
Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Australia • Brazil • Mexico • Singapore • United Kingdom • United States

Fundamentals of Python:

First Programs

Kenneth A. Lambert

Martin Osborne,
Contributing Author

s e c o n d E d i t i o n

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

This is an electronic version of the print textbook. Due to electronic rights restrictions,
some third party content may be suppressed. Editorial review has deemed that any suppressed
content does not materially affect the overall learning experience. The publisher reserves the right
to remove content from this title at any time if subsequent rights restrictions require it. For
valuable information on pricing, previous editions, changes to current editions, and alternate
formats, please visit www.cengage.com/highered to search by ISBN#, author, title, or keyword for
materials in your areas of interest.

Important Notice: Media content referenced within the product description or the product
text may not be available in the eBook version.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Fundamentals of Python:
First Programs, Second Edition
Kenneth A. Lambert

SVP, GM Skills: Jonathan Lau

Product Team Manager: Kristin
McNary

Associate Product Manager: Kate
Mason

Executive Director of Development:
Marah Bellegarde

Senior Content Development
Manager: Leigh Hefferon

Content Development Manager: Jill
Gallagher

Senior Content Developer: Natalie
Pashoukos

Product Assistant: Jake Toth

Marketing Director: Michele McTighe

Marketing Manager: Stephanie
Albracht

Senior Content Project Manager:
Jennifer Feltri-George

Senior Designer/Art Director: Diana
Graham

Cover image: Digital_Art/
Shutterstock.com

Production Service/Composition:
SPi Global

Cengage is a leading provider of customized learning solutions with
employees residing in nearly 40 different countries and sales in more
than 125 countries around the world. Find your local representative
at www.cengage.com.

Cengage products are represented in Canada by Nelson Education, Ltd.

To learn more about Cengage, visit www.cengage.com.

Purchase any of our products at your local college store or at our
preferred online store www.cengagebrain.com.

© 2019, 2012 Cengage

ALL RIGHTS RESERVED. No part of this work covered by the copy-
right herein may be reproduced or distributed in any form or by
any means, except as permitted by U.S. copyright law, without the
prior written permission of the copyright owner.

Unless otherwise noted all tables/figures exhibits are © 2019 Cengage®

Cengage
20 Channel Center Street
Boston, MA, 02210

Library of Congress Control Number: 2017952738

Softbound ISBN: 978-1-337-56009-2
Loose Leaf ISBN: 978-1-337-69934-1

USA

Printed in the United States of America
Print Number: 01      Print Year: 2017

Notice to the Reader

Publisher does not warrant or guarantee any of the products described herein or perform any independent analysis
in connection with any of the product information contained herein. Publisher does not assume, and expressly
disclaims, any obligation to obtain and include information other than that provided to it by the manufacturer. The
reader is expressly warned to consider and adopt all safety precautions that might be indicated by the activities
described herein and to avoid all potential hazards. By following the instructions contained herein, the reader willingly
assumes all risks in connection with such instructions. The publisher makes no representations or warranties of any
kind, including but not limited to, the warranties of fitness for particular purpose or merchantability, nor are any
such representations implied with respect to the material set forth herein, and the publisher takes no responsibility
with respect to such material. The publisher shall not be liable for any special, consequential, or exemplary damages
resulting, in whole or part, from the readers’ use of, or reliance upon, this material.

For product information and technology assistance, contact us
at Cengage Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit
all requests online at www.cengage.com/permissions.

Further permissions questions can be e-mailed to
permissionrequest@cengage.com

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

	 Preface ��� xi i i

CHAPTER 1	I ntroduct ion�� 1

Two Fundamental Ideas of Computer Science:
Algorithms and Information Processing ������������������������������� 2
Algorithms �� 2
Information Processing�� 4

Exercises ��� 5
The Structure of a Modern Computer System������������������������� 6

Computer Hardware�� 6
Computer Software �� 7

Exercises ��� 9
A Not-So-Brief History of Computing Systems������������������������� 9

Before Electronic Digital Computers���������������������������������11
The First Electronic Digital Computers (1940–1950) ����������13
The First Programming Languages (1950–1965) ���������������14
Integrated Circuits, Interaction,

and Timesharing (1965–1975)���������������������������������������16
Personal Computing and Networks (1975–1990) ���������������17
Consultation, Communication,

and E-Commerce (1990–2000)���������������������������������������19
Mobile Applications and Ubiquitous

Computing (2000–present) ���21
Getting Started with Python Programming����������������������������22

Running Code in the Interactive Shell �������������������������������22
Input, Processing, and Output��24
Editing, Saving, and Running a Script �������������������������������27
Behind the Scenes: How Python Works������������������������������28

Exercises ��29
Detecting and Correcting Syntax Errors�������������������������������29
Exercises ��30
Suggestions for Further Reading ��30
Summary ��31

Table of Contents
iii

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Review Questions ���32
Projects���33

CHAPTER 2	S oftware Development, Data Types,
and Expressions�� 34

The Software Development Process ������������������������������������35
Exercises ��37
Case Study: Income Tax Calculator �������������������������������������38
Strings, Assignment, and Comments������������������������������������41

Data Types ���41
String Literals���42
Escape Sequences���43
String Concatenation��43
Variables and the Assignment Statement���������������������������44
Program Comments and Docstrings ���������������������������������45

Exercises ��46
Numeric Data Types and Character Sets������������������������������47

Integers��47
Floating-Point Numbers���47
Character Sets ���48

Exercises ��49
Expressions���49

Arithmetic Expressions���50
Mixed-Mode Arithmetic and Type Conversions���������������������52

Exercises ��53
Using Functions and Modules ���54

Calling Functions: Arguments and Return Values ����������������54
The math Module ��55
The Main Module��56
Program Format and Structure ��57
Running a Script from a Terminal Command Prompt������������57

Exercises ��59
Summary ��59
Review Questions ���61
Projects���62

CHAPTER 3	 Loops and Select ion Statements������������������� 64

Definite Iteration: The for Loop��65
Executing a Statement a Given Number of Times ���������������65
Count-Controlled Loops���66
Augmented Assignment���67

iv

c o n t e n t s

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Loop Errors: Off-by-One Error��68
Traversing the Contents of a Data Sequence ���������������������68
Specifying the Steps in the Range������������������������������������69
Loops That Count Down ���69

Exercises ��70
Formatting Text for Output���70
Exercises ��72
Case Study: An Investment Report���������������������������������������73
Selection: if and if-else Statements �������������������������������77

The Boolean Type, Comparisons, and Boolean
Expressions��77

if-else Statements��78
One-Way Selection Statements ��79
Multi-Way if Statements ��80
Logical Operators and Compound Boolean Expressions ������82
Short-Circuit Evaluation���84
Testing Selection Statements ��84

Exercises ��85
Conditional Iteration: The while Loop ���������������������������������86

The Structure and Behavior of a while Loop���������������������86
Count Control with a while Loop�������������������������������������87
The while True Loop and the break Statement����������������88
Random Numbers ��90
Loop Logic, Errors, and Testing���������������������������������������91

Exercises ��92
Case Study: Approximating Square Roots ����������������������������92
Summary ��96
Review Questions ���97
Projects���99

CHAPTER 4	S tr ings and Text F i les ������������������������������ 102

Accessing Characters and Substrings in Strings ���������������� 103
The Structure of Strings �� 103
The Subscript Operator�� 104
Slicing for Substrings ��� 105
Testing for a Substring with the in Operator ������������������ 105

Exercises ��� 106
Data Encryption �� 106
Exercises ��� 109
Strings and Number Systems �� 109

The Positional System for Representing Numbers������������ 110
Converting Binary to Decimal ��������������������������������������� 111

v

c o n t e n t s

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Converting Decimal to Binary ��������������������������������������� 112
Conversion Shortcuts ��� 112
Octal and Hexadecimal Numbers ���������������������������������� 113

Exercises ��� 114
String Methods ��� 115
Exercises ��� 118
Text Files ��� 118

Text Files and Their Format�� 118
Writing Text to a File ��� 119
Writing Numbers to a File��� 119
Reading Text from a File �� 120
Reading Numbers from a File ��������������������������������������� 121
Accessing and Manipulating Files and Directories

on Disk ��� 122
Exercises ��� 125
Case Study: Text Analysis�� 126
Summary ��� 130
Review Questions �� 131
Projects�� 132

CHAPTER 5	 L ists and Dict ionar ies ������������������������������ 134

Lists ��� 135
List Literals and Basic Operators���������������������������������� 135
Replacing an Element in a List ������������������������������������� 138
List Methods for Inserting and Removing Elements���������� 138
Searching a List ��� 140
Sorting a List �� 140
Mutator Methods and the Value None ���������������������������� 141
Aliasing and Side Effects ��� 141
Equality: Object Identity and Structural

Equivalence ��� 143
Example: Using a List to Find the Median

of a Set of Numbers ��� 143
Tuples �� 144

Exercises ��� 145
Defining Simple Functions �� 146

The Syntax of Simple Function Definitions ���������������������� 146
Parameters and Arguments�� 147
The return Statement�� 147
Boolean Functions �� 148
Defining a main Function ��� 148

Exercises ��� 149
Case Study: Generating Sentences ���������������������������������� 150

vi

c o n t e n t s

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Dictionaries �� 153
Dictionary Literals �� 153
Adding Keys and Replacing Values��������������������������������� 154
Accessing Values ��� 154
Removing Keys �� 155
Traversing a Dictionary�� 155
Example: The Hexadecimal System Revisited������������������ 156
Example: Finding the Mode of a List of Values ���������������� 157

Exercises ��� 158
Case Study: Nondirective Psychotherapy��������������������������� 159
Summary ��� 163
Review Questions �� 164
Projects�� 165

CHAPTER 6	 Design wi th Funct ions ������������������������������ 167

A Quick Review of What Functions Are and How
They Work �� 168
Functions as Abstraction Mechanisms ��������������������������� 169
Functions Eliminate Redundancy������������������������������������ 169
Functions Hide Complexity ��� 170
Functions Support General Methods with Systematic

Variations �� 170
Functions Support the Division of Labor ������������������������ 171

Exercises ��� 171
Problem Solving with Top-Down Design������������������������������ 172

The Design of the Text-Analysis Program������������������������ 172
The Design of the Sentence-Generator Program��������������� 173
The Design of the Doctor Program��������������������������������� 174

Exercises ��� 176
Design with Recursive Functions��������������������������������������� 176

Defining a Recursive Function��������������������������������������� 176
Tracing a Recursive Function ��������������������������������������� 177
Using Recursive Definitions to Construct Recursive

Functions �� 178
Recursion in Sentence Structure������������������������������������ 179
Infinite Recursion ��� 179
The Costs and Benefits of Recursion������������������������������ 180

Exercises ��� 182
Case Study: Gathering Information from a File System��������� 183
Managing a Program’s Namespace ���������������������������������� 190

Module Variables, Parameters, and Temporary
Variables�� 190

Scope �� 191

vii

c o n t e n t s

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Lifetime��� 192
Using Keywords for Default and Optional Arguments��������� 193

Exercises ��� 194
Higher-Order Functions��� 195

Functions as First-Class Data Objects���������������������������� 195
Mapping��� 196
Filtering��� 197
Reducing �� 197
Using lambda to Create Anonymous Functions ��������������� 198
Creating Jump Tables��� 199

Exercises ��� 199
Summary ��� 200
Review Questions �� 202
Projects�� 203

CHAPTER 7	S imple Graphics and Image Processing �������� 205

Simple Graphics�� 206
Overview of Turtle Graphics�� 206
Turtle Operations ��� 207
Setting Up a turtle.cfg File and Running IDLE������������������ 209
Object Instantiation and the turtle Module ������������������� 210
Drawing Two-Dimensional Shapes ��������������������������������� 212
Examining an Object’s Attributes ���������������������������������� 213
Manipulating a Turtle’s Screen��������������������������������������� 214
Taking a Random Walk ��� 214
Colors and the RGB System�� 215
Example: Filling Radial Patterns with Random

Colors��� 216
Exercises ��� 218
Case Study: Recursive Patterns in Fractals������������������������ 218
Image Processing ��� 222

Analog and Digital Information��������������������������������������� 223
Sampling and Digitizing Images ������������������������������������ 223
Image File Formats�� 224
Image-Manipulation Operations ������������������������������������� 224
The Properties of Images��� 225
The images Module �� 225
A Loop Pattern for Traversing a Grid������������������������������ 228
A Word on Tuples ��� 229
Converting an Image to Black and White ������������������������ 230
Converting an Image to Grayscale��������������������������������� 231
Copying an Image �� 232
Blurring an Image ��� 233

viii

c o n t e n t s

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Edge Detection �� 234
Reducing the Image Size ��� 235

Exercises ��� 237
Summary ��� 237
Review Questions �� 238
Projects�� 240

CHAPTER 8	G raphica l User Inter faces�������������������������� 244

The Behavior of Terminal-Based Programs and GUI-Based
Programs ��� 245
The Terminal-Based Version�� 246
The GUI-Based Version �� 246
Event-Driven Programming��� 248

Exercises ��� 249
Coding Simple GUI-Based Programs ��������������������������������� 249

A Simple “Hello World” Program������������������������������������ 249
A Template for All GUI Programs������������������������������������ 251
The Syntax of Class and Method Definitions ������������������� 251
Subclassing and Inheritance as Abstraction

Mechanisms �� 252
Exercises ��� 253
Windows and Window Components������������������������������������ 253

Windows and Their Attributes ��������������������������������������� 253
Window Layout�� 254
Types of Window Components and Their Attributes���������� 256
Displaying Images �� 257

Exercises ��� 259
Command Buttons and Responding to Events��������������������� 260
Exercises ��� 262
Input and Output with Entry Fields������������������������������������ 262

Text Fields �� 262
Integer and Float Fields for Numeric Data ���������������������� 264
Using Pop-Up Message Boxes��������������������������������������� 265

Exercises ��� 267
Defining and Using Instance Variables ������������������������������ 267
Exercises ��� 269
Case Study: The Guessing Game Revisited������������������������ 269
Other Useful GUI Resources��� 273

Using Nested Frames to Organize Components��������������� 273
Multi-Line Text Areas ��� 275
File Dialogs ��� 277
Obtaining Input with Prompter Boxes������������������������������ 280
Check Buttons�� 281

ix

c o n t e n t s

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Radio Buttons �� 282
Keyboard Events��� 284
Working with Colors�� 285
Using a Color Chooser �� 287

Summary ��� 289
Review Questions �� 289
Projects�� 290

CHAPTER 9	 Design wi th Classes ��������������������������������� 293

Getting Inside Objects and Classes ���������������������������������� 294
A First Example: The Student Class������������������������������ 295
Docstrings �� 297
Method Definitions�� 297
The __init__ Method and Instance Variables������������������ 298
The __str__ Method ��� 299
Accessors and Mutators�� 299
The Lifetime of Objects�� 299
Rules of Thumb for Defining a Simple Class ������������������� 300

Exercises ��� 301
Case Study: Playing the Game of Craps���������������������������� 301
Data-Modeling Examples��� 309

Rational Numbers ��� 309
Rational Number Arithmetic and Operator Overloading������ 311
Comparison Methods��� 312
Equality and the __eq__ Method������������������������������������ 313
Savings Accounts and Class Variables ��������������������������� 314
Putting the Accounts into a Bank ���������������������������������� 317
Using pickle for Permanent Storage of Objects������������ 319
Input of Objects and the try-except Statement������������ 320
Playing Cards �� 321

Exercises ��� 324
Case Study: An ATM �� 324
Building a New Data Structure: The Two-Dimensional Grid ��� 330

The Interface of the Grid Class������������������������������������ 330
The Implementation of the Grid Class: Instance

Variables for the Data�� 332
The Implementation of the Grid Class: Subscript

and Search��� 333
Case Study: Data Encryption with a Block Cipher ��������������� 333
Structuring Classes with Inheritance and Polymorphism ������ 337

Inheritance Hierarchies and Modeling ���������������������������� 338
Example 1: A Restricted Savings Account ���������������������� 339
Example 2: The Dealer and a Player in the Game

of Blackjack��� 340

x

c o n t e n t s

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Polymorphic Methods�� 344
The Costs and Benefits of Object-Oriented

Programming�� 345
Exercises ��� 346
Summary ��� 347
Review Questions �� 348
Projects�� 349

CHAPTER 10	M ul t i threading, Networks, and Cl ient/Server
Programming ��� 352

Threads and Processes��� 353
Threads��� 354
Sleeping Threads ��� 357
Producer, Consumer, and Synchronization ��������������������� 358

Exercises ��� 364
The Readers and Writers Problem������������������������������������ 364

Using the SharedCell Class ��������������������������������������� 365
Implementing the Interface of the SharedCell Class ������ 366
Implementing the Helper Methods of the
SharedCell Class ��� 368

Testing the SharedCell Class with a Counter Object ������ 369
Defining a Thread-Safe Class ��������������������������������������� 370

Exercises ��� 371
Networks, Clients, and Servers ��������������������������������������� 371

IP Addresses ��� 372
Ports, Servers, and Clients �� 373
Sockets and a Day/Time Client Script ��������������������������� 373
A Day/Time Server Script��� 375
A Two-Way Chat Script �� 377
Handling Multiple Clients Concurrently ��������������������������� 378

Exercises ��� 380
Case Study: Setting Up Conversations between Doctors

and Patients ��� 381
Summary ��� 386
Review Questions �� 387
Projects�� 388

CHAPTER 11	S earching, Sor t ing, and Complex i ty Analys is�� 390

Measuring the Efficiency of Algorithms������������������������������ 391
Measuring the Run Time of an Algorithm ������������������������ 391
Counting Instructions��� 394

Exercises ��� 396

xi

c o n t e n t s

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Complexity Analysis ��� 397
Orders of Complexity��� 397
Big-O Notation�� 399
The Role of the Constant of Proportionality��������������������� 400
Measuring the Memory Used by an Algorithm������������������ 400

Exercises ��� 401
Search Algorithms ��� 401

Search for a Minimum ��� 401
Sequential Search of a List �� 402
Best-Case, Worst-Case, and Average-Case

Performance�� 403
Binary Search of a List�� 403

Exercises ��� 405
Basic Sort Algorithms �� 405

Selection Sort�� 406
Bubble Sort ��� 407
Insertion Sort �� 408
Best-Case, Worst-Case, and Average-Case

Performance Revisited �� 410
Exercises ��� 410
Faster Sorting��� 411

Quicksort �� 411
Merge Sort �� 415

Exercises ��� 418
An Exponential Algorithm: Recursive Fibonacci ������������������ 419
Converting Fibonacci to a Linear Algorithm������������������������ 420
Case Study: An Algorithm Profiler ������������������������������������ 421
Summary ��� 427
Review Questions �� 428
Projects�� 429

APPENDIX A	 Python Resources ����������������������������������� 432

APPENDIX B	I nsta l l ing the images
and breezypythongui L ibrar ies ��������������� 434

APPENDIX C	T he API for Image Processing�������������������� 436

APPENDIX D	T ransi t ion from Python to Java and C++ ������ 438

	G lossary ��� 439

	I ndex��� 455

xii

c o n t e n t s

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

“Everyone should learn how to code.” That’s my favorite quote from Suzanne Keen, the
Thomas Broadus Professor of English and Dean of the College at Washington and Lee Uni-
versity, where I have taught computer science for more than 30 years. The quote also states
the reason why I wrote the first edition of Fundamentals of Python: First Programs, and why
I now offer you this second edition. The book is intended for an introductory course in pro-
gramming and problem solving. It covers the material taught in a typical Computer Science 1
course (CS1) at the undergraduate or high school level.

This book covers five major aspects of computing:

1.	 Programming Basics—Data types, control structures, algorithm development, and
program design with functions are basic ideas that you need to master in order to
solve problems with computers. This book examines these core topics in detail and
gives you practice employing your understanding of them to solve a wide range of
problems.

2.	 Object-Oriented Programming (OOP)—Object-oriented programming is the
dominant programming paradigm used to develop large software systems. This
book introduces you to the fundamental principles of OOP and enables you to
apply them successfully.

3.	 Data and Information Processing—Most useful programs rely on data structures
to solve problems. These data structures include strings, arrays, files, lists, and dic-
tionaries. This book introduces you to these commonly used data structures and
includes examples that illustrate criteria for selecting the appropriate data struc-
tures for given problems.

4.	 Software Development Life Cycle—Rather than isolate software development
techniques in one or two chapters, this book deals with them throughout in the
context of numerous case studies. Among other things, you’ll learn that coding a
program is often not the most difficult or challenging aspect of problem solving
and software development.

5.	 Contemporary Applications of Computing—The best way to learn about pro-
gramming and problem solving is to create interesting programs with real-world
applications. In this book, you’ll begin by creating applications that involve numeri-
cal problems and text processing. For example, you’ll learn the basics of encryption
techniques such as those that are used to make your credit card number and other
information secure on the Internet. But unlike many other introductory texts, this

Preface
xiii

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

one does not restrict itself to problems involving numbers and text. Most contem-
porary applications involve graphical user interfaces, event-driven programming,
graphics, image manipulation, and network communications. These topics are not
consigned to the margins, but are presented in depth after you have mastered the
basics of programming.

Why Python?
Computer technology and applications have become increasingly more sophisticated over
the past three decades, and so has the computer science curriculum, especially at the intro-
ductory level. Today’s students learn a bit of programming and problem solving, and they
are then expected to move quickly into topics like software development, complexity analy-
sis, and data structures that, 30 years ago, were relegated to advanced courses. In addition,
the ascent of object-oriented programming as the dominant paradigm of problem solving
has led instructors and textbook authors to implant powerful, industrial-strength program-
ming languages such as C++ and Java in the introductory curriculum. As a result, instead
of experiencing the rewards and excitement of solving problems with computers, beginning
computer science students often become overwhelmed by the combined tasks of mastering
advanced concepts as well as the syntax of a programming language.

This book uses the Python programming language as a way of making the first year of
studying computer science more manageable and attractive for students and instructors
alike. Python has the following pedagogical benefits:

•• Python has simple, conventional syntax. Python statements are very close to those of
pseudocode algorithms, and Python expressions use the conventional notation found in
algebra. Thus, students can spend less time learning the syntax of a programming lan-
guage and more time learning to solve interesting problems.

•• Python has safe semantics. Any expression or statement whose meaning violates the
definition of the language produces an error message.

•• Python scales well. It is very easy for beginners to write simple programs in Python.
Python also includes all of the advanced features of a modern programming language,
such as support for data structures and object-oriented software development, for use
when they become necessary.

•• Python is highly interactive. Expressions and statements can be entered at an interpret-
er’s prompts to allow the programmer to try out experimental code and receive immedi-
ate feedback. Longer code segments can then be composed and saved in script files to
be loaded and run as modules or standalone applications.

•• Python is general purpose. In today’s context, this means that the language includes
resources for contemporary applications, including media computing and networks.

•• Python is free and is in widespread use in industry. Students can download Python to
run on a variety of devices. There is a large Python user community, and expertise in
Python programming has great résumé value.

xiv

P r e fa c e﻿ Why Python?

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

To summarize these benefits, Python is a comfortable and flexible vehicle for expressing
ideas about computation, both for beginners and for experts. If students learn these ideas
well in the first course, they should have no problems making a quick transition to other
languages needed for courses later in the curriculum. Most importantly, beginning students
will spend less time staring at a computer screen and more time thinking about interesting
problems to solve.

Organization of the Book
The approach of this text is easygoing, with each new concept introduced only when it is
needed.

Chapter 1 introduces computer science by focusing on two fundamental ideas, algorithms
and information processing. A brief overview of computer hardware and software, followed
by an extended discussion of the history of computing, sets the context for computational
problem solving.

Chapters 2 and 3 cover the basics of problem solving and algorithm development using the
standard control structures of expression evaluation, sequencing, Boolean logic, selection,
and iteration with the basic numeric data types. Emphasis in these chapters is on problem
solving that is both systematic and experimental, involving algorithm design, testing, and
documentation.

Chapters 4 and 5 introduce the use of the strings, text files, lists, and dictionaries. These
data structures are both remarkably easy to manipulate in Python and support some inter-
esting applications. Chapter 5 also introduces simple function definitions as a way of orga-
nizing algorithmic code.

Chapter 6 explores the technique and benefits of procedural abstraction with function
definitions. Top-down design, stepwise refinement, and recursive design with functions are
examined as means of structuring code to solve complex problems. Details of namespace
organization (parameters, temporary variables, and module variables) and communica-
tion among software components are discussed. A section on functional programming
with higher-order functions shows how to exploit functional design patterns to simplify
solutions.

Chapter 7 focuses on the use of existing objects and classes to compose programs. Special
attention is paid to the application programming interface (API), or set of methods, of
a class of objects and the manner in which objects cooperate to solve problems. This
chapter also introduces two contemporary applications of computing, graphics and
image processing—areas in which object-based programming is particularly useful.

Chapter 8 introduces the definition of new classes to construct graphical user interfaces
(GUIs). The chapter contrasts the event-driven model of GUI programs with the process-
driven model of terminal-based programs. The creation and layout of GUI components
are explored, as well as the design of GUI-based applications using the model/view pattern.
The initial approach to defining new classes in this chapter is unusual for an introductory

xv

pr e fa c eOrganization of the Book﻿

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

textbook: students learn that the easiest way to define a new class is to customize an exist-
ing class using subclassing and inheritance.

Chapter 9 continues the exploration of object-oriented design with the definition of entirely
new classes. Several examples of simple class definitions from different application domains
are presented. Some of these are then integrated into more realistic applications, to show
how object-oriented software components can be used to build complex systems. Emphasis
is on designing appropriate interfaces for classes that exploit polymorphism.

Chapter 10 covers advanced material related to several important areas of computing:
concurrent programming, networks, and client/server applications. This chapter thus
gives students challenging experiences near the end of the first course. Chapter 10 intro-
duces multithreaded programs and the construction of simple network-based client/server
applications.

Chapter 11 covers some topics addressed at the beginning of a traditional CS2 course. This
chapter introduces complexity analysis with big-O notation. Enough material is presented
to enable you to perform simple analyses of the running time and memory usage of algo-
rithms and data structures, using search and sort algorithms as examples.

Special Features
This book explains and develops concepts carefully, using frequent examples and diagrams.
New concepts are then applied in complete programs to show how they aid in solving prob-
lems. The chapters place an early and consistent emphasis on good writing habits and neat,
readable documentation.

The book includes several other important features:

•• Case studies—These present complete Python programs ranging from the simple to
the substantial. To emphasize the importance and usefulness of the software develop-
ment life cycle, case studies are discussed in the framework of a user request, followed
by analysis, design, implementation, and suggestions for testing, with well-defined tasks
performed at each stage. Some case studies are extended in end-of-chapter program-
ming projects.

•• Chapter objectives and chapter summaries—Each chapter begins with a set of learning
objectives and ends with a summary of the major concepts covered in the chapter.

•• Key terms and a glossary—When a technical term is introduced in the text, it appears in
boldface. Definitions of the key terms are also collected in a glossary.

•• Exercises—Most major sections of each chapter end with exercise questions that rein-
force the reading by asking basic questions about the material in the section. Each chap-
ter ends with a set of review exercises.

•• Programming projects—Each chapter ends with a set of programming projects of vary-
ing difficulty.

xvi

P r e fa c e﻿ Special Features

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

•• A software toolkit for image processing—This book comes with an open-source
Python toolkit for the easy image processing discussed in Chapter 7. The toolkit can be
obtained from the student downloads page on www.cengage.com, or at http://home.wlu
.edu/~lambertk/python/

•• A software toolkit for GUI programming—This book comes with an open-source
Python toolkit for the easy GUI programming introduced in Chapter 8. The toolkit can
be obtained from the student downloads page on www.cengage.com, or at http://home
.wlu.edu/~lambertk/breezypythongui/

•• Appendices—Four appendices include information on obtaining Python resources,
installing the toolkits, and using the toolkits’ interfaces.

New in This Edition
The most obvious change in this edition is the addition of full color. All program examples
include the color coding used in Python’s IDLE, so students can easily identify program
elements such as keywords, program comments, and function, method, and class names.
Several new figures have been added to illustrate concepts, and many exercises and pro-
gramming projects have been reworked. The brief history of computing in Chapter 1 has
been brought up to date. A discussion of a Grid type has been included to give students
exposure to a two-dimensional data structure. The book remains the only introductory
Python text with a thorough introduction to realistic GUI programming. The chapter
on GUIs (Chapter 8) now uses the breezypythongui toolkit to ease the introduction of
this topic. The chapter on GUIs has also been placed ahead of the chapter on design with
classes (Chapter 9). This arrangement allows students to explore the customizing of exist-
ing classes with GUI programming before they tackle the design of entirely new classes in
the following chapter. Finally, a new section on the readers and writers problem has been
added to Chapter 10, to illustrate thread-safe access to shared resources.

Instructor Resources
MindTap
MindTap activities for Fundamentals of Python: First Programs are designed to help stu-
dents master the skills they need in today’s workforce. Research shows employers need
critical thinkers, troubleshooters, and creative problem-solvers to stay relevant in our
fast-paced, technology-driven world. MindTap helps you achieve this with assignments
and activities that provide hands-on practice and real-life relevance. Students are guided
through assignments that help them master basic knowledge and understanding before
moving on to more challenging problems.

All MindTap activities and assignments are tied to defined unit learning objectives.
Hands-on coding labs provide real-life application and practice. Readings and dynamic
visualizations support the lecture, while a post-course assessment measures exactly how

xvii

pr e fa c eInstructor Resources﻿

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

much a student has learned. MindTap provides the analytics and reporting to easily see
where the class stands in terms of progress, engagement, and completion rates. Use the
content and learning path as-is or pick-and-choose how our materials will wrap around
yours. You control what the students see and when they see it. Learn more at http://www
.cengage.com/mindtap/.

Instructor Companion Site
The following teaching tools are available for download at the Companion Site for this text.
Simply search for this text at www.cengagebrain.com and choose "Instructor Downloads."
An instructor login is required.

•• Instructor’s Manual: The Instructor’s Manual that accompanies this textbook includes
additional instructional material to assist in class preparation, including items such as
Overviews, Chapter Objectives, Teaching Tips, Quick Quizzes, Class Discussion Top-
ics, Additional Projects, Additional Resources, and Key Terms. A sample syllabus is also
available.

•• Test Bank: Cengage Testing Powered by Cognero is a flexible, online system that allows
you to:

•• author, edit, and manage test bank content from multiple Cengage solutions

•• create multiple test versions in an instant

•• deliver tests from your LMS, your classroom, or wherever you want

•• PowerPoint Presentations: This text provides PowerPoint slides to accompany each
chapter. Slides may be used to guide classroom presentations, to make available to stu-
dents for chapter review, or to print as classroom handouts. Files are provided for every
figure in the text. Instructors may use the files to customize PowerPoint slides, illustrate
quizzes, or create handouts.

•• Solutions: Solutions to all programming exercises are available. If an input file is
needed to run a programming exercise, it is included with the solution file.

•• Source Code: The source code is available at www.cengagebrain.com. If an input file is
needed to run a program, it is included with the source code.

We Appreciate Your Feedback
We have tried to produce a high-quality text, but should you encounter any errors,
please report them to lambertk@wlu.edu or http://support.cengage.com. A list of errata,
should they be found, as well as other information about the book, will be posted on
the Web site http://home.wlu.edu/~lambertk/python/ and with the student resources at
www.cengagebrain.com.

P r e fa c e﻿ We Appreciate Your Feedback

xviii

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Acknowledgments
I would like to thank my contributing author, Martin Osborne, for many years of advice,
friendly criticism, and encouragement on several of my book projects. I am also grateful
to the many students and colleagues at Washington and Lee University who have used this
book and given helpful feedback on it over the life of the first edition.

In addition, I would like to thank the following reviewers for the time and effort they
contributed to Fundamentals of Python: Steven Robinett, Great Falls College Montana
State University; Mark Williams, University of Maryland Eastern Shore; Andrew Danner,
Swarthmore College; Susan Fox, Macalester College; Emily Shepard, Central Carolina
Community College.

Also, thank you to the individuals at Cengage who helped to assure that the content of
all data and solution files used for this text were correct and accurate: John Freitas, MQA
Project Leader, and Danielle Shaw, MQA Tester.

Finally, thanks to several other people whose work made this book possible: Kate Mason,
Associate Product Manager, Cengage; Natalie Pashoukos, Senior Content Developer,
Cengage; and Jennifer Feltri-George, Senior Content Project Manager, Cengage. I also
want to thank Scarlett Lindsay for her superb copyediting of the book and Chandrasekar
Subramanian for an excellent job managing the paging of the project.

Dedication
To my good friends, Lesley and David Novack
Kenneth A. Lambert

Lexington, VA

pr e fa c eDedication﻿

xix

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

C h a p t e r 1
Introduction

After completing this chapter, you will be able to

Describe the basic features of an algorithm

Explain how hardware and software collaborate in
a computer’s architecture

Summarize a brief history of computing

Compose and run a simple Python program

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

2

  IntroductionC h a p t e r 1

As a reader of this book, you almost certainly have played a video game and listened to
digital music. It’s likely that you have watched a digital movie after preparing a snack in a
microwave oven. Chances are that today you will make a phone call, send or receive a text
message, take a photo, or consult your favorite social network on a cell phone. You and your
friends have most likely used a desktop computer or a laptop computer to do some signifi-
cant coursework in high school or college.

These activities rely on something in common: computer technology. Computer technol-
ogy is almost everywhere, not only in our homes but also in our schools and in the places
where we work and play. Computer technology plays an important role in entertainment,
education, medicine, manufacturing, communications, government, and commerce. It
has been said that we have digital lifestyles and that we live in an information age with an
information-based economy. Some people even claim that nature itself performs computa-
tions on information structures present in DNA and in the relationships among subatomic
particles.

It’s difficult to imagine our world without computation, although we don’t think about the
actual computers very much. It’s also hard to imagine that the human race did without
computer technology for thousands of years, and that computer technology has pervaded
the world as we know it for only the past 30 years or so.

In the following chapters, you will learn about computer science, which is the study of com-
putation that has made this new technology and this new world possible. You will also learn
how to use computers effectively and appropriately to enhance your own life and the lives
of others.

Two Fundamental Ideas of Computer Science:
Algorithms and Information Processing
Like most areas of study, computer science focuses on a broad set of interrelated ideas.
Two of the most basic ones are algorithms and information processing. In this section,
these ideas are introduced in an informal way. We will examine them in more detail
in later chapters.

Algorithms
People computed long before the invention of modern computing devices, and many con-
tinue to use computing devices that we might consider primitive. For example, consider
how merchants made change for customers in marketplaces before the existence of credit
cards, pocket calculators, or cash registers. Making change can be a complex activity. It
probably took you some time to learn how to do it, and it takes some mental effort to get it
right every time. Let’s consider what’s involved in this process.

According to one method, the first step is to compute the difference between the pur-
chase price and the amount of money that the customer gives the merchant. The result of

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

3

Two Fundamental Ideas of Computer Science

this calculation is the total amount that the merchant must return to the purchaser. For
example, if you buy a dozen eggs at the farmers’ market for $2.39 and you give the farmer a
$10 bill, she should return $7.61 to you. To produce this amount, the merchant selects the
appropriate coins and bills that, when added to $2.39, make $10.00.

According to another method, the merchant starts with the purchase price and goes toward
the amount given. First, coins are selected to bring the price to the next dollar amount (in
this case, 5$0.61 3 dimes, 1 nickel, and 4 pennies), then dollars are selected to bring the
price to the next 5-dollar amount (in this case, $2), and then, in this case, a $5 bill completes
the transaction. As you will see in this book, there can be many possible methods or algo-
rithms that solve the same problem, and the choice of the best one is a skill you will acquire
with practice.

Few people can subtract three-digit numbers without resorting to some manual aids,
such as pencil and paper. As you learned in grade school, you can carry out subtraction
with pencil and paper by following a sequence of well-defined steps. You have probably
done this many times but never made a list of the specific steps involved. Making such
lists to solve problems is something computer scientists do all the time. For example, the
following list of steps describes the process of subtracting two numbers using a pencil
and paper:

Step 1	 Write down the two numbers, with the larger number above the smaller num-
ber and their digits aligned in columns from the right.

Step 2	 Assume that you will start with the rightmost column of digits and work your
way left through the various columns.

Step 3	 Write down the difference between the two digits in the current column
of digits, borrowing a 1 from the top number’s next column to the left if
necessary.

Step 4	 If there is no next column to the left, stop. Otherwise, move to the next col-
umn to the left, and go back to Step 3.

If the computing agent (in this case a human being) follows each of these simple steps cor-
rectly, the entire process results in a correct solution to the given problem. We assume in
Step 3 that the agent already knows how to compute the difference between the two digits
in any given column, borrowing if necessary.

To make change, most people can select the combination of coins and bills that represent
the correct change amount without any manual aids, other than the coins and bills. But the
mental calculations involved can still be described in a manner similar to the preceding
steps, and we can resort to writing them down on paper if there is a dispute about the cor-
rectness of the change.

The sequence of steps that describes each of these computational processes is called an
algorithm. Informally, an algorithm is like a recipe. It provides a set of instructions that
tells us how to do something, such as make change, bake bread, or put together a piece of
furniture. More precisely, an algorithm describes a process that ends with a solution to a

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

4

  IntroductionC h a p t e r 1

problem. The algorithm is also one of the fundamental ideas of computer science. An algo-
rithm has the following features:

1.	 An algorithm consists of a finite number of instructions.

2.	 Each individual instruction in an algorithm is well defined. This means that the
action described by the instruction can be performed effectively or be executed
by a computing agent. For example, any computing agent capable of arithmetic can
compute the difference between two digits. So an algorithmic step that says “com-
pute the difference between two digits” would be well defined. On the other hand,
a step that says “divide a number by 0” is not well defined, because no computing
agent could carry it out.

3.	 An algorithm describes a process that eventually halts after arriving at a solution to
a problem. For example, the process of subtraction halts after the computing agent
writes down the difference between the two digits in the leftmost column of digits.

4.	 An algorithm solves a general class of problems. For example, an algorithm that
describes how to make change should work for any two amounts of money whose
difference is greater than or equal to $0.00.

Creating a list of steps that describe how to make change might not seem like a major
accomplishment to you. But the ability to break a task down into its component parts is one
of the main jobs of a computer programmer. Once we write an algorithm to describe a par-
ticular type of computation, we can build a machine to do the computing. Put another way,
if we can develop an algorithm to solve a problem, we can automate the task of solving the
problem. You might not feel compelled to write a computer program to automate the task
of making change, because you can probably already make change yourself fairly easily. But
suppose you needed to do a more complicated task—such as sorting a list of 100 names. In
that case, a computer program would be very handy.

Computers can be designed to run a small set of algorithms for performing specialized tasks
such as operating a microwave oven. But we can also build computers, like the one on your
desktop, that are capable of performing a task described by any algorithm. These computers
are truly general-purpose problem-solving machines. They are unlike any machines we have
ever built before, and they have formed the basis of the completely new world in which we live.

Later in this book, we introduce a notation for expressing algorithms and some suggestions
for designing algorithms. You will see that algorithms and algorithmic thinking are critical
underpinnings of any computer system.

Information Processing
Since human beings first learned to write several thousand years ago, they have pro-
cessed information. Information itself has taken many forms in its history, from the marks
impressed on clay tablets in ancient Mesopotamia; to the first written texts in ancient

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

5

Two Fundamental Ideas of Computer Science

Greece; to the printed words in the books, newspapers, and magazines mass-produced
since the European Renaissance; to the abstract symbols of modern mathematics and sci-
ence used during the past 350 years. Only recently, however, have human beings developed
the capacity to automate the processing of information by building computers. In the
modern world of computers, information is also commonly referred to as data. But what is
information?

Like mathematical calculations, information processing can be described with algorithms.
In our earlier example of making change, the subtraction steps involved manipulating sym-
bols used to represent numbers and money. In carrying out the instructions of any algo-
rithm, a computing agent manipulates information. The computing agent starts with some
given information (known as input), transforms this information according to well-defined
rules, and produces new information, known as output.

It is important to recognize that the algorithms that describe information processing can
also be represented as information. Computer scientists have been able to represent algo-
rithms in a form that can be executed effectively and efficiently by machines. They have
also designed real machines, called electronic digital computers, which are capable of exe-
cuting algorithms.

Computer scientists more recently discovered how to represent many other things, such as
images, music, human speech, and video, as information. Many of the media and commu-
nication devices that we now take for granted would be impossible without this new kind
of information processing. We examine many of these achievements in more detail in later
chapters.

Exercises
These short end-of-section exercises are intended to stimulate your thinking about
computing.

1.	 List three common types of computing agents.

2.	 Write an algorithm that describes the second part of the process of making change
(counting out the coins and bills).

3.	 Write an algorithm that describes a common task, such as baking a cake or operat-
ing a DVD player.

4.	 Describe an instruction that is not well defined and thus could not be included as a
step in an algorithm. Give an example of such an instruction.

5.	 In what sense is a laptop computer a general-purpose problem-solving machine?

6.	 List four devices that use computers and describe the information that they process.
(Hint: Think of the inputs and outputs of the devices.)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

6

  IntroductionC h a p t e r 1

The Structure of a Modern Computer System
We now give a brief overview of the structure of modern computer systems. A modern
computer system consists of hardware and software. Hardware consists of the physical
devices required to execute algorithms. Software is the set of these algorithms, represented
as programs, in particular programming languages. In the discussion that follows, we
focus on the hardware and software found in a typical desktop computer system, although
similar components are also found in other computer systems, such as handheld devices
and ATMs (automatic teller machines).

Computer Hardware
The basic hardware components of a computer are memory, a central processing unit
(CPU), and a set of input/output devices, as shown in Figure 1-1.

Figure 1-1  Hardware components of a modern computer system

Input device Output device

CPU

Memory

Human users primarily interact with the input and output devices. The input devices
include a keyboard, a mouse, a trackpad, a microphone, and a touchscreen. Common out-
put devices include a monitor and speakers. Computers can also communicate with the
external world through various ports that connect them to networks and to other devices
such as smartphones and digital cameras. The purpose of most input devices is to convert
information that human beings deal with, such as text, images, and sounds, into informa-
tion for computational processing. The purpose of most output devices is to convert the
results of this processing back to human-usable form.

Computer memory is set up to represent and store information in electronic form. Specifi-
cally, information is stored as patterns of binary digits (1s and 0s). To understand how this
works, consider a basic device such as a light switch, which can only be in one of two states,
on or off. Now suppose there is a bank of switches that control 16 small lights in a row. By
turning the switches off or on, we can represent any pattern of 16 binary digits (1s and 0s)
as patterns of lights that are on or off. As we will see later in this book, computer scientists
have discovered how to represent any information, including text, images, and sound, in
binary form.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

7

The Structure of a Modern Computer System

Now, suppose there are 8 of these groups of 16 lights. We can select any group of lights and
examine or change the state of each light within that collection. We have just developed a
tiny model of computer memory. The memory has 8 cells, each of which can store 16 bits
of binary information. A diagram of this model, in which the memory cells are filled with
binary digits, is shown in Figure 1-2. This memory is also sometimes called primary or
internal or random access memory (RAM).

Figure 1-2  A model of computer memory

1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1
1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1
1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1
1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1
0 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1
1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0

Cell 7
Cell 6
Cell 5
Cell 4
Cell 3
Cell 2
Cell 1
Cell 0

The information stored in memory can represent any type of data, such as numbers, text,
images, or sound, or the instructions of a program. We can also store in memory an algorithm
encoded as binary instructions for the computer. Once the information is stored in memory, we
typically want to do something with it—that is, we want to process it. The part of a computer
that is responsible for processing data is the central processing unit (CPU). This device, which
is also sometimes called a processor, consists of electronic switches arranged to perform sim-
ple logical, arithmetic, and control operations. The CPU executes an algorithm by fetching its
binary instructions from memory, decoding them, and executing them. Executing an instruc-
tion might involve fetching other binary information—the data—from memory as well.

The processor can locate data in a computer’s primary memory very quickly. However, these
data exist only as long as electric power comes into the computer. If the power fails or is turned
off, the data in primary memory are lost. Clearly, a more permanent type of memory is needed
to preserve data. This more permanent type of memory is called external or secondary
memory, and it comes in several forms. Magnetic storage media, such as tapes and hard
disks, allow bit patterns to be stored as patterns on a magnetic field. Semiconductor storage
media, such as flash memory sticks, perform much the same function with a different technol-
ogy, as do optical storage media, such as CDs and DVDs. Some of these secondary storage
media can hold much larger quantities of information than the internal memory of a computer.

Computer Software
You have learned that a computer is a general-purpose problem-solving machine. To
solve any computable problem, a computer must be capable of executing any algorithm.
Because it is impossible to anticipate all of the problems for which there are algorithmic
solutions, there is no way to “hardwire” all potential algorithms into a computer’s

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

8

  IntroductionC h a p t e r 1

hardware. Instead, we build some basic operations into the hardware’s processor and
require any algorithm to use them. The algorithms are converted to binary form and then
loaded, with their data, into the computer’s memory. The processor can then execute the
algorithms’ instructions by running the hardware’s more basic operations.

Any programs that are stored in memory so that they can be executed later are called soft-
ware. A program stored in computer memory must be represented in binary digits, which
is also known as machine code. Loading machine code into computer memory one digit at
a time would be a tedious, error-prone task for human beings. It would be convenient if we
could automate this process to get it right every time. For this reason, computer scientists
have developed another program, called a loader, to perform this task. A loader takes a set
of machine language instructions as input and loads them into the appropriate memory
locations. When the loader is finished, the machine language program is ready to execute.
Obviously, the loader cannot load itself into memory, so this is one of those algorithms that
must be hardwired into the computer.

Now that a loader exists, we can load and execute other programs that make the develop-
ment, execution, and management of programs easier. This type of software is called system
software. The most important example of system software is a computer’s operating system.
You are probably already familiar with at least one of the most popular operating systems,
such as Linux, Apple’s macOS, and Microsoft’s Windows. An operating system is responsible
for managing and scheduling several concurrently running programs. It also manages the
computer’s memory, including the external storage, and manages communications between
the CPU, the input/output devices, and other computers on a network. An important part
of any operating system is its file system, which allows human users to organize their data
and programs in permanent storage. Another important function of an operating system is
to provide user interfaces—that is, ways for the human user to interact with the computer’s
software. A terminal-based interface accepts inputs from a keyboard and displays text out-
put on a monitor screen. A graphical user interface (GUI) organizes the monitor screen
around the metaphor of a desktop, with windows containing icons for folders, files, and appli-
cations. This type of user interface also allows the user to manipulate images with a pointing
device such as a mouse. A touchscreen interface supports more direct manipulation of
these visual elements with gestures such as pinches and swipes of the user’s fingers. Devices
that respond verbally and in other ways to verbal commands are also becoming widespread.

Another major type of software is called applications software, or simply apps. An
application is a program that is designed for a specific task, such as editing a document or
displaying a Web page. Applications include Web browsers, word processors, spreadsheets,
database managers, graphic design packages, music production systems, and games, among
millions of others. As you begin learning to write computer programs, you will focus on
writing simple applications.

As you have learned, computer hardware can execute only instructions that are written in
binary form—that is, in machine language. Writing a machine language program, however,
would be an extremely tedious, error-prone task. To ease the process of writing computer
programs, computer scientists have developed high-level programming languages for
expressing algorithms. These languages resemble English and allow the author to express
algorithms in a form that other people can understand.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

9

A Not-So-Brief History of Computing Systems

A programmer typically starts by writing high-level language statements in a text editor.
The programmer then runs another program called a translator to convert the high-level
program code into executable code. Because it is possible for a programmer to make gram-
matical mistakes even when writing high-level code, the translator checks for syntax errors
before it completes the translation process. If it detects any of these errors, the translator
alerts the programmer via error messages. The programmer then has to revise the program.
If the translation process succeeds without a syntax error, the program can be executed
by the run-time system. The run-time system might execute the program directly on the
hardware or run yet another program called an interpreter or virtual machine to execute
the program. Figure 1-3 shows the steps and software used in the coding process.

Figure 1-3  Software used in the coding process

Create high-level
language program

User inputs

Other error messages

Syntax error messages

Program
outputs

Text editor Translator

Run-time
system

Exercises

1.	 List two examples of input devices and two examples of output devices.

2.	 What does the central processing unit (CPU) do?

3.	 How is information represented in hardware memory?

4.	 What is the difference between a terminal-based interface and a graphical user interface?

5.	 What role do translators play in the programming process?

A Not-So-Brief History of Computing Systems
Now that we have in mind some of the basic ideas of computing and computer systems,
let’s take a moment to examine how they have taken shape in history. Figure 1-4 summa-
rizes some of the major developments in the history of computing. The discussion that
follows provides more details about these developments.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

10

  IntroductionC h a p t e r 1

Approximate
Dates Major Developments

Before 1800 •	 Mathematicians discover and use algorithms
•	 Abacus used as a calculating aid
•	 First mechanical calculators built by Pascal and Leibniz

19th Century •	 Jacquard’s loom
•	 Babbage’s Analytical Engine
•	 Boole’s system of logic
•	 Hollerith’s punch card machine

1930s •	 Turing publishes results on computability
•	 Shannon’s theory of information and digital switching

1940s •	 First electronic digital computers

1950s •	 First symbolic programming languages
•	 Transistors make computers smaller, faster, more durable, and less

expensive
•	 Emergence of data processing applications

1960–1975 •	 Integrated circuits accelerate the miniaturization of hardware
•	 First minicomputers
•	 Time-sharing operating systems
•	 Interactive user interfaces with keyboard and monitor
•	 Proliferation of high-level programming languages
•	 Emergence of a software industry and the academic study of

computer science

1975–1990 •	 First microcomputers and mass-produced personal computers
•	 Graphical user interfaces become widespread
•	 Networks and the Internet

1990–2000 •	 Optical storage for multimedia applications, images, sound,
and video

•	 World Wide Web, Web applications, and e-commerce
•	 Laptops

2000–present •	 Wireless computing, smartphones, and mobile applications
•	 Computers embedded and networked in an enormous variety of cars,

household appliances, and industrial equipment
•	 Social networking, use of big data in finance and commerce
•	 Digital streaming of music and video

Figure 1-4  Summary of major developments in the history of computing

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

11

A Not-So-Brief History of Computing Systems

Before Electronic Digital Computers
Ancient mathematicians developed the first algorithms. The word “algorithm” comes from
the name of a Persian mathematician, Muhammad ibn Musa al-Khwarizmi, who wrote
several mathematics textbooks in the ninth century. About 2,300 years ago, the Greek
mathematician Euclid, the inventor of geometry, developed an algorithm for computing the
greatest common divisor of two numbers.

A device known as the abacus also appeared in ancient times. The abacus helped people
perform simple arithmetic. Users calculated sums and differences by sliding beads on a grid
of wires (see Figure 1-5a). The configuration of beads on the abacus served as the data.

[a
] A

ba
cu

s I
m

ag
e

©
 L

im
 C

he
w

H
ow

, 2
00

8.
 U

se
d

un
de

r
lic

en
se

 fr
om

 S
hu

tte
rs

to
ck

.c
om

.

Figure 1-5  Some early computing devices

[b
] P

as
ca

l’s
 C

al
cu

la
to

r I
m

ag
e

©
 M

ar
y

Ev
an

s/
Ph

ot
o

Re
se

ar
ch

er
s,

In
c.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

12

  IntroductionC h a p t e r 1

In the seventeenth century, the French mathematician Blaise Pascal (1623–1662) built
one of the first mechanical devices to automate the process of addition (see Figure 1-5b).
The addition operation was embedded in the configuration of gears within the machine.
The user entered the two numbers to be added by rotating some wheels. The sum or out-
put number appeared on another rotating wheel. The German mathematician Gottfried
Wilhelm Leibniz (1646–1716) built another mechanical calculator that included other
arithmetic functions such as multiplication. Leibniz, who with Newton also invented cal-
culus, went on to propose the idea of computing with symbols as one of our most basic and
general intellectual activities. He argued for a universal language in which one could solve
any problem by calculating.

Early in the nineteenth century, the French engineer Joseph-Marie Jacquard (1752–1834)
designed and constructed a machine that automated the process of weaving (see Figure 1-5c).
Until then, each row in a weaving pattern had to be set up by hand, a quite tedious, error-
prone process. Jacquard’s loom was designed to accept input in the form of a set of punched
cards. Each card described a row in a pattern of cloth. Although it was still an entirely
mechanical device, Jacquard’s loom possessed something that previous devices had lacked—
the ability to execute an algorithm automatically. The set of cards expressed the algorithm or
set of instructions that controlled the behavior of the loom. If the loom operator wanted to
produce a different pattern, he just had to run the machine with a different set of cards.

[c
] J

ac
qu

ar
d’

s L
oo

m
 Im

ag
e

©
 R

og
er

 V
io

lle
t/

G
et

ty
 Im

ag
es

Figure 1-5  (Continued)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

13

A Not-So-Brief History of Computing Systems

The British mathematician Charles Babbage (1792–1871) took the concept of a program-
mable computer a step further by designing a model of a machine that, conceptually, bore
a striking resemblance to a modern general-purpose computer. Babbage conceived his
machine, which he called the Analytical Engine, as a mechanical device. His design called
for four functional parts: a mill to perform arithmetic operations, a store to hold data and
a program, an operator to run the instructions from punched cards, and an output to pro-
duce the results on punched cards. Sadly, Babbage’s computer was never built. The project
perished for lack of funds near the time when Babbage himself passed away.

