetry are structures VIII and IX:

$C_{2 h}$
VIII


C $_{3}$
IX
6) $D_{n}$ groups:

A $\boldsymbol{D}_{\boldsymbol{n}}$ group has identity operation $E$, a $C_{n}$ axis and $n C_{2}$ 's lying in a plane perpendicular to $C_{n}$. The order of such groups is $2 n$, since they contain:
$C_{n}^{1}, C_{n}^{2}, \ldots \ldots \ldots, C_{n}^{n}=E$, and $n C_{2}$
Good examples of $\boldsymbol{D}_{\boldsymbol{n}}$ symmetry are tris-chelated complexes such as $\left[\operatorname{Co}(e n)_{3}\right]^{3+}$ and $\left[\operatorname{Co}(\text { acac })_{3}\right]$, structure X . These complexes have antiprismatic structure, with a vertical $C_{n}$ axis of rotation, and $3 C_{2}$ axes in a plane perpendicular to $C_{n}$.


X
7) $D_{n h}$ groups:

In addition to $E, C_{n}$ and perpendicular $n C_{2}$, the $\boldsymbol{D}_{n h}$ group contains a horizontal plane of symmetry perpendicular to the $C_{n}$ axis. The order of such a group is $4 n$. Examples of these groups are structures XI-XIV:

$D_{3 h}$
XI

$D_{5 h}$
XII

8) $\boldsymbol{D}_{\text {nd }}$ groups:

In addition to $E, C_{n}$ and perpendicular $n C_{2}$, a $D_{n d}$ group contains $n$ vertical planes $\sigma_{d}$ that intercept along the main axis. Note that the vertica1 planes are so called dihedral planes since each of them bisects the angle between two neighboring $C_{2}$ 's. The order of such a group is $4 n$. Examples of $\boldsymbol{D}_{n d}$ symmetry are ferrocene XV and ethane XVI in their staggered form.

$D_{3 d}$ XV

$D_{5 d}$
XVI

## 9) High symmetry groups:

a) The linear groups: In the previous $\boldsymbol{C}_{\boldsymbol{n v}}$ and $\boldsymbol{D}_{\boldsymbol{n h}}$ symmetry point groups, systems with especially high symmetries such as $\boldsymbol{C}_{\infty v}$ and $\boldsymbol{D}_{\infty \mathrm{h}}$ linear species have been encountered. The $\boldsymbol{C}_{\infty \mathrm{v}}$ point group involves a $C_{\infty}$ and $\infty \sigma_{v}$. The $\boldsymbol{D}_{\infty}$ involves $C_{\infty}, \infty C_{2}$ and $\sigma_{h}$.
b) Other common species with especially high symmetries are the

Tetrahedral $T_{d}$ and Octahedral $O_{h}$ groups.
The tetrahedral point group $\left(\boldsymbol{T}_{d}\right)$ : this group has an order of (24), with symmetry operations namely as:

- Four $\times$ two $C_{3}$ axes (each Cartesian axis has $C_{3}{ }^{1}, C_{3}{ }^{2}$, and $C_{3}{ }^{3}$
= E)
- Six $\sigma_{d}$ 's
- Three $\times$ two $S_{4}$ axis (each Cartesian one with $S_{4}{ }^{1}, S_{4}{ }^{2}=C_{2}$,
$S_{4}{ }^{3}$ and $S_{4}{ }^{4}=E$ )
- Three $C_{2}$ axes

The symmetry operations for $\boldsymbol{T}_{\boldsymbol{d}}$ point group are shown in structure XVII below:


Examples of $\boldsymbol{T}_{\boldsymbol{d}}$ symmetry are $\mathrm{ClO}_{4}^{-}, \mathrm{NiCl}_{4}^{2-}, \mathrm{CH}_{4}$ and $\mathrm{SiF}_{4}$.
The octahedral point group $\left(\boldsymbol{O}_{h}\right)$ : This group has an order of (48), namely:
$-E$

- Four $\times$ two $C_{3}\left(C_{3}{ }^{1}, C_{3}{ }^{2}, C_{3}{ }^{3}=E\right)$
- Three $\times$ three $C_{4}\left(C_{4}{ }^{1}, C_{4}{ }^{2}=C_{2}, C_{4}{ }^{3}, C_{4}{ }^{4}=E\right)$
- Six $C_{2}{ }^{\prime}$ (each bisecting two edges of the octahedron)
- One $i$
- Three $\times$ two $S_{4}\left(S_{4}{ }^{1}, S_{4}{ }^{2}=C_{2}, S_{4}{ }^{3}, S_{4}{ }^{4}=E\right)$
- Four $\times$ two $S_{6}$
- Three $\sigma_{h}\left(\sigma_{x y}, \sigma_{x z}, \sigma_{y z}\right)$
$-\mathrm{Six} \sigma_{d}$
Structure XVIII below shows examples of $\boldsymbol{O}_{\boldsymbol{h}}$ symmetry operations.


Exercises: In Exercise 1 of Chapter 1, find out the highest order symmetry point group for each species.