In the last two decades of the nineteenth century, a U.S. Census Bureau statistician named
Herman Hollerith (1860–1929) developed a machine that automated data processing for
the U.S. Census. Hollerith’s machine, which had the same component parts as Babbage’s
Analytical Engine, simply accepted a set of punched cards as input and then tallied and
sorted the cards. His machine greatly shortened the time it took to produce statistical
results on the U.S. population. Government and business organizations seeking to automate
their data processing quickly adopted Hollerith’s punched card machines. Hollerith was
also one of the founders of a company that eventually became IBM (International Business
Machines).

Also in the nineteenth century, the British secondary school teacher George Boole
(1815–1864) developed a system of logic. This system consisted of a pair of values, TRUE
and FALSE, and a set of three primitive operations on these values, AND, OR, and NOT.
Boolean logic eventually became the basis for designing the electronic circuitry to process
binary information.

A half a century later, in the 1930s, the British mathematician Alan Turing (1912–1954)
explored the theoretical foundations and limits of algorithms and computation. Turing’s
essential contributions were to develop the concept of a universal machine that could be
specialized to solve any computable problems, and to demonstrate that some problems are
unsolvable by computers.

The First Electronic Digital Computers (1940–1950)
In the late 1930s, Claude Shannon (1916–2001), a mathematician and electrical engineer at
MIT, wrote a classic paper titled “A Symbolic Analysis of Relay and Switching Circuits.” In
this paper, he showed how operations and information in other systems, such as arithmetic,
could be reduced to Boolean logic and then to hardware. For example, if the Boolean val-
ues TRUE and FALSE were written as the binary digits 1 and 0, one could write a sequence
of logical operations that computes the sum of two strings of binary digits. All that was
required to build an electronic digital computer was the ability to represent binary digits as
on/off switches and to represent the logical operations in other circuitry.

The needs of the combatants in World War II pushed the development of computer hard-
ware into high gear. Several teams of scientists and engineers in the United States, England,
and Germany independently created the first generation of general-purpose digital elec-
tronic computers during the 1940s. All of these scientists and engineers used Shannon’s
innovation of expressing binary digits and logical operations in terms of electronic

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

14

  IntroductionC h a p t e r 1

switching devices. Among these groups was a team at Harvard University under the direc-
tion of Howard Aiken. Their computer, called the Mark I, became operational in 1944 and
did mathematical work for the U.S. Navy during the war. The Mark I was considered an
electromechanical device, because it used a combination of magnets, relays, and gears to
store and process data.

Another team under J. Presper Eckert and John Mauchly, at the University of Pennsylvania,
produced a computer called the ENIAC (Electronic Numerical Integrator and Calculator).
The ENIAC calculated ballistics tables for the artillery of the U.S. Army toward the end of
the war. Because the ENIAC used entirely electronic components, it was almost a thousand
times faster than the Mark I.

Two other electronic digital computers were completed a bit earlier than the ENIAC. They
were the ABC (Atanasoff-Berry Computer), built by John Atanasoff and Clifford Berry at
Iowa State University in 1942, and the Colossus, constructed by a group working under
Alan Turing in England in 1943. The ABC was created to solve systems of simultaneous
linear equations. Although the ABC’s function was much narrower than that of the ENIAC,
the ABC is now regarded as the first electronic digital computer. The Colossus, whose exis-
tence had been top secret until recently, was used to crack the powerful German Enigma
code during the war.

The first electronic digital computers, sometimes called mainframe computers, consisted
of vacuum tubes, wires, and plugs, and filled entire rooms. Although they were much
faster than people at computing, by our own current standards, they were extraordinarily
slow and prone to breakdown. Moreover, the early computers were extremely difficult to
program. To enter or modify a program, a team of workers had to rearrange the connec-
tions among the vacuum tubes by unplugging and replugging the wires. Each program was
loaded by literally hardwiring it into the computer. With thousands of wires involved, it was
easy to make a mistake.

The memory of these first computers stored only data, not the program that processed
the data. As we have seen, the idea of a stored program first appeared 100 years earlier in
Jacquard’s loom and in Babbage’s design for the Analytical Engine. In 1946, John von Neu-
mann realized that the instructions of the programs could also be stored in binary form in
an electronic digital computer’s memory. His research group at Princeton developed one of
the first modern stored-program computers.

Although the size, speed, and applications of computers have changed dramatically since
those early days, the basic architecture and design of the electronic digital computer have
remained remarkably stable.

The First Programming Languages (1950–1965)
The typical computer user now runs many programs, made up of millions of lines of code,
that perform what would have seemed like magical tasks 30 or 40 years ago. But the first
digital electronic computers had no software as we think of it today. The machine code for
a few relatively simple and small applications had to be loaded by hand. As the demand for

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

15

A Not-So-Brief History of Computing Systems

larger and more complex applications grew, so did the need for tools to expedite the pro-
gramming process.

In the early 1950s, computer scientists realized that a symbolic notation could be used
instead of machine code, and the first assembly languages appeared. The programmers
would enter mnemonic codes for operations, such as ADD and OUTPUT, and for data
variables, such as SALARY and RATE, at a keypunch machine. The keystrokes punched
a set of holes in a small card for each instruction. The programmers then carried their
stacks of cards to a system operator, who placed them in a device called a card reader. This
device translated the holes in the cards to patterns in the computer’s memory. A program
called an assembler then translated the application programs in memory to machine code,
and they were executed.

Programming in assembly language was a definite improvement over programming in
machine code. The symbolic notation used in assembly languages was easier for people
to read and understand. Another advantage was that the assembler could catch some
programming errors before the program was actually executed. However, the symbolic
notation still appeared a bit arcane when compared with the notations of conventional
mathematics. To remedy this problem, John Backus, a programmer working for IBM, devel-
oped FORTRAN (Formula Translation Language) in 1954. Programmers, many of whom
were mathematicians, scientists, and engineers, could now use conventional algebraic nota-
tion. FORTRAN programmers still entered their programs on a keypunch machine, but the
computer executed them after they were translated to machine code by a compiler.

FORTRAN was considered ideal for numerical and scientific applications. However,
expressing the kind of data used in data processing—in particular, textual information—
was difficult. For example, FORTRAN was not practical for processing information that
included people’s names, addresses, Social Security numbers, and the financial data of
corporations and other institutions. In the early 1960s, a team led by Rear Admiral Grace
Murray Hopper developed COBOL (Common Business Oriented Language) for data
processing in the U.S. government. Banks, insurance companies, and other institutions
were quick to adopt its use in data-processing applications.

Also in the late 1950s and early 1960s, John McCarthy, a computer scientist at MIT,
developed a powerful and elegant notation called LISP (List Processing) for expressing
computations. Based on a theory of recursive functions (a subject covered in Chapter 6),
LISP captured the essence of symbolic information processing. A student of McCarthy’s,
Steve “Slug” Russell, coded the first interpreter for LISP in 1960. The interpreter accepted
LISP expressions directly as inputs, evaluated them, and printed their results. In its early
days, LISP was used primarily for laboratory experiments in an area of research known as
artificial intelligence. More recently, LISP has been touted as an ideal language for solving
any difficult or complex problems.

Although they were among the first high-level programming languages, FORTRAN and
LISP have survived for decades. They have undergone many modifications to improve their
capabilities and have served as models for the development of many other programming
languages. COBOL, by contrast, is no longer in active use but has survived mainly in the
form of legacy programs that must still be maintained.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

16

  IntroductionC h a p t e r 1

These new, high-level programming languages had one feature in common: abstraction. In
science or any other area of enquiry, an abstraction allows human beings to reduce complex
ideas or entities to simpler ones. For example, a set of ten assembly language instructions
might be replaced with an equivalent algebraic expression that consists of only five sym-
bols in FORTRAN. Put another way, any time you can say more with less, you are using an
abstraction. The use of abstraction is also found in other areas of computing, such as hard-
ware design and information architecture. The complexities don’t actually go away, but the
abstractions hide them from view. The suppression of distracting complexity with abstrac-
tions allows computer scientists to conceptualize, design, and build ever more sophisticated
and complex systems.

Integrated Circuits, Interaction, and Timesharing (1965–1975)
In the late 1950s, the vacuum tube gave way to the transistor as the mechanism for imple-
menting the electronic switches in computer hardware. As a solid-state device, the transis-
tor was much smaller, more reliable, more durable, and less expensive to manufacture than
a vacuum tube. Consequently, the hardware components of computers generally became
smaller in physical size, more reliable, and less expensive. The smaller and more numerous
the switches became, the faster the processing and the greater the capacity of memory to
store information.

The development of the integrated circuit in the early 1960s allowed computer engineers
to build ever smaller, faster, and less-expensive computer hardware components. They
perfected a process of photographically etching transistors and other solid-state compo-
nents onto very thin wafers of silicon, leaving an entire processor and memory on a single
chip. In 1965, Gordon Moore, one of the founders of the computer chip manufacturer Intel,
made a prediction that came to be known as Moore’s Law. This prediction states that the
processing speed and storage capacity of hardware will increase and its cost will decrease
by approximately a factor of 2 every 18 months. This trend has held true for more than
50 years. For example, in 1965 there were about 50 electrical components on a chip,
whereas by 2000, a chip could hold over 40 million components. Without the integrated
circuit, men would not have gone to the moon in 1969, and we would not have the power-
ful and inexpensive handheld devices that we now use on a daily basis.

Minicomputers the size of a large office desk appeared in the 1960s. The means of develop-
ing and running programs also were changing. Until then, a computer was typically located
in a restricted area with a single human operator. Programmers composed their programs
on keypunch machines in another room or building. They then delivered their stacks of
cards to the computer operator, who loaded them into a card reader, and compiled and
ran the programs in sequence on the computer. Programmers then returned to pick up the
output results, in the form of new stacks of cards or printouts. This mode of operation,
also called batch processing, might cause a programmer to wait days for results, including
error messages.

The increases in processing speed and memory capacity enabled computer scientists to develop
the first time-sharing operating system. John McCarthy, the creator of the programming

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

17

A Not-So-Brief History of Computing Systems

language LISP, recognized that a program could automate many of the functions performed by
the human system operator. When memory, including magnetic secondary storage, became
large enough to hold several users’ programs at the same time, they could be scheduled for
concurrent processing. Each process associated with a program would run for a slice of time
and then yield the CPU to another process. All of the active processes would repeatedly cycle
for a turn with the CPU until they finished.

Several users could now run their own programs simultaneously by entering commands
at separate terminals connected to a single computer. As processor speeds continued to
increase, each user gained the illusion that a time-sharing computer system belonged
entirely to him or her.

By the late 1960s, programmers could enter program input at a terminal and also see pro-
gram output immediately displayed on a CRT (Cathode Ray Tube) screen. Compared to its
predecessors, this new computer system was both highly interactive and much more acces-
sible to its users.

Many relatively small and medium-sized institutions, such as universities, were now able to
afford computers. These machines were used not only for data processing and engineering
applications but also for teaching and research in the new and rapidly growing field of com-
puter science.

Personal Computing and Networks (1975–1990)
In the mid-1960s, Douglas Engelbart, a computer scientist working at the Stanford
Research Institute (SRI), first saw one of the ultimate implications of Moore’s Law: even-
tually, perhaps within a generation, hardware components would become small enough
and affordable enough to mass produce an individual computer for every human being.
What form would these personal computers take, and how would their owners use them?
Two decades earlier, in 1945, Engelbart had read an article in The Atlantic Monthly titled
“As We May Think” that had already posed this question and offered some answers. The
author, Vannevar Bush, a scientist at MIT, predicted that computing devices would serve as
repositories of information and, ultimately, of all human knowledge. Owners of computing
devices would consult this information by browsing through it with pointing devices, and
they would contribute information to the knowledge base almost at will. Engelbart agreed
that the primary purpose of the personal computer would be to augment the human intel-
lect, and he spent the rest of his career designing computer systems that would accomplish
this goal.

During the late 1960s, Engelbart built the first pointing device, or mouse. He also designed
software to represent windows, icons, and pull-down menus on a bit-mapped display
screen. He demonstrated that a computer user could not only enter text at the keyboard
but could also directly manipulate the icons that represent files, folders, and computer
applications on the screen.

But for Engelbart, personal computing did not mean computing in isolation. He partici-
pated in the first experiment to connect computers in a network, and he believed that

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

18

  IntroductionC h a p t e r 1

soon people would use computers to communicate, share information, and collaborate on
team projects.

Engelbart developed his first experimental system, which he called NLS (oNLine System)
Augment, on a minicomputer at SRI. In the early 1970s, he moved to Xerox PARC (Palo
Alto Research Center) and worked with a team under Alan Kay to develop the first desktop
computer system. Called the Alto, this system had many of the features of Engelbart’s Aug-
ment, as well as e-mail and a functioning hypertext (a forerunner of the World Wide Web).
Kay’s group also developed a programming language called Smalltalk, which was designed
to create programs for the new computer and to teach programming to children. Kay’s goal
was to develop a personal computer the size of a large notebook, which he called the Dyna-
book. Unfortunately for Xerox, the company’s management had more interest in photocopy
machines than in the work of Kay’s visionary research group. However, a young entrepre-
neur named Steve Jobs visited the Xerox lab and saw the Alto in action. Almost a decade
later, in 1984, Apple Computer, the now-famous company founded by Steve Jobs, brought
forth the Macintosh, the first successful mass-produced personal computer with a graphical
user interface.

While Kay’s group was busy building the computer system of the future in their research
lab, dozens of hobbyists gathered near San Francisco to found the Homebrew Computer
Club, the first personal computer users group. They met to share ideas, programs, hard-
ware, and applications for personal computing. The first mass-produced personal com-
puter, the Altair, appeared in 1975. The Altair contained Intel’s 8080 processor, the first
microprocessor chip. But from the outside, the Altair looked and behaved more like a
miniature version of the early computers than the Alto. Programs and their input had to
be entered by flipping switches, and output was displayed by a set of lights. However, the
Altair was small enough for personal computing enthusiasts to carry home, and Input/
Output devices eventually were invented to support the processing of text and sound.

The Osborne and the Kaypro were among the first mass-produced interactive personal
computers. They boasted tiny display screens and keyboards, with floppy disk drives for
loading system software, applications software, and users’ data files. Early personal com-
puting applications were word processors, spreadsheets, and games such as Pac-Man and
Spacewar!. These computers also ran CP/M (Control Program for Microcomputers), the
first PC-based operating system.

In the early 1980s a college dropout named Bill Gates and his partner Paul Allen built their
own operating system software, which they called MS-DOS (Microsoft Disk Operating
System). They then arranged a deal with the giant computer manufacturer IBM to sup-
ply MS-DOS for the new line of PCs that the company intended to mass produce. This
deal proved to be a very advantageous one for Gates’s company, Microsoft. Not only did
Microsoft receive a fee for each computer sold but it also got a head start on supplying
applications software that would run on its operating system. Brisk sales of the IBM PC
and its “clones” to individuals and institutions quickly made MS-DOS the world’s most
widely used operating system. Within a few years, Gates and Allen had become billionaires,
and within a decade, Gates had become the world’s richest man, a position he held for
13 straight years.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

19

A Not-So-Brief History of Computing Systems

Also in the 1970s, the U.S. government began to support the development of a network that
would connect computers at military installations and research universities. The first such
network, called ARPANET (Advanced Research Projects Agency Network), connected four
computers at SRI, UCLA (University of California at Los Angeles), UC Santa Barbara, and
the University of Utah. Bob Metcalfe, a researcher associated with Kay’s group at Xerox,
developed a software protocol called Ethernet for operating a network of computers. Ether-
net allowed computers to communicate in a local area network (LAN) within an organiza-
tion and also with computers in other organizations via a wide area network (WAN). By the
mid-1980s, the ARPANET had grown into what we now call the Internet, connecting com-
puters owned by large institutions, small organizations, and individuals all over the world.

Consultation, Communication, and E-Commerce (1990–2000)
In the 1990s, computer hardware costs continued to plummet, and processing speed and
memory capacity skyrocketed. Optical storage media, such as compact discs (CDs) and dig-
ital video discs (DVDs), were developed for mass storage. The digitizing and computational
processing of images, sound, and video became feasible and widespread. By the end of the
decade, entire movies were being shot or constructed and played back using digital devices.
Toy Story, the first full-length animated feature film produced entirely by a computer,
appeared in 1995. The capacity to create lifelike three-dimensional animations of whole
environments led to a new technology called virtual reality. New devices appeared, such as
flatbed scanners and digital cameras, which could be used along with the more traditional
microphone and speakers to support the input, digitizing, and output of almost any type of
information.

Desktop and laptop computers now not only perform useful work but also give their users
new means of personal expression. This decade saw the rise of computers as communi-
cation tools, with e-mail, instant messaging, bulletin boards, chat rooms, and the World
Wide Web.

Perhaps the most interesting story from this period concerns Tim Berners-Lee, the cre-
ator of the World Wide Web. In the late 1980s, Berners-Lee, a theoretical physicist doing
research at the CERN Institute in Geneva, Switzerland, began to develop some ideas for
using computers to share information. Computer engineers had been linking comput-
ers to networks for several years, and it was already common in research communities to
exchange files and send and receive e-mail around the world. However, the vast differences
in hardware, operating systems, file formats, and applications still made it difficult for users
who were not adept at programming to access and share this information. Berners-Lee was
interested in creating a common medium for sharing information that would be easy to use,
not only for scientists but also for any other person capable of manipulating a keyboard and
mouse and viewing the information on a monitor.

Berners-Lee was familiar with Vannevar Bush’s vision of a web-like consultation system,
Engelbart’s work on NLS Augment, and also with the first widely available hypertext sys-
tems. One of these systems, Apple Computer’s HyperCard, broadened the scope of hyper-
text to hypermedia. HyperCard allowed authors to organize not just text but also images,

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

20

  IntroductionC h a p t e r 1

sound, video, and executable applications into webs of linked information. However, a
HyperCard database sat only on standalone computers; the links could not carry Hyper-
Card data from one computer to another. Furthermore, the supporting software ran only
on Apple’s computers.

Berners-Lee realized that networks could extend the reach of a hypermedia system to any
computers connected to the net, making their information available worldwide. To preserve
its independence from particular operating systems, the new medium would need to have
universal standards for distributing and presenting the information. To ensure this neu-
trality and independence, no private corporation or individual government could own the
medium and dictate the standards.

Berners-Lee built the software for this new medium, which we now call the World Wide
Web, in 1992. The software used many of the existing mechanisms for transmitting
information over the Internet. People contribute information to the Web by publishing
files on computers known as Web servers. The Web server software on these computers is
responsible for answering requests for viewing the information stored on the Web server.
To view information on the Web, people use software called a Web browser. In response to
a user’s commands, a Web browser sends a request for information across the Internet to
the appropriate Web server. The server responds by sending the information back to the
browser’s computer, called a Web client, where it is displayed or rendered in the browser.

Although Berners-Lee wrote the first Web server and Web browser software, he made two
other even more important contributions. First, he designed a set of rules, called HTTP
(Hypertext Transfer Protocol), which allows any server and browser to talk to each other.
Second, he designed a language, HTML (Hypertext Markup Language), which allows
browsers to structure the information to be displayed on Web pages. He then made all of
these resources available to anyone for free.

Berners-Lee’s invention and gift of this universal information medium is a truly remark-
able achievement. Today there are millions of Web servers in operation around the world.
Anyone with the appropriate training and resources—companies, government, nonprofit
organizations, and private individuals—can start up a new Web server or obtain space on
one. Web browser software now runs not only on desktop and laptop computers but also
on handheld devices such as cell phones.

The growth of the Internet, the Web, and related software technologies also transformed
manufacturing, retail sales, and finance in the latter half of this decade. Computer-
supported automation dramatically increased productivity (while eliminating high-paying
jobs for many people). Firms established and refined the chains of production and distribu-
tion of goods, from raw materials to finished products to retail sales, which were increas-
ingly cost-effective and global in scope. Computer technology facilitated in large part the
spread of giant big-box stores like Walmart and the rise of online stores like Amazon (while
driving many local retailers out of business and creating a workforce of part-timers without
benefits).

The technology that made online stores pervasive, called Web applications, presented
a revolution in the way in which software services were delivered to people. Instead of
purchasing and running software for specific applications to run on one’s own computer,

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

21

A Not-So-Brief History of Computing Systems

one could obtain access to a specific service through a Web browser. The Web application
providing this service ran on a remote computer or server located at the provider’s place
of business. The Web browser played the role of the client, front end, or user interface for
millions of users to access the same server application for a given service. Client/server
applications had already been in use for e-mail, buttletin boards, and chat rooms on the
Internet, so this technology was simply deployed on the Web when it became available.

The final major development of this decade took place in a computer lab at Stanford Uni-
versity, where two graduate students, Sergey Brin and Larry Page, developed algorithms for
indexing and searching the Web. The outcome of their work added a new verb to the dic-
tionary: to Google. Today, much of the world’s economy and research relies upon Google’s
various search platforms.

Mobile Applications and Ubiquitous Computing (2000–present)
As the previous millennium drew to a close, computer hardware continued to shrink in
size and cost, and to provide more memory and greater processing speed. Laptop comput-
ers became smaller, faster, and more affordable to millions of people. The first handheld
computing devices, called personal digital assistants (PDAs) began to appear. Applications
for these devices were limited to simple video games, address books, to-do lists, and note
taking, and they had to be connected via cable to a laptop or desktop computer to transfer
information.

Meanwhile, cellular technology became widespread, with millions of people beginning
to use the first cell phones. These devices, which allowed calls to be made from a simple
mechanical keypad, were “dumb” when compared to today’s smartphones. But cellular
technology provided the basis for what was soon to come. At about the same time, wire-
less technology began to allow computers to communicate through the air to a base station
with an Internet connection. The conditions for mobile and ubiquitous computing were
now in place, awaiting only the kinds of devices and apps that would make them useful and
popular.

No one foresaw the types of devices and applications that mobile computing would make
possible better than Steve Jobs (the founder of Apple Computer, mentioned earlier). Dur-
ing the final dozen years of his life, Jobs brought forward from Apple several devices and
technologies that revolutionized not only computing but also the way in which people
engaged in cultural pursuits. The devices were the iPod, which began as a digital music
player but evolved into a handheld general-purpose computing device; the iPhone, which
added cellular phone technology to the iPod’s capabilities; and the iPad, which realized
Alan Kay’s dreams of a personal notebook computer. All of these devices utilized touch-
screen and voice recognition technology, which eliminated the need for bulky mechani-
cal keypads.

The associated software technologies came in the form of Apple’s iLife suite, a set of
applications that allowed users to organize various types of media (music, photos, video,
and books); and Apple’s iTunes, iBooks, and App Stores, vendor sites that allowed devel-
opers to market mobile media and applications. The Web browser that for a decade had

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

22

  IntroductionC h a p t e r 1

given users access to Web apps became just another type of app in the larger world of
mobile computing.

The new millennium has seen another major addition to the digital landscape: social net-
working applications. Although various Internet forums, such as chatrooms and bulletin
board systems, had been in use for a couple of decades, their use was not widespread. In
2004, Mark Zuckerberg, a student at Harvard University, changed all that when he launched
Facebook from his college dorm room. The application allowed students to join a network
to share their profiles, post messages, photos, and videos, and generally communicate as
“friends.” Participation in this network rapidly spread to include more than a billion users.
Social networking technology now includes many other variations, as exemplified by
LinkedIn, Twitter, Tumblr, Flickr, and Instagram.

We conclude this not-so-brief overview by mentioning the rise of a technology known
as big data. Governments, businesses, and hackers continually monitor Internet traffic
for various purposes. This “clickstream” can be “mined” to learn users’ preferences and
interests, to better serve them, to exploit them, or to spy on them. For example, an online
store might advertise a product on a person’s Facebook page immediately after that person
viewed a similar product while shopping online. Researchers in the field of data science
have created algorithms that process massive amounts of data to discover trends and pre-
dict outcomes.

To summarize this not so-brief history, one trend ties the last several decades of comput-
ing together: rapid progress. Processes and things have become automated, programmable,
smaller, faster, highly interconnected, and easily visualized and interpreted.

If you want to learn more about the history of computing, consult the sources listed at the
end of this chapter. We now turn to an introduction to programming in Python.

Getting Started with Python Programming
Guido van Rossum invented the Python programming language in the early 1990s. Python
is a high-level, general-purpose programming language for solving problems on modern
computer systems. The language and many supporting tools are free, and Python programs
can run on any operating system. You can download Python, its documentation, and related
materials from www.python.org. Instructions for downloading and installing Python are in
Appendix A. In this section, we show you how to create and run simple Python programs.

Running Code in the Interactive Shell
Python is an interpreted language, and you can run simple Python expressions and state-
ments in an interactive programming environment called the shell. The easiest way to open
a Python shell is to launch the IDLE (Integrated DeveLopment Environment). This is an
integrated program development environment that comes with the Python installation.
When you do this, a window named Python Shell opens. Figure 1-6 shows a shell window
on macOS. A shell window running on a Windows system or a Linux system should look
similar, if not identical, to this one. Note that the version of Python appearing in this

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

23

Getting Started with Python Programming

A shell window contains an opening message followed by the special symbol >>>, called
a shell prompt. The cursor at the shell prompt waits for you to enter a Python command.
Note that you can get immediate help by entering help at the shell prompt or selecting
Help from the window’s drop-down menu.

When you enter an expression or statement, Python evaluates it and displays its result, if
there is one, followed by a new prompt. The next few lines show the evaluation of several
expressions and statements.

>>> 3 + 4 # Simple arithmetic
7
>>> 3 # The value of 3 is
3
>>> "Python is really cool!" # Use a string for text
'Python is really cool!'
>>> name = "Ken Lambert" # Give a variable a value
>>> name # The value of name is
'Ken Lambert'
>>> "Hi there, " + name # Create some new text
'Hi there, Ken Lambert'
>>> print('Hi there') # Output some text
Hi there
>>> print("Hi there,", name) # Output two values
Hi there, Ken Lambert

Note the use of colors in the Python code. The IDLE programming environment uses color-
coding to help the reader pick out different elements in the code. In this example, the items
within quotation marks are in green, the names of standard functions are in purple, program
comments are in red, and the responses of IDLE to user commands are in blue. The remaining
code is in black. Table 1-1 lists the color-coding scheme used in all program code in this book.

Figure 1-6  Python shell window

screenshot is 3.6.1. This book assumes that you will use Python 3 rather than Python 2.
There are substantial differences between the two versions, and many examples used in this
book will not work with Python 2.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

24

  IntroductionC h a p t e r 1

The Python shell is useful for experimenting with short expressions or statements to learn
new features of the language, as well as for consulting documentation on the language. To
quit the Python shell, you can either select the window’s close box or press the Control1D
key combination.

The means of developing more complex and interesting programs are examined in the rest
of this section.

Input, Processing, and Output
Most useful programs accept inputs from some source, process these inputs, and then
finally output results to some destination. In terminal-based interactive programs, the input
source is the keyboard, and the output destination is the terminal display. The Python shell
itself is such a program; its inputs are Python expressions or statements. Its processing
evaluates these items. Its outputs are the results displayed in the shell.

The programmer can also force the output of a value by using the print function. The sim-
plest form for using this function looks like the following:
print(<expression>)

This example shows you the basic syntax (or grammatical rule) for using the print func-
tion. The angle brackets (the < and > symbols) enclose a type of phrase. In actual Python
code, you would replace this syntactic form, including the angle brackets, with an example
of that type of phrase. In this case, <expression> is shorthand for any Python expression,
such as 3 + 4.

Color Type of Element Examples

Black Inputs in the IDLE shell
Numbers
Operator symbols
Variable, function, and method references
Punctuation marks

67, +, name, y = factorial(x)

Blue Outputs in the IDLE shell
Function, class, and method names in
definitions

'Ken Lambert',
def factorial(n)

Green Strings "Ken Lambert"

Orange Keywords def, if, while

Purple Built-in function names abs, round, int

Red Program comments
Error messages in the IDLE shell

Output the results
ZeroDivisionError: division
by zero

Table 1-1	 Color-coding of Python program elements in IDLE

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

25

Getting Started with Python Programming

When running the print function, Python first evaluates the expression and then displays
its value. In the example shown earlier, print was used to display some text. The following
is another example:
>>> print ("Hi there")
Hi there

In this example, the text "Hi there" is the text that we want Python to display. In program-
ming terminology, this piece of text is referred to as a string. In Python code, a string is
always enclosed in quotation marks. However, the print function displays a string without
the quotation marks.

You can also write a print function that includes two or more expressions separated by
commas. In such a case, the print function evaluates the expressions and displays their
results, separated by single spaces, on one line. The syntax for a print statement with two
or more expressions looks like the following:
print(<expression>,..., <expression>)

Note the ellipsis (...) in this syntax example. The ellipsis indicates that you could include
multiple expressions after the first one. Whether it outputs one or multiple expressions, the
print function always ends its output with a newline. In other words, it displays the values
of the expressions, and then it moves the cursor to the next line on the console window.

To begin the next output on the same line as the previous one, you can place the expression
end = "", which says “end the line with an empty string instead of a newline,” at the end of
the list of expressions, as follows:
print(<expression>, end = "")

As you create programs in Python, you’ll often want your programs to ask the user for
input. You can do this by using the input function. This function causes the program to
stop and wait for the user to enter a value from the keyboard. When the user presses the
return or enter key, the function accepts the input value and makes it available to the pro-
gram. A program that receives an input value in this manner typically saves it for further
processing.

The following example receives an input string from the user and saves it for further pro-
cessing. The user’s input is in black.
>>> name = input("Enter your name: ")
Enter your name: Ken Lambert
>>> name
'Ken Lambert'
>>> print(name)
Ken Lambert
>>>

The input function does the following:

1.	 Displays a prompt for the input. In this example, the prompt is "Enter your name: ".

2.	 Receives a string of keystrokes, called characters, entered at the keyboard and
returns the string to the shell.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

26

  IntroductionC h a p t e r 1

How does the input function know what to use as the prompt? The text in parenthe-
ses, "Enter your name: ", is an argument for the input function that tells it what to
use for the prompt. An argument is a piece of information that a function needs to do
its work.

The string returned by the function in our example is saved by assigning it to the variable
name. The form of an assignment statement with the input function is the following:
<variable identifier> = input(<a string prompt>)

A variable identifier, or variable for short, is just a name for a value. When a variable
receives its value in an input statement, the variable then refers to this value. If the user
enters the name "Ken Lambert" in our last example, the value of the variable name can be
viewed as follows:
>>> name
'Ken Lambert'

The input function always builds a string from the user’s keystrokes and returns it to
the program. After inputting strings that represent numbers, the programmer must con-
vert them from strings to the appropriate numeric types. In Python, there are two type
conversion functions for this purpose, called int (for integers) and float (for floating-
point numbers). The next session inputs two integers and displays their sum:
>>> first = int(input("Enter the first number: "))
Enter the first number: 23
>>> second = int(input("Enter the second number: "))
Enter the second number: 44
>>> print("The sum is", first + second)
The sum is 67

Note that the int function is called with each result returned by the input function. The
two numbers are added, and then their sum is output. Table 1-2 summarizes the functions
introduced in this subsection.

Function What It Does

float(<a string of digits>) Converts a string of digits to a floating-point value.

int(<a string of digits>) Converts a string of digits to an integer value.

input(<a string prompt>) Displays the string prompt and waits for keyboard input.
Returns the string of characters entered by the user.

print(<expression>,
...,<expression>)

Evaluates the expressions and displays them, separated
by one space, in the console window.

<string 1> + <string 2> Glues the two strings together and returns the result.

Table 1-2	 Basic Python functions for input and output

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

27

Getting Started with Python Programming

Editing, Saving, and Running a Script
While it is easy to try out short Python expressions and statements interactively at a shell
prompt, it is more convenient to compose, edit, and save longer, more complex programs in
files. We can then run these program files or scripts either within IDLE or from the operat-
ing system’s command prompt without opening IDLE. Script files are also the means by
which Python programs are distributed to others. Most important, as you know from writ-
ing term papers, files allow you to save, safely and permanently, many hours of work.

To compose and execute programs in this manner, you perform the following steps:

1.	 Select the option New Window from the File menu of the shell window.

2.	 In the new window, enter Python expressions or statements on separate lines, in the
order in which you want Python to execute them.

3.	 At any point, you may save the file by selecting File/Save. If you do this, you should use
a . py extension. For example, your first program file might be named myprogram.py.

4.	 To run this file of code as a Python script, select Run Module from the Run menu
or press the F5 key.

The command in Step 4 reads the code from the saved file and executes it. If Python exe-
cutes any print functions in the code, you will see the outputs as usual in the shell window.
If the code requests any inputs, the interpreter will pause to allow you to enter them. Oth-
erwise, program execution continues invisibly behind the scenes. When the interpreter has
finished executing the last instruction, it quits and returns you to the shell prompt.

Figure 1-7 shows an IDLE window containing a complete script that prompts the user for
the width and height of a rectangle, computes its area, and outputs the result:

Figure 1-7  Python script in an IDLE window

When the script is run from the IDLE window, it produces the interaction with the user in
the shell window shown in Figure 1-8.

This can be a slightly less interactive way of executing programs than entering them directly
at Python’s interpreter prompt. However, running the script from the IDLE window will
allow you to construct some complex programs, test them, and save them in program
libraries that you can reuse or share with others.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

28

  IntroductionC h a p t e r 1

Behind the Scenes: How Python Works
Whether you are running Python code as a script or interactively in a shell, the Python
interpreter does a great deal of work to carry out the instructions in your program. This
work can be broken into a series of steps, as shown in Figure 1-9.

Figure 1-8  Interaction with a script in a shell window

Figure 1-9  Steps in interpreting a Python program

Python code

User inputs Other error messages

Syntax error messages

Program
outputs

Byte code

Syntax Checker
and Translator

Python Virtual
Machine (PVM)

1.	 The interpreter reads a Python expression or statement, also called the source
code, and verifies that it is well formed. In this step, the interpreter behaves like a
strict English teacher who rejects any sentence that does not adhere to the gram-
mar rules, or syntax, of the language. As soon as the interpreter encounters such an
error, it halts translation with an error message.

2.	 If a Python expression is well formed, the interpreter then translates it to an equiva-
lent form in a low-level language called byte code. When the interpreter runs a
script, it completely translates it to byte code.

3.	 This byte code is next sent to another software component, called the Python
virtual machine (PVM), where it is executed. If another error occurs during this
step, execution also halts with an error message.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

29

Detecting and Correcting Syntax Errors

Detecting and Correcting Syntax Errors
Programmers inevitably make typographical errors when editing programs, and the Python
interpreter will nearly always detect them. Such errors are called syntax errors. The term
syntax refers to the rules for forming sentences in a language. When Python encounters
a syntax error in a program, it halts execution with an error message. The following ses-
sions with the Python shell show several types of syntax errors and the corresponding error
messages:
>>> length = int(input("Enter the length: "))
Enter the length: 44
>>> print(lenth)
Traceback (most recent call last):
 File "<pyshell#l>", line 1, in <module>
NameError: name 'lenth' is not defined

The first statement assigns an input value to the variable length. The next statement
attempts to print the value of the variable lenth. Python responds that this name is not
defined. Although the programmer might have meant to write the variable length, Python
can read only what the programmer actually entered. This is a good example of the rule
that a computer can read only the instructions it receives, not the instructions we intend to
give it.

The next statement attempts to print the value of the correctly spelled variable. However,
Python still generates an error message.
>>> print(length)
SyntaxError: unexpected indent

In this error message, Python explains that this line of code is unexpectedly indented.
In fact, there is an extra space before the word print. Indentation is significant in
Python code. Each line of code entered at a shell prompt or in a script must begin in
the leftmost column, with no leading spaces. The only exception to this rule occurs in
control statements and definitions, where nested statements must be indented one or
more spaces.

Exercises

1.	 Describe what happens when the programmer enters the string "Greetings!" in
the Python shell.

2.	 Write a line of code that prompts the user for his or her name and saves the user’s
input in a variable called name.

3.	 Answer the question, What is a Python script?

4.	 Explain what goes on behind the scenes when your computer runs a Python
program.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

30

  IntroductionC h a p t e r 1

You might think that it would be painful to keep track of indentation in a program. How-
ever, in compensation, the Python language is much simpler than other programming lan-
guages. Consequently, there are fewer types of syntax errors to encounter and correct, and
a lot less syntax for you to learn!

In our final example, the programmer attempts to add two numbers, but forgets to include
the second one:
>>> 3 +
SyntaxError: invalid syntax

In later chapters, you will learn more about other kinds of program errors and how to
repair the code that generates them.

Exercises

1.	 Suppose your script attempts to print the value of a variable that has not yet been
assigned a value. How does the Python interpreter react?

2.	 Miranda has forgotten to complete an arithmetic expression before the end of a line
of code. How will the Python interpreter react?

3.	 Why does Python code generate fewer types of syntax errors than code in other
programming languages?

Suggestions for Further Reading
John Battelle, The Search: How Google and Its Rivals Rewrote the Rules of Business and Trans-

formed Our Culture (New York: Portfolio Trade, 2006).
Tim Berners-Lee, Weaving the Web: The Original Design and Ultimate Destiny of the World

Wide Web (New York: HarperCollins, 2000).
Paul Graham, Hackers and Painters: Big Ideas from the Computer Age (Sebastopol, CA: O’Reilly, 2004).
Katie Hafner and Matthew Lyon, Where Wizards Stay Up Late: The Origins of the Internet (New

York: Simon and Schuster, 1996).
Michael E. Hobart and Zachary S. Schiffman, Information Ages: Literacy, Numeracy, and the

Computer Revolution (Baltimore: The Johns Hopkins University Press, 1998).
Georges Ifrah, The Universal History of Computing: From the Abacus to the Quantum Computer

(New York: John Wiley & Sons, Inc., 2001).
Walter Issacson, Steve Jobs (New York: Simon & Schuster, 2011).
John Markoff, What the Doormouse Said: How the Sixties Counterculture Shaped the Personal

Computer Industry (New York: Viking, 2005).
Antonio García Martínez, Chaos Monkeys: Obscene Fortune and Random Failure in Silicon Val-

ley (New York: HarperCollins, 2016).
Cathy O’Neil, Weapons of Math Destruction: How Big Data Increases Inequality and Threatens

Democracy (New York: Crown, 2016).
Curtis White, We, Robots: Staying Human in the Age of Big Data (Brooklyn, NY: Melville House, 2016).

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

31

Summary

Summary
•• One of the most fundamental ideas of computer science is the algorithm. An algorithm

is a sequence of instructions for solving a problem. A computing agent can carry out
these instructions to solve a problem in a finite amount of time.

•• Another fundamental idea of computer science is information processing. Practically
any relationship among real-world objects can be represented as information or data.
Computing agents manipulate information and transform it by following the steps
described in algorithms.

•• Real computing agents can be constructed out of hardware devices. These consist of
a central processing unit (CPU), a memory, and input and output devices. The CPU
contains circuitry that executes the instructions described by algorithms. The memory
contains switches that represent binary digits. All information stored in memory is
represented in binary form. Input devices such as a keyboard and flatbed scanner
and output devices such as a monitor and speakers transmit information between the
computer’s memory and the external world. These devices also transfer information
between a binary form and a form that human beings can use.

•• Some real computers, such as those in wristwatches and cell phones, are specialized
for a small set of tasks, whereas a desktop or laptop computer is a general-purpose
problem-solving machine.

•• Software provides the means whereby different algorithms can be run on a general-
purpose hardware device. The term software can refer to editors and interpreters for
developing programs; an operating system for managing hardware devices; user inter-
faces for communicating with human users; and applications such as word processors,
spreadsheets, database managers, games, and media-processing programs.

•• Software is written in programming languages. Languages such as Python are high level;
they resemble English and allow authors to express their algorithms clearly to other
people. A program called an interpreter translates a Python program to a lower-level
form that can be executed on a real computer.

•• The Python shell provides a command prompt for evaluating and viewing the results of
Python expressions and statements. IDLE is an integrated development environment that
allows the programmer to save programs in files and load them into a shell for testing.

•• Python scripts are programs that are saved in files and run from a terminal command
prompt. An interactive script consists of a set of input statements, statements that pro-
cess these inputs, and statements that output the results.

•• When a Python program is executed, it is translated into byte code. This byte code is
then sent to the Python virtual machine (PVM) for further interpretation and execution.

•• Syntax is the set of rules for forming correct expressions and statements in a program-
ming language. When the interpreter encounters a syntax error in a Python program, it
halts execution with an error message. Two examples of syntax errors are a reference to
a variable that does not yet have a value and an indentation that is unexpected.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

32

  IntroductionC h a p t e r 1

Review Questions
1.	 Which of the following are examples of algorithms?

a.	 A dictionary
b.	 A recipe
c.	 A set of instructions for putting together a utility shed
d.	 The spelling checker of a word processor

2.	 Which of the following contain information?

a.	 My grandmother’s china cabinet
b.	 An audio CD
c.	 A refrigerator
d.	 A book
e.	 A running computer

3.	 Which of the following are general-purpose computing devices?

a.	 A cell phone
b.	 A portable music player
c.	 A laptop computer
d.	 A programmable thermostat

4.	 Which of the following are input devices?

a.	 Speaker
b.	 Microphone

c.	 Printer
d.	 A mouse

5.	 Which of the following are output devices?

a.	 A digital camera
b.	 A keyboard

c.	 A flatbed scanner
d.	 A monitor

6.	 What is the purpose of the CPU?

a.	 Store information
b.	 Receive inputs from the human user
c.	 Decode and execute instructions
d.	 Send output to the human user

7.	 Which of the following translates and executes instructions in a programming
language?

a.	 A compiler
b.	 A text editor

c.	 A loader
d.	 An interpreter

8.	 Which of the following outputs data in a Python program?

a.	 The input statement
b.	 The assignment statement

c.	 The print statement
d.	 The main function

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

33

Projects

9.	 What is IDLE used to do?

a.	 Edit Python programs
b.	 Save Python programs to files

c.	 Run Python programs
d.	 All of the above

10.	 What is the set of rules for forming sentences in a language called?

a.	 Semantics
b.	 Pragmatics

c.	 Syntax
d.	 Logic

Projects
1.	 Open a Python shell, enter the following expressions, and observe the results:

a.	 8
b.	 8 * 2
c.	 8 ** 2

d.	 8/12
e.	 8 // 12
f.		 8/0

2.	 Write a Python program that prints (displays) your name, address, and telephone number.

3.	 Evaluate the following code at a shell prompt: print ("Your name is", name).
Then assign name an appropriate value, and evaluate the statement again.

4.	 Open an IDLE window, and enter the program from Figure 1-7 that computes
the area of a rectangle. Load the program into the shell by pressing the F5 key,
and correct any errors that occur. Test the program with different inputs by
running it at least three times.

5.	 Modify the program of Project 4 to compute the area of a triangle. Issue the
appropriate prompts for the triangle’s base and height, and change the names of
the variables appropriately. Then, use the formula .5 * base * height to com-
pute the area. Test the program from an IDLE window.

6.	 Write and test a program that computes the area of a circle. This program should
request a number representing a radius as input from the user. It should use the formula
3.14 * radius ** 2 to compute the area and then output this result suitably labeled.

7.	 Write and test a program that accepts the user’s name (as text) and age (as a number)
as input. The program should output a sentence containing the user’s name and age.

8.	 Enter an input statement using the input function at the shell prompt. When the
prompt asks you for input, enter a number. Then, attempt to add 1 to that num-
ber, observe the results, and explain what happened.

9.	 Enter an input statement using the input function at the shell prompt. When the
prompt asks you for input, enter your first name, observe the results, and explain
what happened.

10.	 Enter the expression help() at the shell prompt. Follow the instructions to
browse the topics and modules.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

After completing this chapter, you will be able to

Describe the basic phases of software development:
analysis, design, coding, and testing

Use strings for the terminal input and output of text

Use integers and floating-point numbers in arithmetic
operations

Construct arithmetic expressions

Initialize and use variables with appropriate names

Import functions from library modules

Call functions with arguments and use returned values
appropriately

Construct a simple Python program that performs inputs,
calculations, and outputs

Use docstrings to document Python programs

C h a p t e r 2
SOFTWARE
DEVELOPMENT, Data
Types, and Expressions

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

35

The Software Development Process

This chapter begins with a discussion of the software development process, followed by a
case study in which we walk through the steps of program analysis, design, coding, and test-
ing. We also examine the basic elements from which programs are composed. These include
the data types for text and numbers and the expressions that manipulate them. The chapter
concludes with an introduction to the use of functions and modules in simple programs.

The Software Development Process
There is much more to programming than writing lines of code, just as there is more to
building houses than pounding nails. The “more” consists of organization and planning,
and various conventions for diagramming those plans. Computer scientists refer to the
process of planning and organizing a program as software development. There are several
approaches to software development. One version is known as the waterfall model.

The waterfall model consists of several phases:

1.	 Customer request—In this phase, the programmers receive a broad statement of
a problem that is potentially amenable to a computerized solution. This step is also
called the user requirements phase.

2.	 Analysis—The programmers determine what the program will do. This is some-
times viewed as a process of clarifying the specifications for the problem.

3.	 Design—The programmers determine how the program will do its task.

4.	 Implementation—The programmers write the program. This step is also called the
coding phase.

5.	 Integration—Large programs have many parts. In the integration phase, these parts
are brought together into a smoothly functioning whole, usually not an easy task.

6.	 Maintenance—Programs usually have a long life; a life span of 5 to 15 years is com-
mon for software. During this time, requirements change, errors are detected, and
minor or major modifications are made.

The phases of the waterfall model are shown in Figure 2-1. As you can see, the figure resem-
bles a waterfall, in which the results of each phase flow down to the next. However, a mistake
detected in one phase often requires the developer to back up and redo some of the work in
the previous phase. Modifications made during maintenance also require backing up to ear-
lier phases. Taken together, these phases are also called the software development life cycle.

Although the diagram depicts distinct phases, this does not mean that developers must
analyze and design a complete system before coding it. Modern software development
is usually incremental and iterative. This means that analysis and design may produce a
rough draft, skeletal version, or prototype of a system for coding, and then back up to ear-
lier phases to fill in more details after some testing. For purposes of introducing this pro-
cess, however, we treat these phases as distinct.

Programs rarely work as hoped the first time they are run; hence, they should be subjected
to extensive and careful testing. Many people think that testing is an activity that applies
only to the implementation and integration phases; however, you should scrutinize the

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

36

  SOFTWARE DEVELOPMENT, Data Types, and ExpressionsC h a p t e r 2

outputs of each phase carefully. Keep in mind that mistakes found early are much less
expensive to correct than those found late. Figure 2-2 illustrates some relative costs of
repairing mistakes when found in different phases. These are not just financial costs but
also costs in time and effort.

Figure 2-2  Relative costs of repairing mistakes that are found in different phases

Software Development Phase

Cost of
Correcting
a Fault

Analysis Design Implementation Integration Maintenance

Figure 2-1  The waterfall model of the software development process

Implementation

Test

Analysis

Verify

Integration

Test

Maintenance

Design

Verify

Customer request

Verify

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

37

The Software Development Process

Keep in mind that the cost of developing software is not spread equally over the phases.
The percentages shown in Figure 2-3 are typical.

You might think that implementation takes the most time and therefore costs the most.
However, as you can see in Figure 2-3, maintenance is the most expensive part of software
development. The cost of maintenance can be reduced by careful analysis, design, and
implementation.

As you read this book and begin to sharpen your programming skills, you should remember
two points:

1.	 There is more to software development than writing code.

2.	 If you want to reduce the overall cost of software development, write programs
that are easy to maintain. This requires thorough analysis, careful design, and
a good coding style. We will have more to say about coding styles throughout
the book.

Figure 2-3  Percentage of total cost incurred
in each phase of the development process

Integration 8%

Implementation 8%

Maintenance 68%

Design 8%

Analysis 8%

Exercises

1.	 List four phases of the software development process, and explain what they
accomplish.

2.	 Jack says that he will not bother with analysis and design but proceed directly to
coding his programs. Why is that not a good idea?

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

38

  SOFTWARE DEVELOPMENT, Data Types, and ExpressionsC h a p t e r 2

Case Study: Income Tax Calculator

Most of the chapters in this book include a case study that illustrates the software
development process. This approach may seem overly elaborate for small programs,
but it scales up well when programs become larger. The first case study develops a
program that calculates income tax.

Each year, nearly everyone with an income faces the unpleasant task of computing
his or her income tax return. If only it could be done as easily as suggested in this
case study! We start with the customer request phase.

Request

The customer requests a program that computes a person’s income tax.

Analysis

Analysis often requires the programmer to learn some things about the problem
domain, in this case, the relevant tax law. For the sake of simplicity, let’s assume the
following tax laws:

•• All taxpayers are charged a flat tax rate of 20%.

•• All taxpayers are allowed a $10,000 standard deduction.

•• For each dependent, a taxpayer is allowed an additional $3,000 deduction.

•• Gross income must be entered to the nearest penny.

•• The income tax is expressed as a decimal number.

Another part of analysis determines what information the user will have to provide.
In this case, the user inputs are gross income and number of dependents. The
program calculates the income tax based on the inputs and the tax law and then
displays the income tax. Figure 2-4 shows the proposed terminal-based interface.
Characters in italics indicate user inputs. The program prints the rest. The inclusion
of an interface at this point is a good idea because it allows the customer and the
programmer to discuss the intended program’s behavior in a context understand-
able to both.

Enter the gross income: 150000.00
Enter the number of dependents: 3
The income tax is $26200.0

Figure 2-4  The user interface for the income tax calculator

(continues)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

39

The Software Development Process

Design

During analysis, we specify what a program is going to do. In the next phase, design,
we describe how the program is going to do it. This usually involves writing an algo-
rithm. In Chapter 1, we showed how to write algorithms in ordinary English. In fact,
algorithms are more often written in a somewhat stylized version of English called
pseudocode. Here is the pseudocode for our income tax program:

Input the gross income and number of dependents
Compute the taxable income using the formula
Taxable income = gross income - 10000 - (3000 * number of dependents)
Compute the income tax using the formula
Tax = taxable income * 0.20
Print the tax

Although there are no precise rules governing the syntax of pseudocode, in your
pseudocode you should strive to describe the essential elements of the program in a
clear and concise manner. Note that this pseudocode closely resembles Python code,
so the transition to the coding step should be straightforward.

Implementation (Coding)

Given the preceding pseudocode, an experienced programmer would now find it easy
to write the corresponding Python program. For a beginner, on the other hand, writing
the code can be the most difficult part of the process. Although the program that fol-
lows is simple by most standards, do not expect to understand every bit of it at first.
The rest of this chapter explains the elements that make it work, and much more.

"""
Program: taxform.py
Author: Ken Lambert
Compute a person’s income tax.
1. Significant constants
 tax rate
 standard deduction
 deduction per dependent
2. The inputs are
 gross income
 number of dependents
3. Computations:
 taxable income = gross income - the standard

 deduction - a deduction for each dependent
 income tax = is a fixed percentage of the taxable income
4. The outputs are
 the income tax
"""

(continued )

(continues)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

40

  SOFTWARE DEVELOPMENT, Data Types, and ExpressionsC h a p t e r 2

Initialize the constants
TAX_RATE = 0.20
STANDARD_DEDUCTION = 10000.0
DEPENDENT_DEDUCTION = 3000.0

Request the inputs
grossIncome = float(input("Enter the gross income: "))
numDependents = int(input("Enter the number of dependents: "))

Compute the income tax
taxableIncome = grossIncome - STANDARD_DEDUCTION - \

 DEPENDENT_DEDUCTION * numDependents
incomeTax = taxableIncome * TAX_RATE

Display the income tax
print("The income tax is $" + str(incomeTax))

Testing

Our income tax program can run as a script from an IDLE window. If there are no syntax
errors, we will be able to enter a set of inputs and view the results. However, a single
run without syntax errors and with correct outputs provides just a slight indication of a
program’s correctness. Only thorough testing can build confidence that a program is
working correctly. Testing is a deliberate process that requires some planning and disci-
pline on the programmer’s part. It would be much easier to turn the program in after the
first successful run to meet a deadline or to move on to the next assignment. But your
grade, your job, or people’s lives might be affected by the slipshod testing of software.

Testing can be performed easily from an IDLE window. The programmer just loads the
program repeatedly into the shell and enters different sets of inputs. The real chal-
lenge is coming up with sets of inputs that can reveal an error. An error at this point,
also called a logic error or a design error, is an unexpected output.

A correct program produces the expected output for any legitimate input. The tax
calculator’s analysis does not provide a specification of what inputs are legitimate, but
common sense indicates that they would be numbers greater than or equal to 0. Some
of these inputs will produce outputs that are less than 0, but we will assume for now that
these outputs are expected. Even though the range of the input numbers on a computer
is finite, testing all of the possible combinations of inputs would be impractical. The chal-
lenge is to find a smaller set of inputs, called a test suite, from which we can conclude
that the program will likely be correct for all inputs. In the tax program, we try inputs of
0, 1, and 2 for the number of dependents. If the program works correctly with these,
we can assume that it will work correctly with larger values. The test inputs for the gross
income are a number equal to the standard deduction and a number twice that amount
(10000 and 20000, respectively). These two values will show the cases of a minimum

(continued )

(continues)
Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

41

Strings, Assignment, and Comments

Strings, Assignment, and Comments
Text processing is by far the most common application of computing. E-mail, text messag-
ing, Web pages, and word processing all rely on and manipulate data consisting of strings
of characters. This section introduces the use of strings for the output of text and the docu-
mentation of Python programs. We begin with an introduction to data types in general.

Data Types
In the real world, we use data all the time without bothering to consider what kind of data
we’re using. For example, consider this sentence: “In 2007, Micaela paid $120,000 for her house
at 24 East Maple Street.” This sentence includes at least four pieces of data—a name, a date,
a price, and an address—but of course you don’t have to stop to think about that before you
utter the sentence. You certainly don’t have to stop to consider that the name consists only of
text characters, the date and house price are numbers, and so on. However, when we use data
in a computer program, we do need to keep in mind the type of data we’re using. We also need
to keep in mind what we can do with (what operations can be performed on) particular data.

In programming, a data type consists of a set of values and a set of operations that can be
performed on those values. A literal is the way a value of a data type looks to a program-
mer. The programmer can use a literal in a program to mention a data value. When the

(continued )

expected tax (0) and expected taxes that are less than or greater than 0. The program
is run with each possible combination of the two inputs. Table 2-1 shows the possible
combinations of inputs and the expected outputs in the test suite.

If there is a logic error in the code, it will almost certainly be caught using these data.
Note that the negative outputs are not considered errors. We will see how to prevent
such computations in the next chapter.

Number of Dependents Gross Income Expected Tax

0 10000 0

1 10000 –600

2 10000 –1200

0 20000 2000

1 20000 1400

2 20000 800

Table 2-1	 The test suite for the tax calculator program

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

42

  SOFTWARE DEVELOPMENT, Data Types, and ExpressionsC h a p t e r 2

Python interpreter evaluates a literal, the value it returns is simply that literal. Table 2-2
shows example literals of several Python data types.

Type of Data Python Type Name Example Literals

Integers int –1, 0, 1, 2

Real numbers float –0.55, .3333, 3.14, 6.0

Character strings str "Hi", "", 'A', "66"

Table 2-2	 Literals for some Python data types

The first two data types listed in Table 2-2, int and float, are called numeric data types,
because they represent numbers. You’ll learn more about numeric data types later in this chap-
ter. For now, we will focus on character strings—which are often referred to simply as strings.

String Literals
In Python, a string literal is a sequence of characters enclosed in single or double quotation
marks. The following session with the Python shell shows some example strings:
>>> 'Hello there!'
'Hello there!'
>>> "Hello there!"
'Hello there!'
>>> ''
''
>>> ""
''

The last two string literals ('' and "") represent the empty string. Although it contains no
characters, the empty string is a string nonetheless. Note that the empty string is different
from a string that contains a single blank space character, " ".

Double-quoted strings are handy for composing strings that contain single quotation marks
or apostrophes. Here is a self-justifying example:
>>> "I'm using a single quote in this string!"
"I'm using a single quote in this string!"
>>> print("I'm using a single quote in this string!")
I'm using a single quote in this string!

Note that the print function displays the nested quotation mark but not the enclosing
quotation marks. A double quotation mark can also be included in a string literal if one
uses the single quotation marks to enclose the literal.

When you write a string literal in Python code that will be displayed on the screen as output,
you need to determine whether you want to output the string as a single line or as a multi-
line paragraph. If you want to output the string as a single line, you have to include the entire

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

43

Strings, Assignment, and Comments

string literal (including its opening and closing quotation marks) in the same line of code.
Otherwise, a syntax error will occur. To output a paragraph of text that contains several lines,
you could use a separate print function call for each line. However, it is more convenient to
enclose the entire string literal, line breaks and all, within three consecutive quotation marks
(either single or double) for printing. The next session shows how this is done:
>>> print("""This very long sentence extends
all the way to the next line.""")
This very long sentence extends
all the way to the next line.

Note that the first line in the output ends exactly where the first line ends in the code.

When you evaluate a string in the Python shell without the print function, you can see the
literal for the newline character, \n, embedded in the result, as follows:
>>> """This very long sentence extends
all the way to the next line."""
'This very long sentence extends\nall the way to the next line.'

Escape Sequences
The newline character \n is called an escape sequence. Escape sequences are the way
Python expresses special characters, such as the tab, the newline, and the backspace (delete
key), as literals. Table 2-3 lists some escape sequences in Python.

Escape Sequence Meaning

\b Backspace

\n Newline

\t Horizontal tab

\\ The \ character

\' Single quotation mark

\" Double quotation mark

Table 2-3	 Some escape sequences in Python

Because the backslash is used for escape sequences, it must be escaped to appear as a literal
character in a string. Thus, print('\\') would display a single \ character.

String Concatenation
You can join two or more strings to form a new string using the concatenation operator +.
Here is an example:
>>> "Hi " + "there, " + "Ken!"
'Hi there. Ken!'

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

44

  SOFTWARE DEVELOPMENT, Data Types, and ExpressionsC h a p t e r 2

The * operator allows you to build a string by repeating another string a given number of
times. The left operand is a string, and the right operand is an integer. For example, if you
want the string "Python" to be preceded by 10 spaces, it would be easier to use the * opera-
tor with 10 and one space than to enter the 10 spaces by hand. The next session shows the
use of the * and + operators to achieve this result:
>>> " " * 10 + "Python"
' Python'

Variables and the Assignment Statement
As we saw in Chapter 1, a variable associates a name with a value, making it easy to
remember and use the value later in a program. You need to be mindful of a few rules when
choosing names for your variables. For example, some names, such as if, def, and import,
are reserved for other purposes and thus cannot be used for variable names. In general,
a variable name must begin with either a letter or an underscore (_), and can contain any
number of letters, digits, or other underscores. Python variable names are case sensitive;
thus, the variable WEIGHT is a different name from the variable weight. Python programmers
typically use lowercase letters for variable names, but in the case of variable names that con-
sist of more than one word, it’s common to begin each word in the variable name (except
for the first one) with an uppercase letter. This makes the variable name easier to read. For
example, the name interestRate is slightly easier to read than the name interestrate.

Programmers use all uppercase letters for the names of variables that contain values that
the program never changes. Such variables are known as symbolic constants. Examples of
symbolic constants in the tax calculator case study are TAX_RATE and STANDARD_DEDUCTION.

Variables receive their initial values and can be reset to new values with an assignment
statement. The simplest form of an assignment statement is the following:

<variable name> = <expression>

As mentioned in Chapter 1, the terms enclosed in angle brackets name or describe a part
of a Python code construct. Thus, the notation <variable name> stands for any Python
variable name, such as totalIncome or taxRate. The notation <expression> stands for any
Python expression, such as " " * 10 + "Python".

The Python interpreter first evaluates the expression on the right side of the assignment
symbol and then binds the variable name on the left side to this value. When this happens
to the variable name for the first time, it is called defining or initializing the variable. Note
that the = symbol means assignment, not equality. After you initialize a variable, subsequent
uses of the variable name in expressions are known as variable references.

When the interpreter encounters a variable reference in any expression, it looks up the
associated value. If a name is not yet bound to a value when it is referenced, Python signals
an error. The next session shows some definitions of variables and their references:
>>> firstName = "Ken"
>>> secondName = "Lambert"
>>> fullName = firstName + " " + secondName

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

45

Strings, Assignment, and Comments

>>> fullName
'Ken Lambert'

The first two statements initialize the variables firstName and secondName to string val-
ues. The next statement references these variables, concatenates the values referenced by
the variables to build a new string, and assigns the result to the variable fullName (“con-
catenate” means “glue together”). The last line of code is a simple reference to the variable
fullName, which returns its value.

Variables serve two important purposes in a program. They help the programmer keep
track of data that change over time. They also allow the programmer to refer to a complex
piece of information with a simple name. Any time you can substitute a simple thing for a
more complex one in a program, you make the program easier for programmers to under-
stand and maintain. Such a process of simplification is called abstraction, and it is one of
the fundamental ideas of computer science. Throughout this book, you’ll learn about other
abstractions used in computing, including functions, modules, and classes.

The wise programmer selects names that inform the human reader about the purpose of
the data. This, in turn, makes the program easier to maintain and troubleshoot. A good
program not only performs its task correctly but it also reads like an essay in which each
word is carefully chosen to convey the appropriate meaning to the reader. For example, a
program that creates a payment schedule for a simple interest loan might use the variables
rate, initialAmount, currentBalance, and interest.

Program Comments and Docstrings
We conclude this subsection on strings with a discussion of program comments. A com-
ment is a piece of program text that the computer ignores but that provides useful docu-
mentation to programmers. At the very least, the author of a program can include his or her
name and a brief statement about the program’s purpose at the beginning of the program
file. This type of comment, called a docstring, is a multi-line string of the form discussed
earlier in this section. Here is a docstring that begins a typical program for a lab session:
"""
Program: circle.py
Author: Ken Lambert
Last date modified: 10/10/17

The purpose of this program is to compute the area of a
circle. The input is an integer or floating-point number
representing the radius of the circle. The output is a
floating-point number labeled as the area of the circle.
"""

In addition to docstrings, end-of-line comments can document a program. These com-
ments begin with the # symbol and extend to the end of a line. An end-of-line comment
might explain the purpose of a variable or the strategy used by a piece of code, if it is not
already obvious. Here is an example:
>>> RATE = 0.85 # Conversion rate for Canadian to US dollars

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

46

  SOFTWARE DEVELOPMENT, Data Types, and ExpressionsC h a p t e r 2

Throughout this book, docstrings appear in green and end-of-line comments appear in red.

In a program, good documentation can be as important as executable code. Ideally, pro-
gram code is self-documenting, so a human reader can instantly understand it. However, a
program is often read by people who are not its authors, and even the authors might find
their own code inscrutable after months of not seeing it. The trick is to avoid documenting
code that has an obvious meaning, but to aid the poor reader when the code alone might
not provide sufficient understanding. With this end in mind, it’s a good idea to do the
following:

1.	 Begin a program with a statement of its purpose and other information that would
help orient a programmer called on to modify the program at some future date.

2.	 Accompany a variable definition with a comment that explains the variable’s purpose.

3.	 Precede major segments of code with brief comments that explain their purpose.
The case study program presented earlier in this chapter does this.

4.	 Include comments to explain the workings of complex or tricky sections of code.

Exercises

1.	 Let the variable x be "dog" and the variable y be "cat". Write the values returned
by the following operations:

a.	 x + y

b.	 "the " + x + " chases the " + y

c.	 x * 4

2.	 Write a string that contains your name and address on separate lines using embed-
ded newline characters. Then write the same string literal without the newline
characters.

3.	 How does one include an apostrophe as a character within a string literal?

4.	 What happens when the print function prints a string literal with embedded
newline characters?

5.	 Which of the following are valid variable names?

a.	 length

b.	 _width

c.	 firstBase

d.	 2MoreToGo

e.	 halt!

6.	 List two of the purposes of program documentation.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

47

Numeric Data Types and Character Sets

Numeric Data Types and Character Sets
The first applications of computers were created to crunch numbers. Although text and
media processing have lately been of increasing importance, the use of numbers in many
applications is still very important. In this section, we give a brief overview of numeric data
types and their cousins, character sets.

Integers
As you learned in mathematics, the integers include 0, the positive whole numbers, and the
negative whole numbers. Integer literals in a Python program are written without commas,
and a leading negative sign indicates a negative value.

Although the range of integers is infinite, a real computer’s memory places a limit on the
magnitude of the largest positive and negative integers. The most common implementa-
tion of the int data type in many programming languages consists of the integers from
2 22,147,483,648 (2)31 to 22,147,483,647 (2 1)31 . However, the magnitude of a Python
integer is much larger and is limited only by the memory of your computer. As an experi-
ment, try evaluating the expression 2147483647 ** 100, which raises the largest positive
int value to the 100th power. You will see a number that contains many lines of digits!

Floating-Point Numbers
A real number in mathematics, such as the value of p (3.1416...), consists of a whole num-
ber, a decimal point, and a fractional part. Real numbers have infinite precision, which
means that the digits in the fractional part can continue forever. Like the integers, real
numbers also have an infinite range. However, because a computer’s memory is not infi-
nitely large, a computer’s memory limits not only the range but also the precision that can
be represented for real numbers. Python uses floating-point numbers to represent real
numbers. Values of the most common implementation of Python’s float type range from
approximately 210308 to 10308 and have 16 digits of precision.

A floating-point number can be written using either ordinary decimal notation or
scientific notation. Scientific notation is often useful for mentioning very large numbers.
Table 2-4 shows some equivalent values in both notations.

Decimal Notation Scientific Notation Meaning

3.78 3.78e0 3.78 1003

37.8 3.78e1 3.78 1013

3780.0 3.78e3 3.78 1033

0.378 3.78e–1 3.78 10 13 2

0.00378 3.78e–3 3.78 10 33 2

Table 2-4	 Decimal and scientific notations for floating-point numbers

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

48

  SOFTWARE DEVELOPMENT, Data Types, and ExpressionsC h a p t e r 2

Character Sets
Some programming languages use different data types for strings and individual characters. In
Python, character literals look just like string literals and are of the string type. To mark the differ-
ence in this book, we use single quotes to enclose single-character strings, and double quotes to
enclose multi-character strings. Thus, we refer to 'H' as a character and "Hi!" as a string, even
though they are both technically Python strings, and both are color-coded in green in this text.

As you learned in Chapter 1, all data and instructions in a program are translated to binary
numbers before being run on a real computer. To support this translation, the characters in a
string each map to an integer value. This mapping is defined in character sets, among them
the ASCII set and the Unicode set. (The term ASCII stands for American Standard Code for
Information Interchange.) In the 1960s, the original ASCII set encoded each keyboard char-
acter and several control characters using the integers from 0 through 127. An example of a
control character is Control1D, which is the command to terminate a shell window. As new
function keys and some international characters were added to keyboards, the ASCII set dou-
bled in size to 256 distinct values in the mid-1980s. Then, when characters and symbols were
added from languages other than English, the Unicode set was created to support 65,536 val-
ues in the early 1990s. Unicode supports more than 128,000 values at the present time.

Table 2-5 shows the mapping of character values to the first 128 ASCII codes. The digits in
the left column represent the leftmost digits of an ASCII code, and the digits in the top row
are the rightmost digits. Thus, the ASCII code of the character 'R' at row 8, column 2 is 82.

0 1 2 3 4 5 6 7 8 9

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT

1 LF VT FF CR SO SI DLE DCI DC2 DC3

2 DC4 NAK SYN ETB CAN EM SUB ESC FS GS

3 RS US SP ! “ # $ % & `

4 () * 1 , - . / 0 1

5 2 3 4 5 6 7 8 9 : ;

6 < 5 > ? @ A B C D E

7 F G H I J K L M N O

8 P Q R S T U V W X Y

9 Z [\] ^ _ ` a b c

10 d e f g h I j k l m

11 n o P q r S t u v w

12 X y z { | } ~ DEL

Table 2-5	 The original ASCII character set

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

49

Expressions

Some might think it odd to include characters in a discussion of numeric types. However,
as you can see, the ASCII character set maps to a set of integers. Python’s ord and chr func-
tions convert characters to their numeric ASCII codes and back again, respectively. The
next session uses the following functions to explore the ASCII system:
>>> ord('a')
97
>>> ord('A')
65
>>> chr(65)
'A'
>>> chr(66)
'B'

Note that the ASCII code for 'B' is the next number in the sequence after the code for 'A'.
These two functions provide a handy way to shift letters by a fixed amount. For example, if
you want to shift three places to the right of the letter 'A', you can write chr(ord('A') + 3).

Exercises

1.	 Which data type would most appropriately be used to represent the following data
values?

a.	 The number of months in a year

b.	 The area of a circle

c.	 The current minimum wage

d.	 The approximate age of the universe (12,000,000,000 years)

e.	 Your name

2.	 Explain the differences between the data types int and float.

3.	 Write the values of the following floating-point numbers in Python’s scientific notation:

a.	 355.76

b.	 0.007832

c.	 4.3212

4.	 Consult Table 2-5 to write the ASCII values of the characters '$' and '&'.

Expressions
As we have seen, a literal evaluates to itself, whereas a variable reference evaluates to the
variable’s current value. Expressions provide an easy way to perform operations on data
values to produce other data values. You saw strings used in expressions earlier. When
entered at the Python shell prompt, an expression’s operands are evaluated, and its operator

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

50

  SOFTWARE DEVELOPMENT, Data Types, and ExpressionsC h a p t e r 2

is then applied to these values to compute the value of the expression. In this section,
we examine arithmetic expressions in more detail.

Arithmetic Expressions
An arithmetic expression consists of operands and operators combined in a manner that is
already familiar to you from learning algebra. Table 2-6 shows several arithmetic operators
and gives examples of how you might use them in Python code.

Operator Meaning Syntax

– Negation –a

** Exponentiation a ** b

* Multiplication a * b

/ Division a / b

// Quotient a // b

% Remainder or modulus a % b

+ Addition a + b

– Subtraction a – b

Table 2-6	 Arithmetic operators

In algebra, you are probably used to indicating multiplication like this: ab. However, in
Python, we must indicate multiplication explicitly, using the multiplication operator (*),
like this: a * b. Binary operators are placed between their operands (a * b, for example),
whereas unary operators are placed before their operands (–a, for example).

The precedence rules you learned in algebra apply during the evaluation of arithmetic
expressions in Python:

•• Exponentiation has the highest precedence and is evaluated first.

•• Unary negation is evaluated next, before multiplication, division, and remainder.

•• Multiplication, both types of division, and remainder are evaluated before addition and
subtraction.

•• Addition and subtraction are evaluated before assignment.

•• With two exceptions, operations of equal precedence are left associative, so they are
evaluated from left to right. Exponentiation and assignment operations are right asso-
ciative, so consecutive instances of these are evaluated from right to left.

•• You can use parentheses to change the order of evaluation.
Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

51

Expressions

Table 2-7 shows some arithmetic expressions and their values.

Expression Evaluation Value

5 + 3 * 2 5 + 6 11

(5 + 3) * 2 8 * 2 16

6 % 2 0 0

2 * 3 ** 2 2 * 9 18

–3 ** 2 –(3 ** 2) –9

(3) ** 2 9 9

2 ** 3 ** 2 2 ** 9 512

(2 ** 3) ** 2 8 ** 2 64

45 / 0 Error: cannot divide by 0

45 % 0 Error: cannot divide by 0

Table 2-7	 Some arithmetic expressions and their values

The last two lines of Table 2-7 show attempts to divide by 0, which result in an error. These
expressions are good illustrations of the difference between syntax and semantics. Syn-
tax is the set of rules for constructing well-formed expressions or sentences in a language.
Semantics is the set of rules that allow an agent to interpret the meaning of those expres-
sions or sentences. A computer generates a syntax error when an expression or sentence is
not well formed. A semantic error is detected when the action that an expression describes
cannot be carried out, even though that expression is syntactically correct. Although the
expressions 45 / 0 and 45 % 0 are syntactically correct, they are meaningless, because a
computing agent cannot carry them out. Human beings can tolerate all kinds of syntax
errors and semantic errors when they converse in natural languages. By contrast, comput-
ing agents can tolerate none of these errors.

With the exception of exact division, when both operands of an arithmetic expression are
of the same numeric type (int or float), the resulting value is also of that type. When each
operand is of a different type, the resulting value is of the more general type. Note that the
float type is more general than the int type. The quotient operator // produces an integer
quotient, whereas the exact division operator / always produces a float. Thus, 3 // 4 pro-
duces 0, whereas 3 / 4 produces .75.

Although spacing within an expression is not important to the Python interpreter, pro-
grammers usually insert a single space before and after each operator to make the code
easier for people to read. Normally, an expression must be completed on a single line of
Python code. When an expression becomes long or complex, you can move to a new line

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

52

  SOFTWARE DEVELOPMENT, Data Types, and ExpressionsC h a p t e r 2

by placing a backslash character \ at the end of the current line. The next example shows
this technique:
>>> 3 + 4 * \
2 ** 5
131

Make sure to insert the backslash before or after an operator. If you break lines in this man-
ner in IDLE, the editor automatically indents the code properly.

As you will see shortly, you can also break a long line of code immediately after a comma.
Examples include function calls with several arguments.

Mixed-Mode Arithmetic and Type Conversions
You have seen how the // operator produces an integer result and the / operator pro-
duces a floating-point result with two integers. What happens when one operand is an
int and the other is a float? When working with a handheld calculator, you do not give
much thought to the fact that you intermix integers and floating-point numbers. Perform-
ing calculations involving both integers and floating-point numbers is called mixed-mode
arithmetic. For instance, if a circle has radius 3, you compute the area as follows:
>>> 3.14 * 3 ** 2
28.26

How does Python perform this type of calculation? In a binary operation on operands of
different numeric types, the less general type (int) is temporarily and automatically con-
verted to the more general type (float) before the operation is performed. Thus, in the
example expression, the value 9 is converted to 9.0 before the multiplication.

You must use a type conversion function when working with the input of numbers. A type
conversion function is a function with the same name as the data type to which it converts.
Because the input function returns a string as its value, you must use the function int or float
to convert the string to a number before performing arithmetic, as in the following example:
>>> radius = input("Enter the radius: ")
Enter the radius: 3.2
>>> radius
'3.2'
>>> float(radius)
3.2
>>> float(radius) ** 2 * 3.14
32.153600000000004

Table 2-8 lists some common type conversion functions and their uses.

Note that the int function converts a float to an int by truncation, not by rounding to the
nearest whole number. Truncation simply chops off the number’s fractional part. The round
function rounds a float to the nearest int as in the next example:
>>> int(6.75)
6
>>> round(6.75)
7

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

53

Expressions

Another use of type conversion occurs in the construction of strings from numbers and
other strings. For instance, assume that the variable profit refers to a floating-point number
that represents an amount of money in dollars and cents. Suppose that, to build a string that
represents this value for output, we need to concatenate the $ symbol to the value of profit.
However, Python does not allow the use of the + operator with a string and a number:
>>> profit = 1000.55
>>> print('$' + profit)

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: cannot concatenate 'str' and 'float' objects

To solve this problem, we use the str function to convert the value of profit to a string
and then concatenate this string to the $ symbol, as follows:
>>> print('$' + str(profit))
$1000.55

Python is a strongly typed programming language. The interpreter checks data types of
all operands before operators are applied to those operands. If the type of an operand is not
appropriate, the interpreter halts execution with an error message. This error checking pre-
vents a program from attempting to do something that it cannot do.

Conversion Function Example Use Value Returned

int(<a number or a string>) int(3.77) 3

int("33") 33

float(<a number or a string>) float(22) 22.0

str(<any value>) str(99) '99'

Table 2-8	 Type conversion functions

Exercises

1.	 x y5 5Let 8 and 2. Write the values of the following expressions:

a.	 x + y * 3

b.	 (x + y) * 3

c.	 x ** y

d.	 x % y

e.	 x / 12.0

f.	 x // 6
Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

54

  SOFTWARE DEVELOPMENT, Data Types, and ExpressionsC h a p t e r 2

Using Functions and Modules
Thus far in this chapter, we have examined two ways to manipulate data within expres-
sions. We can apply an operator such as + to one or more operands to produce a new data
value. Alternatively, we can call a function such as round with one or more data values to
produce a new data value. Python includes many useful functions, which are organized
in libraries of code called modules. In this section, we examine the use of functions and
modules.

Calling Functions: Arguments and Return Values
A function is a chunk of code that can be called by name to perform a task. Functions often
require arguments, that is, specific data values, to perform their tasks. Names that refer to
arguments are also known as parameters. When a function completes its task (which is
usually some kind of computation), the function may send a result back to the part of the
program that called that function in the first place. The process of sending a result back to
another part of a program is known as returning a value.

For example, the argument in the function call round(6.5) is the value 6.5, and the value
returned is 7. When an argument is an expression, it is first evaluated, and then its value is
passed to the function for further processing. For instance, the function call abs(4 – 5)
first evaluates the expression 4 – 5 and then passes the result, –1, to abs. Finally, abs
returns 1.

The values returned by function calls can be used in expressions and statements. For exam-
ple, the function call print(abs(4 – 5) + 3) prints the value 4.

Some functions have only optional arguments, some have required arguments, and some
have both required and optional arguments. For example, the round function has one
required argument, the number to be rounded. When called with just one argument, the
round function exhibits its default behavior, which is to return the nearest whole number
with a fractional part of 0. However, when a second, optional argument is supplied, this
argument, a number, indicates the number of places of precision to which the first argument
should be rounded. For example, round(7.563, 2) returns 7.56.

2.	 x 5Let 4.66 Write the values of the following expressions:

a.	 round(x)

b.	 int(x)

3.	 How does a Python programmer round a float value to the nearest int value?

4.	 How does a Python programmer concatenate a numeric value to a string value?

5.	 Assume that the variable x has the value 55. Use an assignment statement to incre-
ment the value of x by 1.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

55

Using Functions and Modules

To learn how to use a function’s arguments, consult the documentation on functions
in the shell. For example, Python’s help function displays information about round, as
follows:
>>> help(round)
Help on built-in function round in module builtin:

round(...)
 round(number[, ndigits]) -> floating point number

 Round a number to a given precision in decimal digits (default 0 digits).
 This returns an int when called with one argument, otherwise the same type as
 number, ndigits may be negative.

Each argument passed to a function has a specific data type. When writing code that
involves functions and their arguments, you need to keep these data types in mind. A pro-
gram that attempts to pass an argument of the wrong data type to a function will usually
generate an error. For example, one cannot take the square root of a string, but only of a
number. Likewise, if a function call is placed in an expression that expects a different type
of operand than that returned by the function, an error will be raised. If you’re not sure of
the data type associated with a particular function’s arguments, read the documentation.

The math Module
Functions and other resources are coded in components called modules. Functions like
abs and round from the __builtin__ module are always available for use, whereas the
programmer must explicitly import other functions from the modules where they are
defined.

The math module includes several functions that perform basic mathematical operations.
The next code session imports the math module and lists a directory of its resources:
>>> import math
>>> dir(math)
['__doc__', '__file__', '__loader__', '__name__',
'__package__', '__spec__', 'acos', 'acosh', 'asin',
'asinh', 'atan', 'atan2', 'atanh', 'ceil', 'copysign',
'cos', 'cosh', 'degrees', 'e', 'erf', 'erfc', 'exp',
'expm1', 'fabs', 'factorial', 'floor', 'fmod', 'frexp',
'fsum', 'gamma', 'gcd', 'hypot', 'inf', 'isclose',
'isfinite', 'isinf', 'isnan', 'ldexp', 'lgamma', 'log',
'log10', 'log1p', 'log2', 'modf', 'nan', 'pi', 'pow',
'radians', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'tau',
'trunc']

This list of function names includes some familiar trigonometric functions as well as
Python’s most exact estimates of the constants p and e.

To use a resource from a module, you write the name of a module as a qualifier, followed
by a dot (.) and the name of the resource. For example, to use the value of pi from the math

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

56

  SOFTWARE DEVELOPMENT, Data Types, and ExpressionsC h a p t e r 2

module, you would write the following code: math.pi. The next session uses this technique
to display the value of p and the square root of 2:

>>> math.pi
3.1415926535897931
>>> math.sqrt(2)
1.4142135623730951

Once again, help is available if needed:
>>> help(math.cos)
Help on built-in function cos in module math:
cos(...)
 cos(x)

 Return the cosine of x (measured in radians).

Alternatively, you can browse through the documentation for the entire module by entering
help(math). The function help uses a module’s own docstring and the docstrings of all its
functions to print the documentation.

If you are going to use only a couple of a module’s resources frequently, you can avoid
the use of the qualifier with each reference by importing the individual resources, as
follows:

>>> from math import pi, sqrt
>>> print(pi, sqrt(2))
3.14159265359 1.41421356237

Programmers occasionally import all of a module’s resources to use without the qualifier.
For example, the statement from math import * would import all of the math module’s
resources.

Generally, the first technique of importing resources (that is, importing just the module’s
name) is preferred. The use of a module qualifier not only reminds the reader of a function’s
purpose but also helps the computer to discriminate between different functions that have
the same name.

The Main Module
In the case study, earlier in this chapter, we showed how to write documentation for a
Python script. To differentiate this script from the other modules in a program (and there
could be many), we call it the main module. Like any module, the main module can also
be imported. Instead of launching the script from a terminal prompt or loading it into the
shell from IDLE, you can start IDLE from the terminal prompt and import the script as a
module. Let’s do that with the taxform.py script, as follows:

>>> import taxform
Enter the gross income: 120000
Enter the number of dependents: 2
The income tax is $20800.0

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

57

Using Functions and Modules

After importing a main module, you can view its documentation by running the help function:
>>> help(taxform)
DESCRIPTION
Program: taxform.py
Author: Ken
Compute a person’s income tax.
Significant constants
 tax rate
 standard deduction
 deduction per dependent
The inputs are
 gross income
 number of dependents
Computations:
 net income 5 gross income - the standard deduction - a
deduction for each dependent
 income tax 5 is a fixed percentage of the net income
The outputs are
 the income tax

Program Format and Structure
This is a good time to step back and get a sense of the overall format and structure of
simple Python programs. It’s a good idea to structure your programs as follows:

•• Start with an introductory comment stating the author’s name, the purpose of the program,
and other relevant information. This information should be in the form of a docstring.

•• Then, include statements that do the following:

•• Import any modules needed by the program.

•• Initialize important variables, suitably commented.

•• Prompt the user for input data and save the input data in variables.

•• Process the inputs to produce the results.

•• Display the results.

Take a moment to review the income tax program presented in the case study at the beginning
of this chapter. Notice how the program conforms to this basic organization. Also, notice that the
various sections of the program are separated by whitespace (blank lines). Remember, programs
should be easy for other programmers to read and understand. They should read like essays!

Running a Script from a Terminal Command Prompt
Thus far in this book, we have been developing and running Python programs experimen-
tally in IDLE. When a program’s development and testing are finished, the program can
be released to others to run on their computers. Python must be installed on a user’s com-
puter, but the user need not run IDLE to run a Python script.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

58

  SOFTWARE DEVELOPMENT, Data Types, and ExpressionsC h a p t e r 2

One way to run a Python script is to open a terminal command prompt window. On a
computer running Windows 10, click in the “Type here to search” box on the Taskbar,
type Command Prompt, and click Command Prompt in the list. In earlier versions of
Windows, select the Start button, select All Programs, select Accessories, and then select
Command Prompt. On a Macintosh or UNIX-based system, this is a terminal window. A
terminal window on a Macintosh is shown in Figure 2-5.

Figure 2-5  A terminal window on a Macintosh

After the user has opened a terminal window, she must navigate or change directories until
the prompt shows that she is attached to the directory that contains the Python script. For
example, if we assume that the script named taxform.py is in the pythonfiles directory
under the terminal’s current directory, Figure 2-6 shows the commands to change to this
directory and list its contents.

Figure 2-6  Changing to another directory and listing its contents

When the user is attached to the appropriate directory, she can run the script by enter-
ing the command python3 scriptname.py at the command prompt (be careful: if you
run python instead of python3, you might launch the interpreter for Python 2, which
will not run all of the programs in this book). Figure 2-7 shows this step and a run of the
taxform script.

All Python installations also provide the capability of launching Python scripts by double-
clicking the files from the operating system’s file browser. On Windows systems, this feature

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

59

Summary

is automatic, whereas on Macintosh and UNIX-based systems, the .py file type must be set
to launch with the Python launcher application. When you launch a script in this manner,
however, the command prompt window opens, shows the output of the script, and closes.
To prevent this fly-by-window problem, you can add an input statement at the end of the
script that pauses until the user presses the enter or return key, as follows:
input("Please press enter or return to quit the program. ")

Figure 2-7  Running a Python script in a terminal window

Exercises

1.	 Explain the relationship between a function and its arguments.

2.	 The math module includes a pow function that raises a number to a given power.
The first argument is the number, and the second argument is the exponent. Write
a code segment that imports this function and calls it to print the values 82 and 54.

3.	 Explain how to display a directory of all of the functions in a given module.

4.	 Explain how to display help information on a particular function in a given module.

Summary
•• The waterfall model describes the software development process in terms of several

phases. Analysis determines what the software will do. Design determines how the
software will accomplish its purposes. Implementation involves coding the software in
a particular programming language. Testing and integration demonstrate that the soft-
ware does what it is intended to do as it is put together for release. Maintenance locates
and fixes errors after release and adds new features to the software.

•• Literals are data values that can appear in a program. They evaluate to themselves.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

60

  SOFTWARE DEVELOPMENT, Data Types, and ExpressionsC h a p t e r 2

•• The string data type is used to represent text for input and output. Strings are sequences
of characters. String literals are enclosed in pairs of single or double quotation marks.
Two strings can be combined by concatenation to form a new string.

•• Escape characters begin with a backslash and represent special characters such as the
delete key and the newline.

•• A docstring is a string enclosed by triple quotation marks and provides program
documentation.

•• Comments are pieces of code that are not evaluated by the interpreter but can be read
by programmers to obtain information about a program.

•• Variables are names that refer to values. The value of a variable is initialized and can be
reset by an assignment statement. In Python, any variable can name any value.

•• The int data type represents integers. The float data type represents floating-point
numbers. The magnitude of an integer or a floating-point number is limited by the mem-
ory of the computer, as is the number’s precision in the case of floating-point numbers.

•• Arithmetic operators are used to form arithmetic expressions. Operands can be
numeric literals, variables, function calls, or other expressions.

•• The operators are ranked in precedence. In descending order, they are exponentiation,
negation, multiplication (*, /, and % are the same), addition (+ and – are the same), and
assignment. Operators with a higher precedence are evaluated before those with a lower
precedence. Normal precedence can be overridden by parentheses.

•• Mixed-mode operations involve operands of different numeric data types. They result
in a value of the more inclusive data type.

•• The type conversion functions can be used to convert a value of one type to a value of
another type after input.

•• A function call consists of a function’s name and its arguments or parameters. When
it is called, the function’s arguments are evaluated, and these values are passed to the
function’s code for processing. When the function completes its work, it may return a
result value to the caller.

•• Python is a strongly typed language. The interpreter checks the types of all operands
within expressions and halts execution with an error if they are not as expected for the
given operators.

•• A module is a set of resources, such as function definitions. Programmers access these
resources by importing them from their modules.

•• A semantic error occurs when the computer cannot perform the requested operation, such as
an attempt to divide by 0. Python programs with semantic errors halt with an error message.

•• A logic error occurs when a program runs to a normal termination but produces incor-
rect results.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

61

Review Questions

Review Questions
1.	 What does a programmer do during the analysis phase of software

development?

a.	 Codes the program in a particular programming language
b.	 Writes the algorithms for solving a problem
c.	 Decides what the program will do and determines its user interface
d.	 Tests the program to verify its correctness

2.	 What must a programmer use to test a program?

a.	 All possible sets of legitimate inputs
b.	 All possible sets of inputs
c.	 A single set of legitimate inputs
d.	 A reasonable set of legitimate inputs

3.	 What must you use to create a multi-line string?

a.	 A single pair of double quotation marks
b.	 A single pair of single quotation marks
c.	 A single pair of three consecutive double quotation marks
d.	 Embedded newline characters

4.	 What is used to begin an end-of-line comment?

a.	 / symbol
b.	 # symbol
c.	 % symbol

5.	 Which of the following lists of operators is ordered by decreasing
precedence?

a.	 +, *, **
b.	 *, /, %
c.	 **, *, +

6.	 The expression 2 ** 3 ** 2 evaluates to which of the following values?

a.	 64
b.	 512
c.	 8

7.	 The expression round(23.67) evaluates to which of the following values?

a.	 23
b.	 23.7
c.	 24.0

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

62

  SOFTWARE DEVELOPMENT, Data Types, and ExpressionsC h a p t e r 2

8.	 Assume that the variable name has the value 33. What is the value of name after
the assignment name 5 name * 2 executes?

a.	 35
b.	 33
c.	 66

9.	 Write an import statement that imports just the functions sqrt and log from the
math module.

10.	 What is the purpose of the dir function and the help function?

Projects
In each of the projects that follow, you should write a program that contains an introduc-
tory docstring. This documentation should describe what the program will do (analysis)
and how it will do it (design the program in the form of a pseudocode algorithm). Include
suitable prompts for all inputs, and label all outputs appropriately. After you have coded a
program, be sure to test it with a reasonable set of legitimate inputs.

1.	 The tax calculator program of the case study outputs a floating-point number
that might show more than two digits of precision. Use the round function to
modify the program to display at most two digits of precision in the output
number.

2.	 You can calculate the surface area of a cube if you know the length of an edge.
Write a program that takes the length of an edge (an integer) as input and prints
the cube’s surface area as output.

3.	 Five Star Retro Video rents VHS tapes and DVDs to the same connoisseurs who
like to buy LP record albums. The store rents new videos for $3.00 a night, and
oldies for $2.00 a night. Write a program that the clerks at Five Star Retro Video
can use to calculate the total charge for a customer’s video rentals. The program
should prompt the user for the number of each type of video and output the total
cost.

4.	 Write a program that takes the radius of a sphere (a floating-point number) as
input and then outputs the sphere’s diameter, circumference, surface area, and
volume.

5.	 An object’s momentum is its mass multiplied by its velocity. Write a program
that accepts an object’s mass (in kilograms) and velocity (in meters per second) as
inputs and then outputs its momentum.

6.	 The kinetic energy of a moving object is given by the formula KE mv1 2/ 25)(
where m is the object’s mass and v is its velocity. Modify the program you created
in Project 5 so that it prints the object’s kinetic energy as well as its momentum.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

63

Projects

7.	 Write a program that calculates and prints the number of minutes in a year.

8.	 Light travels at 3 *108 meters per second. A light-year is the distance a light beam
travels in one year. Write a program that calculates and displays the value of a
light-year.

9.	 Write a program that takes as input a number of kilometers and prints the corre-
sponding number of nautical miles. Use the following approximations:

•• A kilometer represents 1/10,000 of the distance between the North Pole and
the equator.

•• There are 90 degrees, containing 60 minutes of arc each, between the North
Pole and the equator.

•• A nautical mile is 1 minute of an arc.

10.	 An employee’s total weekly pay equals the hourly wage multiplied by the total
number of regular hours plus any overtime pay. Overtime pay equals the total
overtime hours multiplied by 1.5 times the hourly wage. Write a program that
takes as inputs the hourly wage, total regular hours, and total overtime hours and
displays an employee’s total weekly pay.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

C h a p t e r 3
Loops and Selection
Statements

After completing this chapter, you will be able to

Write a loop to repeat a sequence of actions a fixed
number of times

Write a loop to traverse the sequence of characters in a
string

Write a loop that counts down and a loop that counts up

Write an entry-controlled loop that halts when a condition
becomes false

Use selection statements to make choices in a program

Construct appropriate conditions for condition-controlled
loops and selection statements

Use logical operators to construct compound Boolean
expressions

Use a selection statement and a break statement to exit a
loop that is not entry-controlled

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

65

Definite Iteration: The for Loop

All the programs you have studied so far in this book have consisted of short sequences
of instructions that are executed one after the other. Even if we allowed the sequence
of instructions to be quite long, this type of program would not be very useful. Like
human beings, computers must be able to repeat a set of actions. They also must be able
to select an action to perform in a particular situation. This chapter focuses on control
statements—statements that allow the computer to select or repeat an action.

Definite Iteration: The for Loop
We begin our study of control statements with repetition statements, also known as loops,
which repeat an action. Each repetition of the action is known as a pass or an iteration.
There are two types of loops—those that repeat an action a predefined number of times
(definite iteration) and those that perform the action until the program determines that it
needs to stop (indefinite iteration). In this section, we examine Python’s for loop, the con-
trol statement that most easily supports definite iteration.

Executing a Statement a Given Number of Times
When Dr. Frankenstein’s monster came to life, the good doctor exclaimed, “It’s alive! It’s
alive!” A computer can easily print these exclamations not just twice, but a dozen or a hun-
dred times, and you do not have to write two, a dozen, or one hundred output statements
to accomplish this. Here is a for loop that runs the same output statement four times:
>>> for eachPass in range(4):
 print("It's alive!", end = " ")
It's alive! It's alive! It's alive! It's alive!

This loop repeatedly calls one function—the print function. The constant 4 on the first
line tells the loop how many times to call this function. If we want to print 10 or 100 excla-
mations, we just change the 4 to 10 or to 100. The form of this type of for loop is
for <variable> in range(<an integer expression>):
 <statement-1>
 .
 .
 <statement-n>

The first line of code in a loop is sometimes called the loop header. For now, the only rel-
evant information in the header is the integer expression, which denotes the number of
iterations that the loop performs. The colon (:) ends the loop header. The loop body com-
prises the statements in the remaining lines of code, below the header. These statements are
executed in sequence on each pass through the loop. Note that the statements in the loop
body must be indented and aligned in the same column. The IDLE shell or script window
will automatically indent lines under a loop header, but you may see syntax errors if this
indentation is off by even one space. It is best to indent four spaces if the indentation does
not automatically occur when you move to the next line of code.

Now let’s explore how Python’s exponentiation operator might be implemented in a loop.
Recall that this operator raises a number to a given power. For instance, the expression 2 ** 3

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

66

  Loops and Selection StatementsC h a p t e r 3

computes the value of 23, or 2 * 2 * 2. The following session uses a loop to compute an
exponentiation for a nonnegative exponent. We use three variables to designate the number,
the exponent, and the product. The product is initially 1. On each pass through the loop, the
product is multiplied by the number and reset to the result. To allow us to trace this process,
the value of the product is also printed on each pass.
>>> number = 2
>>> exponent = 3
>>> product = 1
>>> for eachPass in range(exponent):
 product = product * number
 print(product, end = " ")
2 4 8
>>> product
8

As you can see, if the exponent were 0, the loop body would not execute, and the value of
product would remain as 1, which is the value of any number raised to the zero power.

The use of variables in the preceding example demonstrates that our exponentiation loop
is an algorithm that solves a general class of problems. The user of this particular loop not
only can raise 2 to the 3rd power but also can raise any number to any nonnegative power,
just by substituting different values for the variables number and exponent.

Count-Controlled Loops
When Python executes the type of for loop just discussed, it counts from 0 to the value of
the header’s integer expression minus 1. On each pass through the loop, the header’s variable
is bound to the current value of this count. The next code segment demonstrates this fact:

>>> for count in range(4):
 print(count, end = " ")
0 1 2 3

Loops that count through a range of numbers are also called count-controlled loops. The
value of the count on each pass is often used in computations. For example, consider the
factorial of 4, which is 1 * 2 * 3 * 54 24. A code segment to compute this value starts with a
product of 1 and resets this variable to the result of multiplying it and the loop’s count plus
1 on each pass, as follows:
>>> product = 1
>>> for count in range(4):
 product = product * (count + 1)
>>> product
24

Note that the value of count + 1 is used on each pass, to ensure that the numbers used are
1 through 4 rather than 0 through 3.

To count from an explicit lower bound, the programmer can supply a second integer
expression in the loop header. When two arguments are supplied to range, the count

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

67

ranges from the first argument to the second argument minus 1. The next code segment
uses this variation to simplify the code in the loop body:
>>> product = 1
>>> for count in range(1, 5):
 product = product * count
>>> product
24

The only thing in this version to be careful about is the second argument of range, which
should specify an integer greater by 1 than the desired upper bound of the count. Here is
the form of this version of the for loop:
for <variable> in range(<lower bound>, <upper bound + 1>):
 <loop body>

Accumulating a single result value from a series of values is a common operation in com-
puting. Here is an example of a summation, which accumulates the sum of a sequence of
numbers from a lower bound through an upper bound:
>>> lower = int(input("Enter the lower bound: "))
Enter the lower bound: 1
>>> upper = int(input("Enter the upper bound: "))
Enter the upper bound: 10
>>> theSum = 0
>>> for number in range(lower, upper + 1):
 theSum = theSum + number
>>> theSum
55

Note that we use the variable theSum rather than sum to accumulate the sum of the numbers
in this code. Since sum is the name of a built-in Python function, it’s a good idea to avoid
using such names for other purposes in our code.

Augmented Assignment
Expressions such as x = x + 1 or x = x + 2 occur so frequently in loops that Python
includes abbreviated forms for them. The assignment symbol can be combined with the
arithmetic and concatenation operators to provide augmented assignment operations.
Following are several examples:
a = 17
s = "hi"
a += 3 # Equivalent to a = a + 3
a -= 3 # Equivalent to a = a - 3
a *= 3 # Equivalent to a = a * 3
a /= 3 # Equivalent to a = a / 3
a %= 3 # Equivalent to a = a % 3
s += " there" # Equivalent to s = s + " there"

All these examples have the format

<variable> <operator>= <expression>

Definite Iteration: The for Loop

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

68

  Loops and Selection StatementsC h a p t e r 3

which is equivalent to

<variable> = <variable> <operator> <expression>

Note that there is no space between <operator> and =. The augmented assignment opera-
tions and the standard assignment operations have the same precedence.

Loop Errors: Off-by-One Error
The for loop is not only easy to write but also fairly easy to write correctly. Once we get the
syntax correct, we need to be concerned about only one other possible error: The loop fails
to perform the expected number of iterations. Because this number is typically off by one,
the error is called an off-by-one error. For the most part, off-by-one errors result when
the programmer incorrectly specifies the upper bound of the loop. The programmer might
intend the following loop to count from 1 through 4, but it counts from 1 through 3:
Count from 1 through 4, we think
>>> for count in range(1,4):
 print(count)
1
2
3

Note that this is not a syntax error, but rather a logic error. Unlike syntax errors, logic
errors are not detected by the Python interpreter, but only by the eyes of a programmer
who carefully inspects a program’s output.

Traversing the Contents of a Data Sequence
Although we have been using the for loop as a simple count-controlled loop, the loop itself
visits each number in a sequence of numbers generated by the range function. The next
code segment shows what these sequences look like:
>>> list(range(4))
[0, 1, 2, 3]
>>> list(range(l, 5))
[1, 2, 3, 4]

In this example, the sequence of numbers generated by the function range is fed to Python’s
list function, which returns a special type of sequence called a list. Strings are also
sequences of characters. The values contained in any sequence can be visited by running a
for loop, as follows:
for <variable> in <sequence>:
 <do something with variable>

On each pass through the loop, the variable is bound to or assigned the next value in the
sequence, starting with the first one and ending with the last one. The following code

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

69

segment traverses or visits all the elements in two sequences and prints the values con-
tained in them, separated by spaces:
>>> for number in [6, 4, 8]:
 print(number, end = " ")
6 4 8
>>> for character in "Hi there!":
 print(character, end = " ")
H i t h e r e !

Specifying the Steps in the Range
The count-controlled loops we have seen thus far count through consecutive numbers in a
series. However, in some programs we might want a loop to skip some numbers, perhaps
visiting every other one or every third one. A variant of Python’s range function expects
a third argument that allows you to nicely skip some numbers. The third argument speci-
fies a step value, or the interval between the numbers used in the range, as shown in the
examples that follow:
>>> list(range(1, 6, 1)) # Same as using two arguments
[1, 2, 3, 4, 5]
>>> list(range(1, 6, 2)) # Use every other number
[1, 3, 5]
>>> list(range(1, 6, 3)) # Use every third number
[1, 4]

Now, suppose you had to compute the sum of the even numbers between 1 and 10. Here is
the code that solves this problem:
>>> theSum = 0
>>> for count in range(2, 11, 2):
 theSum += count
>>> theSum
30

Loops That Count Down
All of our loops until now have counted up from a lower bound to an upper bound. Once in
a while, a problem calls for counting in the opposite direction, from the upper bound down
to the lower bound. For example, when the top-10 singles tunes are released, they might be
presented in order from lowest (10th) to highest (1st) rank. In the next session, a loop dis-
plays the count from 10 down to 1 to show how this would be done:
>>> for count in range(10, 0, -1):
 print(count, end = " ")
10 9 8 7 6 5 4 3 2 1
>>> list(range(10, 0, –1))
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

Definite Iteration: The for Loop

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

70

  Loops and Selection StatementsC h a p t e r 3

When the step argument is a negative number, the range function generates a sequence
of numbers from the first argument down to the second argument plus 1. Thus, in this
case, the first argument should express the upper bound, and the second argument should
express the lower bound minus 1.

Exercises
1.	 Write the outputs of the following loops:

a.	 for count in range(5):

	   print(count + 1, end = " ")

b.	 for count in range(1, 4):

	   print(count, end = " ")

c.	 for count in range(1, 6, 2):

	   print(count, end = " ")

d.	 for count in range(6, 1, –1):

	   print(count, end = " ")

2.	 Write a loop that prints your name 100 times. Each output should begin on a
new line.

3.	 Explain the role of the variable in the header of a for loop.

4.	 Write a loop that prints the first 128 ASCII values followed by the corresponding
characters (see the section on characters in Chapter 2). Be aware that most of the
ASCII values in the range “0..31” belong to special control characters with no stan-
dard print representation, so you might see strange symbols in the output for these
values.

5.	 Assume that the variable teststring refers to a string. Write a loop that prints
each character in this string, followed by its ASCII value.

Formatting Text for Output
Before turning to our next case study, we need to examine more closely the format of text
for output. Many data-processing applications require output that has a tabular format,
like that used in spreadsheets or tables of numeric data. In this format, numbers and
other information are aligned in columns that can be either left-justified or right-justified.
A column of data is left-justified if its values are vertically aligned beginning with their
leftmost characters. A column of data is right-justified if its values are vertically aligned
beginning with their rightmost characters. To maintain the margins between columns of
data, left-justification requires the addition of spaces to the right of the datum, whereas

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

71

Formatting Text for Output

right-justification requires adding spaces to the left of the datum. A column of data is cen-
tered if there are an equal number of spaces on either side of the data within that column.

The total number of data characters and additional spaces for a given datum in a formatted
string is called its field width.

The print function automatically begins printing an output datum in the first available
column. The next example, which displays the exponents 7 through 10 and the values of 107
through 1010, shows the format of two columns produced by the print function:

>>> for exponent in range(7, 11):
 print(exponent, 10 ** exponent)
7 10000000
8 100000000
9 1000000000
10 10000000000

Note that when the exponent reaches 10, the output of the second column shifts over by a
space and looks ragged. The output would look neater if the left column were left-justified
and the right column were right-justified. When we format floating-point numbers for
output, we often would like to specify the number of digits of precision to be displayed as
well as the field width. This is especially important when displaying financial data in which
exactly two digits of precision are required.

Python includes a general formatting mechanism that allows the programmer to specify
field widths for different types of data. The next session shows how to right-justify and
left-justify the string "four" within a field width of 6:

>>> "%6s" % "four"	 # Right justify
' four'
>>> "%-6s" % "four"	 # Left justify
'four '

The first line of code right-justifies the string by padding it with two spaces to its left. The
next line of code left-justifies by placing two spaces to the string’s right.

The simplest form of this operation is the following:

<format string> % <datum>

This version contains a format string, the format operator %, and a single data value to
be formatted. The format string can contain string data and other information about the
format of the datum. To format the string data value in our example, we used the nota-
tion %<field width>s in the format string. When the field width is positive, the datum is
right-justified; when the field width is negative, you get left-justification. If the field width is
less than or equal to the datum’s print length in characters, no justification is added. The %
operator works with this information to build and return a formatted string.

To format integers, you use the letter d instead of s. To format a sequence of data values, you
construct a format string that includes a format code for each datum and place the data values
in a tuple following the % operator. The form of the second version of this operation follows:

<format string> % (<datum–1>, ..., <datum–n>)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

72

  Loops and Selection StatementsC h a p t e r 3

Armed with the format operation, our powers of 10 loop can now display the numbers in
nicely aligned columns. The first column is left-justified in a field width of 3, and the second
column is right-justified in a field width of 12.

>>> for exponent in range(7, 11):
 print("%-3d%12d" % (exponent, 10 ** exponent))
7 10000000
8 100000000
9 1000000000
10 10000000000

The format information for a data value of type float has the form

%<field width>.<precision>f

where .<precision> is optional. The next session shows the output of a floating-point
number without, and then with, a format string:

>>> salary = 100.00
>>> print("Your salary is $" + str(salary))
Your salary is $100.0
>>> print("Your salary is $%0.2f" % salary)
Your salary is $100.00

Here is another, minimal, example of the use of a format string, which says to use a field
width of 6 and a precision of 3 to format the float value 3.14:

>>> "%6.3f" % 3.14
' 3.140'

Note that Python adds a digit of precision to the string and pads it with a space to the left to
achieve the field width of 6. This width includes the place occupied by the decimal point.

Exercises
1.	 Assume that the variable amount refers to 24.325. Write the outputs of the following

statements:

a.	 print("Your salary is $%0.2f" % amount)

b.	 print("The area is %0.1f" % amount)

c.	 print("%7f" % amount)

2.	 Write a code segment that displays the values of the integers x, y, and z on a single
line, such that each value is right-justified with a field width of 6.

3.	 Write a format operation that builds a string for the float variable amount that has
exactly two digits of precision and a field width of zero.

4.	 Write a loop that outputs the numbers in a list named salaries. The outputs should be
formatted in a column that is right-justified, with a field width of 12 and a precision of 2.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

73

Formatting Text for Output

Case Study: An Investment Report

It has been said that compound interest is the eighth wonder of the world. Our next
case study, which computes an investment report, shows why.

Request

Write a program that computes an investment report.

Analysis

The inputs to this program are the following:

•• An initial amount to be invested (a floating-point number)

•• A period of years (an integer)

•• An interest rate (a percentage expressed as an integer)

The program uses a simplified form of compound interest, in which the interest is
computed once each year and added to the total amount invested. The output of
the program is a report in tabular form that shows, for each year in the term of the
investment, the year number, the initial balance in the account for that year, the inter-
est earned for that year, and the ending balance for that year. The columns of the
table are suitably labeled with a header in the first row. Following the output of the
table, the program prints the total amount of the investment balance and the total
amount of interest earned for the period. The proposed user interface is shown in
Figure 3-1.

Figure 3-1  The user interface for the investment report program

Enter the investment amount: 10000.00
Enter the number of years: 5
Enter the rate as a %: 5
Year Starting balance Interest Ending balance
 1 10000.00 500.00 10500.00
 2 10500.00 525.00 11025.00
 3 11025.00 551.25 11576.25
 4 11576.25 578.81 12155.06
 5 12155.06 607.75 12762.82
Ending balance: $12762.82
Total interest earned: $2762.82

(continues)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

74

  Loops and Selection StatementsC h a p t e r 3

Design

The four principal parts of the program perform the following tasks:

1.	 Receive the user’s inputs and initialize data.

2.	 Display the table’s header.

3.	 Compute the results for each year, and display them as a row in the table.

4.	 Display the totals.

The third part of the program, which computes and displays the results, is a loop. The
following is a slightly simplified version of the pseudocode for the program, without
the details related to formatting the outputs:

Input the starting balance, number of years, and interest rate
Set the total interest to 0.0
Print the table's heading
For each year
 compute the interest
 compute the ending balance
 print the year, starting balance, interest, and ending balance
 update the starting balance
 update the total interest
print the ending balance and the total interest

Note that starting balance refers to the original input balance and also to the balance
that begins each year of the term. Ignoring the details of the output at this point allows
us to focus on getting the computations correct. We can translate this pseudocode to
a Python program to check our computations. A rough draft of a program is called a
prototype. Once we are confident that the prototype is producing the correct numbers,
we can return to the design and work out the details of formatting the outputs.

The format of the outputs is guided by the requirement that they be aligned nicely in
columns. We use a format string to right-justify all of the numbers on each row of out-
put. We also use a format string for the string labels in the table’s header. After some
trial and error, we come up with field widths of 4, 18, 10, and 16 for the year, start-
ing balance, interest, and ending balance, respectively. We can also use these widths
in the format string for the header.

Implementation (Coding)

The code for this program shows each of the major parts described in the design,
set off by end-of-line comments. Note the use of the many variables to track the

(continues)

(continued )

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

75

Formatting Text for Output

various amounts of money used by the program. Wisely, we have chosen names for
these variables that clearly describe their purpose. The format strings in the print
statements are rather complex, but we have made an effort to format them so the
information they contain is still fairly readable.

"""
Program: investment.py
Author: Ken
Compute an investment report.
1. The inputs are
 starting investment amount
 number of years
 interest rate (an integer percent)
2. The report is displayed in tabular form with a header.
3. Computations and outputs:
 for each year
 compute the interest and add it to the investment
 print a formatted row of results for that year
4. The ending investment and interest earned are also
 displayed.
"""

Accept the inputs
startBalance = float(input("Enter the investment amount: "))
years = int(input("Enter the number of years: "))
rate = int(input("Enter the rate as a %: "))

Convert the rate to a decimal number
rate = rate / 100

Initialize the accumulator for the interest
totalInterest = 0.0

Display the header for the table
print("%4s%18s%10s%16s" % \
 ("Year", "Starting balance",
 "Interest", "Ending balance"))

Compute and display the results for each year
for year in range(1, years + 1):
 interest = startBalance * rate
 endBalance = startBalance + interest
 print("%4d%18.2f%10.2f%16.2f" % \
 (year, startBalance, interest, endBalance))
 startBalance = endBalance
 totalInterest += interest

(continues)

(continued )

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

76

  Loops and Selection StatementsC h a p t e r 3

Display the totals for the period
print("Ending balance: $%0.2f" % endBalance)

 print("Total interest earned: $%0.2f" % totalInterest)

Testing

When testing a program that contains a loop, we should focus first on the input
that determines the number of iterations. In our program, this value is the number
of years. We enter a value that yields the smallest possible number of iterations,
then increase this number by 1, then use a slightly larger number, such as 5, and
finally we use a number close to the maximum expected, such as 50 (in our problem
domain, probably the largest realistic period of an investment). The values of the
other inputs, such as the investment amount and the rate in our program, should
be reasonably small and stay fixed for this phase of the testing. If the program pro-
duces correct outputs for all of these inputs, we can be confident that the loop is
working correctly.

In the next phase of testing, we examine the effects of the other inputs on the
results, including their format. We know that the other two inputs to our programs,
the investment and the rate, already produce correct results for small values. A rea-
sonable strategy might be to test a large investment amount with the smallest and
largest number of years and a small rate, and then with the largest number of years
and the largest reasonable rate. Table 3-1 organizes these sets of test data for the
program.

(continued )

Investment Years Rate

100.00 1 5

100.00 2 5

100.00 5 5

100.00 50 5

10000.00 1 5

10000.00 50 5

10000.00 50 20

Table 3-1	 The data sets for testing the investment program

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

77

Selection: if and if-else Statements

Selection: if and if-else Statements
We have seen that computers can plow through long sequences of instructions and that
they can do so repeatedly. However, not all problems can be solved in this manner. In some
cases, instead of moving straight ahead to execute the next instruction, the computer might
be faced with two alternative courses of action. The computer must pause to examine or
test a condition, which expresses a hypothesis about the state of its world at that point in
time. If the condition is true, the computer executes the first alternative action and skips the
second alternative. If the condition is false, the computer skips the first alternative action
and executes the second alternative.

In other words, instead of moving blindly ahead, the computer exercises some intelligence
by responding to conditions in its environment. In this section, we explore several types of
selection statements, or control statements, that allow a computer to make choices. But
first, we need to examine how a computer can test conditions.

The Boolean Type, Comparisons, and Boolean Expressions
Before you can test conditions in a Python program, you need to understand the Boolean
data type, which is named for the nineteenth century British mathematician George Boole.
The Boolean data type consists of only two data values—true and false. In Python, Boolean
literals can be written in several ways, but most programmers prefer to use the standard
values True and False.

Simple Boolean expressions consist of the Boolean values True or False, variables bound
to those values, function calls that return Boolean values, or comparisons. The condition
in a selection statement often takes the form of a comparison. For example, you might
compare value A to value B to see which one is greater. The result of the comparison is
a Boolean value. It is either true or false that value A is greater than value B. To write
expressions that make comparisons, you have to be familiar with Python’s comparison
operators, which are listed in Table 3-2.

Comparison Operator Meaning

== Equals

!= Not equals

< Less than

> Greater than

<= Less than or equal

>= Greater than or equal

Table 3-2	 The comparison operators

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

78

  Loops and Selection StatementsC h a p t e r 3

The following session shows some example comparisons and their values:

>>> 4 == 4
True
>>> 4 != 4
False
>>> 4 < 5
True
>>> 4 >= 3
True
>>> "A" < "B"
True

Note that == means equals, whereas = means assignment. As you learned in Chapter 2,
when evaluating expressions in Python, you need to be aware of precedence—that is, the
order in which operators are applied in complex expressions. The comparison operators are
applied after addition but before assignment.

if-else Statements
The if-else statement is the most common type of selection statement. It is also called a
two-way selection statement, because it directs the computer to make a choice between
two alternative courses of action.

The if-else statement is often used to check inputs for errors and to respond with error
messages if necessary. The alternative is to go ahead and perform the computation if the
inputs are valid.

For example, suppose a program inputs the area of a circle and computes and outputs its
radius. Legitimate inputs for this program would be positive numbers. But, by mistake, the
user could still enter a zero or a negative number. Because the program has no choice but to
use this value to compute the radius, it might crash (stop running) or produce a meaning-
less output. The next code segment shows how to use an if-else statement to locate (trap)
this error and respond to it:

import math
area = float(input("Enter the area: "))
if area > 0:
 radius = math’s(area / math.pi)
 print("The radius is", radius)
else:
 print("Error: the area must be a positive number")

Here is the Python syntax for the if-else statement:

if <condition>:
 <sequence of statements–1>
else:
 <sequence of statements–2>

The condition in the if-else statement must be a Boolean expression—that is, an
expression that evaluates to either true or false. The two possible actions each consist of

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

79

a sequence of statements. Note that each sequence must be indented at least one space
beyond the symbols if and else. Lastly, note the use of the colon (:) following the condition
and the word else. Figure 3-2 shows a flow diagram of the semantics of the if-else state-
ment. In that diagram, the diamond containing the question mark indicates the condition.

Figure 3-2  The semantics of the if-else statement

true

false
?

sequence of statements 1 sequence of statements 2

Our next example prints the maximum and minimum of two input numbers.
first = int(input("Enter the first number: "))
second = int(input("Enter the second number: "))
if first > second:
 maximum = first
 minimum = second
else:
 maximum = second
 minimum = first
print("Maximum:", maximum)
print("Minimum:", minimum)

Python includes two functions, max and min, that make the if-else statement in this
example unnecessary. In the following example, the function max returns the largest
of its arguments, whereas min returns the smallest of its arguments:
first = int(input("Enter the first number: "))
second = int(input("Enter the second number: "))
print("Maximum:", max(first, second))
print("Minimum:", min(first, second))

One-Way Selection Statements
The simplest form of selection is the if statement. This type of control statement is also
called a one-way selection statement, because it consists of a condition and just a single
sequence of statements. If the condition is True, the sequence of statements is run. Other-
wise, control proceeds to the next statement following the entire selection statement. Here
is the syntax for the if statement:
if <condition>:
 <sequence of statements>

Selection: if and if-else Statements

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

80

  Loops and Selection StatementsC h a p t e r 3

Simple if statements are often used to prevent an action from being performed if
a condition is not right. For example, the absolute value of a negative number is the
arithmetic negation of that number, otherwise it is just that number. The next session
uses a simple if statement to reset the value of a variable to its absolute value:
>>> if x < 0:
 x = –x

Multi-Way if Statements
Occasionally, a program is faced with testing several conditions that entail more than two
alternative courses of action. For example, consider the problem of converting numeric
grades to letter grades. Table 3-3 shows a simple grading scheme that is based on two
assumptions: that numeric grades can range from 0 to 100 and that the letter grades are
A, B, C, and F.

Figure 3-3  The semantics of the if statement

true

false
?

sequence of statements

Letter Grade Range of Numeric Grades

A All grades above 89

B All grades above 79 and below 90

C All grades above 69 and below 80

F All grades below 70

Table 3-3	 A simple grading scheme

Figure 3-3 shows a flow diagram of the semantics of the if statement.

Expressed in English, an algorithm that uses this scheme would state that if the numeric
grade is greater than 89, then the letter grade is A, else if the numeric grade is greater than
79, then the letter grade is B, . . . , else (as a default case) the letter grade is F.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

81

The process of testing several conditions and responding accordingly can be described
in code by a multi-way selection statement. Here is a short Python script that uses
such a statement to determine and print the letter grade corresponding to an input
numeric grade:
number = int(input("Enter the numeric grade: "))
if number > 89:
 letter = 'A'
elif number > 79:
 letter = 'B'
elif number > 69:
 letter = 'C'
else:
 letter = 'F'
print("The letter grade is", letter)

The multi-way if statement considers each condition until one evaluates to True or they
all evaluate to False. When a condition evaluates to True, the corresponding action is
performed and control skips to the end of the entire selection statement. If no condition
evaluates to True, then the action after the trailing else is performed.

The syntax of the multi-way if statement is the following:
if <condition-1>:
 <sequence of statements-1>
elif <condition-n>:
 <sequence of statements-n>
else:
 <default sequence of statements>

Once again, indentation helps the human reader and the Python interpreter to see the logi-
cal structure of this control statement. Figure 3-4 shows a flow diagram of the semantics of
a multi-way if statement with two conditions and a trailing else clause.

Figure 3-4  The semantics of the multi-way if statement

sequence of statements

sequence of statements

true

true

false

false

?

sequence of statements ?

Selection: if and if-else Statements

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

82

  Loops and Selection StatementsC h a p t e r 3

Logical Operators and Compound Boolean Expressions
Often a course of action must be taken if either of two conditions is true. For example, valid
inputs to a program often lie within a given range of values. Any input above this range
should be rejected with an error message, and any input below this range should be dealt
with in a similar fashion. The next code segment accepts only valid inputs for our grade
conversion script and displays an error message otherwise:
number = int(input("Enter the numeric grade: "))
if number > 100:
 print("Error: grade must be between 100 and 0")
elif number < 0:
 print("Error: grade must be between 100 and 0")
else:
 # The code to compute and print the result goes here

Note that the first two conditions are associated with identical actions. Put another way, if
either the first condition is true or the second condition is true, the program outputs the
same error message. The two conditions can be combined in a Boolean expression that uses
the logical operator or. The resulting compound Boolean expression simplifies the code
somewhat, as follows:
number = int(input("Enter the numeric grade: "))
if number > 100 or number < 0:
 print("Error: grade must be between 100 and 0")
else:
 # The code to compute and print the result goes here

Yet another way to describe this situation is to say that if the number is greater than or
equal to 0 and less than or equal to 100, then we want the program to perform the com-
putations and output the result; otherwise, it should output an error message. The logical
operator and can be used to construct a different compound Boolean expression to express
this logic:
number = int(input("Enter the numeric grade: "))
if number >= 0 and number <= 100:
 # The code to compute and print the result goes here
else:
 print("Error: grade must be between 100 and 0")

Python includes all three Boolean or logical operators, and, or, and not. Both the and
operator and the or operator expect two operands. The and operator returns True if and
only if both of its operands are true, and returns False otherwise. The or operator returns
False if and only if both of its operands are false, and returns True otherwise. The not
operator expects a single operand and returns its logical negation, True, if it’s false, and
False if it’s true.

The behavior of each operator can be completely specified in a truth table for that operator.
Each row below the first one in a truth table contains one possible combination of values
for the operands and the value resulting from applying the operator to them. The first row
contains labels for the operands and the expression being computed. Figure 3-5 shows the
truth tables for and, or, and not.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

83

The next example verifies some of the claims made in the truth tables in Figure 3-5:
>>> A = True
>>> B = False
>>> A and B
False
>>> A or B
True
>>> not A
False

In Chapter 2, you saw that multiplication and division have a higher precedence than addi-
tion and subtraction. This means that operators with a higher precedence are evaluated first,
even if they appear to the right of operators of lower precedence. The same idea applies to
the comparison, logical, and assignment operators. The logical operators are evaluated after
comparisons but before the assignment operator. The not operator has a higher precedence
than the and operator, which has a higher precedence than the or operator. Thus, in our
example, not A and B evaluates to False, whereas not (A and B) evaluates to True. While
you will not usually have to worry about operator precedence in most code, you might see
code like the following, which shows all the different types of operators in action:
>>> A = 2
>>> B = 3
>>> result = A + B * 2 < 10 or B == 2
>>> result
False

Figure 3-5  The truth tables for and, or, and not

A

True
False

not A

False
True

A

True

True

False

False

B

True

False

True

False

A or B

True

True

True

False

A

True
True

False

False

B

True
False

True

False

A and B

True
False

False

False

Selection: if and if-else Statements

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

84

  Loops and Selection StatementsC h a p t e r 3

Table 3-4 summarizes the precedence of the operators discussed thus far in this book.

Type of Operator Operator Symbol

Exponentiation **

Arithmetic negation –

Multiplication, division, remainder *, /, %

Addition, subtraction +, –

Comparison ==, !=, <, >, <=, >=

Logical negation not

Logical conjunction and

Logical disjunction or

Assignment =

Table 3-4	 Operator precedence, from highest to lowest

Short-Circuit Evaluation
The Python virtual machine sometimes knows the value of a Boolean expression before it
has evaluated all of its operands. For instance, in the expression A and B, if A is false, then
so is the expression, and there is no need to evaluate B.

Likewise, in the expression A or B, if A is true, then so is the expression, and again there is
no need to evaluate B. This approach, in which evaluation stops as soon as possible, is called
short-circuit evaluation.

There are times when short-circuit evaluation is advantageous. Consider the following example:
count = int(input("Enter the count: "))
theSum = int(input("Enter the sum: "))
if count > 0 and theSum // count > 10:
 print("average > 10")
else:
 print("count = 0 or average <= 10")

If the user enters 0 for the count, the condition contains a potential division by zero;
however, because of short-circuit evaluation the division by zero is avoided.

Testing Selection Statements
Because selection statements add extra logic to a program, they open the door for extra logic
errors. Thus, take special care when testing programs that contain selection statements.

The first rule of thumb is to make sure that all of the possible branches or alternatives in a
selection statement are exercised. This will happen if the test data include values that make

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

85

each condition true and also each condition false. In our grade-conversion example, the test
data should definitely include numbers that produce each of the letter grades.

After testing all of the actions, you should also examine all of the conditions. For example,
when a condition contains a single comparison of two numbers, try testing the program
with operands that are equal, with a left operand that is less by one, and with a left operand
that is greater by one, to catch errors in the boundary cases.

Finally, you need to test conditions that contain compound Boolean expressions using data
that produce all of the possible combinations of values of the operands. As a blueprint for
testing a compound Boolean expression, use the truth table for that expression.

Exercises
1.	 Assume that x is 3 and y is 5. Write the values of the following expressions:

a.	 x == y

b.	 x > y – 3

c.	 x <= y – 2

d.	 x == y or x > 2

e.	 x != 6 and y > 10

f.	 x > 0 and x < 100

2.	 Assume that x refers to a number. Write a code segment that prints the number’s
absolute value without using Python’s abs function.

3.	 Write a loop that counts the number of space characters in a string. Recall that the
space character is represented as ' '.

4.	 Assume that the variables x and y refer to strings. Write a code segment that prints
these strings in alphabetical order. You should assume that they are not equal.

5.	 Explain how to check for an invalid input number and prevent it being used in a
program. You may assume that the user enters a number.

6.	 Construct truth tables for the following Boolean expressions:

a.	 not (A or B)

b.	 not A and not B

7.	 Explain the role of the trailing else part of an extended if statement.

8.	 The variables x and y refer to numbers. Write a code segment that prompts the user for
an arithmetic operator and prints the value obtained by applying that operator to x and y.

9.	 Does the Boolean expression count > 0 and total // count > 0 contain a
potential error? If not, why not?

Selection: if and if-else Statements

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

86

  Loops and Selection StatementsC h a p t e r 3

Conditional Iteration: The while Loop
Earlier we examined the for loop, which executes a set of statements a definite number of
times specified by the programmer. In many situations, however, the number of iterations
in a loop is unpredictable. The loop eventually completes its work, but only when a condi-
tion changes. For example, the user might be asked for a set of input values. In that case,
only the user knows the number she will enter. The program’s input loop accepts these val-
ues until the user enters a special value or sentinel that terminates the input. This type of
process is called conditional iteration, meaning that the process continues to repeat as long
as a condition remains true. In this section, we explore the use of the while loop to describe
conditional iteration.

The Structure and Behavior of a while Loop
Conditional iteration requires that a condition be tested within the loop to determine
whether the loop should continue. Such a condition is called the loop’s continuation
condition. If the continuation condition is false, the loop ends. If the continuation condition
is true, the statements within the loop are executed again. The while loop is tailor-made for
this type of control logic. Here is its syntax:
while <condition>:
 <sequence of statements>

The form of this statement is almost identical to that of the one-way selection statement.
However, the use of the reserved word while instead of if indicates that the sequence of
statements might be executed many times, as long as the condition remains true.

Clearly, something eventually has to happen within the body of the loop to make the loop’s
continuation condition become false. Otherwise, the loop will continue forever, an error
known as an infinite loop. At least one statement in the body of the loop must update a
variable that affects the value of the condition. Figure 3-6 shows a flow diagram for the
semantics of a while loop.

Figure 3-6  The semantics of a while loop

true

false
?

statement

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

87

Conditional Iteration: The while Loop

The following example is a short script that prompts the user for a series of numbers,
computes their sum, and outputs the result. Instead of forcing the user to enter a definite
number of values, the program stops the input process when the user simply presses the
return or enter key. The program recognizes this value as the empty string. We first present
a rough draft in the form of a pseudocode algorithm:
set the sum to 0.0
input a string
while the string is not the empty string
 convert the string to a float
 add the float to the sum
 input a string
print the sum

Note that there are two input statements, one just before the loop header and one at the bot-
tom of the loop body. The first input statement initializes a variable to a value that the loop
condition can test. This variable is also called the loop control variable. The second input
statement obtains the other input values, including one that will terminate the loop. Note
also that the input must be received as a string, not a number, so the program can test for an
empty string. If the string is not empty, we assume that it represents a number, and we con-
vert it to a float. Here is the Python code for this script, followed by a trace of a sample run:
theSum = 0.0
data = input("Enter a number or just enter to quit: ")
while data != "":
 number = float(data)
 theSum += number
 data = input("Enter a number or just enter to quit: ")
print("The sum is", theSum)

Enter a number or just enter to quit: 3
Enter a number or just enter to quit: 4
Enter a number or just enter to quit: 5
Enter a number or just enter to quit:
The sum is 12.0

On this run, there are four inputs, including the empty string. Now, suppose we run the
script again, and the user enters the empty string at the first prompt. The while loop’s
condition is immediately false, and its body does not execute at all! The sum prints as 0.0,
which is just fine.

The while loop is also called an entry-control loop, because its condition is tested at
the top of the loop. This implies that the statements within the loop can execute zero or
more times.

Count Control with a while Loop
You can also use a while loop for a count-controlled loop. The next two code segments
show the same summations with a for loop and a while loop, respectively.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

88

  Loops and Selection StatementsC h a p t e r 3

Summation with a for loop
theSum = 0
for count in range(1, 100001):
 theSum += count
print(theSum)

Summation with a while loop
theSum = 0
count = 1
while count <= 100000:
 theSum += count
 count += 1
print(theSum)

Although both loops produce the same result, there is a tradeoff. The second code
segment is noticeably more complex. It includes a Boolean expression and two extra
statements that refer to the count variable. This loop control variable must be explicitly
initialized before the loop header and incremented in the loop body. The count variable
must also be examined in the explicit continuation condition. This extra manual labor for
the programmer is not only time-consuming but also potentially a source of new errors in
loop logic.

By contrast, a for loop specifies the control information concisely in the header and auto-
mates its manipulation behind the scenes. However, we will soon see problems for which
a while loop is the only solution. Therefore, you must master the logic of while loops and
also be aware of the logic errors that they could produce.

The next example shows two versions of a script that counts down, from an upper bound
of 10 to a lower bound of 1. It’s up to you to decide which one is easier to understand and
write correctly.

Counting down with a for loop
for count in range(10, 0, –1):
 print(count, end = " ")

Counting down with a while loop
count = 10
while count >= 1:
 print(count, end = " ")
 count -= 1

The while True Loop and the break Statement
Although the while loop can be complicated to write correctly, it is possible to simplify its
structure and thus improve its readability. The first example script of this section, which
contained two input statements, is a good candidate for such improvement. This loop’s
structure can be simplified if we receive the first input inside the loop and break out of the
loop if a test shows that the continuation condition is false. This implies postponing the
actual test until the middle of the loop. Python includes a break statement that will allow us
to make this change in the program. Here is the modified script:

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

89

theSum = 0.0
while True:
 data = input("Enter a number or just enter to quit: ")
 if data == "":
 break
 number = float(data)
 theSum += number
print("The sum is", theSum)

The first thing to note is that the loop’s entry condition is the Boolean value True. Some
readers may become alarmed at this condition, which seems to imply that the loop will
never exit. However, this condition is extremely easy to write and guarantees that the body
of the loop will execute at least once. Within this body, the input datum is received. It is
then tested for the loop’s termination condition in a one-way selection statement. If the user
wants to quit, the input will equal the empty string, and the break statement will cause an
exit from the loop. Otherwise, control continues beyond the selection statement to the next
two statements that process the input.

Our next example modifies the input section of the grade-conversion program to continue
taking input numbers from the user until she enters an acceptable value. The logic of this
loop is similar to that of the previous example.
while True:
 number = int(input("Enter the numeric grade: "))
 if number >= 0 and number <= 100:
 break
 else:
 print("Error: grade must be between 100 and 0")
print(number) # Just echo the valid input

A trial run with just this segment shows the following interaction:
Enter the numeric grade: 101
Error: grade must be between 100 and 0
Enter the numeric grade: –1
Error: grade must be between 100 and 0
Enter the numeric grade: 45
45

Some computer scientists argue that a while True loop with a delayed exit violates the
spirit of the while loop. However, in cases where the body of the loop must execute at least
once, this technique simplifies the code and actually makes the program’s logic clearer. If
you are not persuaded by this reasoning and still want to test for the continuation and exit
at the top of the loop, you can use a Boolean variable to control the loop. Here is a version
of the numeric input loop that uses a Boolean variable:
done = False
while not done:
 number = int(input("Enter the numeric grade: "))
 if number >= 0 and number <= 100:
 done = True
 else:
 print("Error: grade must be between 100 and 0")
print(number) # Just echo the valid input

Conditional Iteration: The while Loop

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

90

  Loops and Selection StatementsC h a p t e r 3

For a classic discussion of this issue, see Eric Roberts’s article “Loop Exits and Structured
Programming: Reopening the Debate,” ACM SIGCSE Bulletin, Volume 27, Number 1,
March 1995, pp. 268–272.

Although the break statement is quite useful when it controls a loop with at least one itera-
tion, you should primarily use it for a single exit point from such loops.

Random Numbers
The choices our algorithms have made thus far have been completely determined by
given conditions that are either true or false. Many situations, such as games, include
some randomness in the choices that are made. For example, we might toss a coin to
see who kicks off in a football game. There is an equal probability of a coin landing
heads-up or tails-up. Likewise, the roll of a die in many games entails an equal proba-
bility of the numbers 1 through 6 landing face-up. To simulate this type of randomness
in computer applications, programming languages include resources for generating
random numbers. Python’s random module supports several ways to do this, but the
easiest is to call the function random.randint with two integer arguments. The func-
tion random.randint returns a random number from among the numbers between the
two arguments and including those numbers. The next session simulates the roll of a
die 10 times:
>>> import random
>>> for roll in range(10):
 print(random.randint(1, 6), end = " ")
2 4 6 4 3 2 3 6 2 2

Although some values are repeated in this small set of calls, over the course of a large num-
ber of calls, the distribution of values approaches true randomness.

We can now use random.randint, selection, and a loop to develop a simple guessing
game. At start-up, the user enters the smallest number and the largest number in the
range. The computer then selects a number from this range. On each pass through the
loop, the user enters a number to attempt to guess the number selected by the com-
puter. The program responds by saying “You’ve got it,” “Too large, try again,” or “Too
small, try again.” When the user finally guesses the correct number, the program con-
gratulates him and tells him the total number of guesses. Here is the code, followed by a
sample run:
import random
smaller = int(input("Enter the smaller number: "))
larger = int(input("Enter the larger number: "))
myNumber = random.randint(smaller, larger)
count = 0
while True:
 count += 1
 userNumber = int(input("Enter your guess: "))
 if userNumber < myNumber:
 print("Too small!")

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

91

 elif userNumber > myNumber:
 print("Too large!")
 else:
 print("Congratulations! You've got it in", count,
 "tries!")
 break

Enter the smaller number: 1
Enter the larger number: 100
Enter your guess: 50
Too small!
Enter your guess: 75
Too large!
Enter your guess: 63
Too small!
Enter your guess: 69
Too large!
Enter your guess: 66
Too large
Enter your guess: 65
You've got it in 6 tries!

Note that our code is designed to allow the user to guess the number intelligently, by start-
ing at the midpoint between the two initial numbers and eliminating half the remaining
numbers with each incorrect guess. Ideally, the user should be able to guess the correct
number in no more than log2 (upper – lower 1 1) attempts. You will explore the concept of
log2 in the exercises and projects.

Loop Logic, Errors, and Testing
You have seen that the while loop is typically a condition-controlled loop, meaning that its
continuation depends on the truth or falsity of a given condition. Because while loops can
be the most complex control statements, to ensure their correct behavior, careful design
and testing are needed. Testing a while loop must combine elements of testing used with
for loops and with selection statements. Errors to rule out during testing the while loop
include an incorrectly initialized loop control variable, failure to update this variable cor-
rectly within the loop, and failure to test it correctly in the continuation condition. More-
over, if one simply forgets to update the control variable, the result is an infinite loop, which
does not even qualify as an algorithm! To halt a loop that appears to be hung during testing,
type Control1c in the terminal window or in the IDLE shell.

Genuine condition-controlled loops can be easy to design and test. If the continuation con-
dition is already available for examination at loop entry, check it there and provide test data
that produce 0, 1, and at least 5 iterations.

If the loop must run at least once, use a while True loop and delay the examination of the
termination condition until it becomes available in the body of the loop. Ensure that some-
thing occurs in the loop to allow the condition to be checked and a break statement to be
reached eventually.

Conditional Iteration: The while Loop

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

92

  Loops and Selection StatementsC h a p t e r 3

Exercises
1.	 Translate the following for loops to equivalent while loops:

a.	 for count in range(100):

 print(count)

b.	 for count in range(1, 101):

 print(count)

c.	 for count in range(100, 0, –1):

 print(count)

2.	 The factorial of an integer N is the product of the integers between 1 and N, inclu-
sive. Write a while loop that computes the factorial of a given integer N.

3.	 The log2 of a given number N is given by M in the equation 5N M2 . Using integer
arithmetic, the value of M is approximately equal to the number of times N can be
evenly divided by 2 until it becomes 0. Write a loop that computes this approxima-
tion of the log2 of a given number N. You can check your code by importing the
math.log function and evaluating the expression round(math.log(N, 2)) (note
that the math.log function returns a floating-point value).

4.	 Describe the purpose of the break statement and the type of problem for which it is
well suited.

5.	 What is the maximum number of guesses necessary to guess correctly a given num-
ber between the numbers N and M?

6.	 What happens when the programmer forgets to update the loop control variable in
a while loop?

Case Study: Approximating Square Roots

Users of pocket calculators or Python’s math module do not have to think about how
to compute square roots, but the people who built those calculators or wrote the
code for that module certainly did. In this case study, we open the hood and see how
this might be done.

Request

Write a program that computes square roots.

(continues)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

93

Analysis

The input to this program is a positive floating-point number or an integer. The out-
put is a floating-point number representing the square root of the input number. For
purposes of comparison, we also output Python’s estimate of the square root using
math.sqrt. Here is the proposed user interface:

Enter a positive number: 3
The program's estimate: 1.73205081001
Python's estimate: 1.73205080757

Design

In the seventeenth century, Sir Isaac Newton discovered an algorithm for approximat-
ing the square root of a positive number. Recall that the square root y of a positive
number x is the number y such that 2 5y x . Newton discovered that if one’s initial
estimate of y is z, then a better estimate of y can be obtained by taking the aver-
age of z together with x / z. The estimate can be transformed by this rule again and
again, until a satisfactory estimate is reached.

A quick session with the Python interpreter shows this method of successive approxi-
mations in action. We let x be 25 and our initial estimate, z, be 1. We then use New-
ton’s method to reset z to a better estimate and examine z to check it for closeness
to the actual square root, 5. Here is a transcript of our interaction:

After three transformations, the value of z is exactly equal to 5, the square root of
25. To include cases of numbers, such as 2 and 10, with irrational square roots, we
can use an initial guess of 1.0 to produce floating-point results.

>>> x = 25

>>> y = 5

>>> z = 1

The actual square root of x

Our initial approximation

>>> z = (z + x / z) / 2

>>> z

Our first improvement

13.0

>>> z = (z + x / z) / 2 # Our second improvement

>>> z

7.0

>>> z = (z + x / z) / 2 # Our third improvement – got it!

>>> z

5.0

(continued )

(continues)

Conditional Iteration: The while Loop

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

94

  Loops and Selection StatementsC h a p t e r 3

We now develop an algorithm to automate the process of successive transforma-
tions, because there might be many of them, and we don’t want to write them all.
Exactly how many of these operations are required depends on how close we want
our final approximation to be to the actual square root. This closeness value, called
the tolerance, can be compared to the difference between and the value of x and the
square of our estimate at any given time. While this difference is greater than the tol-
erance, the process continues; otherwise, it stops. The tolerance is typically a small
value, such as 0.000001.

Our algorithm allows the user to input the number, uses a loop to apply Newton’s
method to compute the square root, and prints this value. Here is the pseudocode,
followed by an explanation:

set x to the user's input value
set tolerance to 0.000001
set estimate to 1.0
while True
 set estimate to (estimate + x / estimate) / 2
 set difference to abs(x - estimate ** 2)
 if difference <= tolerance:
 break
output the estimate

Because our initial estimate is 1.0, the loop must compute at least one new estimate.
Therefore, we use a while True loop. This loop transforms the estimate before
determining whether it is close enough to the tolerance value to stop the process.
The process should stop when the difference between the square of our estimate and
the original number becomes less than or equal to the tolerance value. Note that this
difference may be positive or negative, so we use the abs function to obtain its abso-
lute value before examining it.

A more orthodox use of the while loop would compare the difference to the toler-
ance in the loop header. However, the difference must then be initialized before
the loop to a large and rather meaningless value. The algorithm presented here
captures the logic of the method of successive approximations more cleanly and
simply.

Implementation (Coding)

The code for this program is straightforward.

"""
Program: newton.py
Author: Ken

(continues)

(continued )

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

95

Conditional Iteration: The while Loop

Compute the square root of a number.
1. The input is a number.
2. The outputs are the program's estimate of the square root

using Newton's method of successive approximations, and
Python's own estimate using math.sqrt.

"""

import math

Receive the input number from the user
x = float(input("Enter a positive number: "))

Initialize the tolerance and estimate
tolerance = 0.000001
estimate = 1.0

Perform the successive approximations
while True:
 estimate = (estimate + x / estimate) / 2
 difference = abs(x - estimate ** 2)
 if difference <= tolerance:
 break

Output the result
print("The program's estimate:", estimate)
print("Python's estimate: ", math.sqrt(x))

Testing

The valid inputs to this program are positive integers and floating-point numbers.
The display of Python’s own most accurate estimate of the square root provides
a benchmark for assessing the correctness of our own algorithm. We should at
least provide a couple of perfect squares, such as 4 and 9, as well as numbers
whose square roots are inexact, such as 2 and 3. A number between 1 and 0,
such as .25, should also be included. Because the accuracy of our algorithm
also depends on the size of the tolerance, we might alter this value during testing
as well.

(continued )

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

96

  Loops and Selection StatementsC h a p t e r 3

Summary
•• Control statements determine the order in which other statements are executed in a

program.

•• Definite iteration is the process of executing a set of statements a fixed, predict-
able number of times. The for loop is an easy and convenient control statement for
describing a definite iteration.

•• The for loop consists of a header and a set of statements called the body. The
header contains information that controls the number of times that the body
executes.

•• The for loop can count through a series of integers. Such a loop is called a count-
controlled loop.

•• During the execution of a count-controlled for loop, the statements in the loop’s body
can reference the current value of the count using the loop header’s variable.

•• Python’s range function generates the sequence of numbers in a count-controlled for
loop. This function can receive one, two, or three arguments. A single argument M
specifies a sequence of numbers 0 through M – 1. Two arguments M and N specify
a sequence of numbers M through N – 1. Three arguments M, N, and S specify a
sequence of numbers M up through N – 1, stepping by S, when S is positive, or M down
through N 1 1, stepping by S, when S is negative.

•• The for loop can traverse and visit the values in a sequence. Example sequences are a
string of characters and a list of numbers.

•• A format string and its operator % allow the programmer to format data using a field
width and a precision.

•• An off-by-one error occurs when a loop does not perform the intended number of itera-
tions, there being one too many or one too few. This error can be caused by an incorrect
lower bound or upper bound in a count-controlled loop.

•• Boolean expressions contain the values True or False, variables bound to these values,
comparisons using the relational operators, or other Boolean expressions using the logi-
cal operators. Boolean expressions evaluate to True or False and are used to form con-
ditions in programs.

•• The logical operators and, or, and not are used to construct compound Boolean
expressions. The values of these expressions can be determined by constructing truth
tables.

•• Python uses short-circuit evaluation in compound Boolean expressions. The evaluation
of the operands of or stops at the first true value, whereas the evaluation of the oper-
ands of and stops at the first false value.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

97

Review Questions

•• Selection statements are control statements that enable a program to make choices. A
selection statement contains one or more conditions and the corresponding actions.
Instead of moving straight ahead to the next action, the computer examines a condi-
tion. If the condition is true, the computer performs the corresponding action and then
moves to the action following the selection statement. Otherwise, the computer moves
to the next condition, if there is one, or to the action following the selection statement.

•• A two-way selection statement, also called an if-else statement, has a single condition
and two alternative courses of action. A one-way selection statement, also called an if
statement, has a single condition and a single course of action. A multi-way selection
statement, also called an extended if statement, has at least two conditions and three
alternative courses of action.

•• Conditional iteration is the process of executing a set of statements while a condition is
true. The iteration stops when the condition becomes false. Because it cannot always be
anticipated when this will occur, the number of iterations usually cannot be predicted.

•• A while loop is used to describe conditional iteration. This loop consists of a header
and a set of statements called the body. The header contains the loop’s continuation
condition. The body executes as long as the continuation condition is true.

•• The while loop is an entry-control loop. This means that the continuation condition is
tested at loop entry, and if it is false, the loop’s body will not execute. Thus, the while
loop can describe zero or more iterations.

•• The break statement can be used to exit a while loop from its body. The break state-
ment is usually used when the loop must perform at least one iteration. The loop
header’s condition in that case is the value True. The break statement is nested in an
if statement that tests for a termination condition.

•• Any for loop can be converted to an equivalent while loop. In a count-controlled while
loop, the programmer must initialize and update a loop control variable.

•• An infinite loop occurs when the loop’s continuation condition never becomes false and
no other exit points are provided. The primary cause of infinite loops is the program-
mer’s failure to update a loop control variable properly.

•• The function random.randint returns a random number in the range specified by its
two arguments.

Review Questions
1.	 How many times does a loop with the header for count in range (10):

execute the statements in its body?

a.	 9 times
b.	 10 times
c.	 11 times

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

98

  Loops and Selection StatementsC h a p t e r 3

2.	 A for loop is convenient for

a.	 making choices in a program.
b.	 running a set of statements a predictable number of times.
c.	 counting through a sequence of numbers.
d.	 describing conditional iteration.

3.	 What is the output of the loop for count in range(5): print(count, end = “ “)?

a.	 1 2 3 4 5
b.	 1 2 3 4
c.	 0 1 2 3 4

4.	 When the function range receives two arguments, what does the second argu-
ment specify?

a.	 The last value of a sequence of integers
b.	 The last value of a sequence of integers plus 1
c.	 The last value of a sequence of integers minus 1

5.	 Consider the following code segment:
x = 5
y = 4
if x > y:
 print(y)
else:
 print(x)

		 What value does this code segment print?

a.	 4 b.	 5

6.	 A Boolean expression using the and operator returns True when

a.	 both operands are true.
b.	 one operand is true.
c.	 neither operand is true.

7.	 By default, the while loop is an

a.	 entry-controlled loop. b.	 exit-controlled loop.

8.	 Consider the following code segment:
count = 5
while count > 1:
 print(count, end = " ")
 count -= 1

	 What is the output produced by this code?
a.	 1 2 3 4 5
b.	 2 3 4 5

c.	 5 4 3 2 1
d.	 5 4 3 2

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

99

Projects

9.	 Consider the following code segment:
count = 1
while count <= 10:
 print(count, end = " ")

		 Which of the following describes the error in this code?

a.	 The loop is off by 1.
b.	 The loop control variable is not properly initialized.
c.	 The comparison points the wrong way.
d.	 The loop is infinite.

10.	 Consider the following code segment:
theSum = 0.0
while True:
 number = input("Enter a number: ")
 if number == "":
 break
 theSum += float(number)

		 How many iterations does this loop perform?

a.	 None
b.	 At least one

c.	 Zero or more
d.	 Ten

Projects
1.	 Write a program that accepts the lengths of three sides of a triangle as inputs.

The program output should indicate whether or not the triangle is an equilateral
triangle.

2.	 Write a program that accepts the lengths of three sides of a triangle as inputs.
The program output should indicate whether or not the triangle is a right tri-
angle. Recall from the Pythagorean theorem that in a right triangle, the square of
one side equals the sum of the squares of the other two sides.

3.	 Modify the guessing-game program of Section 3.5 so that the user thinks of a
number that the computer must guess. The computer must make no more than
the minimum number of guesses, and it must prevent the user from cheating by
entering misleading hints. (Hint: Use the math.log function to compute the min-
imum number of guesses needed after the lower and upper bounds are entered.)

4.	 A standard science experiment is to drop a ball and see how high it bounces.
Once the “bounciness” of the ball has been determined, the ratio gives a bounci-
ness index. For example, if a ball dropped from a height of 10 feet bounces 6 feet
high, the index is 0.6, and the total distance traveled by the ball is 16 feet after
one bounce. If the ball were to continue bouncing, the distance after two bounces

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

100

  Loops and Selection StatementsC h a p t e r 3

would be 10 ft 6 ft 6 ft 3.6 ft 25.6 ft1 1 1 5 . Note that the distance traveled for
each successive bounce is the distance to the floor plus 0.6 of that distance as the
ball comes back up. Write a program that lets the user enter the initial height
from which the ball is dropped and the number of times the ball is allowed to
continue bouncing. Output should be the total distance traveled by the ball.

5.	 A local biologist needs a program to predict population growth. The inputs
would be the initial number of organisms, the rate of growth (a real number
greater than 0), the number of hours it takes to achieve this rate, and a number
of hours during which the population grows. For example, one might start with a
population of 500 organisms, a growth rate of 2, and a growth period to achieve
this rate of 6 hours. Assuming that none of the organisms die, this would imply
that this population would double in size every 6 hours. Thus, after allowing
6 hours for growth, we would have 1000 organisms, and after 12 hours, we would
have 2000 organisms. Write a program that takes these inputs and displays a pre-
diction of the total population.

6.	 The German mathematician Gottfried Leibniz developed the following method
to approximate the value of π:

π/4 5 1] 1/3 1 1/5] 1/7 1 . . .

Write a program that allows the user to specify the number of iterations used in
this approximation and that displays the resulting value.

7.	 Teachers in most school districts are paid on a schedule that provides a salary
based on their number of years of teaching experience. For example, a beginning
teacher in the Lexington School District might be paid $30,000 the first year. For
each year of experience after this first year, up to 10 years, the teacher receives a
2% increase over the preceding value. Write a program that displays a salary sched-
ule, in tabular format, for teachers in a school district. The inputs are the starting
salary, the percentage increase, and the number of years in the schedule. Each row
in the schedule should contain the year number and the salary for that year.

8.	 The greatest common divisor of two positive integers, A and B, is the largest
number that can be evenly divided into both of them. Euclid’s algorithm can be
used to find the greatest common divisor (GCD) of two positive integers. You
can use this algorithm in the following manner:

a.	 Compute the remainder of dividing the larger number by the smaller
number.

b.	 Replace the larger number with the smaller number and the smaller number
with the remainder.

c.	 Repeat this process until the smaller number is zero.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

101

Projects

The larger number at this point is the GCD of A and B. Write a program that lets
the user enter two integers and then prints each step in the process of using the
Euclidean algorithm to find their GCD.

9.	 Write a program that receives a series of numbers from the user and allows the
user to press the enter key to indicate that he or she is finished providing inputs.
After the user presses the enter key, the program should print the sum of the
numbers and their average.

10.	 The credit plan at TidBit Computer Store specifies a 10% down payment and
an annual interest rate of 12%. Monthly payments are 5% of the listed purchase
price, minus the down payment. Write a program that takes the purchase price
as input. The program should display a table, with appropriate headers, of a pay-
ment schedule for the lifetime of the loan. Each row of the table should contain
the following items:

•• the month number (beginning with 1)

•• the current total balance owed

•• the interest owed for that month

•• the amount of principal owed for that month

•• the payment for that month

•• the balance remaining after payment

The amount of interest for a month is equal to balance * rate / 12. The amount of
principal for a month is equal to the monthly payment minus the interest owed.

11.	 In the game of Lucky Sevens, the player rolls a pair of dice. If the dots add up to 7,
the player wins $4; otherwise, the player loses $1. Suppose that, to entice the gull-
ible, a casino tells players that there are lots of ways to win: (1, 6), (2, 5), and so
on. A little mathematical analysis reveals that there are not enough ways to win
to make the game worthwhile; however, because many people’s eyes glaze over
at the first mention of mathematics, your challenge is to write a program that
demonstrates the futility of playing the game. Your program should take as input
the amount of money that the player wants to put into the pot, and play the game
until the pot is empty. At that point, the program should print the number of
rolls it took to break the player, as well as maximum amount of money in the pot.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

C h a p t e r 4
Strings and Text Files

After completing this chapter, you will be able to

Access individual characters in a string

Retrieve a substring from a string

Search for a substring in a string

Convert a string representation of a number from one
base to another base

Use string methods to manipulate strings

Open a text file for output and write strings or numbers to
the file

Open a text file for input and read strings or numbers from
the file

Use library functions to access and navigate a file system

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

103

Accessing Characters and Substrings in Strings

Much about computation is concerned with manipulating text. Word processing and pro-
gram editing are obvious examples, but text also forms the basis of e-mail, Web pages, and
text messaging. In this chapter, we explore strings and text files, which are useful data struc-
tures for organizing and processing text.

Accessing Characters and Substrings in Strings
In Chapters 1 and 2 we used strings for input and output. We also combined strings via con-
catenation to form new strings. In Chapter 3, you learned how to format a string and to visit
each of its characters with a for loop. In this section, we examine the internal structure of a
string more closely, and you will learn how to extract portions of a string called substrings.

The Structure of Strings
Unlike an integer, which cannot be decomposed into more primitive parts, a string is a data
structure. A data structure is a compound unit that consists of several other pieces of data.
A string is a sequence of zero or more characters. Recall that you can mention a Python
string using either single quote marks or double quote marks. Here are some examples:
>>> "Hi there!"
'Hi there!'
>>> ""
''
>>> 'R'
'R'

Note that the shell prints a string using single quotes, even when you enter it using double
quotes. In this book, we use single quotes with single-character strings and double quotes
with the empty string or with multi-character strings.

When working with strings, the programmer sometimes must be aware of a string’s length
and the positions of the individual characters within the string. A string’s length is the num-
ber of characters it contains. Python’s len function returns this value when it is passed a
string, as shown in the following session:
>>> len("Hi there!")
9
>>> len("")
0

The positions of a string’s characters are numbered from 0, on the left, to the length of the
string minus 1, on the right. Figure 4-1 illustrates the sequence of characters and their posi-
tions in the string "Hi there!". Note that the ninth and last character, '!', is at position 8.

Figure 4-1  Characters and their positions in a string

H rehti e

0 654321 7

!

8

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

104

  Strings and Text FilesC h a p t e r 4

The string is an immutable data structure. This means that its internal data elements, the
characters, can be accessed, but cannot be replaced, inserted, or removed.

The Subscript Operator
Although a simple for loop can access any of the characters in a string, sometimes you just
want to inspect one character at a given position without visiting them all. The subscript
operator [] makes this possible. The simplest form of the subscript operation is the
following:

<a string>[<an integer expression>]

The first part of this operation is the string you want to inspect. The integer expression in
brackets indicates the position of a particular character in that string. The integer expres-
sion is also called an index. In the following examples, the subscript operator is used to
access characters in the string "Alan Turing":

>>> name = "Alan Turing"
>>> name[0] # Examine the first character
'A'
>>> name[3] # Examine the fourth character
'n'
>>> name[len(name)] # Oops! An index error!
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: string index out of range
>>> name[len(name) - 1] # Examine the last character
'g'
>>> name[-l] # Shorthand for the last character
'g'
>>> name[-2] # Shorthand for next to last character
'n'

Note that attempting to access a character using a position that equals the string’s length
results in an error. The positions usually range from 0 to the length minus 1. However,
Python allows negative subscript values to access characters at or near the end of a string.
The programmer counts backward from –1 to access characters from the right end of the
string.

The subscript operator is also useful in loops where you want to use the positions as well
as the characters in a string. The next code segment uses a count-controlled loop to display
the characters and their positions:
>>> data = "Hi there!"
>>> for index in range(len(data)):
 print(index, data[index])
0 H
1 i
2
3 t

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

105

Accessing Characters and Substrings in Strings

4 h
5 e
6 r
7 e
8 !

Slicing for Substrings
Some applications extract portions of strings called substrings. For example, an appli-
cation that sorts filenames according to type might use the last three characters in a
filename, called its extension, to determine the file’s type (exceptions to this rule, such
as the extensions ".py" and ".html", will be considered later in this chapter). On a
Windows file system, a filename ending in ".txt" denotes a human-readable text file,
whereas a filename ending in ".exe" denotes an executable file of machine code. You
can use Python’s subscript operator to obtain a substring through a process called
slicing. To extract a substring, the programmer places a colon (:) in the subscript. An
integer value can appear on either side of the colon. Here are some examples that show
how slicing is used:
>>> name = "myfile.txt" # The entire string
>>> name[0:]
'myfile.txt'
>>> name[0:1] # The first character
'm'
>>> name[0:2] # The first two characters
'my'
>>> name[:len(name)] # The entire string
'myfile.txt'
>>> name[-3:] # The last three characters
'txt'
>>> name[2:6] # Drill to extract 'file'
'file'

Generally, when two integer positions are included in the slice, the range of charac-
ters in the substring extends from the first position up to but not including the second
position. When the integer is omitted on either side of the colon, all of the characters
extending to the end or the beginning are included in the substring. Note that the
last line of code provides the correct range to obtain the filename’s three-character
extension.

Testing for a Substring with the in Operator
Another problem involves picking out strings that contain known substrings. For example,
you might want to pick out filenames with a .txt extension. A slice would work for this, but
using Python’s in operator is much simpler. When used with strings, the left operand of
in is a target substring, and the right operand is the string to be searched. The operator in
returns True if the target string is somewhere in the search string, or False otherwise. The

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

106

  Strings and Text FilesC h a p t e r 4

next code segment traverses a list of filenames and prints just the filenames that have a
.txt extension:
>>> fileList = ["myfile.txt", "myprogram.exe", "yourfile.txt"]
>>> for fileName in fileList:
 if ".txt" in fileName:
 print(fileName)
myfile.txt
yourfile.txt

Exercises

1.	 Assume that the variable data refers to the string "myprogram.exe". Write the
values of the following expressions:

a.	 data[2]

b.	 data[-1]

c.	 len(data)

d.	 data[0:8]

2.	 Assume that the variable data refers to the string "myprogram.exe". Write the
expressions that perform the following tasks:

a.	 Extract the substring "gram" from data.

b.	 Truncate the extension ".exe" from data.

c.	 Extract the character at the middle position from data.

3.	 Assume that the variable myString refers to a string. Write a code segment that
uses a loop to print the characters of the string in reverse order.

4.	 Assume that the variable myString refers to a string, and the variable
reversedString refers to an empty string. Write a loop that adds the characters
from myString to reversedString in reverse order.

Data Encryption
As you might imagine, data traveling on the Internet is vulnerable to spies and potential
thieves. It is easy to observe data crossing a network, particularly now that more and more
communications involve wireless transmissions. For example, a person can sit in a car in
the parking lot outside any major hotel and pick up transmissions between almost any two
computers if that person runs the right sniffing software. For this reason, most applica-
tions now use data encryption to protect information transmitted on networks. Some

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

107

Data Encryption

application protocols include secure versions that use data encryption. Examples of such
versions are FTPS and HTTPS, which are secure versions of FTP and HTTP for file transfer
and Web page transfer, respectively.

Encryption techniques are as old as the practice of sending and receiving messages. The
sender encrypts a message by translating it to a secret code, called a cipher text. At the
other end, the receiver decrypts the cipher text back to its original plaintext form. Both
parties to this transaction must have at their disposal one or more keys that allow them to
encrypt and decrypt messages. To give you a taste of this process, let us examine an encryp-
tion strategy in detail.

A very simple encryption method that has been in use for thousands of years is called
a Caesar cipher. Recall that the character set for text is ordered as a sequence of dis-
tinct values. This encryption strategy replaces each character in the plaintext with the
character that occurs a given distance away in the sequence. For positive distances,
the method wraps around to the beginning of the sequence to locate the replacement
characters for those characters near its end. For example, if the distance value of a
Caesar cipher equals three characters, the string "invaders" would be encrypted as
"lqydghuv". To decrypt this cipher text back to plaintext, you apply a method that uses
the same distance value but looks to the left of each character for its replacement. This
decryption method wraps around to the end of the sequence to find a replacement char-
acter for one near its beginning. Figure 4-2 shows the first five and the last five plaintext
characters of the lowercase alphabet and the corresponding cipher text characters, for
a Caesar cipher with a distance of 13. The numeric ASCII values are listed above and
below the characters.

Note the wraparound effect for the last three plaintext characters, whose cipher text char-
acters start at the beginning of the alphabet. For example, the plaintext character ‘x’ with
ASCII 120 maps to the cipher character ‘a’ with ASCII 97, because ASCII 120 is less than
3 characters from the end of the plaintext sequence.

The next two Python scripts implement Caesar cipher methods for any strings that con-
tain the lowercase letters of the alphabet and for any distance values between 0 and 26.

Figure 4-2  A Caesar cipher with distance 13 for the
lowercase alphabet

a b c d e v w x y z…

y z a b cd e f g h …

97 98 99 100 101 118 119 120 121 122

100 101 102 103 104 121 122 97 98 99

Plaintext

Cipher text

ASCII values

ASCII values

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

108

  Strings and Text FilesC h a p t e r 4

Recall that the ord function returns the ordinal position of a character value in the ASCII
sequence, whereas chr is the inverse function.

"""
File: encrypt.py
Encrypts an input string of lowercase letters and prints
the result. The other input is the distance value.
"""

plainText = input("Enter a one-word, lowercase message: ")
distance = int(input("Enter the distance value: "))
code = ""
for ch in plainText:
 ordvalue = ord(ch)
 cipherValue = ordvalue + distance
 if cipherValue > ord('z'):
 cipherValue = ord('a') + distance - \
 (ord('z') - ordvalue + 1)
 code += chr(cipherValue)
print(code)

"""
File: decrypt.py
Decrypts an input string of lowercase letters and prints
the result. The other input is the distance value.
"""

code = input("Enter the coded text: ")
distance = int(input("Enter the distance value: "))
plainText = ""
for ch in code:
 ordvalue = ord(ch)
 cipherValue = ordvalue - distance
 if cipherValue < ord('a'):
 cipherValue = ord('z') - \
 (distance - (ord('a') - ordvalue - 1))
 plainText += chr(cipherValue)
print(plainText)

Here are some executions of the two scripts in the IDLE shell:

Enter a one-word, lowercase message: invaders
Enter the distance value: 3
Lqydghuv

Enter the coded text: lqydghuv
Enter the distance value: 3
invaders

These scripts could easily be extended to cover all of the characters, including spaces and
punctuation marks.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

109

Strings and Number Systems

Although it worked reasonably well in ancient times, a Caesar cipher would be no match
for a competent spy with a computer. Assuming that there are 128 ASCII characters, all
you would have to do is write a program that would run the same line of text through the
extended decrypt script with the values 0 through 127, until a meaningful plaintext is
returned. It would take less than a second to do that on most modern computers. The main
shortcoming of this encryption strategy is that the plaintext is encrypted one character at
a time, and each encrypted character depends on that single character and a fixed distance
value. In a sense, the structure of the original text is preserved in the cipher text, so it might
not be hard to discover a key by visual inspection.

A more sophisticated encryption scheme is called a block cipher. A block cipher uses
plaintext characters to compute two or more encrypted characters. This is accomplished by
using a mathematical structure known as an invertible matrix to determine the values of
the encrypted characters. The matrix provides the key in this method. The receiver uses the
same matrix to decrypt the cipher text. The fact that information used to determine each
character comes from a block of data makes it more difficult to determine the key. We will
explore the use of a block cipher to encrypt text in Chapter 9, where we introduce a grid
data type.

Exercises

1.	 Write the encrypted text of each of the following words using a Caesar cipher with
a distance value of 3:

a.	 python

b.	 hacker

c.	 wow

2.	 Consult the Table of ASCII values in Chapter 2 and suggest how you would modify
the encryption and decryption scripts in this section to work with strings contain-
ing all of the printable characters.

3.	 You are given a string that was encoded by a Caesar cipher with an unknown dis-
tance value. The text can contain any of the printable ASCII characters. Suggest an
algorithm for cracking this code.

Strings and Number Systems
When you perform arithmetic operations, you use the decimal number system. This sys-
tem, also called the base ten number system, uses the ten characters 0, 1, 2, 3, 4, 5, 6, 7,
8, and 9 as digits. As we saw in Chapter 1, the binary number system is used to represent
all information in a digital computer. The two digits in this base two number system are 0
and 1. Because binary numbers can be long strings of 0s and 1s, computer scientists often

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

110

  Strings and Text FilesC h a p t e r 4

use other number systems, such as octal (base eight) and hexadecimal (base 16) as short-
hand for these numbers.

To identify the system being used, you attach the base as a subscript to the number. For
example, the following numbers represent the quantity 41510 in the binary, octal, decimal,
and hexadecimal systems:

415 in binary notation 1100111112

415 in octal notation 6378

415 in decimal notation 41510

415 in hexadecimal notation 19F16

The digits used in each system are counted from 0 to n – 1, where n is the system’s base.
Thus, the digits 8 and 9 do not appear in the octal system. To represent digits with values
larger than 910, systems such as base 16 use letters. Thus, A16 represents the quantity 1010,
whereas 1016 represents the quantity 1610. In this section, we examine how these systems
represent numeric quantities and how to translate from one notation to another.

The Positional System for Representing Numbers
All of the number systems we have examined use positional notation—that is, the value of each
digit in a number is determined by the digit’s position in the number. In other words, each digit
has a positional value. The positional value of a digit is determined by raising the base of the
system to the power specified by the position ()base position . For an n-digit number, the positions
(and exponents) are numbered from n – 1 down to 0, starting with the leftmost digit and mov-
ing to the right. For example, as Figure 4-3 illustrates, the positional values of the three-digit
number 41510 are 100 (10)2 , 10 (10)1 , and 1 (10)0 , moving from left to right in the number.

To determine the quantity represented by a number in any system from base 2 through base
10, you multiply each digit (as a decimal number) by its positional value and add the results.
The following example shows how this is done for a three-digit number in base 10:

41510 5

∗ ∗ ∗1 1 54 10 1 10 5 102 1 0

4 100 1 10 5 1∗ ∗ ∗1 1 5

400 10 5 415+ + 5

Figure 4-3  The first three positional values in the base-10 number system

Positional values 100 10 1
Positions 2 1 0

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

111

Strings and Number Systems

Converting Binary to Decimal
Like the decimal system, the binary system also uses positional notation. However, each
digit or bit in a binary number has a positional value that is a power of 2. In the discussion
that follows, we occasionally refer to a binary number as a string of bits or a bit string. You
determine the integer quantity that a string of bits represents in the usual manner: Multiply
the value of each bit (0 or 1) by its positional value and add the results. Let’s do that for the
number 11001112:

11001112 5

∗ ∗ ∗ ∗ + ∗ + ∗ + ∗1 1 1 51 2 1 2 0 2 0 2 1 2 1 2 1 26 5 4 3 2 1 0

1 64 1 32 0 16 0 8 1 4 1 2 1 1∗ + ∗ + ∗ + ∗ + ∗ + ∗ + ∗ 5

64 32 4 2 1 103+ + + + 5

Not only have we determined the integer value of this binary number, but we have also
converted it to decimal in the process! In computing the value of a binary number, we can
ignore the values of the positions occupied by 0s and simply add the positional values of the
positions occupied by 1s.

We can code an algorithm for the conversion of a binary number to the equivalent decimal
number as a Python script. The input to the script is a string of bits, and its output is the
integer that the string represents. The algorithm uses a loop that accumulates the sum of
a set of integers. The sum is initially 0. The exponent that corresponds to the position of
the string’s leftmost bit is the length of the bit string minus 1. The loop visits the digits in
the string from the first to the last (left to right), but counts from the largest exponent of
2 down to 0 as it goes. Each digit is converted to its integer value (1 or 0), multiplied by its
positional value, and the result is added to the ongoing total. A positional value is computed
by using the ** operator. Here is the code for the script, followed by some example sessions
in the shell:

"""
File: binarytodecimal.py
Converts a string of bits to a decimal integer.
"""

bitString = input("Enter a string of bits: ")
decimal = 0
exponent = len(bitString) - 1
for digit in bitString:
 decimal = decimal + int(digit) * 2 ** exponent
 exponent = exponent - 1
print("The integer value is", decimal)

Enter a string of bits: 1111
The integer value is 15

Enter a string of bits: 101
The integer value is 5

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

112

  Strings and Text FilesC h a p t e r 4

Converting Decimal to Binary
How are integers converted from decimal to binary? One algorithm uses division and
subtraction instead of multiplication and addition. This algorithm repeatedly divides the
decimal number by 2. After each division, the remainder (either a 0 or a 1) is placed at
the beginning of a string of bits. The quotient becomes the next dividend in the process.
The string of bits is initially empty, and the process continues while the decimal number is
greater than 0.

Let’s code this algorithm as a Python script and run it to display the intermediate results in
the process. The script expects a non-negative decimal integer as an input and prints the
equivalent bit string. The script checks first for a 0 and prints the string '0' as a special
case. Otherwise, the script uses the algorithm just described. On each pass through the
loop, the values of the quotient, remainder, and result string are displayed. Here is the code
for the script, followed by a session to convert the number 34:

"""
File: decimaltobinary.py
Converts a decimal integer to a string of bits.
"""

decimal = int(input("Enter a decimal integer: "))
if decimal == 0:
 print(0)
else:
 print("Quotient Remainder Binary")
 bitString = ""
 while decimal > 0:
 remainder = decimal % 2
 decimal = decimal // 2
 bitString = str(remainder) + bitString
 print("%5d%8d%12s" % (decimal, remainder,
 bitString))
 print("The binary representation is", bitString)

 Enter a decimal integer: 34
 Quotient Remainder Binary
 17 0 0
 8 1 10
 4 0 010
 2 0 0010
 1 0 00010
 0 1 100010
 The binary representation is 100010

Conversion Shortcuts
There are various shortcuts for determining the decimal integer values of some binary
numbers. One useful method involves learning to count through the numbers correspond-
ing to the decimal values 0 through 8, as shown in Table 4-1.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

113

Strings and Number Systems

Note the rows that contain exact powers of 2 (2, 4, and 8 in decimal). Each of the cor-
responding binary numbers in that row contains a 1 followed by a number of zeroes that
equal the exponent used to compute that power of 2. Thus, a quick way to compute the
decimal value of the number 100002 is 24 or 1610.

The rows whose binary numbers contain all 1s correspond to decimal numbers that are
one less than the next exact power of 2. For example, the number 1112 equals 2 13 2 , or 710.
Thus, a quick way to compute the decimal value of the number 111112 is 2 15 2 , or 3110.

Octal and Hexadecimal Numbers
The octal system uses a base of eight and the digits 0 . . . 7. Conversions of octal to decimal
and decimal to octal use algorithms similar to those discussed thus far (using powers of 8
and multiplying or dividing by 8, instead of 2). But the real benefit of the octal system is
the ease of converting octal numbers to and from binary. With practice, you can learn to
do these conversions quite easily by hand, and in many cases by eye. To convert from octal
to binary, you start by assuming that each digit in the octal number represents three digits
in the corresponding binary number. You then start with the leftmost octal digit and write
down the corresponding binary digits, padding these to the left with 0s to the count of 3,
if necessary. You proceed in this manner until you have converted all of the octal digits.
Figure 4-4 shows such a conversion:

To convert binary to octal, you begin at the right and factor the bits into groups of three
bits each. You then convert each group of three bits to the octal digit they represent.

As the size of a number system’s base increases, so does the system’s expressive power, its
ability to say more with less. As bit strings get longer, the octal system becomes a less useful

Decimal Binary

0 0

1 1

2 10

3 11

4 100

5 101

6 110

7 111

8 1000

Table 4-1	 The numbers 0 through 8 in binary

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

114

  Strings and Text FilesC h a p t e r 4

shorthand for expressing them. The hexadecimal or base-16 system (called “hex” for
short), which uses 16 different digits, provides a more concise notation than octal for larger
numbers. Base 16 uses the digits 0 . . . 9 for the corresponding integer quantities and the
letters A . . . F for the integer quantities 10 . . . 15.

The conversion between numbers in the two systems works as follows. Each digit in
the hexadecimal number is equivalent to four digits in the binary number. Thus, to
convert from hexadecimal to binary, you replace each hexadecimal digit with the cor-
responding 4-bit binary number. To convert from binary to hexadecimal, you factor
the bits into groups of four and look up the corresponding hex digits. (This is the kind
of stuff that hackers memorize). Figure 4-5 shows a mapping of hexadecimal digits to
binary digits.

Figure 4-4  The conversion of octal to binary

Octal

Binary

437

100011111

Figure 4-5  The conversion of hexadecimal to binary

Hexadecimal

Binary

43F

0100 00111111

Exercises

1.	 Translate each of the following numbers to decimal numbers:

a.	 110012

b.	 1000002

c.	 111112

2.	 Translate each of the following numbers to binary numbers:

a.	 4710

b.	 12710

c.	 6410

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

115

String Methods

String Methods
Text processing involves many different operations on strings. For example, consider the
problem of analyzing someone’s writing style. Short sentences containing short words are
generally considered more readable than long sentences containing long words. A program
to compute a text’s average sentence length and the average word length might provide a
rough analysis of style.

Let’s start with counting the words in a single sentence and finding the average word length.
This task requires locating the words in a string. Fortunately, Python includes a set of string
operations called methods that make tasks like this one easy. In the next session, we use
the string method split to obtain a list of the words contained in an input string. We then
print the length of the list, which equals the number of words, and compute and print the
average of the lengths of the words in the list.
>>> sentence = input("Enter a sentence: ")
Enter a sentence: This sentence has no long words.
>>> listOfWords = sentence.split()
>>> print("There are", len(listOfWords), "words.")
There are 6 words.
>>> sum = 0
>>> for word in listOfWords:
 sum += len(word)
>>> print("The average word length is", sum / len(listOfWords))
The average word length is 4.5

A method behaves like a function but has a slightly different syntax. Unlike a function, a
method is always called with a given data value called an object, which is placed before the
method name in the call. The syntax of a method call is the following:
<an object>.<method name>(<argument-1>,..., <argument-n>)

3.	 Translate each of the following numbers to binary numbers:

a.	 478

b.	 1278

c.	 648

4.	 Translate each of the following numbers to decimal numbers:

a.	 478

b.	 1278

c.	 648

5.	 Translate each of the following numbers to decimal numbers:

a.	 4716

b.	 12716

c.	 AA16

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

116

  Strings and Text FilesC h a p t e r 4

Methods can also expect arguments and return values. A method knows about the internal
state of the object with which it is called. Thus, the method split in our example builds a
list of the words in the string object to which sentence refers and returns it.

In short, methods are as useful as functions, but you need to get used to the dot notation,
which you have already seen when using a function associated with a module. In Python,
all data values are in fact objects, and every data type includes a set of methods to use with
objects of that type.

Table 4-2 lists some useful string methods. You can view the complete list and the docu-
mentation of the string methods by entering dir(str) at a shell prompt; you enter

String Method What it Does

s.center(width) Returns a copy of s centered within the given number of
columns.

s.count(sub [, start [, end]]) Returns the number of non-overlapping occurrences of
substring sub in s. Optional arguments start and end
are interpreted as in slice notation.

s.endswith(sub) Returns True if s ends with sub or False otherwise.

s.find(sub [, start [, end]]) Returns the lowest index in s where substring sub
is found. Optional arguments start and end are
interpreted as in slice notation.

s.isalpha() Returns True if s contains only letters or False otherwise.

s.isdigit() Returns True if s contains only digits or False otherwise.

s.join(sequence) Returns a string that is the concatenation of the strings in
the sequence. The separator between elements is s.

s.lower() Returns a copy of s converted to lowercase.

s.replace(old, new [, count]) Returns a copy of s with all occurrences of substring old
replaced by new. If the optional argument count is given,
only the first count occurrences are replaced.

s.split([sep]) Returns a list of the words in s, using sep as the delimiter
string. If sep is not specified, any whitespace string is a
separator.

s. startswith(sub) Returns True if s starts with sub or False otherwise.

s.strip([aString]) Returns a copy of s with leading and trailing whitespace
(tabs, spaces, newlines) removed. If aString is given,
remove characters in aString instead.

s.upper() Returns a copy of s converted to uppercase.

Table 4-2	 Some useful string methods, with the variable s used to refer to any string

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

117

String Methods

help(str.<method-name>) to receive documentation on the use of an individual method.
Note that some arguments in this documentation might be enclosed in square brackets ([]).
These indicate that the arguments are optional and may be omitted when the method is called.

The next session shows some string methods in action:
>>> s = "Hi there!"
>>> len(s)
9
>>> s.center(11)
' Hi there! '
>>> s.count('e')
2
>>> s.endswith("there!")
True
>>> s.startswith("Hi")
True
>>> s.find("the")
3
>>> s.isalpha()
False
>>> 'abc'.isalpha()
True
>>> "326".isdigit()
True
>>> words = s.split()
>>> words
['Hi', 'there!']
>>> " ".join(words)
'Hithere!'
>>> " ". join(words)
'Hi there!'
>>> s.lower()
'hi there!'
>>> s.upper()
'HI THERE!'
>>> s.replace('i', 'o')
'Ho there!'
>>> " Hi there! ".strip()
'Hi there!'

Now that you know about the string method split, you are in a position to use a more gen-
eral strategy for extracting a filename’s extension than the one used earlier in this chapter.
The method split returns a list of words in the string upon which it is called. This method
assumes that the default separator character between the words is a space. You can override
this assumption by passing a period as an argument to split, as shown in the next session:
>>> "myfile.txt".split('.')
['myfile', 'txt']
>>> "myfile.py".split('.')
['myfile', 'py']
>>> "myfile.html".split('.')
['myfile', 'html']

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

118

  Strings and Text FilesC h a p t e r 4

Note that the extension, regardless of its length, is the last string in each list. You can now
use the subscript [-1], which also extracts the last element in a list, to write a general
expression for obtaining any filename’s extension, as follows:
filename.split('.')[-1]

Exercises

1.	 Assume that the variable data refers to the string "Python rules!". Use a string
method from Table 4-2 to perform the following tasks:

a.	 Obtain a list of the words in the string.

b.	 Convert the string to uppercase.

c.	 Locate the position of the string "rules".

d.	 Replace the exclamation point with a question mark.

2.	 Using the value of data from Exercise 1, write the values of the following
expressions:

a.	 data.endswith('i')

b.	 " totally ".join(data.split())

Text Files
Thus far in this book, we have seen examples of programs that have taken input data from
users at the keyboard. Most of these programs can receive their input from text files as well.
A text file is a software object that stores data on a permanent medium such as a disk, CD,
or flash memory. When compared to keyboard input from a human user, the main advan-
tages of taking input data from a file are the following:

•• The data set can be much larger.

•• The data can be input much more quickly and with less chance of error.

•• The data can be used repeatedly with the same program or with different programs.

Text Files and Their Format
Using a text editor such as Notepad or TextEdit, you can create, view, and save data in a text
file (but be careful: some text editors use RTF as a default format for text, so you should
make sure to change this to “Plain text” in your editor’s preferences if that is the case). Your
Python programs can output data to a text file, a procedure explained later in this section.
The data in a text file can be viewed as characters, words, numbers, or lines of text, depend-
ing on the text file’s format and on the purposes for which the data are used. When the data

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

119

Text Files

are numbers (either integers or floats), they must be separated by whitespace characters—
spaces, tabs, and newlines—in the file. For example, a text file containing six floating-point
numbers might look like

34.6  22.33  66.75
77.12  21.44  99.01

when examined with a text editor. Note that this format includes a space or a newline as a
separator of items in the text.

All data output to or input from a text file must be strings. Thus, numbers must be
converted to strings before output, and these strings must be converted back to numbers
after input.

Writing Text to a File
Data can be output to a text file using a file object. Python’s open function, which expects
a file name and a mode string as arguments, opens a connection to the file on disk and
returns a file object.

The mode string is 'r' for input files and 'w' for output files. Thus, the following code
opens a file object on a file named myfile.txt for output:
>>> f = open("myfile.txt", 'w')

If the file does not exist, it is created with the given filename. If the file already exists,
Python opens it. When an existing file is opened for output, any data already in it are
erased.

String data are written (or output) to a file using the method write with the file object. The
write method expects a single string argument. If you want the output text to end with
a newline, you must include the escape character '\n' in the string. The next statement
writes two lines of text to the file:
>>> f.write("First line.\nSecond line.\n")

When all of the outputs are finished, the file should be closed using the method close, as
follows:
>>> f.close()

Failure to close an output file can result in data being lost. The reason for this is that many
systems accumulate data values in a buffer before writing them out as large chunks; the
close operation guarantees that data in the final chunk are output successfully.

Writing Numbers to a File
The file method write expects a string as an argument. Therefore, other types of data, such
as integers or floating-point numbers, must first be converted to strings before being writ-
ten to an output file. In Python, the values of most data types can be converted to strings

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

120

  Strings and Text FilesC h a p t e r 4

by using the str function. The resulting strings are then written to a file with a space or a
newline as a separator character.

The next code segment illustrates the output of integers to a text file. Five hundred random
integers between 1 and 500 are generated and written to a text file named integers.txt. The
newline character is the separator.
import random
f = open("integers.txt", 'w')
for count in range(500):
 number = random.randint(1, 500)
 f.write(str(number) + '\n')
f.close()

Reading Text from a File
You open a file for input in a similar manner to opening a file for output. The only thing
that changes is the mode string, which, in the case of opening a file for input, is 'r'. How-
ever, if a file with that name is not accessible, Python raises an error. Here is the code for
opening myfile.txt for input:
>>> f = open("myfile.txt", 'r')

There are several ways to read data from an input file. The simplest way is to use the file
method read to input the entire contents of the file as a single string. If the file contains
multiple lines of text, the newline characters will be embedded in this string. The next
session shows how to use the method read:
>>> text = f.read()
>>> text
'First line.\nSecond line.\n'
>>> print(text)
First line.
Second line.

After input is finished, another call to read would return an empty string, to indicate that
the end of the file has been reached. To repeat an input, the file must be reopened, in order
to “rewind” it for another input process. It is not necessary to close the file. Alternatively, an
application might read and process the text one line at a time. A for loop accomplishes this
nicely. The for loop views a file object as a sequence of lines of text. On each pass through
the loop, the loop variable is bound to the next line of text in the sequence. Here is a session
that reopens our example file and visits the lines of text in it:
>>> f = open("myfile.txt", 'r')
>>> for line in f:
 print(line)
First line.

Second line.

Note that print appears to output an extra newline. This is because each line of text input
from the file retains its newline character.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

121

Text Files

In cases where you might want to read a specified number of lines from a file (say, the first
line only), you can use the file method readline. The readline method consumes a line of
input and returns this string, including the newline. If readline encounters the end of the
file, it returns the empty string. The next code segment uses our old friend, the while True
loop, to input all of the lines of text with readline:

>>> f = open("myfile.txt", 'r')
>>> while True:
 line = f.readline()
 if line == "":
 break
 print(line)
First line.

Second line.

Reading Numbers from a File
All of the file input operations return data to the program as strings. If these strings repre-
sent other types of data, such as integers or floating-point numbers, the programmer must
convert them to the appropriate types before manipulating them further. In Python, the
string representations of integers and floating-point numbers can be converted to the num-
bers themselves by using the functions int and float, respectively.

When reading data from a file, another important consideration is the format of the data
items in the file. Earlier, we showed an example code segment that output integers sepa-
rated by newlines to a text file. During input, these data can be read with a simple for loop.
This loop accesses a line of text on each pass. To convert this line to the integer contained
in it, the programmer runs the string method strip to remove the newline and then runs
the int function to obtain the integer value.

The next code segment illustrates this technique. It opens the file of random integers writ-
ten earlier, reads them, and prints their sum.

f = open("integers.txt", 'r')
theSum = 0
for line in f:
 line = line.strip()
 number = int(line)
 theSum += number
print("The sum is", theSum)

Obtaining numbers from a text file in which they are separated by spaces is a bit trickier. One
method proceeds by reading lines in a for loop, as before. But each line now can contain several
integers separated by spaces. You can use the string method split to obtain a list of the strings
representing these integers, and then process each string in this list with another for loop.

The next code segment modifies the previous one to handle integers separated by spaces
and/or newlines.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

122

  Strings and Text FilesC h a p t e r 4

f = open("integers.txt", 'r')
theSum = 0
for line in f:
 wordlist = line.split()
 for word in wordlist:
 number = int(word)
 theSum += number
print("The sum is", theSum)

Note that the line does not have to be stripped of the newline, because split takes care of
that automatically.

Table 4-3 summarizes the file operations discussed in this section. Note that the dot nota-
tion is not used with open, which returns a new file object.

Method What it Does

open(filename, mode) Opens a file at the given filename and returns a file object. The
mode can be 'r', 'w', 'rw', or 'a'. The last two values, 'rw'
and 'a', mean read/write and append, respectively.

f.close() Closes an output file. Not needed for input files.

f.write(aString) Outputs aString to a file.

f.read() Inputs the contents of a file and returns them as a single string.
Returns "" if the end of file is reached.

f.readline() Inputs a line of text and returns it as a string, including the newline.
Returns "" if the end of file is reached.

Table 4-3	 Some file operations

Accessing and Manipulating Files and Directories on Disk
As you probably know, the file system of a computer allows you to create folders or direc-
tories, within which you can organize files and other directories. The complete set of
directories and files forms a tree-like structure, with a single root directory at the top and
branches down to nested files and subdirectories. Figure 4-6 shows a portion of a file sys-
tem, with directories named lambertk, parent, current, sibling, and child. Each of the
last four directories contains a distinct file named myfile.txt.

When you launch Python, either from the terminal or from IDLE, the shell is connected to
a current working directory. At any point during the execution of a program, you can open
a file in this directory just by using the file’s name. However, you can also access any other
file or directory within the computer’s file system by using a pathname. A file’s pathname
specifies the chain of directories needed to access a file or directory. When the chain starts
with the root directory, it’s called an absolute pathname. When the chain starts from the
current working directory, it’s called a relative pathname.

An absolute pathname consists of one or more directory names, separated by the '/' character
(for a Unix-based system and macOS) or the '\' character (for a Windows-based system).

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

123

Text Files

The root directory is the leftmost name and the target directory or file name is the rightmost
name. The '/' character must begin an absolute pathname on Unix-based systems, and a disk
drive letter must begin an absolute pathname on Windows-based systems. If you are mentioning
a pathname in a Python string, you must escape each '\' character with another '\' character.

For example, on a macOS file system, if Users is the root directory above lambertk in
Figure 4-6, then

/Users/lambertk/parent/current/child/myfile.txt

is the absolute path to the file named myfile.txt in the child directory. On the C: drive of a
Windows file system, the same pathname would be

C:\Users\lambertk\parent\current\child\myfile.txt

In the previous section, we used a filename to open a file in the current working directory
for input or output. Now we can use an absolute pathname to open a file anywhere in the
file system. Returning to Figure 4-6, to open the file myfile.txt in the child directory from
the current directory, you can run the statement
f = open("/Users/lambertk/parent/current/child/myfile.txt", 'r')

Because absolute pathnames can become unwieldy, you can abbreviate a path by providing
a relative pathname. Pathnames to files in directories below the current working directory
begin with a subdirectory name and are completed with names and separator symbols on
the way to the target filename. Paths to items in the other parts of the file system require
you to specify a move “up” to one or more ancestor directories, by using the .. symbol
between the separators. Table 4-4 lists the relative Unix pathnames for each instance of a
file named myfile.txt from the current directory in Figure 4-6.

Note that relative pathnames do not begin with the separator symbol. To open the files
named myfile.txt in the child, parent, and sibling directories, where current is the
current working directory, you could use relative pathnames as follows:
childFile = open("child/myfile.txt", 'r')
parentFile = open("../myfile.txt", 'r')
siblingFile = open("../sibling/myfile.txt", 'r')

Figure 4-6  A portion of a file system

sibling

parent

child

my f ile.txt

my f ile.txt

my f ile.txtmy f ile.txt

current

lambertk

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

124

  Strings and Text FilesC h a p t e r 4

When designing Python programs that interact with files, it’s a good idea to include error
recovery. For example, before attempting to open a file for input, the programmer should
check to see if a file with the given pathname exists on the disk. Tables 4-5 and 4.6 explain
some file system functions, including a function (os.path.exists) that supports this
checking. They also list some functions that allow your programs to navigate to a given
directory in the file system, as well as to perform some disk housekeeping. The functions
listed in Tables 4-5 and 4.6 are self-explanatory, and you are encouraged to experiment. For
example, the following code segment will print all of the names of files in the current work-
ing directory that have a .py extension:
import os
currentDirectoryPath = os.getcwd()
listOfFileNames = os.listdir(currentDirectoryPath)
for name in listofFileNames:
 if ".py" in name:
 print(name)

Pathname Target Directory

myfile.txt current

child/myfile.txt child

../myfile.txt parent

../sibling/myfile.txt sibling

Table 4-4	 Relative pathnames from current directory to myfile.txt in Figure 4-6

os Module Function What it Does

chdir(path) Changes the current working directory to path.

getcwd() Returns the path of the current working directory.

listdir(path) Returns a list of the names in directory named path.

mkdir(path) Creates a new directory named path and places it in the current
working directory.

remove(path) Removes the file named path from the current working directory.

rename(old, new) Renames the file or directory named old to new.

rmdir(path) Removes the directory named path from the current working directory.

sep A variable that holds the separator character ('/' or '\') of the
current file system.

Table 4-5	 Some file system functions

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

125

Text Files

Exercises

1.	 Write a code segment that opens a file named myfile.txt for input and prints the
number of lines in the file.

2.	 Write a code segment that opens a file for input and prints the number of
four-letter words in the file.

3.	 Assume that a file contains integers separated by newlines. Write a code segment
that opens the file and prints the average value of the integers.

4.	 Write a code segment that prints the names of all of the items in the current
working directory.

5.	 Write a code segment that prompts the user for a filename. If the file exists, the
program should print its contents on the terminal. Otherwise, it should print an
error message.

os.path Module Function What it Does

exists(path) Returns True if path exists and False otherwise.

isdir(path) Returns True if path names a directory and False otherwise.

isfile(path) Returns True if path names a file and False otherwise.

getsize(path) Returns the size of the object names by path in bytes.

normcase(path) Converts path to a pathname appropriate for the current file
system; for example, converts forward slashes to backslashes
and letters to lowercase on a Windows system.

Table 4-6	 More file system functions

Note that the operations listed in Tables 4-5 and 4-6 are functions, not methods. Thus, the call
os.rename("oldname.txt", "newname.txt")

is a function called on its defining module, not a method called on an object.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

126

  Strings and Text FilesC h a p t e r 4

Case Study: Text Analysis

In 1949, Dr. Rudolf Flesch published The Art of Readable Writing, in which he pro-
posed a measure of text readability known as the Flesch Index. This index is based on
the average number of syllables per word and the average number of words per sen-
tence in a piece of text. Index scores usually range from 0 to 100, and they indicate
readable prose for the following grade levels:

Flesch Index Grade Level of Readability

0–30 College

50–60 High School

90–100 Fourth Grade

In this case study, we develop a program that computes the Flesch Index for
a text file.

Request

Write a program that computes the Flesch Index and grade level for text stored in a
text file.

Analysis

The input to this program is the name of a text file. The outputs are the number of
sentences, words, and syllables in the file, as well as the file’s Flesch Index and Grade
Level Equivalent.

During analysis, we consult experts in the problem domain to learn any informa-
tion that might be relevant in solving the problem. For our problem, this information
includes the definitions of sentence, word, and syllable. For the purposes of this pro-
gram, these terms are defined in Table 4-7.

Word Any sequence of non-whitespace characters.

Sentence Any sequence of words ending in a period, question mark, exclamation point,
colon, or semicolon.

Syllable Any word of three characters or less; or any vowel (a, e, i, o, u) or pair of
consecutive vowels, except for a final -es, -ed, or -e that is not -le.

Table 4-7	 Definitions of items used in the text analysis program

(continues)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

127

Text Files

Note that the definitions of word and sentence are approximations. Some words, such
as doubles and kettles, end in -es but will be counted as having one syllable, and an
ellipsis (…) will be counted as three syllables.

Flesch’s formula to calculate the index F is the following:

	 F words sentences syllables words− × − ×206.835 1.015 (/) 84.6 (/)5

The Flesch-Kincaid Grade Level Formula is used to compute the Equivalent Grade
Level G:

	 G words sentences syllables words() ()× × −0.39 / 11.8 / 15.595 1

Design

This program will perform the following tasks:

1.	 Receive the filename from the user, open the file for input, and input the text.

2.	 Count the sentences in the text.

3.	 Count the words in the text.

4.	 Count the syllables in the text.

5.	 Compute the Flesch Index.

6.	 Compute the Grade Level Equivalent.

7.	 �Print these two values with the appropriate labels, as well as the counts from
tasks 2–4.

The first and last tasks require no design. Let’s assume that the text is input as a sin-
gle string from the file and is then processed in tasks 2–4. These three tasks can be
designed as code segments that use the input string and produce an integer value.
Task 5, computing the Flesch Index, uses the three integer results of tasks 2–4 to
compute the Flesch Index. Lastly, task 6 is a code segment that uses the same inte-
gers and computes the Grade Level Equivalent. The five tasks are listed in Table 4-8,
where text is a variable that refers to the string read from the file.

All the real work is done in the tasks that count the items:

•• Add the number of characters in text that end the sentences. These characters
were specified in analysis, and the string method count is used to count them in
the algorithm.

•• Split text into a list of words and determine the text length.

•• Count the syllables in each word in text.

(continued )

(continues)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

128

  Strings and Text FilesC h a p t e r 4

The last task is the most complex. For each word in the text, we must count the
syllables in that word. From analysis, we know that each distinct vowel counts as a
syllable, unless it is in the endings -ed, -es, or -e (but not -le). For now, we ignore the
possibility of consecutive vowels.

Implementation (Coding)

The main tasks are marked off in the program code with a blank line and
a comment.

"""
Program: textanalysis.py
Author: Ken
Computes and displays the Flesch Index and the Grade
Level Equivalent for the readability of a text file.
"""

Take the inputs
fileName = input("Enter the file name: ")
inputFile = open(fileName, 'r')
text = inputFile.read()

Count the sentences
sentences = text.count('.') + text.count('?') + \
 text.count(':') + text.count(';') + \
 text.count('!')

Count the words
words = len(text.split())

Task What it Does

count the sentences Counts the number of sentences in text.

count the words Counts the number of words in text.

count the syllables Counts the number of syllables in text.

compute the Flesch Index Computes the Flesch Index for the given numbers of
sentences, words, and syllables.

compute the grade level Computes the Grade Level Equivalent for the given
numbers of sentences, words, and syllables.

Table 4-8	 The tasks defined in the text analysis program

(continued )

(continues)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

129

Text Files

Count the syllables
syllables = 0
vowels = "aeiouAEIOU"
for word in text.split():
 for vowel in vowels:
 syllables += word.count(vowel)
 for ending in ['es', 'ed', 'e']:
 if word.endswith(ending):
 syllables -= 1
 if word.endswith('le'):
 syllables += 1

Compute the Flesch Index and Grade Level
index = 206.835 – 1.015 * (words / sentences) – \
 84.6 * (syllables / words)
level = round(0.39 * (words / sentences) + 11.8 * \
 (syllables / words) – 15.59)

Output the results
print("The Flesch Index is", index)
print("The Grade Level Equivalent is", level)
print(sentences, "sentences")
print(words, "words")
print(syllables, "syllables")

Testing
Although the main tasks all collaborate in the text analysis program, they can be
tested more or less independently, before the entire program is tested. After all, there
is no point in running the complete program if you are unsure that even one of the
tasks does not work correctly.

This kind of procedure is called bottom-up testing. Each task is coded and tested
before it is integrated into the overall program. After you have written code for one
or two tasks, you can test them in a short script. This script is called a driver. For
example, here is a driver that tests the code for computing the Flesch Index and the
Grade Level Equivalent without using a text file:

"""
Program: fleschdriver.py
Author: Ken
Test driver for Flesch Index and Grade level.
"""

sentences = int(input("Sentences: "))
words = int(input("Words: "))
syllables = int(input("Syllables: "))

(continued )

(continues)
Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

130

  Strings and Text FilesC h a p t e r 4

index = 206.835 – 1.015 * (words / sentences) – \
 84.6 * (syllables / words)
print("Flesch Index:", index)
level = round(0.39 * (words / sentences) + 11.8 * \
 (syllables / words) – 15.59)
print("Grade Level: ", level)

This driver allows the programmer not only to verify the two tasks, but also to obtain
some data to use when testing the complete program later on. For example, the
programmer can supply a text file that contains the number of sentences, words, and
syllables already tested in the driver, and then compare the two test results.

In bottom-up testing, the lower-level tasks must be developed and tested before those
tasks that depend on the lower-level tasks.

When you have tested all of the parts, you can integrate them into the complete
program. The test data at that point should be short files that produce the expected
results. Then, you should use longer files. For example, you might see if plaintext ver-
sions of Dr. Seuss’s Green Eggs and Ham and Shakespeare’s Hamlet produce grade
levels of 5th grade and 12th grade, respectively. Or you could test the program with
its own source program file—but we predict that its readability will seem quite low,
because it lacks most of the standard end-of-sentence marks!

(continued )

Summary
•• A string is a sequence of zero or more characters. The len function returns the number

of characters in its string argument. Each character occupies a position in the string.
The positions range from 0 to the length of the string minus 1.

•• A string is an immutable data structure. Its contents can be accessed, but its structure
cannot be modified.

•• The subscript operator [] can be used to access a character at a given position in a
string. The operand or index inside the subscript operator must be an integer expres-
sion whose value is less than the string’s length. A negative index can be used to access a
character at or near the end of the string, starting with –1.

•• A subscript operator can also be used for slicing—to fetch a substring from a string.
When the subscript has the form [<start>:], the substring contains the characters
from the start position to the end of the string. When the form is [:<end>], the posi-
tions range from the first one to end – 1. When the form is [<start>:<end>], the posi-
tions range from start to end – 1.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

131

Review Questions

•• The in operator is used to detect the presence or absence of a substring in a string. Its
usage is <substring> in <a string>.

•• A method is an operation that is used with an object. A method can expect arguments
and return a value.

•• The string type includes many useful methods for use with string objects.

•• A text file is a software object that allows a program to transfer data to and from perma-
nent storage on disk, CDs, or flash memory.

•• A file object is used to open a connection to a text file for input or output.

•• The file method write is used to output a string to a text file.

•• The file method read inputs the entire contents of a text file as a single string.

•• The file method readline inputs a line of text from a text file as a string.

•• The for loop treats an input file as a sequence of lines. On each pass through the loop,
the loop’s variable is bound to a line of text read from the file.

Review Questions
For questions 1–6, assume that the variable data refers to the string "No way!".

1.	 The expression len(data) evaluates to

a.	 8
b.	 7
c.	 6

2.	 The expression data[1] evaluates to

a.	 'N'

b.	 'o'

3.	 The expression data[–1] evaluates to

a.	 '!''

b.	 'y'

4.	 The expression data[3:6] evaluates to

a.	 'way!'

b.	 'way'

c.	 ' wa'

5.	 The expression data.replace("No", "Yes") evaluates to

a.	 'No way!'

b.	 'Yo way!'

c.	 'Yes way!'

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

132

  Strings and Text FilesC h a p t e r 4

6.	 The expression data.find ("way!") evaluates to

a.	 2
b.	 3
c.	 True

7.	 A Caesar cipher locates the coded text of a plaintext character

a.	 A given distance to the left or to the right in the sequence of characters
b.	 In an inversion matrix

8.	 The binary number 111 represents the decimal integer

a.	 111
b.	 3
c.	 7

9.	 Which of the following binary numbers represents the decimal integer value 8?

a.	 11111111
b.	 100
c.	 1000

10.	 Which file method is used to read the entire contents of a file in a single
operation?

a.	 readline

b.	 read

c.	 a for loop

Projects
1.	 Write a script that inputs a line of plaintext and a distance value and outputs an

encrypted text using a Caesar cipher. The script should work for any printable
characters.

2.	 Write a script that inputs a line of encrypted text and a distance value and outputs
plaintext using a Caesar cipher. The script should work for any printable characters.

3.	 Modify the scripts of Projects 1 and 2 to encrypt and decrypt entire files of text.

4.	 Octal numbers have a base of eight and the digits 0–7. Write the scripts octalTo-
Decimal.py and decimalToOctal.py, which convert numbers between the octal
and decimal representations of integers. These scripts use algorithms that are
similar to those of the binaryToDecimal and decimalToBinary scripts devel-
oped in Section 4-3.

5.	 A bit shift is a procedure whereby the bits in a bit string are moved to the left or
to the right. For example, we can shift the bits in the string 1011 two places to
the left to produce the string 1110. Note that the leftmost two bits are wrapped

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

133

Projects

around to the right side of the string in this operation. Define two scripts,
shiftLeft.py and shiftRight.py, that expect a bit string as an input. The script
shiftLeft shifts the bits in its input one place to the left, wrapping the leftmost bit
to the rightmost position. The script shiftRight performs the inverse operation.
Each script prints the resulting string.

6.	 Use the strategy of the decimal to binary conversion and the bit shift left opera-
tion defined in Project 5 to code a new encryption algorithm. The algorithm
should add 1 to each character’s numeric ASCII value, convert it to a bit string,
and shift the bits of this string one place to the left. A single-space character in
the encrypted string separates the resulting bit strings.

7.	 Write a script that decrypts a message coded by the method used in Project 6.

8.	 Write a script named copyfile.py. This script should prompt the user for the
names of two text files. The contents of the first file should be input and written
to the second file.

9.	 Write a script named numberlines.py. This script creates a program listing from a
source program. This script should prompt the user for the names of two files. The
input filename could be the name of the script itself, but be careful to use a different
output filename! The script copies the lines of text from the input file to the output
file, numbering each line as it goes. The line numbers should be right-justified in
4 columns, so that the format of a line in the output file looks like this example:

1> This is the first line of text.

10.	 Write a script named dif.py. This script should prompt the user for the names
of two text files and compare the contents of the two files to see if they are the
same. If they are, the script should simply output "Yes". If they are not, the script
should output "No", followed by the first lines of each file that differ from each
other. The input loop should read and compare lines from each file. The loop
should break as soon as a pair of different lines is found.

11.	 Jack just completed the program for the Flesch text analysis from this chapter’s
case study. His supervisor, Jill, has discovered an error in his code. The error
causes the program to count a syllable containing consecutive vowels as multiple
syllables. Suggest a solution to this problem in Jack’s code and modify the pro-
gram so that it handles these cases correctly.

12.	 The Payroll Department keeps a list of employee information for each pay period
in a text file. The format of each line of the file is the following:
<last name> <hourly wage> <hours worked>

Write a program that inputs a filename from the user and prints to the terminal a
report of the wages paid to the employees for the given period. The report should
be in tabular format with the appropriate header. Each line should contain an
employee’s name, the hours worked, and the wages paid for that period.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

C h a p t e r 5
Lists and Dictionaries

After completing this chapter, you will be able to

Construct lists and access items in those lists

Use methods to manipulate lists

Perform traversals of lists to process items in the lists

Define simple functions that expect parameters and return
values

Construct dictionaries and access entries in those
dictionaries

Use methods to manipulate dictionaries

Determine whether a list or a dictionary is an appropriate
data structure for a given application

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

135

Lists

As data-processing problems have become more complex, computer scientists have devel-
oped data structures to help solve them. A data structure combines several data values into
a unit so they can be treated as one thing. The data elements within a data structure are
usually organized in a special way that allows the programmer to access and manipulate
them. As you saw in Chapter 4, a string is a data structure that organizes text as a sequence
of characters. In this chapter, we explore the use of two other common data structures: the
list and the dictionary. A list allows the programmer to manipulate a sequence of data val-
ues of any types. A dictionary organizes data values by association with other data values
rather than by sequential position.

Lists and dictionaries provide powerful ways to organize data in useful and interesting
applications. In addition to exploring the use of lists and dictionaries, this chapter also
introduces the definition of simple functions. These functions help to organize program
instructions, in much the same manner as data structures help to organize data.

Lists
A list is a sequence of data values called items or elements. An item can be of any type.
Here are some real-world examples of lists:

•• A shopping list for the grocery store

•• A to-do list

•• A roster for an athletic team

•• A guest list for a wedding

•• A recipe, which is a list of instructions

•• A text document, which is a list of lines

•• The names in a phone book

The logical structure of a list resembles the structure of a string. Each of the items in a list is
ordered by position. Like a character in a string, each item in a list has a unique index that
specifies its position. The index of the first item is 0, and the index of the last item is the
length of the list minus 1. As sequences, lists and strings share many of the same operators,
but they include different sets of methods. We now examine these in detail.

List Literals and Basic Operators
As you have seen, literal string values are written as sequences of characters enclosed in
quote marks. In Python, a list literal is written as a sequence of data values separated by
commas. The entire sequence is enclosed in square brackets ([and]). Here are some
example list literals:
[1951, 1969, 1984] # A list of integers
["apples", "oranges", "cherries"] # A list of strings
[] # An empty list

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

136

  Lists and DictionariesC h a p t e r 5

You can also use other lists as elements in a list, thereby creating a list of lists. Here is one
example of such a list:
[[5, 9], [541, 78]]

It is interesting that when the Python interpreter evaluates a list literal, each of the elements
is evaluated as well. When an element is a number or a string, that literal is included in the
resulting list. However, when the element is a variable or any other expression, its value is
included in the list, as shown in the following session:
>>> import math
>>> x = 2
>>> [x, math.sqrt(x)]
[2, 1.4142135623730951]
>>> [x + 1]
[3]

Thus, you can think of the [] delimiters as a kind of function, like print, which evaluates
its arguments before using their values.

You can also build lists of integers using the range and list functions introduced in
Chapter 3. The next session shows the construction of two lists and their assignment to
variables:
>>> first = [1, 2, 3, 4]
>>> second = list(range(1, 5))
>>> first
[1, 2, 3, 4]
>>> second
[1, 2, 3, 4]

The list function can build a list from any iterable sequence of elements, such as a
string:
>>> third = list("Hi there!")
>>> third
['H', 'i', ' ' , 't', 'h', 'e', 'r', 'e', '!']

The function len and the subscript operator [] work just as they do for strings:
>>> len(first)
4
>>> first[0]
1
>>> first[2:4]
[3, 4]

Concatenation (+) and equality (==) also work as expected for lists:
>>> first + [5, 6]
[1, 2, 3, 4, 5, 6]
>>> first == second
True

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

137

Lists

The print function strips the quotation marks from a string, but it does not alter the look
of a list:
>>> print("1234")
1234
>>> print([1, 2, 3, 4])
[1, 2, 3, 4]

To print the contents of a list without the brackets and commas, you can use a for loop, as
follows:
>>> for number in [1, 2, 3, 4]:
 print(number, end = " ")
1 2 3 4

Finally, you can use the in operator to detect the presence or absence of a given element:
>>> 3 in [1, 2, 3]
True
>>> 0 in [1, 2, 3]
False

Table 5-1 summarizes these operators and functions, where L refers to a list.

Operator or Function What It Does

L[<an integer expression>] Subscript used to access an element at the given
index position.

L[<start>:<end>] Slices for a sublist. Returns a new list.

L1 + L2 List concatenation. Returns a new list consisting of
the elements of the two operands.

print(L) Prints the literal representation of the list.

len(L) Returns the number of elements in the list.

list(range(<upper>)) Returns a list containing the integers in the range 0
through upper - 1.

==, !=, <, >, <=, >= Compares the elements at the corresponding posi-
tions in the operand lists. Returns True if all the
results are true, or False otherwise.

for <variable> in L: <statement> Iterates through the list, binding the variable to each
element.

<any value> in L Returns True if the value is in the list or False
otherwise.

Table 5-1	 Some operators and functions used with lists

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

138

  Lists and DictionariesC h a p t e r 5

Replacing an Element in a List
The examples discussed thus far might lead you to think that a list behaves exactly like a
string. However, there is one huge difference. Because a string is immutable, its structure
and contents cannot be changed. But a list is changeable—that is, it is mutable. At any point
in a list’s lifetime, elements can be inserted, removed, or replaced. The list itself maintains
its identity but its internal state—its length and its contents—can change.

The subscript operator is used to replace an element at a given position, as shown in the
next session:
>>> example = [1, 2, 3, 4]
>>> example
[1, 2, 3, 4]
>>> example[3] = 0
>>> example
[1, 2, 3, 0]

Note that the subscript operation refers to the target of the assignment statement, which
is not the list but an element’s position within it. Much of list processing involves replacing
each element with the result of applying some operation to that element. We now present
two examples of how this is done.

The first session shows how to replace each number in a list with its square:
>>> numbers = [2, 3, 4, 5]
>>> numbers
[2, 3, 4, 5]
>>> for index in range(len(numbers)):
 numbers[index] = numbers[index] ** 2
>>> numbers
[4, 9, 16, 25]

Note that the code uses a for loop over an index rather than a for loop over the list ele-
ments, because the index is needed to access the positions for the replacements. The next
session uses the string method split to extract a list of the words in a sentence. These
words are then converted to uppercase letters within the list:
>>> sentence = "This example has five words."
>>> words = sentence.split()
>>> words
['This', 'example', 'has', 'five', 'words.']
>>> for index in range(len(words)):
 words[index] = words[index].upper()
>>> words
['THIS', 'EXAMPLE', 'HAS', 'FIVE', 'WORDS.']

List Methods for Inserting and Removing Elements
The list type includes several methods for inserting and removing elements. These meth-
ods are summarized in Table 5-2, where L refers to a list. To learn more about each method,
enter help(list.<method name>) in a Python shell.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

139

Lists

The method insert expects an integer index and the new element as arguments. When
the index is less than the length of the list, this method places the new element before the
existing element at that index, after shifting elements to the right by one position. At the
end of the operation, the new element occupies the given index position. When the index
is greater than or equal to the length of the list, the new element is added to the end of the
list. The next session shows insert in action:

>>> example = [1, 2]
>>> example
[1, 2]
>>> example.insert(1, 10)
>>> example
[1, 10, 2]
>>> example.insert(3, 25)
>>> example
[1, 10, 2, 25]

The method append is a simplified version of insert. The method append expects just the
new element as an argument and adds the new element to the end of the list. The method
extend performs a similar operation, but adds the elements of its list argument to the
end of the list. The next session shows the differences between append, extend, and the +
operator

>>> example = [1, 2]
>>> example
[1, 2]
>>> example.append(3)
>>> example
[1, 2, 3]
>>> example.extend([11, 12, 13])
>>> example
[1, 2, 3, 11, 12, 13]
>>> example + [14, 15]
[1, 2, 3, 11, 12, 13, 14, 15]
>>> example
[1, 2, 3, 11, 12, 13]

List Method What It Does

L.append(element) Adds element to the end of L.

L.extend(aList) Adds the elements of aList to the end of L.

L.insert(index, element) Inserts element at index if index is less than the length
of L. Otherwise, inserts element at the end of L.

L.pop() Removes and returns the element at the end of L.

L.pop(index) Removes and returns the element at index.

Table 5-2	 List methods for inserting and removing elements

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

140

  Lists and DictionariesC h a p t e r 5

Note that the + operator builds and returns a brand new list containing the elements of the two
operands, whereas append and extend modify the list object on which the methods are called.

The method pop is used to remove an element at a given position. If the position is not
specified, pop removes and returns the last element. If the position is specified, pop removes
the element at that position and returns it. In that case, the elements that followed the
removed element are shifted one position to the left. The next session removes the last and
first elements from the example list:

>>> example
[1, 2, 10, 11, 12, 13]
>>> example.pop() # Remove the last element
13
>>> example
[1, 2, 10, 11, 12]
>>> example.pop(0) # Remove the first element
1
>>> example
[2, 10, 11, 12]

Note that the method pop and the subscript operator expect the index argument to be within
the range of positions currently in the list. If that is not the case, Python raises an exception.

Searching a List
After elements have been added to a list, a program can search for a given element. The in
operator determines an element’s presence or absence, but programmers often are more
interested in the position of an element if it is found (for replacement, removal, or other
use). Unfortunately, the list type does not include the convenient find method that is
used with strings. Recall that find returns either the index of the given substring in a string
or –1 if the substring is not found. Instead of find, you must use the method index to
locate an element’s position in a list. It is unfortunate that index raises an exception when
the target element is not found. To guard against this unpleasant consequence, you must
first use the in operator to test for presence and then the index method if this test returns
True. The next code segment shows how this is done for an example list and target element:
aList = [34, 45, 67]
target = 45
if target in aList:
 print(aList.index(target))
else:
 print(-l)

Sorting a List
Although a list’s elements are always ordered by position, it is possible to impose a natural
ordering on them as well. In other words, you can arrange some elements in numeric or
alphabetical order. A list of numbers in ascending order and a list of names in alphabetical

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

141

Lists

order are sorted lists. When the elements can be related by comparing them for less than
and greater than as well as equality, they can be sorted. The list method sort mutates a
list by arranging its elements in ascending order. Here is an example of its use:
>>> example = [4, 2, 10, 8]
>>> example
[4, 2, 10, 8]
>>> example.sort()
>>> example
[2, 4, 8, 10]

Mutator Methods and the Value None
The functions and methods examined in previous chapters return a value that the caller can
then use to complete its work. Mutable objects (such as lists) have some methods devoted
entirely to modifying the internal state of the object. Such methods are called mutators. Exam-
ples are the list methods insert, append, extend, pop, and sort. Because a change of state is all
that is desired, a mutator method usually returns no value of interest to the caller (but note that
pop is an exception to this rule). Python nevertheless automatically returns the special value None
even when a method does not explicitly return a value. We mention this now only as a warning
against the following type of error. Suppose you forget that sort mutates a list, and instead you
mistakenly think that it builds and returns a new, sorted list and leaves the original list unsorted.
Then you might write code like the following to obtain what you think is the desired result:
>>> aList = aList.sort()

Unfortunately, after the list object is sorted, this assignment has the result of setting the
variable aList to the value None. The next print statement shows that the reference to the
list object is lost:
>>> print(aList)
None

Later in this book, you will learn how to make something useful out of None.

Aliasing and Side Effects
As you learned earlier, numbers and strings are immutable. That is, you cannot change
their internal structure. However, because lists are mutable, you can replace, insert, or
remove elements. The mutable property of lists leads to some interesting phenomena, as
shown in the following session:
>>> first = [10, 20, 30]
>>> second = first
>>> first
[10, 20, 30]
>>> second
[10, 20, 30]
>>> first[1] = 99
>>> first

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

142

  Lists and DictionariesC h a p t e r 5

[10, 99, 30]
>>> second
[10, 99, 30]

In this example, a single list object is created and modified using the subscript operator.
When the second element of the list named first is replaced, the second element of the
list named second is replaced also. This type of change is what is known as a side effect.
This happens because after the assignment second = first, the variables first and
second refer to the exact same list object. They are aliases for the same object, as shown
in Figure 5-1. This phenomenon is known as aliasing.

Figure 5-1  Two variables refer to the same list object

f irst

second
10 99 30

0 1 2

Figure 5-2  Two variables refer to different list objects

f irst 10 99 30

third 10 99 30

0 1 2

0 1 2

If the data are immutable strings, aliasing can save on memory. But as you might imagine,
aliasing is not always a good thing when side effects are possible. Assignment creates an alias
to the same object rather than a reference to a copy of the object. To prevent aliasing, you can
create a new object and copy the contents of the original to it, as shown in the next session:
>>> third = []
>>> for element in first:
 third.append(element)
>>> first
[10, 99, 30]
>>> third
[10, 99, 30]
>>> first[l] = 100
>>> first
[10, 100, 30]
>>> third
[10, 99, 30]

The variables first and third refer to two different list objects, although their contents are
initially the same, as shown in Figure 5-2. The important point is that they are not aliases,
so you don’t have to be concerned about side effects.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

143

Lists

A simpler way to copy a list is to pass the source list to a call of the list function, as follows:
>>> third = list(first)

Equality: Object Identity and Structural Equivalence
Occasionally, programmers need to see whether two variables refer to the exact same object or
to different objects. For example, you might want to determine whether one variable is an alias
for another. The == operator returns True if the variables are aliases for the same object. Unfor-
tunately, == also returns True if the contents of two different objects are the same. The first rela-
tion is called object identity, whereas the second relation is called structural equivalence. The
== operator has no way of distinguishing between these two types of relations.

Python’s is operator can be used to test for object identity. It returns True if the two oper-
ands refer to the exact same object, and it returns False if the operands refer to distinct
objects (even if they are structurally equivalent). The next session shows the difference
between == and is, and Figure 5-3 depicts the objects in question.
>>> first = [20, 30, 40]
>>> second = first
>>> third = list(first) # Or first[:]
>>> first == second
True
>>> first == third
True
>>> first is second
True
>>> first is third
False

Figure 5-3  Three variables and two distinct list objects

20 30 40

third 20 30 40

f irst

second

0 1 2

0 1 2

Example: Using a List to Find the Median of a Set of Numbers
Researchers who do quantitative analysis are often interested in the median of a set of num-
bers. For example, the U.S. government often gathers data to determine the median family
income. Roughly speaking, the median is the value that is less than half the numbers in the
set and greater than the other half. If the number of values in a list is odd, the median of the
list is the value at the midpoint when the set of numbers is sorted; otherwise, the median is
the average of the two values surrounding the midpoint. Thus, the median of the list

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

144

  Lists and DictionariesC h a p t e r 5

[1, 3, 3, 5, 7] is 3, and the median of the list [1, 2, 4, 4] is also 3. The following script inputs a
set of numbers from a text file and prints their median:
"""
File: median.py
Prints the median of a set of numbers in a file.
"""

fileName = input("Enter the filename: ")
f = open(fileName, 'r')

Input the text, convert it to numbers, and
add the numbers to a list
numbers = []
for line in f:
 words = line.split()
 for word in words:
 numbers.append(float(word))

Sort the list and print the number at its midpoint
numbers.sort()
midpoint = len(numbers) // 2
print("The median is", end = " ")
if len(numbers) % 2 == 1:
 print(numbers[midpoint])
else:
 print((numbers[midpoint] + numbers[midpoint - 1]) / 2)

Note that the input process is the most complex part of this script. An accumulator list,
numbers, is set to the empty list. The for loop reads each line of text and extracts a list
of words from that line. The nested for loop traverses this list to convert each word to
a number. The list method append then adds each number to the end of numbers, the
accumulator list. The remaining lines of code locate the median value. When run with an
input file whose contents are
3 2 7
8 2 1
5

the script produces the following output:
The median is 3.0

Tuples
A tuple is a type of sequence that resembles a list, except that, unlike a list, a tuple is immu-
table. You indicate a tuple literal in Python by enclosing its elements in parentheses instead
of square brackets. The next session shows how to create several tuples:
>>> fruits = ("apple", "banana")
>>> fruits
('apple', 'banana')

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

145

Lists

>>> meats = ("fish", "poultry")
>>> meats
('fish', 'poultry')
>>> food = meats + fruits
>>> food
('fish', 'poultry', 'apple', 'banana')
>>> veggies = ["celery", "beans"]
>>> tuple(veggies)
('celery', 'beans')

Most of the operators and functions used with lists also apply to tuples. For the most part,
anytime you foresee using a list whose structure will not change, you can, and should, use
a tuple instead. For example, the set of vowels and the set of punctuation marks in a text-
processing application could be represented as tuples of strings. You must be careful when
using a tuple of one element. When that is the case, you place a comma after the expression
within the parentheses, as shown in the following session:
>>> badSingleton = (3)
>>> badSingleton
3
>>> goodSingleton = (3,)
>>> goodSingleton
(3,)

Exercises

1.	 Assume that the variable data refers to the list [5, 3, 7]. Write the values of the
following expressions:

a.	 data[2]

b.	 data[-1]

c.	 len(data)

d.	 data[0:2]

e.	 0 in data

f.	 data + [2, 10, 5]

g.	 tuple(data)

2.	 Assume that the variable data refers to the list [5, 3, 7]. Write the expressions
that perform the following tasks:

a.	 Replace the value at position 0 in data with that value’s negation.

b.	 Add the value 10 to the end of data.

c.	 Insert the value 22 at position 2 in data.

d.	 Remove the value at position 1 in data.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

146

  Lists and DictionariesC h a p t e r 5

Defining Simple Functions
Thus far, our programs have consisted of short code segments or scripts. Some of these
have used built-in functions to do useful work. Some of our scripts might also be useful
enough to package as functions to be used in other scripts. Moreover, defining our own
functions allows us to organize our code in existing scripts more effectively. This section
provides a brief overview of how to do this. We’ll examine program design with functions
in more detail in Chapter 6.

The Syntax of Simple Function Definitions
Most of the functions used thus far expect one or more arguments and return a value. Let’s
define a function that expects a number as an argument and returns the square of that
number. First, we consider how the function will be used. Its name is square, so you can
call it like this:
>>> square(2)
4
>>> square(6)
36
>>> square(2.5)
6.25

The definition of this function consists of a header and a body. Here is the code:
def square(x):
 """Returns the square of x."""
 return x * x

e.	 Add the values in the list newData to the end of data.

f.	 Locate the index of the value 7 in data, safely.

g.	 Sort the values in data.

3.	 What is a mutator method? Explain why mutator methods usually return the
value None.

4.	 Write a loop that accumulates the sum of the numbers in a list named data.

5.	 Assume that data refers to a list of numbers, and result refers to an empty list.
Write a loop that adds the nonzero values in data to the result list, keeping them
in their relative positions and excluding the zeros.

6.	 Write a loop that replaces each number in a list named data with its absolute value.

7.	 Describe the costs and benefits of aliasing, and explain how it can be avoided.

8.	 Explain the difference between structural equivalence and object identity.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

147

Defining Simple Functions

The header includes the keyword def as well as the function name and list of parameters.
The function’s body contains one or more statements. Here is the syntax:
def <function name>(<parameter-1>, ..., <parameter-n>):
 <body>

The function’s body contains the statements that execute when the function is called. Our
function contains a single return statement, which simply returns the result of multiply-
ing its argument, named x, by itself. Note that the argument name, also called a parameter,
behaves just like a variable in the body of the function. This variable does not receive an ini-
tial value until the function is called. For example, when the function square is called with
the argument 6, the parameter x will have the value 6 in the function’s body.

Our function also contains a docstring. This string contains information about what the
function does. It is displayed in the shell when the programmer enters help(square).

A function can be defined in a Python shell, but it is more convenient to define it in an
IDLE window, where it can be saved to a file. Loading the window into the shell then loads
the function definition as well. Like variables, functions generally must be defined in a
script before they are called in that same script.

Our next example function computes the average value in a list of numbers. The function
might be used as follows:
>>> average([1, 3, 5, 7])
4.0

Here is the code for the function’s definition:
def average(lyst):
 """Returns the average of the numbers in lyst."""
 theSum = 0
 for number in lyst:
 theSum += number
 return theSum / len(lyst)

Parameters and Arguments
A parameter is the name used in the function definition for an argument that is passed to
the function when it is called. For now, the number and positions of the arguments of a
function call should match the number and positions of the parameters in that function’s
definition. Some functions expect no arguments, so they are defined with no parameters.

The return Statement
The programmer places a return statement at each exit point of a function when that func-
tion should explicitly return a value. The syntax of the return statement for these cases is
the following:
return <expression>

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

148

  Lists and DictionariesC h a p t e r 5

Upon encountering a return statement, Python evaluates the expression and immediately
transfers control back to the caller of the function. The value of the expression is also sent
back to the caller. If a function contains no return statement, Python transfers control to
the caller after the last statement in the function’s body is executed, and the special value
None is automatically returned.

Boolean Functions
A Boolean function usually tests its argument for the presence or absence of some property.
The function returns True if the property is present, or False otherwise. The next example
shows the use and definition of the Boolean function odd, which tests a number to see
whether it is odd.
>>> odd(5)
True
>>> odd(6)
False

def odd(x):
 """Returns True if x is odd or False otherwise."""
 if x % 2 == 1:
 return True
 else:
 return False

Note that this function has two possible exit points, in either of the alternatives within the
if/else statement.

Defining a main Function
In scripts that include the definitions of several cooperating functions, it is often useful to
define a special function named main that serves as the entry point for the script. This func-
tion usually expects no arguments and returns no value. Its purpose might be to take inputs,
process them by calling other functions, and print the results. The definition of the main
function and the other function definitions need appear in no particular order in the script,
as long as main is called at the very end of the script. The next example shows a complete
script that is organized in the manner just described. The main function prompts the user
for a number, calls the square function to compute its square, and prints the result. You can
define the main and the square functions in any order. When Python loads this module,
the code for both function definitions is loaded and compiled, but not executed. Note that
main is then called within an if statement as the last step in the script. This has the effect of
transferring control to the first instruction in the main function’s definition. When square is
called from main, control is transferred from main to the first instruction in square. When a
function completes execution, control returns to the next instruction in the caller’s code.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

149

Defining Simple Functions

"""
File: computesquare.py
Illustrates the definition of a main function.
"""

def main():
 """The main function for this script."""
 number = float(input("Enter a number: "))
 result = square(number)
 print("The square of", number, "is", result)

def square(x):
 """Returns the square of x."""
 return x * x

The entry point for program execution
if __name__ == "__main:"__
 main()

Like all scripts, the preceding script can be run from IDLE, run from a terminal command
prompt, or imported as a module. When the script is imported as a module, the value of the
module variable __name__ will be the name of the module, "computeSquare". In that case, the
main function is not called, but the script’s functions become available to be called by other
code. When the script is launched from IDLE or a terminal prompt, the value of the module
variable __name __ will be "__main__". In that case, the main function is called and the
script runs as a standalone program. This mechanism aids in testing, as the script can be run
repeatedly in the shell by calling main(), rather than reloading it from the editor’s window.
We will start defining and using a main function in our case studies from this point forward.

Exercises
1.	 What roles do the parameters and the return statement play in a function definition?

2.	 Define a function named even. This function expects a number as an argument and
returns True if the number is divisible by 2, or it returns False otherwise. (Hint: A
number is evenly divisible by 2 if the remainder is 0.)

3.	 Use the function even to simplify the definition of the function odd presented in
this section.

4.	 Define a function named summation. This function expects two numbers, named
low and high, as arguments. The function computes and returns the sum of the
numbers between low and high, inclusive.

5.	 What is the purpose of a main function?

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

150

  Lists and DictionariesC h a p t e r 5

Case Study: Generating Sentences

Can computers write poetry? We’ll attempt to answer that question in this case study
by giving a program a few words to play with.

Request

Write a program that generates sentences.

Analysis

Sentences in any language have a structure defined by a grammar. They also include
a set of words from the vocabulary of the language. The vocabulary of a language
like English consists of many thousands of words, and the grammar rules are quite
complex. For the sake of simplicity our program will generate sentences from a sim-
plified subset of English. The vocabulary will consist of sample words from several
parts of speech, including nouns, verbs, articles, and prepositions. From these words,
you can build noun phrases, prepositional phrases, and verb phrases. From these
constituent phrases, you can build sentences. For example, the sentence “The girl hit
the ball with the bat” contains three noun phrases, one verb phrase, and one preposi-
tional phrase. Table 5-3 summarizes the grammar rules for our subset of English.

The rule for Noun phrase says that it is an Article followed by (1) a Noun. Thus, a
possible noun phrase is “the bat.” Note that some of the phrases in the left column of
Table 5-3 also appear in the right column as constituents of other phrases. Although
this grammar is much simpler than the complete set of rules for English grammar,
you should still be able to generate sentences with quite a bit of structure.

The program will prompt the user for the number of sentences to generate. The pro-
posed user interface follows:

Enter the number of sentences: 3
THE BOY HIT THE BAT WITH A BOY

Phrase Its Constituents

Sentence Noun phrase + Verb phrase

Noun phrase Article + Noun

Verb phrase Verb + Noun phrase + Prepositional phrase

Prepositional phrase Preposition + Noun phrase

Table 5-3	 The grammar rules for the sentence generator

(continues)
Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

151

Defining Simple Functions

THE BOY HIT THE BALL BY A BAT
THE BOY SAW THE GIRL WITH THE GIRL

Enter the number of sentences: 2
A BALL HIT A GIRL WITH THE BAT
A GIRL SAW THE BAT BY A BOY

Design

Of the many ways to solve the problem in this case study, perhaps the simplest is
to assign the task of generating each phrase to a separate function. Each function
builds and returns a string that represents its phrase. This string contains words
drawn from the parts of speech and from other phrases. When a function needs an
individual word, it is selected at random from the words in that part of speech. When
a function needs another phrase, it calls another function to build that phrase. The
results, all strings, are concatenated with spaces and returned.

The function for Sentence is the easiest. It just calls the functions for Noun phrase
and Verb phrase and concatenates the results, as in the following:

def sentence():
 """Builds and returns a sentence."""
 return nounPhrase() + " " + verbPhrase() + "."

The function for Noun phrase picks an article and a noun at random from the vocabulary,
concatenates them, and returns the result. We assume that the variables articles and
nouns refer to collections of these parts of speech and develop these later in the design.
The function random.choice returns a random element from such a collection.

def nounPhrase() :
 """Builds and returns a noun phrase."""
 return random.choice(articles) + " " + random.choice(nouns)

The design of the remaining two phrase-structure functions is similar.

The main function drives the program with a count-controlled loop:

def main():
 """Allows the user to input the number of sentences to generate."""
 number = int(input("Enter the number of sentences: "))
 for count in range(number):
 print(sentence())

The variables articles and nouns used in the program’s functions refer to the collec-
tions of actual words belonging to these two parts of speech. Two other collections,
named verbs and prepositions, also will be used. The data structure used to rep-
resent a collection of words should allow the program to pick one word at random.

(continues)

(continued)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

152

  Lists and DictionariesC h a p t e r 5

Because the data structure does not change during the course of the program, you
can use a tuple of strings. Four tuples serve as a common pool of data for the func-
tions in the program and are initialized before the functions are defined.

Implementation (Coding)

When functions use a common pool of data, you should define or initialize the data
before the functions are defined. Thus, the variables for the data are initialized just
below the import statement.

"""
Program: generator.py
Author: Ken
Generates and displays sentences using simple grammar
and vocabulary. Words are chosen at random.
"""

import random

Vocabulary: words in 4 different parts of speech
articles = ("A", "THE")
nouns = ("BOY", "GIRL", "BAT", "BALL")
verbs = ("HIT", "SAW", "LIKED")
prepositions = ("WITH", "BY")

def sentence():
 """Builds and returns a sentence."""
 return nounPhrase() + " " + verbPhrase()

def nounPhrase():
 """Builds and returns a noun phrase."""
 return random.choice(articles) + " " + random.choice(nouns)

def verbPhrase():
 """Builds and returns a verb phrase."""
 return random.choice(verbs) + " " + nounPhrase() + " " + \
 prepositionalPhrase()

def prepositionalPhrase():
 """Builds and returns a prepositional phrase."""
 return random.choice(prepositions) + " " + nounPhrase()

def main():
 """Allows the user to input the number of sentences
 to generate."""
 number = int(input("Enter the number of sentences: "))

(continues)

(continued)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

153

Dictionaries

Dictionaries
Lists organize their elements by position. This mode of organization is useful when you
want to locate the first element, the last element, or visit each element in a sequence. How-
ever, in some situations, the position of a datum in a structure is irrelevant; we’re interested
in its association with some other element in the structure. For example, you might want to
look up Ethan’s phone number but don’t care where that number is in the phone book.

A dictionary organizes information by association, not position. For example, when you
use a dictionary to look up the definition of “mammal,” you don’t start at page 1; instead,
you turn directly to the words beginning with “M.” Phone books, address books, encyclope-
dias, and other reference sources also organize information by association. In computer sci-
ence, data structures organized by association are also called tables or association lists. In
Python, a dictionary associates a set of keys with values. For example, the keys in Webster’s
Dictionary comprise the set of words, whereas the associated data values are their defini-
tions. In this section, we examine the use of dictionaries in data processing.

Dictionary Literals
A Python dictionary is written as a sequence of key/value pairs separated by commas. These
pairs are sometimes called entries. The entire sequence of entries is enclosed in curly braces
({ and }). A colon (:) separates a key and its value. Here are some example dictionaries:
A phone book: {"Savannah":"476-3321", "Nathaniel":"351-7743"}

 for count in range(number):
 print(sentence())

The entry point for program execution
if __name__ == "__main__":
 main()

Testing

Poetry it’s not, but testing is still important. The functions developed in this case
study can be tested in a bottom-up manner. To do so, you must initialize the data
first. Then you can run the lowest-level function, nounPhrase, immediately to check
its results, and you can work up to sentences from there.

On the other hand, testing can also follow the design, which took a top-down path.
You might start by writing headers for all of the functions and simple return state-
ments that return the functions’ names. Then you can complete the code for the sen-
tence function first, test it, and proceed downward from there. The wise programmer
can also mix bottom-up and top-down testing as needed.

(continued)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

154

  Lists and DictionariesC h a p t e r 5

Personal information: {"Name":"Molly", "Age":18}

You can even create an empty dictionary—that is, a dictionary that contains no entries. You
would create an empty dictionary in a program that builds a dictionary from scratch. Here
is an example of an empty dictionary:
{}

The keys in a dictionary can be data of any immutable types, including tuples, although keys
normally are strings or integers. The associated values can be of any types. Although the
entries may appear to be ordered in a dictionary, this ordering is not significant, and the
programmer should not rely on it.

Adding Keys and Replacing Values
You add a new key/value pair to a dictionary by using the subscript operator []. The form
of this operation is the following:
<a dictionary>[<a key>] = <a value>

The next code segment creates an empty dictionary and adds two new entries:
>>> info = {}
>>> info["name"] = "Sandy"
>>> info["occupation"] = "hacker"
>>> info
{'name':'Sandy', 'occupation':'hacker'}

The subscript is also used to replace a value at an existing key, as follows:
>>> info["occupation"] = "manager"
>>> info
{'name':'Sandy', 'occupation':'manager'}

Here is a case of the same operation used for two different purposes: insertion of a new entry
and modification of an existing entry. As a rule, when the key is absent the dictionary, and its
value are inserted; when the key already exists, its associated value is replaced.

Accessing Values
You can also use the subscript to obtain the value associated with a key. However, if the key
is not present in the dictionary, Python raises an exception. Here are some examples, using
the info dictionary, which was set up earlier:
>>> info["name"]
'Sandy'
>>> info["job"]
Traceback (most recent call last):
 File "<pyshell#1>", line 1, in <module>
 info["job"]
KeyError: 'job'

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

155

Dictionaries

If the existence of a key is uncertain, the programmer can test for it using the operator in,
as follows:
>>> if "job" in info:
 print(info.["job"])

A far easier strategy is to use the method get. This method expects two arguments, a pos-
sible key and a default value. If the key is in the dictionary, the associated value is returned.
However, if the key is absent, the default value passed to get is returned. Here is an example
of the use of get with a default value of None:
>>> print(info.get("job", None))
None

Removing Keys
To delete an entry from a dictionary, one removes its key using the method pop. This
method expects a key and an optional default value as arguments. If the key is in the dic-
tionary, it is removed, and its associated value is returned. Otherwise, the default value is
returned. If pop is used with just one argument, and this key is absent from the dictionary,
Python raises an exception. The next session attempts to remove two keys and prints the
values returned:
>>> print(info.pop("job", None))
None
>>> print(info.pop("occupation"))
manager
>>> info
{'name':'Sandy'}

Traversing a Dictionary
When a for loop is used with a dictionary, the loop’s variable is bound to each key in an
unspecified order. The next code segment prints all of the keys and their values in our info
dictionary:
for key in info:
 print(key, info[key])

Alternatively, you could use the dictionary method items() to access the dictionary’s
entries. The next session shows a run of this method with a dictionary of grades:
>>> grades = {90:'A', 80:'B', 70:'C'}
>>> list(grades.items())
[(80,'B'), (90,'A'), (70,'C')]

Note that the entries are represented as tuples within the list. A tuple of variables can then
access the key and value of each entry in this list within a for loop:
for (key, value) in grades.items():
 print(key, value)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

156

  Lists and DictionariesC h a p t e r 5

The use of a tuple of variables rather than a simple variable in the for loop is a powerful way
to implement this traversal. On each pass through the loop, the variables key and value within
the tuple are assigned the key and value of the current entry in the list. The use of a structure
containing variables to access data within another structure is called pattern matching.

If a special ordering of the keys is needed, you can obtain a list of keys using the keys
method and process this list to rearrange the keys. For example, you can sort the list and
then traverse it to print the entries of the dictionary in alphabetical order:
theKeys = list(info.keys())
theKeys.sort()
for key in theKeys:
 print(key, info[key])

To see the complete documentation for dictionaries, you can run help(dict) at a shell prompt.
Table 5-4 summarizes the commonly used dictionary operations, where d refers to a dictionary.

Dictionary Operation What It Does

len(d) Returns the number of entries in d.

d[key] Used for inserting a new key, replacing a value, or obtaining a
value at an existing key.

d.get(key [, default]) Returns the value if the key exists or returns the default if the
key does not exist. Raises an error if the default is omitted
and the key does not exist.

d.pop(key [, default]) Removes the key and returns the value if the key exists or
returns the default if the key does not exist. Raises an error if
the default is omitted and the key does not exist.

list(d.keys()) Returns a list of the keys.

list(d.values()) Returns a list of the values.

list(d.items()) Returns a list of tuples containing the keys and values for
each entry.

d.clear() Removes all the keys.

for key in d: key is bound to each key in d in an unspecified order.

Table 5-4	 Some commonly used dictionary operations

Example: The Hexadecimal System Revisited
In Chapter 4, we discussed a method for converting numbers quickly between the binary and
the hexadecimal systems. Now let’s develop a Python function that uses that method to con-
vert a hexadecimal number to a binary number. The algorithm visits each digit in the hexadec-
imal number, selects the corresponding four bits that represent that digit in binary, and adds
these bits to a result string. You could express this selection process with a complex if/else

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

157

Dictionaries

statement, but there is an easier way. If you maintain the set of associations between hexadeci-
mal digits and binary digits in a dictionary, then you can just look up each hexadecimal digit’s
binary equivalent with a subscript operation. Such a dictionary is sometimes called a lookup
table. Here is the definition of the lookup table required for hex-to-binary conversions:
hexToBinaryTable = {'0':'0000', '1':'0001', '2':'0010',
 '3':'0011', '4':'0100', '5':'0101',
 '6':'0110', '7':'0111', '8':'1000',
 '9':'1001', 'A':'1010', 'B':'1011',
 'C':'1100', 'D':'1101', 'E':'1110',
 'F':'1111'}

The function itself, named convert, is simple. It expects two parameters: a string represent-
ing the number to be converted and a table of associations of digits. Here is the code for the
function, followed by a sample session:
def convert(number, table):
 """Builds and returns the base two representation of
 number."""
 binary = ""
 for digit in number:
 binary = table[digit] + binary
 return binary

>>> convert("35A", hexToBinaryTable)
'001101011010'

Note that you pass hexToBinaryTable as an argument to the function. The function then
uses the associations in this particular table to perform the conversion. The function would
serve equally well for conversions from octal to binary, provided that you set up and pass it
an appropriate lookup table.

Example: Finding the Mode of a List of Values
The mode of a list of values is the value that occurs most frequently. The following script
inputs a list of words from a text file and prints their mode. The script uses a list and a
dictionary. The list is used to obtain the words from the file, as in earlier examples. The
dictionary associates each unique word with the number of its occurrences in the list. The
script also uses the function max, first introduced in Chapter 3, to compute the maximum
of two values. When used with a single iterable argument, max returns the largest value con-
tained therein. Here is the code for the script:
fileName = input("Enter the filename: ")
f = open(fileName, 'r')

Input the text, convert its words to uppercase, and
add the words to a list
words = []
for line in f:
 for word in line.split():
 words.append(word.upper())

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

158

  Lists and DictionariesC h a p t e r 5

Obtain the set of unique words and their
frequencies, saving these associations in
a dictionary
theDictionary = {}
for word in words:
 number = theDictionary.get(word, None)
 if number == None:
 # word entered for the first time
 theDictionary[word] = 1
 else:
 # word already seen, increment its number
 theDictionary[word] = number + 1

Find the mode by obtaining the maximum value
in the dictionary and determining its key
theMaximum = max(theDictionary.values())
for key in theDictionary:
 if theDictionary[key] == theMaximum:
 print("The mode is", key)
 break

Exercises

1.	 Give three examples of real-world objects that behave like a dictionary.

2.	 Assume that the variable data refers to the dictionary {'b':20, 'a':35}. Write the
values of the following expressions:

a.	 data['a']

b.	 data.get('c', None)

c.	 len(data)

d.	 data.keys()

e.	 data.values()

f.	 data.pop('b')

g.	 data # After the pop above

3.	 Assume that the variable data refers to the dictionary {'b':20, 'a':35}. Write the
expressions that perform the following tasks:

a.	 Replace the value at the key 'b' in data with that value’s negation.

b.	 Add the key/value pair 'c':40 to data.

c.	 Remove the value at key 'b' in data, safely.

d.	 Print the keys in data in alphabetical order.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

159

Dictionaries

Case Study: Nondirective Psychotherapy

In the early 1960s, the MIT computer scientist Joseph Weizenbaum developed a
famous program called ELIZA that could converse with the computer user, mimicking
a nondirective style of psychotherapy. The doctor in this kind of therapy is essentially
a good listener who responds to the patient’s statements by rephrasing them or
indirectly asking for more information. To illustrate the use of data structures, we
develop a drastically simplified version of this program.

Request

Write a program that emulates a nondirective psychotherapist.

Analysis

Figure 5-4 shows the program’s interface as it changes throughout a sequence of
exchanges with the user.

When the user enters a statement, the program responds in one of two ways:

1.	 With a randomly chosen hedge, such as “Please tell me more.”

2.	 By changing some key words in the user’s input string and appending this string
to a randomly chosen qualifier. Thus, to “My teacher always plays favorites,” the
program might reply, “Why do you say that your teacher always plays favorites?”

Figure 5-4  A session with the doctor program

Good morning, I hope you are well today.
What can I do for you?

>> My mother and I don't get along
Why do you say that your mother and you don't get along

>> she always favors my sister
You seem to think that she always favors your sister

>> my dad and I get along fine
Can you explain why your dad and you get along fine

>> he helps me with my homework
Please tell me more

>> quit
Have a nice day!

(continues)
Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

160

  Lists and DictionariesC h a p t e r 5

Design

The program consists of a set of collaborating functions that share a common data
pool.

Two of the data sets are the hedges and the qualifiers. Because these collections do
not change and their elements must be selected at random, you can use tuples to
represent them. Their names, of course, are hedges and qualifiers.

The other set of data consists of mappings between first-person pronouns and
second-person pronouns. For example, when the program sees “I” in a patient’s
input, it should respond with a sentence containing “you.” The best type of data
structure to hold these correlations is a dictionary. This dictionary is named
replacements.

The main function displays a greeting, displays a prompt, and waits for user input.
The following is pseudocode for the main loop:

output a greeting to the patient
while True
 prompt for and input a string from the patient
 if the string equals "Quit"
 output a sign-off message to the patient
 break
 call another function to obtain a reply to this string
 output the reply to the patient

Our therapist might not be an expert, but there is no charge for its services. What’s
more, our therapist seems willing to go on forever. However, if the patient must quit
to do something else, she can do so by typing “quit” to end the program.

The reply function expects the patient’s string as an argument and returns another
string as the reply. This function implements the two strategies for making replies
suggested in the analysis phase. A quarter of the time a hedge is warranted.
Otherwise, the function constructs its reply by changing the persons in the patient’s
input and appending the result to a randomly selected qualifier. The reply function
calls yet another function, changePerson, to perform the complex task of changing
persons.

def reply(sentence):
 """Builds and returns a reply to the sentence."""
 probability = random.randint(1, 4)
 if probability == 1:
 return random.choice(hedges)
 else:
 return random.choice(qualifiers) + changePerson(sentence)

(continued)

(continues)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

161

Dictionaries

(continues)

The changePerson function extracts a list of words from the patient’s string. It then
builds a new list wherein any pronoun key in the replacements dictionary is replaced
by its pronoun/value. This list is then converted back to a string and returned.

def changePerson(sentence):
 """Replaces first person pronouns with second person
 pronouns."""
 words = sentence.split()
 replyWords = []
 for word in words:
 replyWords.append(replacements.get(word, word))
 return " ".join(replyWords)

Note that the attempt to get a replacement from the replacements dictionary
either succeeds and returns an actual replacement pronoun, or the attempt fails and
returns the original word. The string method join glues together the words from the
replyWords list with a space character as a separator.

Implementation (Coding)

The structure of this program resembles that of the sentence generator developed in
the first case study of this chapter. The three data structures are initialized near the
beginning of the program, and they never change. The three functions collaborate in
a straightforward manner. Here is the code:

"""
Program: doctor.py
Author: Ken
Conducts an interactive session of nondirective
psychotherapy.
"""

import random

hedges = ("Please tell me more.",
 "Many of my patients tell me the same thing.",
 "Please continue.")

qualifiers = ("Why do you say that ",
 "You seem to think that ",
 "Can you explain why ")

replacements = {"I":"you", "me":"you", "my":"your",
 "we":"you", "us":"you", "mine":"yours"}

(continued)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

162

  Lists and DictionariesC h a p t e r 5

def reply(sentence):
 """Builds and returns a reply to the sentence."""
 probability = random.randint(1, 4)
 if probability == 1:
 return random.choice(hedges)
 else:
 return random.choice(qualifiers) + changePerson(sentence)

def changePerson(sentence):
 """Replaces first person pronouns with second person
 pronouns."""
 words = sentence.split()
 replyWords = []
 for word in words:
 replyWords.append(replacements.get(word, word))
 return " ".join(replyWords)

def main():
 """Handles the interaction between patient and doctor."""
 print("Good morning, I hope you are well today.")
 print("What can I do for you?")
 while True:
 sentence = input("\n>> ")
 if sentence.upper() == "QUIT":
 print("Have a nice day!")
 break
 print(reply(sentence))

The entry point for program execution
if __name__ == "__main:"__
 main()

Testing

As in the sentence-generator program, the functions in this program can be tested in
a bottom-up or a top-down manner. As you will see, the program’s replies break down
when the user addresses the therapist in the second person, when the user inputs
contractions (for example, I’m and I’ll), when the user addresses the doctor directly
with sentences like “You are not listening to me,” and in many other ways. As you’ll
see in the Projects at the end of this chapter, with a little work you can make the
replies more realistic.

(continued)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

163

Summary

Summary
•• A list is a sequence of zero or more elements. The elements can be of any type. The len

function returns the number of elements in its list argument. Each element occupies a
position in the list. The positions range from 0 to the length of the list minus 1.

•• Lists can be manipulated with many of the operators used with strings, such as the sub-
script, concatenation, comparison, and in operators. Slicing a list returns a sublist.

•• The list is a mutable data structure. An element can be replaced with a new element,
added to the list, or removed from the list. Replacement uses the subscript operator.
The list type includes several methods for insertion and removal of elements.

•• The method index returns the position of a target element in a list. If the element is not
in the list, an error is raised.

•• The elements of a list can be arranged in ascending order by calling the sort method.

•• Mutator methods are called to change the state of an object. These methods usually
return the value None. This value is automatically returned by any function or method
that does not have a return statement.

•• Assignment of one variable to another variable causes both variables to refer to the
same data object. When two or more variables refer to the same data object, they are
aliases. When that data value is a mutable object such as a list, side effects can occur.
A side effect is an unexpected change to the contents of a data object. To prevent side
effects, avoid aliasing by assigning a copy of the original data object to the new variable.

•• A tuple is quite similar to a list, but it has an immutable structure.

•• A function definition consists of a header and a body. The header contains the func-
tion’s name and a parenthesized list of argument names. The body consists of a set of
statements.

•• The return statement returns a value from a function definition.

•• The number and positions of arguments in a function call must match the number and
positions of required parameters specified in the function’s definition.

•• A dictionary associates a set of keys with values. Dictionaries organize data by content
rather than position.

•• The subscript operator is used to add a new key/value pair to a dictionary or to replace
a value associated with an existing key.

•• The dict type includes methods to access and remove data in a dictionary.

•• The for loop can traverse the keys of a dictionary. The methods keys and values return
access to a dictionary’s keys and values, respectively.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

164

  Lists and DictionariesC h a p t e r 5

•• Bottom-up testing of a program begins by testing its lower-level functions and then
testing the functions that depend on those lower-level functions. Top-down testing
begins by testing the program’s main function and then testing the functions on which
the main function depends. These lower-level functions are initially defined to return
their names.

Review Questions
For questions 1–6, assume that the variable data refers to the list [10, 20, 30].

1.	 The expression data[1] evaluates to

a.	 10 b.	 20

2.	 The expression data[1:3] evaluates to

a.	 [10, 20, 30] b.	 [20, 30]

3.	 The expression data.index(20) evaluates to

a.	 1
b.	 2
c.	 True

4.	 The expression data + [40, 50] evaluates to

a.	 [10, 60, 80] b.	 [10, 20, 30, 40, 50]

5.	 After the statement data[1] = 5, data evaluates to

a.	 [5, 20, 30] b.	 [10, 5, 30]

6.	 After the statement data.insert(1, 15), the original data evaluates to

a.	 [15, 10, 20, 30]

b.	 [10, 15, 30]

c.	 [10, 15, 20, 30]
For questions 7–9, assume that the variable info refers to the dictionary
{"name":"Sandy", "age":17}.

7.	 The expression list(info.keys()) evaluates to

a.	 ("name", "age") b.	 ["name", "age"]

8.	 The expression info.get("hobbies", None) evaluates to

a.	 "knitting"

b.	 None

c.	 1000

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

165

Projects

9.	 The method to remove an entry from a dictionary is named

a.	 delete

b.	 pop

c.	 remove

10.	 Which of the following are immutable data structures?

a.	 dictionaries and lists b.	 strings and tuples

Projects
1.	 A group of statisticians at a local college has asked you to create a set of functions

that compute the median and mode of a set of numbers, as defined in Section
5.4. Define these functions in a module named stats.py. Also include a function
named mean, which computes the average of a set of numbers. Each function
should expect a list of numbers as an argument and return a single number. Each
function should return 0 if the list is empty. Include a main function that tests the
three statistical functions with a given list.

2.	 Write a program that allows the user to navigate the lines of text in a file. The
program should prompt the user for a filename and input the lines of text into a
list. The program then enters a loop in which it prints the number of lines in the
file and prompts the user for a line number. Actual line numbers range from 1 to
the number of lines in the file. If the input is 0, the program quits. Otherwise, the
program prints the line associated with that number.

3.	 Modify the sentence-generator program of Case Study 5.3 so that it inputs its
vocabulary from a set of text files at startup. The filenames are nouns.txt, verbs.
txt, articles.txt, and prepositions.txt. (Hint: Define a single new function,
getWords. This function should expect a filename as an argument. The function
should open an input file with this name, define a temporary list, read words
from the file, and add them to the list. The function should then convert the list
to a tuple and return this tuple. Call the function with an actual filename to ini-
tialize each of the four variables for the vocabulary.)

4.	 Make the following modifications to the original sentence-generator program:

a.	 The prepositional phrase is optional. (It can appear with a certain
probability.)

b.	 A conjunction and a second independent clause are optional: The boy took a
drink and the girl played baseball.

c.	 An adjective is optional: The girl kicked the red ball with a sore foot.

You should add new variables for the sets of adjectives and conjunctions.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

166

  Lists and DictionariesC h a p t e r 5

5.	 In Chapter 4, we developed an algorithm for converting from binary to deci-
mal. You can generalize this algorithm to work for a representation in any base.
Instead of using a power of 2, this time you use a power of the base. Also, you use
digits greater than 9, such as A . . . F, when they occur. Define a function named
repToDecimal that expects two arguments, a string, and an integer. The second
argument should be the base. For example, repToDecimal("10", 8) returns
8, whereas repToDecimal("10", 16) returns 16. The function should use a
lookup table to find the value of any digit. Make sure that this table (it is actually
a dictionary) is initialized before the function is defined. For its keys, use the 10
decimal digits (all strings) and the letters A . . . F (all uppercase). The value stored
with each key should be the integer that the digit represents. (The letter 'A' asso-
ciates with the integer value 10, and so on.) The main loop of the function should
convert each digit to uppercase, look up its value in the table, and use this value
in the computation. Include a main function that tests the conversion function
with numbers in several bases.

6.	 Define a function decimalToRep that returns the representation of an integer in a
given base. The two arguments should be the integer and the base. The function
should return a string. It should use a lookup table that associates integers with
digits. Include a main function that tests the conversion function with numbers
in several bases.

7.	 Write a program that inputs a text file. The program should print the unique
words in the file in alphabetical order.

8.	 A file concordance tracks the unique words in a file and their frequencies. Write
a program that displays a concordance for a file. The program should output the
unique words and their frequencies in alphabetical order. Variations are to track
sequences of two words and their frequencies, or n words and their frequencies.

9.	 In Case Study 5.5, when the patient addresses the therapist personally, the thera-
pist’s reply does not change persons appropriately. To see an example of this
problem, test the program with “you are not a helpful therapist.” Fix this problem
by repairing the dictionary of replacements.

10.	 Conversations often shift focus to earlier topics. Modify the therapist program to
support this capability. Add each patient input to a history list. Then, occasionally
choose an element at random from this list, change persons, and prepend (add
at the beginning) the qualifier “Earlier you said that” to this reply. Make sure that
this option is triggered only after several exchanges have occurred.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

C h a p t e r 6
Design with Functions

After completing this chapter, you will be able to

Explain why functions are useful in structuring code in a
program

Employ top-down design to assign tasks to functions

Define a recursive function

Explain the use of the namespace in a program and exploit
it effectively

Define a function with required and optional parameters

Use higher-order functions for mapping, filtering, and
reducing

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

168

  Design with FunctionsC h a p t e r 6

Design is important in many fields. The architect who designs a building, the engineer
who designs a bridge or a new automobile, and the politician, advertising executive, or
army general who designs the next campaign must organize the structure of a system
and coordinate the actors within it to achieve its purpose. Design is equally important in
constructing software systems, some of which are the most complex artifacts ever built
by human beings. In this chapter, we explore the use of functions to design software
systems.

A Quick Review of What Functions
Are and How They Work
We have been using built-in functions since Chapter 2, and we very briefly discussed how
to define functions in Chapter 5 so we could use them in some case studies. Before we delve
into the use of functions in designing programs, it will be a good idea to review what you
have learned about functions thus far.

1.	 A function packages an algorithm in a chunk of code that you can call by name. For
example, the reply function in the doctor program of Chapter 5 builds and returns
a doctor’s reply to a patient’s sentence.

2.	 A function can be called from anywhere in a program’s code, including code
within other functions. During program execution, there may be a complex chain
of function calls, where one function calls another and waits for its results to be
returned, and so on. For example, in the doctor program, the main function calls
the reply function, which in turn calls the changePerson function. The result of
changePerson is returned to reply, whose result is returned to main.

3.	 A function can receive data from its caller via arguments. For example, the doctor
program’s reply function expects one argument—a string representing the patient’s
sentence. However, some functions, like those of the sentence generator program of
Chapter 5, need no arguments to do their work.

4.	 When a function is called, any expressions supplied as arguments are first evalu-
ated. Their values are copied to temporary storage locations named by the param-
eters in the function’s definition. The parameters play the same role as variables in
the code that the function then executes.

5.	 A function may have one or more return statements, whose purpose is to ter-
minate the execution of the function and return control to its caller. A return
statement may be followed by an expression. In that case, Python evaluates the
expression and makes its value available to the caller when the function stops exe-
cution. For example, the doctor program’s reply function returns either the value
returned by the random.choice function or the value returned by the changePerson
function. If a function does not include a return statement, Python automatically
returns the value None to the caller.

With these reminders about the use and behavior of functions under your belt, you are now
ready to tackle the finer points of program design with functions.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

169

A Quick Review of What Functions Are and How They Work

Functions as Abstraction Mechanisms
Thus far in this book, our programs have consisted of algorithms and data structures,
expressed in the Python programming language. The algorithms in turn are composed of
built-in operators, control statements, calls to built-in functions, and programmer-defined
functions, which were introduced in Chapter 5.

Strictly speaking, functions are not necessary. It is possible to construct any algorithm using
only Python’s built-in operators and control statements. However, in any significant pro-
gram, the resulting code would be extremely complex, difficult to prove correct, and almost
impossible to maintain.

The problem is that the human brain can wrap itself around just a few things at once
(psychologists say three things comfortably, and at most seven). People cope with com-
plexity by developing a mechanism to simplify or hide it. This mechanism is called an
abstraction. Put most plainly, an abstraction hides detail and thus allows a person to view
many things as just one thing. We use abstractions to refer to the most common tasks in
everyday life. For example, consider the expression “doing my laundry.” This expression
is simple, but it refers to a complex process that involves fetching dirty clothes from the
hamper, separating them into whites and colors, loading them into the washer, transferring
them to the dryer, and folding them and putting them into the dresser. Indeed, without
abstractions, most of our everyday activities would be impossible to discuss, plan, or carry
out. Likewise, effective designers must invent useful abstractions to control complexity. In
this section, we examine the various ways in which functions serve as abstraction mecha-
nisms in a program.

Functions Eliminate Redundancy
The first way that functions serve as abstraction mechanisms is by eliminating redundant,
or repetitious, code. To explore the concept of redundancy, let’s look at a function named
summation, which returns the sum of the numbers within a given range of numbers. Here is
the definition of summation, followed by a session showing its use:
def summation(lower, upper):
 """Arguments: A lower bound and an upper bound
 Returns: the sum of the numbers from lower through
 upper
 """
 result = 0
 while lower <= upper:
 result += lower
 lower += 1
 return result

>>> summation(1,4) # The summation of the numbers 1..4
10
>>> summation(50,100) # The summation of the numbers 50..100
3825

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

170

  Design with FunctionsC h a p t e r 6

If the summation function didn’t exist, the programmer would have to write the entire algo-
rithm every time a summation is computed. In a program that must calculate multiple summa-
tions, the same code would appear multiple times. In other words, redundant code would be
included in the program. Code redundancy is bad for several reasons. For one thing, it requires
the programmer to laboriously enter or copy the same code over and over, and to get it cor-
rect every time. Then, if the programmer decides to improve the algorithm by adding a new
feature or making it more efficient, he or she must revise each instance of the redundant code
throughout the entire program. As you can imagine, this would be a maintenance nightmare.

By relying on a single function definition, instead of multiple instances of redundant code,
the programmer frees herself to write only a single algorithm in just one place—say, in a
library module. Any other module or program can then import the function for its use. Once
imported, the function can be called as many times as necessary. When the programmer
needs to debug, repair, or improve the function, she needs to edit and test only the single
function definition. There is no need to edit the parts of the program that call the function.

Functions Hide Complexity
Another way that functions serve as abstraction mechanisms is by hiding complicated
details. To understand why this is true, let’s return to the summation function. Although the
idea of summing a range of numbers is simple, the code for computing a summation is not.
We’re not just talking about the amount or length of the code, but also about the number
of interacting components. There are three variables to manipulate, as well as count-
controlled loop logic to construct.

Now suppose, somewhat unrealistically, that only one summation is performed in a
program, and in no other program, ever again. Who needs a function now? Well, it all
depends on the complexity of the surrounding code. Remember that the programmers
responsible for maintaining a program can wrap their brains around just a few things at
a time. If the code for the summation is placed in a context of code that is even slightly
complex, the increase in complexity might be enough to result in conceptual overload for
the poor programmers.

A function call expresses the idea of a process to the programmer, without forcing him or
her to wade through the complex code that realizes that idea. As in other areas of science
and engineering, the simplest accounts and descriptions are generally the best.

Functions Support General Methods with Systematic Variations
An algorithm is a general method for solving a class of problems. The individual problems
that make up a class of problems are known as problem instances. The problem instances
for our summation algorithm are the pairs of numbers that specify the lower and upper
bounds of the range of numbers to be summed. The problem instances of a given algorithm
can vary from program to program, or even within different parts of the same program.
When you design an algorithm, it should be general enough to provide a solution to many

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

171

A Quick Review of What Functions Are and How They Work

problem instances, not just one or a few of them. In other words, a function should provide
a general method with systematic variations.

The summation function contains both the code for the summation algorithm and the
means of supplying problem instances to this algorithm. The problem instances are the data
sent as arguments to the function. The parameters or argument names in the function’s
header behave like variables waiting to be assigned data whenever the function is called.

If designed properly, a function’s code captures an algorithm as a general method for solv-
ing a class of problems. The function’s arguments provide the means for systematically
varying the problem instances that its algorithm solves. Additional arguments can broaden
the range of problems that are solvable. For example, the summation function could take a
third argument that specifies the step to take between numbers in the range. We will exam-
ine shortly how to provide additional arguments that do not add complexity to a function’s
default uses.

Functions Support the Division of Labor
In a well-organized system, whether it is a living thing or something created by humans, each
part does its own job or plays its own role in collaborating to achieve a common goal. Spe-
cialized tasks get divided up and assigned to specialized agents. Some agents might assume
the role of managing the tasks of others or coordinating them in some way. But, regardless of
the task, good agents mind their own business and do not try to do the jobs of others.

A poorly organized system, by contrast, suffers from agents performing tasks for which
they are not trained or designed, or from agents who are busybodies who do not mind their
own business. Division of labor breaks down.

In a computer program, functions can enforce a division of labor. Ideally, each function
performs a single coherent task, such as computing a summation or formatting a table
of data for output. Each function is responsible for using certain data, computing certain
results, and returning these to the parts of the program that requested them. Each of the
tasks required by a system can be assigned to a function, including the tasks of managing
or coordinating the use of other functions. In the sections that follow, we examine several
design strategies that employ functions to enforce a division of labor in programs.

Exercises
1.	 Anne complains that defining functions to use in her programs is a lot of extra

work. She says she can finish her programs much more quickly if she just writes
them using the basic operators and control statements. State three reasons why her
view is shortsighted.

2.	 Explain how an algorithm solves a general class of problems and how a function
definition can support this property of an algorithm.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

172

  Design with FunctionsC h a p t e r 6

Problem Solving with Top-Down Design
One popular design strategy for programs of any significant size and complexity is
called top-down design. This strategy starts with a global view of the entire prob-
lem and breaks the problem into smaller, more manageable subproblems—a process
known as problem decomposition. As each subproblem is isolated, its solution is
assigned to a function. Problem decomposition may continue down to lower lev-
els, because a subproblem might in turn contain two or more lower-level problems
to solve. As functions are developed to solve each subproblem, the solution to the
overall problem is gradually filled out in detail. This process is also called stepwise
refinement.

Our early program examples in Chapters 1–4 were simple enough that they could be
decomposed into three parts—the input of data, its processing, and the output of results.
None of these parts required more than one or two statements of code, and they all
appeared in a single sequence of statements.

However, beginning with the text-analysis program of Chapter 4, our case study problems
became complicated enough to warrant decomposition and assignment to additional
programmer-defined functions. Because each problem had a different structure, the design
of the solution took a slightly different path. This section revisits each program, to explore
how their designs took shape.

The Design of the Text-Analysis Program
Although we did not actually structure the text-analysis program (Section 4.6) in terms of
programmer-defined functions, we can now explore how that could have been done. The
program requires simple input and output components, so these can be expressed as state-
ments within a main function. However, the processing of the input is complex enough
to decompose into smaller subprocesses, such as obtaining the counts of the sentences,
words, and syllables and calculating the readability scores. Generally, you develop a new
function for each of these computational tasks. The relationships among the functions in
this design are expressed in the structure chart shown in Figure 6-1. A structure chart is a
diagram that shows the relationships among a program’s functions and the passage of data
between them.

Each box in the structure chart is labeled with a function name. The main function at the
top is where the design begins, and decomposition leads us to the lower-level functions on
which main depends. The lines connecting the boxes are labeled with data type names, and
arrows indicate the flow of data between them. For example, the function countSentences
takes a string as an argument and returns the number of sentences in that string. Note that
all functions except one are just one level below main. Because this program does not have
a deep structure, the programmer can develop it quickly just by thinking of the results that
main needs to obtain from its collaborators.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

173

Problem Solving with Top-Down Design

The Design of the Sentence-Generator Program
From a global perspective, the sentence-generator program (Section 5.3) consists of a
main loop in which sentences are generated a user-specified number of times, until the
user enters 0. The I/O and loop logic are simple enough to place in the main function.
The rest of the design involves generating a sentence. Here, you decompose the problem
by simply following the grammar rules for phrases. To generate a sentence, you generate
a noun phrase followed by a verb phrase, and so on. Each of the grammar rules poses a
problem that is solved by a single function. The top-down design flows out of the top-
down structure of the grammar. The structure chart for the sentence generator is shown
in Figure 6-2.

The structure of a problem can often give you a pattern for designing the structure of the
program to solve it. In the case of the sentence generator, the structure of the problem
comes from the grammar rules, although they are not explicit data structures in the pro-
gram. In later chapters, we will see many examples of program designs that also mirror the
structure of the data being processed.

Figure 6-1  A structure chart for the text-analysis program

string
int

syllablesIn

main

string
int

countSentences

string
int

countWords

string
int

countSyllables

3 ints
float

fleschIndex

3 ints
float

gradeLevel

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

174

  Design with FunctionsC h a p t e r 6

The design of the sentence generator differs from the design of the text analyzer in one
other important way. The functions in the text analyzer all receive data from the main func-
tion via parameters or arguments. By contrast, the functions in the sentence generator
receive their data from a common pool of data defined at the beginning of the module and
shown at the bottom of Figure 6-2. This pool of data could equally well have been set up
within the main function and passed as arguments to each of the other functions. However,
this alternative also would require passing arguments to functions that do not actually use
them. For example, prepositionalPhrase would have to receive arguments for articles
and nouns as well as prepositions, so that it could transmit the first two structures to
nounPhrase. Using a common pool of data rather than function arguments in this case sim-
plifies the design and makes program maintenance easier.

The Design of the Doctor Program
At the top level, the designs of the doctor program (Section 5.5) and the sentence-generator
program are similar. Both programs have main loops that take a single user input and print
a result. The structure chart for the doctor program is shown in Figure 6-3.

The doctor program processes the input by responding to it as an agent would in a conver-
sation. Thus, the responsibility for responding is delegated to the reply function. Note that
the two functions main and reply have distinct responsibilities. The job of main is to handle
user interaction with the program, whereas reply is responsible for implementing the

Figure 6-2  A structure chart for the sentence-generator program

string

string string

string

string

string
string

string
string

string

main

sentence

verbPhrase

prepositionalPhrasenounPhrase

articles nouns

Data Pool

prepositions verbs

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

175

Problem Solving with Top-Down Design

“doctor logic” of generating an appropriate reply. The assignment of roles and responsibili-
ties to different actors in a program is also called responsibility-driven design. The division
of responsibility between functions that handle user interaction and functions that handle
data processing is one that we will see again and again in the coming chapters.

If there were only one way to reply to the user, the problem of how to reply would not be
further decomposed. However, because there are at least two options, reply is given the
task of implementing the logic of choosing one of them, and it asks for help from other
functions, such as changePerson, to carry out each option.

Separating the logic of choosing a task from the process of carrying out a task makes the
program more maintainable. To add a new strategy for replying, you add a new choice
to the logic of reply, and then add the function that carries out this option. If you want
to alter the likelihood of a given option, you just modify a line of code in reply.

The data flow scheme used in the doctor program combines the strategies used in the
text analyzer and the sentence generator. The doctor program’s functions receive their
data from two sources. The patient’s input string is passed as an argument to reply and
changePerson, whereas the qualifiers, hedges, and pronoun replacements are looked up
in a common pool of data defined at the beginning of the module. Once again, the use of a
common pool of data allows the program to grow easily, as new data sources, such as the
history list suggested in Programming Project 5.10, are added to the program.

We conclude this section with an adage that captures the essence of top-down design.
When in doubt about the solution to a problem, pass the task to someone else. If you
choose the right agents, the task ultimately stops at an agent who has no doubt about how
to solve the problem.

Figure 6-3  A structure chart for the doctor program

string

string

string

string
string

string
string

main

hedges

Data Pool

replacements

qualifiers

reply

changePerson

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

176

  Design with FunctionsC h a p t e r 6

Design with Recursive Functions
In top-down design, you decompose a complex problem into a set of simpler problems and
solve these with different functions. In some cases, you can decompose a complex problem
into smaller problems of the same form. In these cases, the subproblems can all be solved
by using the same function. This design strategy is called recursive design, and the result-
ing functions are called recursive functions.

Defining a Recursive Function
A recursive function is a function that calls itself. To prevent a function from repeating
itself indefinitely, it must contain at least one selection statement. This statement examines
a condition called a base case to determine whether to stop or to continue with another
recursive step.

Let’s examine how to convert an iterative algorithm to a recursive function. Here is a definition
of a function displayRange that prints the numbers from a lower bound to an upper bound:
def displayRange(lower, upper):
 """Outputs the numbers from lower through upper."""
 while lower <= upper:
 print(lower)
 lower = lower + 1

How would we go about converting this function to a recursive one? First, you should note
two important facts:

1.	 The loop’s body continues execution while lower <= upper.

2.	 When the function executes, lower is incremented by 1, but upper never changes.

The equivalent recursive function performs similar primitive operations, but the loop
is replaced with a selection statement, and the assignment statement is replaced with a
recursive call of the function. Here is the code with these changes:
def displayRange(lower, upper):
 """Outputs the numbers from lower through upper."""
 if lower <= upper:
 print(lower)
 displayRange(lower + 1, upper)

Exercises
1.	 Draw a structure chart for one of the solutions to the programming projects of

Chapters 4 and 5. The program should include at least two function definitions
other than the main function.

2.	 Describe the processes of top-down design and stepwise refinement. Where does
the design start, and how does it proceed?

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

177

Design with Recursive Functions

Although the syntax and design of the two functions are different, the same algorith-
mic process is executed. Each call of the recursive function visits the next number in the
sequence, just as the loop does in the iterative version of the function.

Most recursive functions expect at least one argument. This data value is used to test for
the base case that ends the recursive process, and it is modified in some way before each
recursive step. The modification of the data value should produce a new data value that
allows the function to reach the base case eventually. In the case of displayRange, the
value of the argument lower is incremented before each recursive call so that it eventually
exceeds the value of the argument upper.

Our next example is a recursive function that builds and returns a value. Earlier in this
chapter, we defined an iterative version of the summation function that expects two argu-
ments named lower and upper. The summation function computes and returns the sum
of the numbers between these two values. In the recursive version, summation returns 0 if
lower exceeds upper (the base case). Otherwise, the function adds lower to the summation
of lower + 1 and upper and returns this result. Here is the code for this function:
def summation(lower, upper):
 """Returns the sum of the numbers from lower through
 upper."""
 if lower > upper:
 return 0
 else:
 return lower + summation (lower + 1, upper)

The recursive call of summation adds up the numbers from lower + 1 through upper.
The function then adds lower to this result and returns it.

Tracing a Recursive Function
To get a better understanding of how a recursive function works, it is helpful to trace its
calls. Let’s do that for the recursive version of the summation function. You add an argument
for a margin of indentation and print statements to trace the two arguments and the value
returned on each call. The first statement on each call computes the indentation, which is
then used in printing the two arguments. The value computed is also printed with this inden-
tation just before each call returns. Here is the code, followed by a session showing its use:
def summation(lower, upper, margin):
 """Returns the sum of the numbers from lower through
upper,
 and outputs a trace of the arguments and return values
 on each call"""
 blanks = " " * margin
 print(blanks, lower, upper)
 if lower > upper:
 print(blanks, 0)
 return 0
 else:
 result = lower + summation(lower + 1, upper,
 margin + 4)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

178

  Design with FunctionsC h a p t e r 6

 print(blanks, result)
 return result

>>> summation (l, 4, 0)
1 4
 2 4
 3 4
 4 4
 5 4
 0
 4
 7
 9
10
10

The displayed pairs of arguments are indented further to the right as the calls of summation
proceed. Note that the value of lower increases by 1 on each call, whereas the value of
upper stays the same. The final call of summation returns 0. As the recursion unwinds,
each value returned is aligned with the arguments above it and increases by the current
value of lower. This type of tracing can be a useful debugging tool for recursive functions.

Using Recursive Definitions to Construct Recursive Functions
Recursive functions are frequently used to design algorithms for computing values that
have a recursive definition. A recursive definition consists of equations that state what
a value is for one or more base cases and one or more recursive cases. For example, the
Fibonacci sequence is a series of values with a recursive definition. The first and second
numbers in the Fibonacci sequence are 1. Thereafter, each number in the sequence is the
sum of its two predecessors, as follows:

1 1 2 3 5 8 13 . . .

More formally, a recursive definition of the nth Fibonacci number is the following:
Fib(n) = 1, when n = 1 or n = 2
Fib(n) = Fib(n - 1) + Fib(n - 2), for all n > 2

Given this definition, you can construct a recursive function that computes and returns the
nth Fibonacci number. Here it is:
def fib(n):
 """Returns the nth Fibonacci number."""
 if n < 3:
 return 1
 else:
 return fib(n - 1) + fib(n - 2)

Note that the base case as well as the two recursive steps return values to the caller.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

179

Design with Recursive Functions

Recursion in Sentence Structure
Recursive solutions can often flow from the structure of a problem. For example, the
structure of sentences in a language can be highly recursive. A noun phrase (such as
“the ball”) can be modified by a prepositional phrase (such as “on the bench”), which
also contains another noun phrase. If you use this modified version of the noun phrase
rule in the sentence generator (Section 5.3), the nounPhrase function would call the
prepositionalPhrase function, which in turn calls nounPhrase again. This phenom-
enon is known as indirect recursion. To keep this process from going on forever,
nounPhrase must also have the option to not generate a prepositional phrase. Here is a
statement of the modified rule, which expresses an optional phrase within the square
brackets:

Nounphrase = Article Noun [Prepositionalphrase]

The code for a revised nounPhrase function generates a modifying prepositional phrase
approximately 25% of the time:

def nounPhrase():
 """Returns a noun phrase, which is an article followed
 by a noun, and an optional prepositional phrase."""
 phrase = random.choice(articles) + " " + random.choice(nouns)
 prob = random.randint(1, 4)
 if prob == 1:
 return phrase + " " + prepositionalPhrase()
 else:
 return phrase

def prepositionalPhrase():
 """Builds and returns a prepositional phrase."""
 return random.choice(prepositions) + " " + nounPhrase()

You can use a similar strategy to generate sentences that consist of two or more indepen-
dent clauses connected by conjunctions, such as “One programmer uses recursion and
another programmer uses loops.”

Infinite Recursion
Recursive functions tend to be simpler than the corresponding loops, but they still require
thorough testing. One design error that might trip up a programmer occurs when the func-
tion can (theoretically) continue executing forever, a situation known as infinite recursion.
Infinite recursion arises when the programmer fails to specify the base case or to reduce
the size of the problem in a way that terminates the recursive process. In fact, the Python
virtual machine eventually runs out of memory resources to manage the process, so it halts

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

180

  Design with FunctionsC h a p t e r 6

execution with a message indicating a stack overflow error. The next session defines a
function that leads to this result:
>>> def runForever(n):
 if n > 0:
 runForever(n)
 else:
 runForever(n - 1)

>>> runForever(1)
Traceback (most recent call last):
 File "<pyshell#6>", line 1, in <module>
 runForever(1)
 File "<pyshell#5>", line 3, in runForever
 runForever(n)
 File "<pyshell#5>", line 3, in runForever
 runForever(n)
 File "<pyshell#5>", line 3, in runForever
 runForever(n)
 [Previous line repeated 989 more times]
 File "<pyshell#5>", line 2, in runForever
 if n > 0:
RecursionError: maximum recursion depth exceeded in comparison

The PVM keeps calling runForever(1) until there is no memory left to support another
recursive call. Unlike an infinite loop, an infinite recursion eventually halts execution with
an error message.

The Costs and Benefits of Recursion
Although recursive solutions are often more natural and elegant than their iterative
counterparts, they come with a cost. The run-time system on a real computer, such as
the PVM, must devote some overhead to recursive function calls. At program startup,
the PVM reserves an area of memory named a call stack. For each call of a function,
recursive or otherwise, the PVM must allocate on the call stack a small chunk of memory
called a stack frame. In this type of storage, the system places the values of the argu-
ments and the return address for each function call. Space for the function call’s return
value is also reserved in its stack frame. When a call returns or completes its execu-
tion, the return address is used to locate the next instruction in the caller’s code, and the
memory for the stack frame is deallocated. The stack frames for the process generated by
displayRange(1, 3) are shown in Figure 6-4. The frames in the figure include storage for
the function’s arguments only.

Although this sounds like a complex process, the PVM handles it easily. However, when
a function invokes hundreds or even thousands of recursive calls, the amount of extra

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

181

Design with Recursive Functions

resources required, both in processing time and in memory usage, can add up to a signifi-
cant performance hit. When, because of a design error, the recursion is infinite, the stack
frames are added until the PVM runs out of memory, which halts the program with an
error message.

By contrast, the same problem can often be solved using a loop with a constant amount of
memory, in the form of two or three variables. Because the amount of memory needed for
the loop does not grow with the size of the problem’s data set, the amount of processing
time for managing this memory does not grow, either.

Despite these words of caution, we encourage you to consider developing recursive
solutions when they seem natural, particularly when the problems themselves have a
recursive structure. Testing can reveal performance bottlenecks that might lead you
to change the design to an iterative one. Smart compilers also exist that can optimize
some recursive functions by translating them to iterative machine code. Finally, as we
will see later in this book, some problems with an iterative solution must still use an
explicit stack-like data structure, so a recursive solution might be simpler and no less
efficient.

Recursion is a very powerful design technique that is used throughout computer science.
We will return to it in later chapters.

Figure 6-4  The stack frames for displayRange(1, 3)

Top of the stack

Call 4
lower
upper

lower
upper

lower
upper

lower
upper

Call 3

Call 2

Call 1

4

3

3

3

2

3

1

3

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

182

  Design with FunctionsC h a p t e r 6

Exercises
1.	 In what way is a recursive design different from top-down design?

2.	 The factorial of a positive integer n, fact(n), is defined recursively as follows:

		 () 5fact n 1, when 5n 1

		 () ()5 2fact n n * fact n 1 , otherwise

		 Define a recursive function fact that returns the factorial of a given positive
integer.

3.	 Describe the costs and benefits of defining and using a recursive function.

4.	 Explain what happens when the following recursive function is called with the value
4 as an argument:

def example(n):
 if n > 0:
 print(n)
 example(n - 1)

5.	 Explain what happens when the following recursive function is called with the value 4
as an argument:

def example(n):
 if n > 0:
 print(n)
 example(n)
 else:
 example(n - 1)

6.	 Explain what happens when the following recursive function is called with the
values "hello" and 0 as arguments:

def example(aString, index):
 if index < len(aString):
 example(aString, index + 1)
 print(aString[index], end = "")

7.	 Explain what happens when the following recursive function is called with the
values "hello" and 0 as arguments:

def example(aString, index):
 if index == len(aString):
 return ""
 else:
 return aString[index] + example(aString, index + 1)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

183

Design with Recursive Functions

Case Study: Gathering Information from a File System

Modern file systems come with a graphical browser, such as Microsoft’s Windows
Explorer or Apple’s Finder. These browsers allow the user to navigate to files or
folders by selecting icons of folders, opening these by double-clicking, and selecting
commands from a drop-down menu. Information on a folder or a file, such as the size
and contents, is also easily obtained in several ways.

Users of terminal-based user interfaces (see Chapter 2) must rely on entering the
appropriate commands at the terminal prompt to perform these functions. In this
case study, we develop a simple terminal-based file system navigator that provides
some information about the system. In the process, we will have an opportunity to
exercise some skills in top-down design and recursive design.

Request

Write a program that allows the user to obtain information about the file system.

Analysis

File systems are tree-like structures, as shown in Figure 6-5.

(continues)

Figure 6-5  The structure of a file system

D

D D
F F

F F

F F

F F

D
F F

D = directory

F = file

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

184

  Design with FunctionsC h a p t e r 6

At the top of the tree is the root directory (the term “directory” is a synonym for
“folder,” among users of terminal-based systems). Under the root are files and
subdirectories. Each directory in the system except the root lies within another
directory called its parent. For example, in Figure 6-5, the root directory contains
four files and two subdirectories. On a UNIX-based file system (the system that
underlies macOS), the path to a given file or directory in the system is a string that
starts with the / (forward slash) symbol (the root), followed by the names of the
directories traversed to reach the file or directory. The / (forward slash) symbol also
separates each name in the path. Thus, the path to the file for this chapter on Ken’s
laptop might be the following:

/Users/KenLaptop/Book/Chapter6/Chapter6.doc

On a Windows-based file system, the \ symbol is used instead of the / symbol.

The program we will design in this case study is named filesys.py. It provides
some basic browsing capability as well as options that allow you to search for
a given filename and find statistics on the number of files and their size in a
directory. At program startup, the current working directory (CWD) is the directory
containing the Python program file. The program should display the path of the
CWD, a menu of command options, and a prompt for a command, as shown in
Figure 6-6.

When the user enters a command number, the program runs the command,
which may display further information, and the program displays the CWD and
command menu again. An unrecognized command produces an error message,
and command number 7 quits the program. Table 6-1 summarizes what the com-
mands do.

Figure 6-6  The command menu of the filesys program

/Users/KenLaptop/Book/Chapter6
1 List the current directory
2 Move up
3 Move down
4 Number of files in the directory
5 Size of the directory in bytes
6 Search for a filename
7 Quit the program
Enter a number:

(continued)

(continues)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

185

Design with Recursive Functions

Design

You can structure the program according to two sets of tasks: those concerned with
implementing a menu-driven command processor, and those concerned with executing
the commands. The first group of operations includes the main function. In the following
discussion, we work top-down and begin by examining the first group of operations.

As in many of the programs we have examined recently in this book, the main
function contains a driver loop. This loop prints the CWD and the menu, calls other
functions to input and run the commands, and breaks with a signoff message when
the command is to quit. Here is the pseudocode:

function main()
 while True
 print(os.getcwd())
 print(MENU)
 command = acceptCommand()
 runCommand(command)
 if command == QUIT
 print("Have a nice day!")
 break

(continued)

(continues)

Command What It Does

List the current working directory Prints the names of the files and directories in the
current working directory (CWD).

Move up If the CWD is not the root, move to the parent
directory and make it the CWD.

Move down Prompts the user for a directory name. If the name
is not in the CWD, print an error message; other-
wise, move to this directory and make it the CWD.

Number of files in the directory Prints the number of files in the CWD and all of its
subdirectories.

Size of the directory in bytes Prints the total number of bytes used by the files in
the CWD and all of its subdirectories.

Search for a filename Prompts the user for a search string. Prints a list of
all the filenames (with their paths) that contain the
search string, or “String not found.”

Quit the program Prints a signoff message and exits the program.

Table 6-1	 The commands in the filesys program

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

186

  Design with FunctionsC h a p t e r 6

The function os.getcwd returns the path of the CWD. Note also that MENU and QUIT
are module variables initialized to the appropriate strings before main is defined.
The acceptCommand function loops until the user enters a number in the range of the
valid commands. These commands are specified in a tuple named COMMANDS that is
also initialized before the function is defined. The function thus always returns a valid
command number.

The runCommand function expects a valid command number as an argument. The
function uses a multi-way selection statement to select and run the operation
corresponding to the command number. When the result of an operation is returned,
it is printed with the appropriate labeling.

That’s it for the menu-driven command processor in the main function. Although there
are other possible approaches, this design makes it easy to add new commands to
the program.

The operations required to list the contents of the CWD, move up, and move down
are simple and need no real design work. They involve the use of functions in the os
and os.path modules to list the directory, change it, and test a string to see if it is
the name of a directory. The implementation shows the details.

The other three operations all involve traversals of the directory structure in the
CWD. During these traversals, every file and every subdirectory are visited. Directory
structure is in fact recursive: each directory can contain files (base cases) and other
directories (recursive steps). Thus, we can develop a recursive design for each
operation.

The countFiles function expects the path of a directory as an argument and
returns the number of files in this directory and its subdirectories. If there are no
subdirectories in the argument directory, the function just counts the files and returns
this value. If there is a subdirectory, the function moves down to it, counts the files
(recursively) in it, adds the result to its total, and then moves back up to the parent
directory. Here is the pseudocode:

function countFiles(path)
 count = 0
 lyst = os.listdir(path)
 for element in lyst
 if os.path.isfile(element)
 count += 1
 else:
 os.chdir(element)
 count += countFiles(os.getcwd())
 os.chdir("..")
 return count

(continues)

(continued)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

187

Design with Recursive Functions

The countBytes function expects a path as an argument and returns the total number
of bytes in that directory and its subdirectories. Its design resembles countFiles.

The findFiles function accumulates a list of the filenames, including their paths, that
contain a given target string, and returns this list. Its structure resembles the other
two recursive functions, but the findFiles function builds a list rather than a number.
When the function encounters a target file, its name is appended to the path, and
then the result string is appended to the list of files. We use the module variable
os.sep to obtain the appropriate slash symbol (/ or \) on the current file system.
When the function encounters a directory, it moves to that directory, calls itself with
the new CWD, and extends the files list with the resulting list. Here is the pseudocode:

function findFiles(target, path)
 files = []
 lyst = os.listdir(path)
 for element in lyst
 if os.path.isfile(element):
 if target in element:
 files.append(path + os.sep + element)
 else:
 os.chdir(element)
 files.extend(findFiles(target, os.getcwd()))
 os.chdir("..")
 return files

The trick with recursive design is to spot elements in a structure that can be treated
as base cases (such as files) and other elements that can be treated as recursive
steps (such as directories). The recursive algorithms for processing these structures
flow naturally from these insights.

Implementation (Coding)

Near the beginning of the program code, we find the important variables, with the
functions listed in a top-down order.

"""
Program: filesys.py
Author: Ken
Provides a menu-driven tool for navigating a file system
and gathering information on files.
"""

import os, os.path

QUIT = '7'
COMMANDS = ('1', '2', '3', '4', '5', '6', '7')

(continues)

(continued)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

188

  Design with FunctionsC h a p t e r 6

MENU = """1 List the current directory
2 Move up
3 Move down
4 Number of files in the directory
5 Size of the directory in bytes
6 Search for a filename
7 Quit the program"""

def main():
 while True:
 print(os.getcwd())
 print(MENU)
 command = acceptCommand()
 runCommand(command)
 if command == QUIT:
 print("Have a nice day!")
 break

def acceptCommand():
 """Inputs and returns a legitimate command number."""
 command = input("Enter a number: ")
 if command in COMMANDS:
 return command
 else:
 print("Error: command not recognized")
 return acceptCommand()

def runCommand(command):
 """Selects and runs a command."""
 if command == '1':
 listCurrentDir(os.getcwd())
 elif command == '2':
 moveUp()
 elif command == '3':
 moveDown(os.getcwd())
 elif command == '4':
 print("The total number of files is", \
 countFiles(os.getcwd()))
 elif command == '5':
 print("The total number of bytes is", \
 countBytes(os.getcwd()))
 elif command == '6':
 target = input("Enter the search string: ")
 fileList = findFiles(target, os.getcwd())
 if not fileList:
 print("String not found")
 else:

(continued)

(continues)
Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

189

Design with Recursive Functions

 for f in fileList:
 print(f)

def listCurrentDir(dirName):
 """Prints a list of the cwd's contents."""
 lyst = os.listdir(dirName)
 for element in lyst: print(element)

def moveUp():
 """Moves up to the parent directory."""
 os.chdir("..")

def moveDown(currentDir):
 """Moves down to the named subdirectory if it exists."""
 newDir = input("Enter the directory name: ")
 if os.path.exists(currentDir + os.sep + newDir) and \
 os.path.isdir(newDir):
 os.chdir(newDir)
 else:
 print("ERROR: no such name")

def countFiles(path):
 """Returns the number of files in the cwd and
 all its subdirectories."""
 count = 0
 lyst = os.listdir(path)
 for element in lyst:
 if os.path.isfile(element):
 count += 1
 else:
 os.chdir(element)
 count += countFiles(os.getcwd())
 os.chdir("..")
 return count

def countBytes(path):
 """Returns the number of bytes in the cwd and
 all its subdirectories."""
 count = 0
 lyst = os.listdir(path)
 for element in lyst:
 if os.path.isfile(element):
 count += os.path.getsize(element)
 else:
 os.chdir(element)

(continued)

(continues)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

190

  Design with FunctionsC h a p t e r 6

Managing a Program’s Namespace
Throughout this book, we (you, the reader, and I) have tried to behave like good authors
by choosing our words (the code used in our programs) carefully. We have taken care
to select variable names that reflect their purpose in a program or the character of the
objects in a given problem domain. Of course, these variable names are meaningful only
to us, the human programmers. To the computer, the only “meaning” of a variable name is
the value to which it happens to refer at any given point in program execution. The com-
puter can keep track of these values easily. However, a programmer charged with editing
and maintaining code can occasionally get lost as a program gets larger and more com-
plex. In this section, you learn more about how a program’s namespace—that is, the set
of its variables and their values—is structured and how you can control it via good design
principles.

Module Variables, Parameters, and Temporary
Variables
We begin by analyzing the namespace of the doctor program of Case Study 5.5. This pro-
gram includes many variable names; for the purposes of this example, we will focus on the
code for the variable replacements and the function changePerson.

 count += countBytes(os.getcwd())
 os.chdir("..")
 return count

def findFiles(target, path):
 """Returns a list of the filenames that contain
 the target string in the cwd and all its subdirectories."""
 files = []
 lyst = os.listdir(path)
 for element in lyst:
 if os.path.isfile(element):
 if target in element:
 files.append(path + os.sep + element)
 else:
 os.chdir(element)
 files.extend(findFiles(target, os.getcwd()))
 os.chdir("..")
 return files

if __name__ == "__main__":
 main()

(continued)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

191

Managing a Program’s Namespace

replacements = {"I":"you", "me":"you", "my":"my""your",
 "we":"you", "us":"you", "mine":"yours"}

def changePerson(sentence):
 """Replaces first person pronouns with second person
 pronouns."""
 words = sentence.split()
 replyWords = []
 for word in words:
 replyWords.append(replacements.get(word, word))
 return " ".join(replyWords)

This code appears in the file doctor.py, so its module name is doctor. The names in this
code fall into four categories, depending on where they are introduced:

1.	 Module variables. The names replacements and changePerson are introduced at the
level of the module. Although replacements names a dictionary and changePerson
names a function, they are both considered variables. You can see the module variables
of the doctor module by importing it and entering dir(doctor) at a shell prompt.
When module variables are introduced in a program, they are immediately given a value.

2.	 Parameters. The name sentence is a parameter of the function changePerson. A
parameter name behaves like a variable and is introduced in a function or method
header. The parameter does not receive a value until the function is called.

3.	 Temporary variables. The names words, replyWords, and word are introduced in
the body of the function changePerson. Like module variables, temporary variables
receive their values as soon as they are introduced.

4.	 Method names. The names split and join are introduced or defined in the str
type. As mentioned earlier, a method reference always uses an object, in this case, a
string, followed by a dot and the method name.

Our first simple programs contained module variables only. The use of function definitions
brought parameters and temporary variables into play. We now explore the significance of
these distinctions.

Scope
In ordinary writing, the meaning of a word often depends on its surrounding context. For
example, in the sports section of the newspaper, the word “bat” means a stick for hitting
baseballs, whereas in a story about vampires it means a flying mammal. In a program, the
context that gives a name a meaning is called its scope. In Python, a name’s scope is the
area of program text in which the name refers to a given value.

Let’s return to our example from the doctor program to determine the scope of each vari-
able. For reasons that will become clear in a moment, it will be easiest if we work outward,
starting with temporary variables first.

The scope of the temporary variables words, replyWords, and word is the area of code
in the body of the function changePerson, just below where each variable is introduced. In
general, the meanings of temporary variables are restricted to the body of the functions

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

192

  Design with FunctionsC h a p t e r 6

in which they are introduced, and they are invisible elsewhere in a module. The restricted
visibility of temporary variables befits their role as temporary working storage for a function.

The scope of the parameter sentence is the entire body of the function changePerson. Like
temporary variables, parameters are invisible outside the function definitions where they
are introduced.

The scope of the module variables replacements and changePerson includes the entire module
below the point where the variables are introduced. This includes the code nested in the body
of the function changePerson. The scope of these variables also includes the nested bodies of
other function definitions that occur earlier. This allows these variables to be referenced by any
functions, regardless of where they are defined in the module. For example, the reply function,
which calls changePerson, might be defined before changePerson in the doctor module.

Although a Python function can reference a module variable for its value, it cannot under
normal circumstances assign a new value to a module variable. When such an attempt is
made, the PVM creates a new, temporary variable of the same name within the function.
The following script shows how this works:

x = 5

def f():

 x = 10 # Attempt to reset x

f() # Does the top-level x change?

print(x) # No, this displays 5

When the function f is called, it does not assign 10 to the module variable x; instead, it assigns
10 to a temporary variable x. In fact, once the temporary variable is introduced, the module
variable is no longer visible within function f. In any case, the module variable’s value remains
unchanged by the call. There is a way to allow a function to modify a module variable, but in
Chapter 9 we explore a better way to manage common pools of data that require changes.

Lifetime
A computer program has two natures. On the one hand, a program is a piece of text con-
taining names that a human being can read for a meaning. Viewed from this perspective,
variables in a program have a scope that determines their visibility. On the other hand, a
program describes a process that exists for a period of time on a real computer. Viewed
from this other perspective, a program’s variables have another important property called a
lifetime. A variable’s lifetime is the period of time during program execution when the vari-
able has memory storage associated with it. When a variable comes into existence, storage
is allocated for it; when it goes out of existence, storage is reclaimed by the PVM.

Module variables come into existence when they are introduced via assignment and gener-
ally exist for the lifetime of the program that introduces or imports those module variables.
Parameters and temporary variables come into existence when they are bound to values
during a function call but go out of existence when the function call terminates.

The concept of lifetime explains the existence of two variables called x in our last
example session. The module variable x comes into existence before the temporary

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

193

Managing a Program’s Namespace

variable x and survives the call of function f. During the call of f, storage exists for both
variables, so their values remain distinct. A similar mechanism for managing the stor-
age associated with the parameters of recursive function calls was discussed in the pre-
vious section.

Using Keywords for Default and Optional Arguments
A function’s arguments are one of its most important features. Arguments provide the
function’s caller with the means of transmitting information to the function. Adding an
argument or two to a function can increase its generality by extending the range of situ-
ations in which the function can be used. However, programmers often use a function in
a restricted set of “essential” situations, in which the extra arguments might be an annoy-
ance. In these cases, the use of the extra arguments should be optional for the caller of the
function. When the function is called without the extra arguments, it provides reasonable
default values for those arguments that produce the expected results.

For example, Python’s range function can be called with one, two, or three arguments.
When all three arguments are supplied, they indicate a lower bound, an upper bound, and a
step value. When only two arguments are given, the step value defaults to 1. When a single
argument is given, the step is assumed to be 1, and the lower bound automatically is 0.

The programmer can also specify optional arguments with default values in any function
definition. Here is the syntax:
def <function name>(<required arguments>,
 <key-1> = <val-1>, ... <key-n> = <val-n>)

The required arguments are listed first in the function header. These are the ones that are
“essential” for the use of the function by any caller. Following the required arguments are
one or more default arguments or keyword arguments. These are assignments of values
to the argument names. When the function is called without these arguments, their default
values are automatically assigned to them. When the function is called with these argu-
ments, the default values are overridden by the caller’s values.

For example, suppose we define a function, repToInt, to convert string representations
of numbers in a given base to their integer values (see Chapter 4). The function expects a
string representation of the number and an integer base as arguments. Here is the code:
def repToInt(repString, base):
 """Converts the repString to an int in the base
 and returns this int."""
 decimal = 0
 exponent = len(repString) - 1
 for digit in repString:
 decimal = decimal + int(digit) * base ** exponent
 exponent -= 1
 return decimal

As written, this function can be used to convert string representations in bases 2 through
10 to integers. But suppose that 75% of the time programmers use the repToInt function
to convert binary numbers to decimal form. If we alter the function header to provide a

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

194

  Design with FunctionsC h a p t e r 6

default of 2 for base, those programmers will be very grateful. Here is the proposed change,
followed by a session that shows its impact:
def repToInt(repString, base = 2):

>>> repToInt("10", 10)
10
>>> repToInt("10", 8) # Override the default to here
8
>>> repToInt("10", 2) # Same as the default, not necessary
2
>>> repToInt("10") # Base 2 by default
2

When using functions that have default arguments, you must provide the required argu-
ments and place them in the same positions as they are in the function definition’s header.
The default arguments that follow can be supplied in two ways:

1.	 By position. In this case, the values are supplied in the order in which the arguments
occur in the function header. Defaults are used for any arguments that are omitted.

2.	 By keyword. In this case, one or more values can be supplied in any order, using
the syntax <key> = <value> in the function call.

Here is an example of a function with one required argument and two default arguments
and a session that shows these options:
>>> def example(required, option1 = 2, option2 = 3):
 print(required, option1, option2)

>>> example(1) # Use all the defaults
1 2 3
>>> example(1, 10) # Override the first default
1 10 3
>>> example(1, 10, 20) # Override all the defaults
1 10 20
>>> example(1, option2 = 20) # Override the second default
1 2 20
>>> example(1, option2 = 20, option1 = 10) # In any order
1 10 20

Default arguments are a powerful way to simplify design and make functions more general.

Exercises
1.	 Where are module variables, parameters, and temporary variables introduced and

initialized in a program?

2.	 What is the scope of a variable? Give an example.

3.	 What is the lifetime of a variable? Give an example.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

195

Higher-Order Functions

Higher-Order Functions
Like any skill, a designer’s knack for spotting the need for a function is developed with
practice. As you gain experience in writing programs, you will learn to spot common
and redundant patterns in the code. One pattern that occurs again and again is the
application of a function to a set of values to produce some results. Here are some
examples:

•• The numbers in a text file must be converted to integers or floats after they
are input.

•• The first-person pronouns in a list of words must be changed to the corresponding
second-person pronouns in the doctor program.

•• Only scores above the average are kept in a list of grades.

•• The sum of the squares of a list of numbers is computed.

In this section, we learn how to capture these patterns in a new abstraction called a
higher-order function. For these patterns, a higher-order function expects a function
and a set of data values as arguments. The argument function is applied to each data
value, and a set of results or a single data value is returned. A higher-order function
separates the task of transforming each data value from the logic of accumulating the
results.

Functions as First-Class Data Objects
In Python, functions can be treated as first-class data objects. This means that they
can be assigned to variables (as they are when they are defined), passed as arguments
to other functions, returned as the values of other functions, and stored in data
structures such as lists and dictionaries. The next session shows some of the simpler
possibilities:
>>> abs    # See what abs looks like
<built-in function abs>
>>> import math
>>> math.sqrt
<built-in function sqrt>
>>> f = abs    # f is an alias for abs
>>> f    # Evaluate f
<built-in function abs>
>>> f(-4)    # Apply f to an argument
4
>>> funcs = [abs, math.sqrt]    # Put the functions in a list
>>> funcs
[<built-in function abs>, <built-in function sqrt>]
>>> funcs[l](2)    # Apply math.sqrt to 2
1.4142135623730951

Passing a function as an argument to another function is no different from passing any
other datum. The function argument is first evaluated, producing the function itself, and

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

196

  Design with FunctionsC h a p t e r 6

then the parameter name is bound to this value. The function can then be applied to its
own argument with the usual syntax. Here is an example, which simply returns the result of
an application of any single-argument function to a datum:
>>> def example(functionArg, dataArg):
 return functionArg(dataArg)
>>> example(abs, -4)
4
>>> example(math.sqrt, 2)
1.4142135623730951

Mapping
The first type of useful higher-order function to consider is called a mapping. This process
applies a function to each value in a sequence (such as a list, a tuple, or a string) and returns
a new sequence of the results. Python includes a map function for this purpose. Suppose we
have a list named words that contains strings that represent integers. We want to replace
each string with the corresponding integer value. The map function easily accomplishes this,
as the next session shows:
>>> words = ["231", "20", "-45", "99"]
>>> map(int, words)    # Convert all strings to ints
<map object at 0xl4cbd90>
>>> words    # Original list is not changed
['231', '20', '-45', '99']
>>> words = list(map(int, words)) # Reset variable to change it
>>> words
[231, 20, -45, 99]

Note that map builds and returns a new map object, which we feed to the list function to
view the results. We could have written a for loop that does the same thing, but that would
entail several lines of code instead of the single line of code required for the map function.
Another reason to use the map function is that, in programs that use lists, we might need to
perform this task many times; relying on a for loop for each instance would entail multiple
sections of redundant code. Moreover, the conversion to a list is only necessary for viewing
the results; a map object can be passed directly to another map function to perform further
transformations of the data.

Another good example of a mapping pattern is in the changePerson function of the doctor
program. This function builds a new list of words with the pronouns replaced.
def changePerson(sentence):
 """Replaces first person pronouns with second person pronouns."""
 words = sentence.split()
 replyWords = []
 for word in words:
 replyWords.append(replacements.get(word, word))
 return " ".join(replyWords)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

197

Higher-Order Functions

We can simplify the logic by defining an auxiliary function that is then mapped onto the list
of words, as follows:
def changePerson(sentence):
 """Replaces first person pronouns with second person pronouns."""

 def getWord(word):
 return replacements.get(word, word)

 return " ".join(map(getWord, sentence.split())

Note that the definition of the function getWord is nested within the function
changePerson. Furthermore, the map object is passed directly to the string method join
without converting it to a list.

As you can see, the map function is extremely useful; any time we can eliminate a loop from
a program, it’s a win.

Filtering
A second type of higher-order function is called a filtering. In this process, a function
called a predicate is applied to each value in a list. If the predicate returns True, the value
passes the test and is added to a filter object (similar to a map object). Otherwise, the
value is dropped from consideration. The process is a bit like pouring hot water into a
filter basket with coffee. The good stuff to drink comes into the cup with the water, and
the coffee grounds left behind can be thrown on the garden.

Python includes a filter function that is used in the next example to produce a list of the
odd numbers in another list:
>>> def odd(n): return n % 2 == 1
>>> list(filter(odd, range(lO)))
[1, 3, 5, 7, 9]

As with the function map, the result of the function filter can be passed directly to
another call of filter or map. List processing often consists of several mappings and
filterings of data, which can be expressed as a series of nested function calls.

Reducing
Our final example of a higher-order function is called a reducing. Here we take a list of
values and repeatedly apply a function to accumulate a single data value. A summation
is a good example of this process. The first value is added to the second value, then the
sum is added to the third value, and so on, until the sum of all the values is produced.

The Python functools module includes a reduce function that expects a function of
two arguments and a list of values. The reduce function returns the result of applying

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

198

  Design with FunctionsC h a p t e r 6

the function as just described. The following example shows reduce used twice—once to
produce a sum and once to produce a product:
>>> from functools import reduce
>>> def add(x, y): return x + y
>>> def multiply(x, y): return x * y
>>> data = [1, 2, 3, 4]
>>> reduce(add, data)
10
>>> reduce(multiply, data)
24

Using lambda to Create Anonymous Functions
Although the use of higher-order functions can really simplify code, it is somewhat onerous
to have to define new functions to supply as arguments to the higher-order functions. For
example, the functions add and multiply will never be used anywhere else in a program,
because the operators + and * are already available. It would be convenient if we could
define a function “on the fly,” right at the point of the call of a higher-order function, espe-
cially if it is not needed anywhere else.

Python includes a mechanism called lambda that allows the programmer to create func-
tions in this manner. A lambda is an anonymous function. It has no name of its own, but
it contains the names of its arguments as well as a single expression. When the lambda is
applied to its arguments, its expression is evaluated, and its value is returned.

The syntax of a lambda is very tight and restrictive:
lambda <argname-1, ..., argname-n>: <expression>

All of the code must appear on one line and, although it is sad, a lambda cannot include a
selection statement, because selection statements are not expressions. Nonetheless, lambda
has its virtues. We can now specify addition or multiplication on the fly, as the next session
illustrates:
>>> data = [1, 2, 3, 4]
>>> reduce(lambda x, y: x + y, data) # Produce the sum
10
>>> reduce(lambda x, y: x * y, data) # Produce the product
24

The next example shows the use of range, reduce, and lambda to simplify the definition of
the summation function discussed earlier in this chapter:
def summation(lower, upper):
 """Returns the sum of the numbers from lower
 through upper."""
 if lower > upper:
 return 0
 else:
 return reduce(lambda x, y: x + y,
 range(lower, upper + 1))

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

199

Higher-Order Functions

Creating Jump Tables
This chapter’s case study contains a menu-driven command processor. When the user
selects a command from a menu, the program compares this number to each number in
a set of numbers, until a match is found. A function corresponding to this number is then
called to carry out the command. The function runCommand implemented this process with
a long, multi-way selection statement. With more than three options, such statements
become tedious to read and hard to maintain. Adding or removing an option also becomes
tricky and error prone.

A simpler way to design a command processor is to use a data structure called a jump
table. A jump table is a dictionary of functions keyed by command names. At program
startup, the functions are defined and then the jump table is loaded with the command
names and their associated functions. The function runCommand uses its command argument
to look up the function in the jump table and then calls this function. Here is the modified
version of runCommand:
def runCommand(command): # How simple can it get?
 jumpTable[command]()

Note that this function makes two important simplifying assumptions: the command string
is a key in the jump table, and its associated function expects no arguments.

Let’s assume that the functions insert, replace, and remove are keyed to the commands
'1', '2', and '3', respectively. Then the setup of the jump table is straightforward:
The functions named insert, replace, and remove
are defined earlier
jumpTable = {}
jumpTable['1'] = insert
jumpTable['2'] = replace
jumpTable['3'] = remove

Maintenance of the command processor becomes a matter of data management, wherein
we add or remove entries in the jump table and the menu.

Exercises
1.	 Write the code for a mapping that generates a list of the absolute values of the num-

bers in a list named numbers.

2.	 Write the code for a filtering that generates a list of the positive numbers in a list
named numbers. You should use a lambda to create the auxiliary function.

3.	 Write the code for a reducing that creates a single string from a list of strings named
words.

4.	 Modify the summation function presented in Section 6.2 so that it includes default
arguments for a step value and a function. The step value is used to move to the
next value in the range. The function is applied to each number visited, and the

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

200

  Design with FunctionsC h a p t e r 6

Summary
•• A function serves as an abstraction mechanism by allowing us to view many things as

one thing.

•• A function eliminates redundant patterns of code by specifying a single place where the
pattern is defined.

•• A function hides a complex chunk of code in a single named entity.

•• A function allows a general method to be applied in varying situations. The variations
are specified by the function’s arguments.

•• Functions support the division of labor when a complex task is factored into simpler
subtasks.

•• Top-down design is a strategy that decomposes a complex problem into simpler sub-
problems and assigns their solutions to functions. In top-down design, we begin with a
top-level main function and gradually fill in the details of lower-level functions in a pro-
cess of stepwise refinement.

•• Cooperating functions communicate information by passing arguments and receiving
return values. They also can receive information directly from common pools of data.

•• A structure chart is a diagram of the relationships among cooperating functions. The
chart shows the dependency relationships in a top-down design, as well as data flows
among the functions and common pools of data.

•• Recursive design is a special case of top-down design, in which a complex problem is
decomposed into smaller problems of the same form. Thus, the original problem is
solved by a single recursive function.

•• A recursive function is a function that calls itself. A recursive function consists of
at least two parts: a base case that ends the recursive process and a recursive step
that continues it. These two parts are structured as alternative cases in a selection
statement.

function’s returned value is added to the running total. The default step value is 1,
and the default function is lambda that returns its argument (essentially an identity
function). An example call of this function is summation(l, 100, 2, math.sqrt),
which returns the sum of the square roots of every other number between 1 and
100. The function can also be called as usual, with just the bounds of the range.

5.	 Three versions of the summation function have been presented in this chapter.
One uses a loop, one uses recursion, and one uses the reduce function. Discuss the
costs and benefits of each version, in terms of programmer time and computational
resources required.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

201

Summary

•• The design of recursive algorithms and functions often follows the recursive character
of a problem or a data structure.

•• Although it is a natural and elegant problem-solving strategy, recursion can be com-
putationally expensive. Recursive functions can require extra overhead in memory and
processing time to manage the information used in recursive calls.

•• An infinite recursion arises as the result of a design error. The programmer has not
specified the base case or reduced the size of the problem in such a way that the termi-
nation of the process is reached.

•• The namespace of a program is structured in terms of module variables, parameters,
and temporary variables. A module variable, whether it names a function or a datum,
is introduced and receives its initial value at the top level of the module. A parameter is
introduced in a function header and receives its initial value when the function is called.
A temporary variable is introduced in an assignment statement within the body of a
function definition.

•• The scope of a variable is the area of program text within which it has a given value. The
scope of a module variable is the text of the module below the variable’s introduction
and the bodies of any function definitions. The scope of a parameter is the body of its
function definition. The scope of a temporary variable is the text of the function body
below its introduction.

•• Scope can be used to control the visibility of names in a namespace. When two variables
with different scopes have the same name, a variable’s value is found by looking outward
from the innermost enclosing scope. In other words, a temporary variable’s value takes
precedence over a parameter’s value and a module variable’s value when all three have
the same name.

•• The lifetime of a variable is the duration of program execution during which it uses
memory storage. Module variables exist for the lifetime of the program that uses them.
Parameters and temporary variables exist for the lifetime of a particular function call.

•• Functions are first-class data objects. They can be assigned to variables, stored in data
structures, passed as arguments to other functions, and returned as the values of other
functions.

•• Higher-order functions can expect other functions as arguments and/or return func-
tions as values.

•• A mapping function expects a function and a list of values as arguments. The function
argument is applied to each value in the list and a map object containing the results is
returned.

•• A predicate is a Boolean function.

•• A filtering function expects a predicate and a list of values as arguments. The values for
which the predicate returns True are placed in a filter object and returned.

•• A reducing function expects a function and a list of values as arguments. The function
is applied to the values, and a single result is accumulated and returned.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

202

  Design with FunctionsC h a p t e r 6

•• A jump table is a simple way to design a command processor. The table is a
dictionary whose keys are command names and whose values are the associated
functions. A function for a given command name is simply looked up in the table
and called.

Review Questions
1.	 Top-down design is a strategy that

a.	 develops lower-level functions before the functions that depend on those
lower-level functions

b.	 starts with the main function and develops the functions on each successive
level beneath the main function

2.	 The relationships among functions in a top-down design are shown in a

a.	 syntax diagram
b.	 flow diagram
c.	 structure chart

3.	 A recursive function

a.	 usually runs faster than the equivalent loop
b.	 usually runs more slowly than the equivalent loop

4.	 When a recursive function is called, the values of its arguments and its return
address are placed in a

a.	 list
b.	 dictionary

c.	 set
d.	 stack frame

5.	 The scope of a temporary variable is

a.	 the statements in the body of the function where the variable is
introduced

b.	 the entire module in which the variable is introduced
c.	 the statements in the body of the function after the statement where the

variable is introduced

6.	 The lifetime of a parameter is

a.	 the duration of program execution
b.	 the duration of its function’s execution

7.	 The expression list(map(math.sqrt, [9, 25, 36])) evaluates to

a.	 70

b.	 [81, 625, 1296]

c.	 [3.0, 5.0, 6.0]

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

203

Projects

8.	 The expression list(filter(lambda x: x > 50, [34, 65, 10, 100]))
evaluates to

a.	 []

b.	 [65, 100]

9.	 The expression reduce(max, [34, 21, 99, 67, 10]) evaluates to

a.	 231

b.	 0

c.	 99

10.	 A data structure used to implement a jump table is a

a.	 list
b.	 tuple
c.	 dictionary

Projects
1.	 Package Newton’s method for approximating square roots (Case Study 3.6) in a

function named newton. This function expects the input number as an argument
and returns the estimate of its square root. The script should also include a main
function that allows the user to compute square roots of inputs until she presses
the enter/return key.

2.	 Convert Newton’s method for approximating square roots in Project 1 to a recur-
sive function named newton. (Hint: The estimate of the square root should be
passed as a second argument to the function.)

3.	 Elena complains that the recursive newton function in Project 2 includes an extra
argument for the estimate. The function’s users should not have to provide this
value, which is always the same, when they call this function. Modify the defi-
nition of the function so that it uses a keyword argument with the appropriate
default value, and call the function without a second argument to demonstrate
that it solves this problem.

4.	 Restructure Newton’s method (Case Study 3.6) by decomposing it into three
cooperating functions. The newton function can use either the recursive strategy
of Project 1 or the iterative strategy of Case Study 3.6. The task of testing for the
limit is assigned to a function named limitReached, whereas the task of comput-
ing a new approximation is assigned to a function named improveEstimate. Each
function expects the relevant arguments and returns an appropriate value.

5.	 A list is sorted in ascending order if it is empty or each item except the last one is
less than or equal to its successor. Define a predicate isSorted that expects a list
as an argument and returns True if the list is sorted, or returns False otherwise.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

204

  Design with FunctionsC h a p t e r 6

(Hint: For a list of length 2 or greater, loop through the list and compare pairs of
items, from left to right, and return False if the first item in a pair is greater.)

6.	 Add a command to this chapter’s case study program that allows the user to
view the contents of a file in the current working directory. When the command
is selected, the program should display a list of filenames and a prompt for the
name of the file to be viewed. Be sure to include error recovery.

7.	 Write a recursive function that expects a pathname as an argument. The path-
name can be either the name of a file or the name of a directory. If the pathname
refers to a file, its name is displayed, followed by its contents. Otherwise, if the
pathname refers to a directory, the function is applied to each name in the direc-
tory. Test this function in a new program.

8.	 Lee has discovered what he thinks is a clever recursive strategy for printing the
elements in a sequence (string, tuple, or list). He reasons that he can get at the
first element in a sequence using the 0 index, and he can obtain a sequence of
the rest of the elements by slicing from index 1. This strategy is realized in a
function that expects just the sequence as an argument. If the sequence is not
empty, the first element in the sequence is printed and then a recursive call is
executed. On each recursive call, the sequence argument is sliced using the
range 1:. Here is Lee’s function definition:

def printAll(seq):
 if seq:
 print(seq[0])
 printAll(seq[1:])

		 Write a script that tests this function and add code to trace the argument on each
call. Does this function work as expected? If so, explain how it actually works,
and describe any hidden costs in running it.

9.	 Write a program that computes and prints the average of the numbers in a text
file. You should make use of two higher-order functions to simplify the design.

10.	 Define and test a function myRange. This function should behave like Python’s
standard range function, with the required and optional arguments, but it should
return a list. Do not use the range function in your implementation! (Hints:
Study Python’s help on range to determine the names, positions, and what to do
with your function’s parameters. Use a default value of None for the two optional
parameters. If these parameters both equal None, then the function has been
called with just the stop value. If just the third parameter equals None, then the
function has been called with a start value as well. Thus, the first part of the func-
tion’s code establishes what the values of the parameters are or should be. The
rest of the code uses those values to build a list by counting up or down.)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

C h a p t e r 7
Simple Graphics
and Image Processing

After completing this chapter, you will be able to

Use the concepts of object-based programming—classes,
objects, and methods—to solve a problem

Develop algorithms that use simple graphics operations to
draw two-dimensional shapes

Use the RGB system to create colors in graphics applica-
tions and modify pixels in images

Develop recursive algorithms to draw recursive shapes

Write a nested loop to process a two-dimensional grid

Develop algorithms to perform simple transformations of
images, such as conversion of color to grayscale

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

206

  Simple Graphics and Image Processing C h a p t e r 7

Until about 35 years ago, computers processed numbers and text almost exclusively. Since
then, the computational processing of images, video, and sound has become increasingly
important. Computers have evolved from mere number crunchers and data processors to
multimedia platforms deploying a wide array of applications on devices such as DVD play-
ers and smartphones.

Ironically, all of these exciting tools and applications still rely on number crunching and
data processing. However, because the supporting algorithms and data structures can be
quite complex, they are often hidden from the average user. In this chapter, we explore
some basic concepts related to two important areas of media computing—graphics and
image processing. We also examine object-based programming, a type of programming
that relies on objects and methods to control complexity and solve problems in these areas
(Note: object-based programming, which involves just the use of objects, classes, and meth-
ods, is a simpler idea than object-oriented programming, a more advanced topic that we
explore in Chapters 8 and 9)

Simple Graphics
Graphics is the discipline that underlies the representation and display of geometric shapes
in two- and three-dimensional space, as well as image processing. Python comes with a
large array of resources that support graphics operations. However, these operations are
complex and not for the faint of heart. To help you ease into the world of graphics, this
section provides an introduction to a gentler set of graphics operations known as Turtle
graphics. A Turtle graphics toolkit provides a simple and enjoyable way to draw pictures in
a window and gives you an opportunity to run several methods with an object. In the next
few sections, we use Python’s turtle module to illustrate various features of object-based
programming.

Overview of Turtle Graphics
Turtle graphics were originally developed as part of the children’s programming language
Logo, created by Seymour Papert and his colleagues at MIT in the late 1960s. The name is
intended to suggest a way to think about the drawing process. Imagine a turtle crawling on
a piece of paper with a pen tied to its tail. Commands direct the turtle as it moves across
the paper and tell it to lift or lower its tail, turn some number of degrees left or right, and
move a specified distance. Whenever the tail is down, the pen drags along the paper, leaving
a trail. In this manner, it is possible to program the turtle to draw pictures ranging from the
simple to the complex.

In the context of a computer, of course, the sheet of paper is a window on a display
screen, and the turtle is an icon, such as an arrowhead. At any given moment in time, the
turtle is located at a specific position in the window. This position is specified with (x, y)
coordinates. The coordinate system for Turtle graphics is the standard Cartesian system,
with the origin (0, 0) at the center of a window. The turtle’s initial position is the origin,

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

207

Simple Graphics

which is also called the home. An equally important attribute of a turtle is its heading, or
the direction in which it currently faces. The turtle’s initial heading is 0 degrees, or due
east on its map. The degrees of the heading increase as it turns to the left, so 90 degrees
is due north.

In addition to its position and heading, a turtle also has several other attributes, as
described in Table 7-1.

Heading Specified in degrees, the heading or direction increases in value as the turtle
turns to the left, or counterclockwise. Conversely, a negative quantity of
degrees indicates a right, or clockwise, turn. The turtle is initially facing east,
or 0 degrees. North is 90 degrees.

Color Initially black, the color can be changed to any of more than 16 million other
colors.

Width This is the width of the line drawn when the turtle moves. The initial width is
1 pixel. (You’ll learn more about pixels shortly.)

Down This attribute, which can be either true or false, controls whether the turtle’s
pen is up or down. When true (that is, when the pen is down), the turtle draws
a line when it moves. When false (that is, when the pen is up), the turtle can
move without drawing a line.

Table 7-1	 Some attributes of a turtle

Together, these attributes make up a turtle’s state. The concept of state is a very important
one in object-based programming. Generally, an object’s state is the set of values of its attri-
butes at any given point in time.

The turtle’s state determines how the turtle will behave when any operations are applied to
it. For example, a turtle will draw when it is moved if its pen is currently down, but it will
simply move without drawing when its pen is currently up. Operations also change a turtle’s
state. For instance, moving a turtle changes its position, but not its direction, pen width, or
pen color.

Turtle Operations
In Chapter 5, you learned that every data value in Python is an object. The types of
objects are called classes. Included in a class are the methods (or operations) that apply
to objects of that class. Because a turtle is an object, its operations are also defined as methods.
Table 7-2 lists some of the methods belonging to the Turtle class. In this table, the variable t
refers to a particular Turtle object. Don’t be concerned if you don’t understand all the terms
used in the table. You’ll learn more about these graphics concepts throughout this chapter.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

208

  Simple Graphics and Image Processing C h a p t e r 7

Turtle Method What It Does

t = Turtle() Creates a new Turtle object and opens its window.

t.home() Moves t to the center of the window and then points
t east.

t.up() Raises t’s pen from the drawing surface.

t.down() Lowers t’s pen to the drawing surface.

t.setheading(degrees) Points t in the indicated direction, which is specified in
degrees. East is 0 degrees, north is 90 degrees, west is
180 degrees, and south is 270 degrees.

t.left(degrees)

t.right(degrees)

Rotates t to the left or the right by the specified
degrees.

t.goto(x, y) Moves t to the specified position.

t.forward(distance) Moves t the specified distance in the current direction.

t.pencolor(r, g, b)

t.pencolor(string)

Changes the pen color of t to the specified RGB value or
to the specified string, such as "red". Returns the current
color of t when the arguments are omitted.

t.fillcolor(r, g, b)

t.fillcolor(string)

Changes the fill color of t to the specified RGB value or to
the specified string, such as "red". Returns the current fill
color of t when the arguments are omitted.

t.begin_fill()

t.end_fill()

Enclose a set of turtle commands that will draw a filled
shape using the current fill color.

t.clear() Erases all of the turtle’s drawings, without changing the
turtle’s state.

t.width(pixels) Changes the width of t to the specified number
of pixels. Returns t’s current width when the argument
is omitted.

t.hideturtle()
t.showturtle()

Makes the turtle invisible or visible.

t.position() Returns the current position (x, y) of t.

t.heading() Returns the current direction of t.

t.isdown() Returns True if t’s pen is down or False otherwise.

Table 7-2	 The Turtle methods

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

209

Simple Graphics

The set of methods of a given class of objects is called its interface. This is another important
idea in object-based programming. Programmers who use objects interact with them through
their interfaces. Thus, an interface should contain only enough information to use an object
of a given class. This information includes method headers and documentation about the
method’s arguments, values returned, and changes to the state of the associated objects. As
you have seen in previous chapters, Python’s docstring mechanism allows the programmer
to view an interface for an entire class or an individual method by entering expressions of the
form help(<class name>) or help(<class name>.<method name>) at a shell prompt. The
expression dir(<class name>) lists the names of methods in a class’s interface.

To illustrate the use of some methods with a Turtle object, let’s define a function named
drawSquare. This function expects a Turtle object, a pair of integers that indicate the
coordinates of the square’s upper-left corner, and an integer that designates the length of a
side. The function begins by lifting the turtle up and moving it to the square’s corner point.
It then points the turtle due south—270 degrees—and places the turtle’s pen down on the
drawing surface. Finally, it moves the turtle the given length and turns it left by 90 degrees,
four times. Here is the code for the drawSquare function:
def drawSquare(t, x, y, length):
 """Draws a square with the given turtle t, an upper-left
 corner point (x, y), and a side's length."""
 t.up()
 t.goto(x, y)
 t.setheading(270)
 t.down()
 for count in range(4):
 t.forward(length)
 t.left(90)

As you can see, this function exercises half a dozen methods in the turtle’s interface. Almost
all you need to know in many graphics applications are the interfaces of the appropriate
objects and the geometry of the desired shapes.

Two other important classes used in Python’s Turtle graphics system are Screen, which
represents a turtle’s associated window, and Canvas, which represents the area in which a
turtle can move and draw lines. A canvas can be larger than its window, which displays just
the area of the canvas visible to the human user. We will have more to say about these two
objects later, but first let’s examine how to create and manipulate a turtle in the IDLE shell.

Setting Up a turtle.cfg File and Running IDLE
Before you run a program or experiment in IDLE with Python’s turtle module, it will help
to set up a configuration file. A Turtle graphics configuration file, which has the filename
turtle.cfg, is a text file that contains the initial settings of several attributes of Turtle,
Screen, and Canvas objects. Python creates default settings for these attributes, which you
can find in the Python documentation. For example, the default window size is half of your

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

210

  Simple Graphics and Image Processing C h a p t e r 7

computer monitor’s width and three-fourths of its height, and the window’s title is “Python
Turtle Graphics.” If you want an initial window size of 300 by 200 pixels instead, you can
override the default size by including the specific dimensions in a configuration file. The
attributes in the file used for most of our examples are as follows:
width = 300
height = 200
using_IDLE = True
colormode = 255

To create a file with these settings, open a text editor, enter the settings as shown, and save
the file as turtle.cfg in your current working directory (the one where you are saving your
Python script files or from which you launch IDLE). Or you can just use the file that comes
with the examples used in this book.

Now you can launch IDLE in the usual way, and you should be able to run the Turtle graph-
ics examples discussed in this section.

Object Instantiation and the turtle Module
Before you use some objects, like a Turtle object, you must create them. To be precise,
you must create an instance of the object’s class. The process of creating an object is called
instantiation. In the programs you have seen so far in this book, Python automatically created
objects such as numbers, strings, and lists when it encountered them as literals. The program-
mer must explicitly instantiate other classes of objects, including those that have no literals. The
syntax for instantiating a class and assigning the resulting object to a variable is the following:
<variable name> = <class name>(<any arguments>)

The expression on the right side of the assignment, also called a constructor, resembles
a function call. The constructor can receive as arguments any initial values for the new
object’s attributes, or other information needed to create the object. As you might expect, if
the arguments are optional, reasonable defaults are provided automatically. The construc-
tor then manufactures and returns a new instance of the class.

The Turtle class is defined in the turtle module (note carefully the spelling of both
names). The following code imports the Turtle class for use in a session:
>>> from turtle import Turtle

The next code segment creates and returns a Turtle object and opens a drawing window.
The window is shown in Figure 7-1.
>>> t = Turtle()

As you can see, the turtle’s icon is located at the home position (0, 0) in the center of the
window, facing east and ready to draw. The user can resize the window in the usual manner.

Let’s continue with the turtle named t, and tell it to draw the letter T, in black and red. It
begins at the home position, accepts a new pen width of 2, turns 90 degrees left, and moves
north 30 pixels to draw a black vertical line. Then it turns 90 degrees left again to face west,
picks its pen up, and moves 10 pixels. The turtle next turns to face due east, changes its

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

211

Simple Graphics

color from black to red, puts its pen down, and moves 20 pixels to draw a horizontal line.
Finally, we hide the turtle. The session with the code follows. Figure 7-2 shows screenshots
of the window after each line segment is drawn.

>>> t.width(2) # For bolder lines

>>> t.left(90) # Turn to face north

>>> t.forward(30) # Draw a vertical line in black

>>> t.left(90) # Turn to face west

>>> t.up() # Prepare to move without drawing

>>> t.forward(10) # Move to beginning of horizontal line

>>> t.setheading(0) # Turn to face east

>>> t.pencolor("red")

>>> t.down() # Prepare to draw

>>> t.forward(20) # Draw a horizontal line in red

>>> t.hideturtle() # Make the turtle invisible

Figure 7-1  Drawing window for a turtle

To close a turtle’s window, you click its close box. An attempt to manipulate a turtle whose
window has been closed raises an exception.

Figure 7-2  Drawing vertical and horizontal lines for the letter T

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

212

  Simple Graphics and Image Processing C h a p t e r 7

Drawing Two-Dimensional Shapes
Many graphics applications use vector graphics, which includes the drawing of simple
two-dimensional shapes, such as rectangles, triangles, pentagons, and circles. Earlier we
defined a drawSquare function that draws a square with a given corner point and length,
and we could do the same for other types of shapes as well. However, our design of the
drawSquare function has two limitations:

1.	 The caller must provide the shape’s location, such as a corner point, as an argu-
ment, even though the turtle itself could already provide this location

2.	 The shape is always oriented in the same way, even though the turtle itself could
provide the orientation.

A more general method of drawing a square would receive just its length and the turtle as
arguments, and begin drawing from the turtle’s current heading and position. Here is the
code for the new function to draw squares, named square:
def square(t, length):
 """Draws a square with the given length."""
 for count in range(4):
 t.forward(length)
 t.left(90)

The same design strategy works for drawing any regular polygon. Here is a function to
draw a hexagon:
def hexagon(t, length):
 """Draws a hexagon with the given length."""
 for count in range(6):
 t.forward(length)
 t.left(60)

Because these functions allow the shapes to have any orientation, they can be embedded in more
complex patterns. For example, the radial pattern shown in Figure 7-3 includes 10 hexagons.

Figure 7-3  A radial pattern with 10 hexagons

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

213

Simple Graphics

The code for a function to draw this type of pattern, named radialHexagons, expects a turtle,
the number of hexagons, and the length of a side as arguments. Here is the code for the function:
def radialHexagons(t, n, length):
 """Draws a radial pattern of n hexagons with the given length."""
 for count in range(n):
 hexagon(t, length)
 t.left(360 / n)

To give these functions a test drive, you can define them in a module named polygons.
Then, after launching IDLE from the same directory, you can run a session like the following:

>>> from polygons import * # Import all the functions

>>> from turtle import Turtle

>>> t = Turtle()

>>> t.pencolor("blue")

>>> t.hideturtle()

>>> square(t, 50) # Embed a square in a hexagon

>>> hexagon(t, 50)

>>> t.clear() # Erase all drawings

>>> radialHexagons(t, 10, 50) # Shown in Figure 7.3

You can define similar functions to draw radial patterns consisting of other shapes, such as
squares or pentagons. However, the perceptive reader will note that the only change in the code
for these functions would be the name of the function called to draw the shape within the loop.
This observation suggests making this function an additional argument to a more general func-
tion, which can draw a radial pattern using any regular polygon. Here is the code for this new
function, named radialPattern, followed by a session using it with squares and hexagons:
def radialpattern(t, n, length, shape):
 """Draws a radial pattern of n shapes with the given length."""
 for count in range(n):
 shape(t, length)
 t.left(360 / n)

>>> t = Turtle()
>>> radialPattern(t, n = 10, length = 50, shape = square)
>>> t.clear()
>>> radialPattern(t, n = 10, length = 50, shape = hexagon)

Note the use of keywords with the arguments to these two function calls. Keywords are not
required, but they help the reader to see what the roles of the arguments are.

Examining an Object’s Attributes
The Turtle methods shown in the examples thus far modify a Turtle object’s attributes,
such as its position, heading, and color. These methods are called mutator methods,
meaning that they change the internal state of a Turtle object. Other methods, such as

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

214

  Simple Graphics and Image Processing C h a p t e r 7

position(), simply return the values of a Turtle object’s attributes without altering its
state. These methods are called accessor methods. The next code segment shows some
accessor methods in action:
>>> from turtle import Turtle
>>> t = Turtle()
>>> t.position()
(0.0, 0.0)
>>> t.heading()
0.0
>>> t.isdown()
True

Manipulating a Turtle’s Screen
As mentioned earlier, a Turtle object is associated with instances of the classes Screen and
Canvas, which represent the turtle’s window and the drawing area underneath it. The Screen
object’s attributes include its width and height in pixels, and its background color, among
other things. You access a turtle’s Screen object using the notation t.screen, and then call
a Screen method on this object. The methods window_width() and window_height() can
be used to locate the boundaries of a turtle’s window. The following code resets the screen’s
background color, which is white by default, to orange, and prints the coordinates of the
upper left and lower right corners of the window:
>>> from turtle import Turtle
>>> t = Turtle()
>>> t.screen.bgcolor("orange")
>>> x = t.screen.window_width() // 2
>>> y = t.screen.window_height() // 2
>>> print((-x, y), (x, -y))

Taking a Random Walk
Animals often appear to wander about randomly, but they may be searching for food, shel-
ter, a mate, and so forth. Or, they might be truly lost, disoriented, or just out for a stroll.
Let’s get a turtle to wander about randomly. A turtle engages in this harmless activity by
repeatedly turning in a random direction and moving a given distance. The following script
defines a function randomWalk that expects as arguments a Turtle object, the number of
turns, and distance to move after each turn. The distance argument is optional and defaults
to 20 pixels. When called in this script, the function performs 40 random turns with a dis-
tance of 30 pixels. Figure 7-4 shows one resulting output.
from turtle import Turtle
import random

def randomWalk(t, turns, distance = 20):
 """Turns a random number of degrees and moves a given
 distance for a fixed number of turns."""

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

215

Simple Graphics

 for x in range(turns):
 if x % 2 == 0:
 t.left(random.randint(0, 270))
 else:
 t.right(random.randint(0, 270))
 t.forward(distance)

def main():
 t = Turtle()
 t.shape("turtle")
 randomWalk(t, 40, 30)

if __name__ == "__main__":
 main()

Figure 7-4  A random walk

Colors and the RGB System
The rectangular display area on a computer screen is made up of colored dots called picture
elements or pixels. The smaller the pixel, the smoother the lines drawn with them will be. The
size of a pixel is determined by the size and resolution of the display. For example, one common
screen resolution is 1680 pixels by 1050 pixels, which, on a 20-inch monitor, produces a rect-
angular display area that is 17 inches by 10.5 inches. Setting the resolution to smaller values
increases the size of the pixels, making the lines on the screen appear more ragged.

Each pixel represents a color. While the turtle’s default color is black, you can easily change it
to one of several other basic colors, such as red, yellow, or orange, by running the pencolor
method with the corresponding string as an argument. To provide the full range of several
million colors available on today’s computers, we need a more powerful representation scheme.
Among the various schemes for representing colors, the RGB system is a common one. The
letters stand for the color components of red, green, and blue, to which the human retina is
sensitive. These components are mixed together to form a unique color value. Naturally, the
computer represents these values as integers, and the display hardware translates this informa-
tion to the colors you see. Each color component can range from 0 through 255. The value 255

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

216

  Simple Graphics and Image Processing C h a p t e r 7

represents the maximum saturation of a given color component, whereas the value 0 represents
the total absence of that component. Table 7-3 lists some example colors and their RGB values.

You might be wondering how many total RGB color values are at your disposal. That num-
ber would be equal to all the possible combinations of three values, each of which has 256
possible values, or 256 * 256 * 256, or 16,777,216 distinct color values. Although the human
eye cannot discriminate between adjacent color values in this set, the RGB system is called
a true color system.

Another way to consider color is from the perspective of the computer memory required
to represent a pixel’s color. In general, N bits of memory can represent N2 distinct data
values. Conversely, N distinct data values require at least Nlog2 bits of memory. In the
old days, when memory was expensive and displays came in black and white, only a
single bit of memory was required to represent the two color values (a bit of 0 turned
off the light source at a given pixel position, leaving the pixel black, while a bit of 1
turned the light source on, leaving the pixel white). When displays capable of showing
8 shades of gray came along, 3 bits of memory were required to represent each color
value. Early color monitors might have supported the display of 256 colors, so 8 bits were
needed to represent each color value. Each color component of an RGB color requires 8
bits, so the total number of bits needed to represent a distinct color value is 24. The total
number of RGB colors, 224 , happens to be 16,777,216.

Example: Filling Radial Patterns with Random Colors
The Turtle class includes the pencolor and fillcolor methods for changing the turtle’s
drawing and fill colors, respectively. These methods can accept integers for the three RGB
components as arguments. The next script draws radial patterns of squares and hexagons
with random fill colors at the corners of the turtle’s window. The output is shown in
Figure 7-5.

Color Rgb Value

Black (0, 0, 0)

Red (255, 0, 0)

Green (0, 255, 0)

Blue (0, 0, 255)

Yellow (255, 255, 0)

Gray (127, 127, 127)

White (255, 255, 255)

Table 7-3	 Some example colors and their RGB values

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

217

Simple Graphics

"""
File: randompatterns.py
Draws a radial pattern of squares in a random fill color
at each corner of the window.
"""

from turtle import Turtle
from polygons import *
import random

def drawPattern(t, x, y, count, length, shape):
 """Draws a radial pattern with a random
 fill color at the given position."""
 t.begin_fill()
 t.up()
 t.goto(x, y)
 t.setheading(0)
 t.down()
 t.fillcolor(random.randint(0, 255),
 random.randint(0, 255),
 random.randint(0, 255))
 radialPattern(t, count, length, shape)
 t.end_fill()

def main():
 t = Turtle()
 t.speed(0)
 # Number of shapes in radial pattern
 count = 10
 # Relative distances to corners of window from center
 width = t.screen.window_width() // 2
 height = t.screen.window_height() // 2
 # Length of the square
 length = 30
 # Inset distance from window boundary for squares
 inset = length * 2
 # Draw squares in upper-left corner
 drawPattern(t, -width + inset, height - inset, count,
 length, square)
 # Draw squares in lower-left corner
 drawPattern(t, -width + inset, inset - height, count,
 length, square)
 # Length of the hexagon
 length = 20
 # Inset distance from window boundary for hexagons
 inset = length * 3
 # Draw hexagons in upper-right corner
 drawPattern(t, width - inset, height - inset, count,
 length, hexagon)
 # Draw hexagons in lower-right corner
 drawPattern(t, width - inset, inset - height, count,
 length, hexagon)

if __name__ == "__main__":
 main()

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

218

  Simple Graphics and Image Processing C h a p t e r 7

Figure 7-5  Radial patterns with random fill colors

Exercises

1.	 Explain the importance of the interface of a class of objects.

2.	 What is object instantiation? What are the options at the programmer’s disposal
during this process?

3.	 Add a function named circle to the polygons module. This function expects the
same arguments as the square and hexagon functions. The function should draw a
circle. (Hint: the loop iterates 360 times.)

4.	 The functions that draw polygons in the polygons module have the same pattern, varying
only in the number of sides (iterations of the loop). Factor this pattern into a more general
function named polygon, which takes the number of sides as an additional argument.

5.	 Turtle graphics windows do not automatically expand in size. What do you suppose
happens when a Turtle object attempts to move beyond a window boundary?

6.	 The Turtle class includes a method named circle. Import the Turtle class, run
help(Turtle.circle), and study the documentation. Then use this method to
draw a filled circle and a half moon.

Case Study: Recursive Patterns in Fractals

In this case study, we develop an algorithm that uses Turtle graphics to display a
special kind of curve known as a fractal object. Fractals are highly repetitive or
recursive patterns. A fractal object appears geometric, yet it cannot be described
with ordinary Euclidean geometry. Strangely, a fractal curve is not one-dimensional,

(continues)
Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

219

Simple Graphics

and a fractal surface is not two-dimensional. Instead, every fractal shape has its
own fractal dimension. To understand what this means, let’s start by considering the
nature of an ordinary curve, which has a precise finite length between any two points.
By contrast, a fractal curve has an indefinite length between any two points. The
apparent length of a fractal curve depends on the level of detail in which it is viewed.
As you zoom in on a segment of a fractal curve, you can see more and more details,
and its length appears greater and greater. Consider a coastline, for example. Seen
from a distance, it has many wiggles but a discernible length. Now put a piece of the
coastline under magnification. It has many similar wiggles, and the discernible length
increases. Self-similarity under magnification is the defining characteristic of fractals
and is seen in the shapes of mountains, the branching patterns of tree limbs, and
many other natural objects.

One example of a fractal curve is the c-curve. Figure 7-6 shows the first six levels
of c-curves and a level-10 c-curve. The level-0 c-curve is a simple line segment. The
level-1 c-curve replaces the level-0 c-curve with two smaller level-0 c-curves that
meet at right angles. The level-2 c-curve does the same thing for each of the two line
segments in the level-1 c-curve. This pattern of subdivision can continue indefinitely,
producing quite intricate shapes. In the remainder of this case study, we develop an
algorithm that uses Turtle graphics to display a c-curve.

Request

Write a program that allows the user to draw a particular c-curve at varying levels.

Figure 7-6  C-curves of levels 0 through 6 and a c-curve of level 10

(continues)

(continued)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

220

  Simple Graphics and Image Processing C h a p t e r 7

Analysis

The proposed interface is shown in Figure 7-7. The program should prompt the user
for the level of the c-curve. After this integer is entered, the program should display a
Turtle graphics window in which it draws the c-curve.

Figure 7-7  The interface for the c-curve program

Design

An N-level c-curve can be drawn with a recursive function. The function receives a
Turtle object, the end points of a line segment, and the current level as arguments.
At level 0, the function draws a simple line segment. Otherwise, a level N c-curve
consists of two level N 2 1 c-curves, constructed as follows:

	 Let be (1 2 1 2) // 2.xm x x y y1 1 2 	

	 Let be (2 1 2 1) // 2.ym x y y x1 1 2 	

The first level N 2 1 c-curve uses the line segment (x1, y1), (xm, ym), and level N 2 1,
so the function is called recursively with these arguments.

The second level N 2 1 c-curve uses the line segment (xm, ym), (x2, y2), and level
N 2 1, so the function is called recursively with these arguments.

For example, in a level-0 c-curve, let (x1, y1) be (50, –50) and (x2, y2) be (50, 50).
Then, to obtain a level-1 c-curve, use the formulas for computing xm and ym to
obtain (xm, ym), which is (0, 0). Figure 7-8 shows a solid line segment for the level-0
c-curve and two dashed line segments for the level-1 c-curve that result from these
operations. In effect, the operations produce two shorter line segments that meet at
right angles.

(continued)

(continues)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

221

Simple Graphics

(continued)

(continues)

Here is the pseudocode for the recursive algorithm:

function cCurve(t, x1, y1, x2, y2, level)
 if level == 0:
 drawLine(x1, y1, x2, y2)
 else
 xm = (x1 + x2 + y1 - y2) // 2
 ym = (x2 + y1 + y2 - x1) // 2
 cCurve(t, x1, y1, xm, ym, level - 1)
 cCurve(t, xm, ym, x2, y2, level - 1)

The function drawLine uses the turtle to draw a line between two given endpoints.

Implementation (Coding)

The program includes the three function definitions of cCurve, drawLine, and main.
Because drawLine is an auxiliary function, its definition is nested within the definition
of cCurve. In addition to the Turtle class, the program imports the functions tracer
and update from the turtle module. Because c-curves with large degrees can take
a long time to draw, you can suspend the turtle’s output until the entire shape has
been internally generated. The pattern of code for doing this is

tracer(False)
<code to draw shapes>
update()

"""
Program file: ccurve.py
Author: Ken
This program prompts the user for the level of a c-curve
and draws a c-curve of that level.
"""

Figure 7-8  A level-0 c-curve (solid) and a level-1 c-curve (dashed)

(50,50)

(0,0)

(50,–50)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

222

  Simple Graphics and Image Processing C h a p t e r 7

from turtle import Turtle, tracer, update

def cCurve(t, x1, y1, x2, y2, level):
 """Draws a c-curve of the given level."""

 def drawLine(x1, y1, x2, y2):
 """Draws a line segment between the endpoints."""
 t.up()
 t.goto(x1, y1)
 t.down()
 t.goto(x2, y2)

 if level == 0:
 drawLine(x1, y1, x2, y2)
 else:
 xm = (x1 + x2 + y1 - y2) // 2
 ym = (x2 + y1 + y2 - x1) // 2
 cCurve(t, x1, y1, xm, ym, level - 1)
 cCurve(t, xm, ym, x2, y2, level - 1)

def main():
 level = int(input("Enter the level (0 or greater): "))
 t = Turtle()
 if level > 8:
 tracer(False)
 t.pencolor("blue")
 t.hideturtle()
 cCurve(t, 50, -50, 50, 50, level)
 if level > 8:
 update()

if __name__ == "__main__":
 main()

(continued)

Image Processing
Over the centuries, human beings have developed numerous technologies for representing
the visual world, the most prominent being sculpture, painting, photography, and motion
pictures. The most recent form of this type of technology is digital image processing. This
enormous field includes the principles and techniques for the following:

•• The capture of images with devices such as flatbed scanners and digital cameras

•• The representation and storage of images in efficient file formats

•• Constructing the algorithms in image-manipulation programs such as Adobe
Photoshop

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

223

Image Processing

In this section, we focus on some of the basic concepts and principles used to solve prob-
lems in image processing.

Analog and Digital Information
Representing photographic images in a computer poses an interesting problem. As you
have seen, computers must use digital information which consists of discrete values, such
as individual integers, characters of text, or bits in a bit string. However, the information
contained in images, sound, and much of the rest of the physical world is analog. Analog
information contains a continuous range of values. You can get an intuitive sense of what
this means by contrasting the behaviors of a digital clock and a traditional analog clock.
A digital clock shows each second as a discrete number on the display. An analog clock
displays the seconds as tick marks on a circle. The clock’s second hand passes by these
marks as it sweeps around the clock’s face. This sweep reveals the analog nature of time:
between any two tick marks on the analog clock, there is a continuous range of positions or
moments of time through which the second hand passes. You can represent these moments
as fractions of a second, but between any two such moments are others that are more pre-
cise (recall the concept of precision used with real numbers). The ticks representing sec-
onds on the analog clock’s face thus represent an attempt to sample moments of time as
discrete values, whereas time itself is continuous, or analog.

Early recording and playback devices for images and sound were all analog devices. If you
examine the surface of a vinyl record under a magnifying glass, you will notice grooves with
regular wave patterns. These patterns directly reflect, or analogize, the continuous wave forms
of the recorded sounds. Likewise, the chemical media on photographic film directly reflect
the continuous color and intensity values of light reflected from the subjects of photographs.

Somehow, the continuous analog information in a real visual scene must be mapped into a
set of discrete values. This conversion process also involves sampling, a technology we con-
sider next.

Sampling and Digitizing Images
A visual scene projects an infinite set of color and intensity values onto a two-dimensional
sensing medium, such as a human being’s retina or a scanner’s surface. If you sample
enough of these values, the digital information can represent an image that is more or less
indistinguishable to the human eye from the original scene.

Sampling devices measure discrete color values at distinct points on a two-dimensional grid.
These values are pixels, which were introduced earlier in this chapter. In theory, the more
pixels that are sampled, the more continuous and realistic the resulting image will appear. In
practice, however, the human eye cannot discern objects that are closer together than 0.1 mm,
so a sampling of 10 pixels per linear millimeter (250 pixels per inch and 62,500 pixels per
square inch) would be plenty accurate. Thus, a 3-inch by 5-inch image would need

3 * 5 * 62,500 pixels/inch 937,500 pixels2 5

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

224

  Simple Graphics and Image Processing C h a p t e r 7

which is approximately one megapixel. For most purposes, however, you can settle for a
much lower sampling size and, thus, fewer pixels per square inch.

Image File Formats
Once an image has been sampled, it can be stored in one of many file formats. A raw image
file saves all of the sampled information. This has a cost and a benefit: The benefit is that
the display of a raw image will be the most true to life, but the cost is that the file size of the
image can be quite large. Back in the days when disk storage was still expensive, computer
scientists developed several schemes to compress the data of an image to minimize its file
size. Although storage is now cheap, these formats are still quite economical for sending
images across networks. Two of the most popular image file formats are JPEG (Joint Photo-
graphic Experts Group) and GIF (Graphic Interchange Format).

Various data-compression schemes are used to reduce the file size of a JPEG image. One
scheme examines the colors of each pixel’s neighbors in the grid. If any color values are the
same, their positions rather than their values are stored, thus potentially saving many bits
of storage. Before the image is displayed, the original color values are restored during the
process of decompression. This scheme is called lossless compression, meaning that no
information is lost. To save even more bits, another scheme analyzes larger regions of pixels
and saves a color value that the pixels’ colors approximate. This is called a lossy scheme,
meaning that some of the original color information is lost. However, when the image is
decompressed and displayed, the human eye usually is not able to detect the difference
between the new colors and the original ones.

A GIF image relies on an entirely different compression scheme. The compression algorithm
consists of two phases. In the first phase, the algorithm analyzes the color samples to build
a table, or color palette, of up to 256 of the most prevalent colors. The algorithm then visits
each sample in the grid and replaces it with the key of the closest color in the color palette.
The resulting image file thus consists of at most 256 color values and the integer keys of
the image’s colors in the palette. This strategy can potentially save a huge number of bits of
storage. The decompression algorithm uses the keys and the color palette to restore the grid
of pixels for display. Although GIF uses a lossy compression scheme, it works very well for
images with broad, flat areas of the same color, such as cartoons, backgrounds, and banners.

Image-Manipulation Operations
Image-manipulation programs either transform the information in the pixels or alter the
arrangement of the pixels in the image. These programs also provide fairly low-level opera-
tions for transferring images to and from file storage. Among other things, these programs
can do the following:

•• Rotate an image

•• Convert an image from color to grayscale

•• Apply color filtering to an image

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

225

Image Processing

•• Highlight a particular area in an image

•• Blur all or part of an image

•• Sharpen all or part of an image

•• Control the brightness of an image

•• Perform edge detection on an image

•• Enlarge or reduce an image’s size

•• Apply color inversion to an image

•• Morph an image into another image

You’ll learn how to write Python code that can perform some of these manipulation tasks
later in this chapter, and you will have a chance to practice others in the programming
projects.

The Properties of Images
When an image is loaded into a program such as a Web browser, the software maps the
bits from the image file into a rectangular area of colored pixels for display. The coordi-
nates of the pixels in this two-dimensional grid range from (0, 0) at the upper-left corner
of an image to (width – 1, height – 1) at the lower-right corner, where width and height are
the image’s dimensions in pixels. Thus, the screen coordinate system for the display of an
image is somewhat different from the standard Cartesian coordinate system that we used
with Turtle graphics, where the origin (0, 0) is at the center of the rectangular grid. The
RGB color system introduced earlier in this chapter is a common way of representing the
colors in images. For our purposes, then, an image consists of a width, a height, and a set
of color values accessible by means of (x, y) coordinates. A color value consists of the tuple
(r, g, b), where the variables refer to the integer values of its red, green, and blue
components, respectively.

The images Module
To facilitate our discussion of image-processing algorithms, we now present a small mod-
ule of high-level Python resources for image processing. This package of resources, which
is named images, allows the programmer to load an image from a file, view the image in
a window, examine and manipulate an image’s RGB values, and save the image to a file.
The images module is a non-standard, open-source Python tool. You can find installation
instructions in Appendix B, but placing the file images.py and some sample image files in
your current working directory will get you started.

The images module includes a class named Image. The Image class represents an image
as a two-dimensional grid of RGB values. The methods for the Image class are listed in
Table 7-4. In this table, the variable i refers to an instance of the Image class.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

226

  Simple Graphics and Image Processing C h a p t e r 7

Before we discuss some standard image-processing algorithms, let’s try out the resources of
the images module. This version of the images module accepts only image files in GIF for-
mat. For the purposes of this exercise, we also assume that a GIF image of my cat, Smokey,
has been saved in a file named smokey.gif in the current working directory. The following
session with the interpreter does three things:

1.	 Imports the Image class from the images module

2.	 Instantiates this class using the file named smokey.gif

3.	 Draws the image

The resulting image display window is shown in Figure 7-9.
>>> from images import Image
>>> image = Image("smokey.gif")
>>> image.draw()

Image Method What It Does

i = Image(filename) Loads and returns an image from a file with the
given filename. Raises an error if the filename is
not found or the file is not a GIF file.

i = Image(width, height) Creates and returns a blank image with the given
dimensions. The color of each pixel is transpar-
ent, and the filename is the empty string.

i.getWidth() Returns the width of i in pixels.

i.getHeight() Returns the height of i in pixels.

i.getPixel(x, y) Returns a tuple of integers representing the RGB
values of the pixel at position (x, y).

i.setPixel(x, y, (r, g, b)) Replaces the RGB value at the position (x, y) with
the RGB value given by the tuple (r, g, b).

i.draw() Displays i in a window. The user must close the
window to return control to the method’s caller.

i.clone() Returns a copy of i.

i.save() Saves i under its current filename. If i does not
yet have a filename, save does nothing.

i.save(filename) Saves i under filename. Automatically adds a
.gif extension if filename does not contain it.

Table 7-4	 The Image methods

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

227

Image Processing

Python raises an exception if it cannot locate the file in the current directory, or if the file is not
a GIF file. Note also that the user must close the window to return control to the caller of the
method draw. If you are working in the shell, the shell prompt will reappear when you do this.
The image can then be redrawn, after other operations are performed, by calling draw again.

Once an image has been created, you can examine its width and height, as follows:
>>> image.getWidth()
198
>>> image.getHeight()
149

Alternatively, you can print the image’s string representation:
>>> print(image)
Filename: smokey.gif
Width: 198
Height: 149

The method getPixel returns a tuple of the RGB values at the given coordinates. The
following session shows the information for the pixel at position (0, 0), which is at the
image’s upper-left corner.
>>> image.getPixel(0, 0)
(194, 221, 114)

Instead of loading an existing image from a file, the programmer can create a new, blank
image. The programmer specifies the image’s width and height; the resulting image consists
of transparent pixels. Such images are useful for creating backgrounds for drawing simple
shapes, or for creating new images that receive information from existing images.

The programmer can use the method setPixel to replace an RGB value at a given position
in an image. The next session creates a new 150-by-150 image. The pixels along the three
horizontal lines at the middle of the image are then replaced with new blue pixels. The
images before and after this transformation are shown in Figure 7-10. The loop visits every
pixel along the row of pixels whose y coordinate is the image’s height divided by 2.

Figure 7-9  An image display window

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

228

  Simple Graphics and Image Processing C h a p t e r 7

>>> image = Image(150, 150)
>>> image.draw()
>>> blue = (0, 0, 255)
>>> y = image.getHeight() // 2
>>> for x in range(image.getWidth()):
 image.setPixel(x, y - 1, blue)
 image.setPixel(x, y, blue)
 image.setPixel(x, y + 1, blue)
>>> image.draw()

Finally, you can save an image under its current filename or a different filename. Use the
save operation to write an image back to an existing file using the current filename. The
save operation can also receive a string parameter for a new filename. The image is writ-
ten to a file with that name, which then becomes the current filename. The following code
saves the new image using the filename horizontal.gif:
>>> image.save("horizontal.gif")

If you omit the .gif extension in the filename, the method adds it automatically.

A Loop Pattern for Traversing a Grid
Most of the loops we have used in this book have had a linear loop structure—that
is, they visit each element in a sequence or they count through a sequence of numbers
using a single loop control variable. By contrast, many image-processing algorithms
use a nested loop structure to traverse a two-dimensional grid of pixels. Figure 7-11
shows such a grid. Its height is 3 rows, numbered 0 through 2. Its width is 5 columns,
numbered 0 through 4. Each data value in the grid is accessed with a pair of coordinates
using the form (<column>, <row>). Thus, the datum in the middle of the grid, which
is shaded, is at position (2, 1). The datum in the upper-left corner is at the origin of the
grid, (0, 0).

Figure 7-10  An image before and after replacing the pixels

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

229

Image Processing

A nested loop structure to traverse a grid consists of two loops, an outer one and an inner
one. Each loop has a different loop control variable. The outer loop iterates over one coor-
dinate, while the inner loop iterates over the other coordinate. Here is a session that prints
the pairs of coordinates visited when the outer loop traverses the y coordinates:
>>> width = 2
>>> height = 3
>>> for y in range(height):
 for x in range(width):
 print((x, y), end = " ")
 print()
(0, 0) (1, 0)
(0, 1) (1, 1)
(0, 2) (1, 2)

As you can see, this loop marches across a row in an imaginary 2-by-3 grid, prints the
coordinates at each column in that row, and then moves on to the next row. The following
template captures this pattern, which is called a row-major traversal. We use this template
to develop many of the algorithms that follow.
for y in range(height):
 for x in range(width):
 <do something at position (x, y)>

The next code segment uses a nested for loop to fill a blank image in red:
image = Image(150, 150)
for y in range(image.getHeight()):
 for x in range(image.getWidth()):
 image.setPixel(x, y, (255, 0, 0))

A Word on Tuples
Many of the algorithms obtain a pixel from the image, apply some function to the pixel’s
RGB values, and reset the pixel with the results. Because a pixel’s RGB values are stored
in a tuple, manipulating them is quite easy. As you have already seen, Python allows the
assignment of one tuple to another in such a manner that the elements of the source tuple

Figure 7-11  A grid with 3 rows and 5 columns

3210
0
1
2

4

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

230

  Simple Graphics and Image Processing C h a p t e r 7

can be bound to distinct variables in the destination tuple. For example, suppose you want
to increase each of a pixel’s RGB values by 10, thereby making the pixel brighter. You first
call getPixel to retrieve a tuple and assign it to a tuple that contains three variables, as
follows:

>>> image = Image("smokey.gif")
>>> (r, g, b) = image.getPixel(0, 0)

You can now see what the RGB values are by examining the following variables:
>>> r
194
>>> g
221
>>> b
114

The task is completed by building a new tuple with the results of the computations and
resetting the pixel to that tuple:
>>> image.setPixel(0, 0, (r + 10, g + 10, b + 10))

You can use patterns like (r, g, b) almost anywhere except when defining parameters to
a function. Instead, a function parameter must be a single name, and you must extract the
components of the structure so named in the function’s body. For example, the function
average computes the average of the numbers in a triple, or 3-tuple, as follows:
>>> def average(triple):
 (a, b, c) = triple
 return (a + b + c) // 3
>>> average((40, 50, 60))
50

Armed with these basic operations, we can now examine some simple image-processing
algorithms. Some of the algorithms visit every pixel in an image and modify its color in
some manner. Other algorithms use the information from an image’s pixels to build a new
image. For consistency and ease of use, we represent each algorithm as a Python function
that expects an image as an argument. Some functions return a new image, whereas others
simply modify the argument image.

Converting an Image to Black and White
Perhaps the easiest transformation is to convert a color image to black and white. For each
pixel, the algorithm computes the average of the red, green, and blue values. The algorithm
then resets the pixel’s color values to 0 (black) if the average is closer to 0, or to 255 (white)
if the average is closer to 255. The code for the function blackAndWhite follows. Figure 7-12
shows Smokey the cat before and after the transformation.
def blackAndWhite(image):
 """Converts the argument image to black and white."""
 blackPixel = (0, 0, 0)
 whitePixel = (255, 255, 255)
 for y in range(image.getHeight()):

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

231

Image Processing

 for x in range(image.getWidth()):
 (r, g, b) = image.getPixel(x, y)
 average = (r + g + b) // 3
 if average < 128:
 image.setPixel(x, y, blackPixel)
 else:
 image.setPixel(x, y, whitePixel)

Figure 7-12  Converting a color image to black and white

Note that the second image appears rather stark, like a woodcut.

The function can be tested in a short script, as follows:
from images import Image

Code for blackAndWhite's function definition goes here

def main(filename = "smokey.gif"):
 image = Image(filename)
 print("Close the image window to continue.")
 image.draw()
 blackAndWhite(image)
 print("Close the image window to quit.")
 image.draw()

if __name__ == "__main__":
 main()

Note that the main function includes an optional argument for the image filename. Its
default should be the name of an image in the current working directory.

Converting an Image to Grayscale
Black-and-white photographs are not really just black and white; they also contain various
shades of gray known as grayscale. Grayscale can be an economical color scheme, wherein
the only color values might be 8, 16, or 256 shades of gray (including black and white at
the extremes). Let’s consider how to convert a color image to grayscale. As a first step, you
might try replacing the color values of each pixel with their average, as follows:
average = (r + g + b) // 3
image.setPixel(x, y, (average, average, average))

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

232

  Simple Graphics and Image Processing C h a p t e r 7

Although this method is simple, it does not reflect the manner in which the different color
components affect human perception. The human eye is actually more sensitive to green
and red than it is to blue. As a result, the blue component appears darker than the other
two components. A scheme that combines the three components needs to take these differ-
ences in luminance into account. A more accurate method would weight green more than
red and red more than blue. Therefore, to obtain the new RGB values, instead of adding up
the color values and dividing by 3, you should multiply each one by a weight factor and add
the results. Psychologists have determined that the relative luminance proportions of green,
red, and blue are .587, .299, and .114, respectively. Note that these values add up to 1. The
next function, grayscale, uses this strategy, and Figure 7-13 shows the results.
def grayscale(image):
 """Converts the argument image to grayscale."""
 for y in range(image.getHeight()):
 for x in range(image.getWidth()):
 (r, g, b) = image.getPixel(x, y)
 r = int(r * 0.299)
 g = int(g * 0.587)
 b = int(b * 0.114)
 lum = r + g + b
 image.setPixel(x, y, (lum, lum, lum))

Figure 7-13  Converting a color image to grayscale

A comparison of the results of this algorithm with those of the simpler one using the crude
averages is left as an exercise for you.

Copying an Image
The next few algorithms do not modify an existing image, but instead use that image to gen-
erate a brand new image with the desired properties. One could create a new, blank image
of the same height and width as the original, but it is often useful to start with an exact copy
of the original image that retains the pixel information as well. The Image class includes a
clone method for this purpose. The method clone builds and returns a new image with the
same attributes as the original one, but with an empty string as the filename. The two images
are thus structurally equivalent but not identical, as discussed in Chapter 5. This means that

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

233

Image Processing

changes to the pixels in one image will have no impact on the pixels in the same positions in
the other image. The following session demonstrates the use of the clone method:

>>> from images import Image
>>> image = Image("smokey.gif")
>>> image.draw()
>>> newImage = image.clone() # Create a copy of image
>>> newImage.draw()
>>> grayscale(newImage) # Change in second window only
>>> newImage.draw()
>>> image.draw() # Verify no change to original

Blurring an Image
Occasionally, an image appears to contain rough, jagged edges. This condition, known as
pixilation, can be mitigated by blurring the image’s problem areas. Blurring makes these areas
appear softer, but at the cost of losing some definition. We now develop a simple algorithm
to blur an entire image. This algorithm resets each pixel’s color to the average of the colors
of the four pixels that surround it. The function blur expects an image as an argument and
returns a copy of that image with blurring. The function blur begins its traversal of the grid
with position (1, 1) and ends with position (width 2 2, height 2 2). This means that the algo-
rithm does not transform the pixels on the image’s outer edges. We would like to avoid this,
because otherwise, the code would have to check for the grid’s boundaries when it obtains
information from a pixel’s neighbors (the pixels on the boundaries have only two or three
neighbors, rather than four). Here is the code for blur, followed by an explanation:

def blur(image):
 """Builds and returns a new image which is a
 blurred copy of the argument image."""

 def tripleSum(triple1, triple2):
#1
 (r1, g1, b1) = triple1
 (r2, g2, b2) = triple2
 return (r1 + r2, g1 + g2, b1 + b2)

 new = image.clone()
 for y in range(1, image.getHeight() - 1):
 for x in range(1, image.getWidth() - 1):
 oldP = image.getPixel(x, y)
 left = image.getPixel(x - 1, y) # To left
 right = image.getPixel(x + 1, y) # To right
 top = image.getPixel(x, y - 1) # Above
 bottom = image.getPixel(x, y + 1) # Below
 sums = reduce(tripleSum,
   [oldP, left, right, top, bottom])
#2
 averages = tuple(map(lambda x: x // 5, sums))
#3
 new.setPixel(x, y, averages)
 return new

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

234

  Simple Graphics and Image Processing C h a p t e r 7

The code for blur includes some interesting design work. In the following explanation, the
numbers noted appear to the right of the corresponding lines of code:

•• At #1, the nested auxiliary function tripleSum is defined. This function expects two
tuples of integers as arguments and returns a single tuple containing the sums of the val-
ues at each position.

•• At #2, five tuples of RGB values are wrapped in a list and passed with the tripleSum
function to the reduce function. This function repeatedly applies tripleSum to compute
the sums of the tuples, until a single tuple containing the sums is returned.

•• At #3, a lambda function is mapped onto the tuple of sums, and the result is converted
to a tuple. The lambda function divides each sum by 5. Thus, you are left with a tuple of
the average RGB values.

Although this code is still rather complex, try writing it without map and reduce, and then
compare the two versions.

Edge Detection
When artists paint pictures, they often sketch an outline of the subject in pencil or char-
coal. They then fill in and color over the outline to complete the painting. Edge detection
performs the inverse function on a color image: It removes the full colors to uncover the
outlines of the objects represented in the image.

A simple edge-detection algorithm examines the neighbors below and to the left of each
pixel in an image. If the luminance of the pixel differs from that of either of these two neigh-
bors by a significant amount, you have detected an edge, and you set that pixel’s color to
black. Otherwise, you set the pixel’s color to white.

The function detectEdges expects an image and an integer as parameters. The function
returns a new black-and-white image that explicitly shows the edges in the original image.
The integer parameter allows the user to experiment with various differences in luminance.
Figure 7-14 shows the image of Smokey the cat before and after detecting edges with lumi-
nance thresholds of 10 and 20. Here is the code for function detectEdges:
def detectEdges(image, amount):
 """Builds and returns a new image in which the edges of
 the argument image are highlighted and the colors are
 reduced to black and white."""

 def average(triple):
 (r, g, b) = triple
 return (r + g + b) // 3

 blackPixel = (0, 0, 0)
 whitePixel = (255, 255, 255)
 new = image.clone()

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

235

Image Processing

 for y in range(image.getHeight() - 1):
 for x in range(1, image.getWidth()):
 oldPixel = image.getPixel(x, y)
 leftPixel = image.getPixel(x - 1, y)
 bottomPixel = image.getPixel(x, y + 1)
 oldLum = average(oldPixel)
 leftLum = average(leftPixel)
 bottomLum = average(bottomPixel)
 if abs(oldLum - leftLum) > amount or \
 abs(oldLum - bottomLum) > amount:
 new.setPixel(x, y, blackPixel)
 else:
 new.setPixel(x, y, whitePixel)
 return new

Figure 7-14  Edge detection: the original image, a luminance threshold of 10, and a
luminance threshold of 20

Reducing the Image Size
The size and the quality of an image on a display medium, such as a computer monitor
or a printed page, depend on two factors: the image’s width and height in pixels and the
display medium’s resolution. Resolution is measured in pixels, or dots per inch (DPI).
When the resolution of a monitor is increased, the images appear smaller, but their quality
increases. Conversely, when the resolution is decreased, images become larger, but their
quality degrades. Some devices, such as printers, provide good-quality image displays with
small DPIs such as 72, whereas monitors tend to give better results with higher DPIs. You
can set the resolution of an image itself before the image is captured. Scanners and digital
cameras have controls that allow the user to specify the DPI values. A higher DPI causes
the sampling device to take more samples (pixels) through the two-dimensional grid.

In this section, we ignore the issues raised by resolution and learn how to reduce the size
of an image once it has been captured. (For the purposes of this discussion, the size of an
image is its width and height in pixels.) Reducing an image’s size can dramatically improve
its performance characteristics, such as load time in a Web page and space occupied on a

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

236

  Simple Graphics and Image Processing C h a p t e r 7

storage medium. In general, if the height and width of an image are each reduced by a fac-
tor of N, the number of color values in the resulting image is reduced by a factor of N 2.

A size reduction usually preserves an image’s aspect ratio (that is, the ratio of its width
to its height). A simple way to shrink an image is to create a new image whose width and
height are a constant fraction of the original image’s width and height. The algorithm then
copies the color values of just some of the original image’s pixels to the new image. For
example, to reduce the size of an image by a factor of 2, you could copy the color values
from every other row and every other column of the original image to the new image.

The Python function shrink exploits this strategy. The function expects the original image
and a positive integer shrinkage factor as parameters. A shrinkage factor of 2 tells Python
to shrink the image to half of its original dimensions, a factor of 3 tells Python to shrink the
image to one-third of its original dimensions, and so forth. The algorithm uses the shrink-
age factor to compute the size of the new image and then creates it. Because a one-to-one
mapping of grid positions in the two images is not possible, separate variables are used to
track the positions of the pixels in the original image and the new image. The loop traverses
the larger image (the original) and skips positions by incrementing its coordinates by the
shrinkage factor. The new image’s coordinates are incremented by 1, as usual. The loop
continuation conditions are also offset by the shrinkage factor to avoid range errors. Here is
the code for the function shrink:
def shrink(image, factor):
 """Builds and returns a new image which is a smaller
 copy of the argument image, by the factor argument."""
 width = image.getWidth()
 height = image.getHeight()
 new = Image(width // factor, height // factor)
 oldY = 0
 newY = 0
 while oldY < height - factor:
 oldX = 0
 newX = 0
 while oldX < width - factor:
 oldP = image.getPixel(oldX, oldY)
 new.setPixel(newX, newY, oldP)
 oldX += factor
 newX += 1
 oldY += factor
 newY += 1
 return new

Reducing an image’s size throws away some of its pixel information. Indeed, the greater the
reduction, the greater the information loss. However, as the image becomes smaller, the
human eye does not normally notice the loss of visual information, and therefore the qual-
ity of the image remains stable to perception.

The results are quite different when an image is enlarged. To increase the size of an image,
you have to add pixels that were not there to begin with. In this case, you try to approxi-
mate the color values that pixels would receive if you took another sample of the subject at
a higher resolution. This process can be very complex, because you also have to transform

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

237

Summary

the existing pixels to blend in with the new ones that are added. Because the image gets
larger, the human eye is in a better position to notice any degradation of quality when com-
paring it to the original. The development of a simple enlargement algorithm is left as an
exercise for you.

Although we have covered only a tiny subset of the operations typically performed by an
image-processing program, these operations and many more use the same underlying con-
cepts and principles.

Exercises

1.	 Explain the advantages and disadvantages of lossless and lossy image file-
compression schemes.

2.	 The size of an image is 1680 pixels by 1050 pixels. Assume that this image has been
sampled using the RGB color system and placed into a raw image file. What is the
minimum size of this file in megabytes? (Hint: There are 8 bits in a byte, 1024 bits in
a kilobyte, and 1000 kilobytes in a megabyte.)

3.	 Describe the difference between Cartesian coordinates and screen coordinates.

4.	 Describe how a row-major traversal visits every position in a two-dimensional grid.

5.	 How would a column-major traversal of a grid work? Write a code segment that
prints the positions visited by a column-major traversal of a 2-by-3 grid.

6.	 Explain why one would use the clone method with a given object.

7.	 Why does the blur function need to work with a copy of the original image?

Summary
•• Object-based programming uses classes, objects, and methods to solve problems.

•• A class specifies a set of attributes and methods for the objects of that class.

•• The values of the attributes of a given object make up its state.

•• A new object is obtained by instantiating its class. An object’s attributes receive their
initial values during instantiation.

•• The behavior of an object depends on its current state and on the methods that manip-
ulate this state.

•• The set of a class’s methods is called its interface. The interface is what a programmer
needs to know to use objects of a class. The information in an interface usually includes the
method headers and documentation about arguments, return values, and changes of state.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

238

  Simple Graphics and Image Processing C h a p t e r 7

•• Turtle graphics is a lightweight toolkit used to draw pictures in a Cartesian coordi-
nate system. In this system, the Turtle object has a position, a color, a line width, a
direction, and a state of being down or up with respect to a drawing window. The
values of these attributes are used and changed when the Turtle object’s methods
are called.

•• The RGB system represents a color value by mixing integer components that represent
red, green, and blue intensities. There are 256 different values for each component,
ranging from 0, indicating absence, to 255, indicating complete saturation. There are 224
different combinations of RGB components for 16,777,216 unique colors.

•• A grayscale system uses 8, 16, or 256 distinct shades of gray.

•• Digital images are captured by sampling analog information from a light source, using a
device such as a digital camera or a flatbed scanner. Each sampled color value is mapped
to a discrete color value among those supported by the given color system.

•• Digital images can be stored in several file formats. A raw image format preserves all of
the sampled color information but occupies the most storage space. The JPEG format
uses various data-compression schemes to reduce the file size, while preserving fidel-
ity to the original samples. Lossless schemes either preserve or reconstitute the original
samples upon decompression. Lossy schemes lose some of the original sample informa-
tion. The GIF format is a lossy scheme that uses a palette of up to 256 colors and stores
the color information for the image as indexes into this palette.

•• During the display of an image file, each color value is mapped onto a pixel in a two-
dimensional grid. The positions in this grid correspond to the screen coordinate system,
in which the upper-left corner is at (0, 0), and the lower-right corner is at (width 2 1,
height 2 1).

•• A nested loop structure is used to visit each position in a two-dimensional grid. In a
row-major traversal, the outer loop of this structure moves down the rows using the
y-coordinate, and the inner loop moves across the columns using the x-coordinate. Each
column in a row is visited before moving to the next row. A column-major traversal
reverses these settings.

•• Image-manipulation algorithms either transform pixels at given positions or create
a new image using the pixel information of a source image. Examples of the former
type of operation are conversion to black and white and conversion to grayscale.
Blurring, edge detection, and altering the image size are examples of the second type
of operation.

Review Questions
1.	 The interface of a class is the set of all its

a.	 objects
b.	 attributes
c.	 methods

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

239

Review Questions

2.	 The state of an object consists of

a.	 its class of origin
b.	 the values of all of its attributes
c.	 its physical structure

3.	 Instantiation is a process that

a.	 compares two objects for equality
b.	 builds a string representation of an object
c.	 creates a new object of a given class

4.	 The print function

a.	 creates a new object
b.	 copies an existing object
c.	 prints a string representation of an object

5.	 The clone method

a.	 creates a new object
b.	 copies an existing object
c.	 returns a string representation of an object

6.	 The origin (0, 0) in a screen coordinate system is at

a.	 the center of a window
b.	 the upper-left corner of a window

7.	 A row-major traversal of a two-dimensional grid visits all of the positions in a

a.	 row before moving to the next row
b.	 column before moving to the next column

8.	 In a system of 256 unique colors, the number of bits needed to represent each
color is

a.	 4
b.	 8
c.	 16

9.	 In the RGB system, where each color contains three components with 256 pos-
sible values each, the number of bits needed to represent each color is

a.	 8
b.	 24
c.	 256

10.	 The process whereby analog information is converted to digital information is called

a.	 recording
b.	 sampling

c.	 filtering
d.	 compressing

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

240

  Simple Graphics and Image Processing C h a p t e r 7

Projects
1.	 Define a function drawCircle. This function should expect a Turtle object,

the coordinates of the circle’s center point, and the circle’s radius as argu-
ments. The function should draw the specified circle. The algorithm should
draw the circle’s circumference by turning 3 degrees and moving a given
distance 120 times. Calculate the distance moved with the formula 2.0 * p *
radius / 120.0.

2.	 Modify this chapter’s case study program (the c-curve) so that it draws the line
segments using random colors.

3.	 The Koch snowflake is a fractal shape. At level 0, the shape is an equilateral tri-
angle. At level 1, each line segment is split into four equal parts, producing an
equilateral bump in the middle of each segment. Figure 7-15 shows these shapes
at levels 0, 1, and 2.

Figure 7-15  First three levels of a Koch snowflake

		 At the top level, the script uses a function drawFractalLine to draw three fractal
lines. Each line is specified by a given distance, direction (angle), and level. The
initial angles are 0, 2120, and 120 degrees. The initial distance can be any size,
such as 200 pixels. The function drawFractalLine is recursive. If the level is 0,
then the turtle moves the given distance in the given direction. Otherwise, the
function draws four fractal lines with one-third of the given distance, angles that
produce the given effect, and the given level minus 1. Write a script that draws
the Koch snowflake.

4.	 The twentieth-century Dutch artist Piet Mondrian developed a style of abstract
painting that exhibited simple recursive patterns. To generate such a pattern
with a computer, one would begin with a filled rectangle in a random color and
then repeatedly fill two unequal subdivisions with random colors, as shown in
Figure 7-16.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

241

Projects

		 As you can see, the algorithm continues the process of subdivision until an “aes-
thetically right moment” is reached. In this version, the algorithm divides the
current rectangle into portions representing 1/3 and 2/3 of its area and alternates
these subdivisions along the horizontal and vertical axes. Design, implement, and
test a script that uses a recursive function to draw these patterns.

5.	 Define and test a function named posterize. This function expects an image
and a tuple of RGB values as arguments. The function modifies the image like the
blackAndWhite function, but it uses the given RGB values instead of black.

6.	 Define a second version of the grayscale function that uses the allegedly crude
method of simply averaging each RGB value. Test the function by comparing its
results with those of the other version discussed in this chapter.

7.	 Inverting an image makes it look like a photographic negative. Define and test
a function named invert. This function expects an image as an argument and
resets each RGB component to 255 minus that component. Be sure to test the
function with images that have been converted to grayscale and black and white
as well as color images.

8.	 Old-fashioned photographs from the nineteenth century are not quite black and
white and not quite color, but seem to have shades of gray, brown, and blue. This
effect is known as sepia, as shown in Figure 7-17.

Figure 7-17  Converting a color image to sepia

Figure 7-16  Generating a simple recursive pattern in the style of Piet Mondrian

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

242

  Simple Graphics and Image Processing C h a p t e r 7

		 Write and test a function named sepia that converts a color image to sepia. This
function should first call grayscale to convert the color image to grayscale. A
code segment for transforming the grayscale values to achieve a sepia effect fol-
lows. Note that the value for green does not change.
(red, green, blue) = image.getPixel(x, y)
if red < 63:
 red = int(red * 1.1)
 blue = int(blue * 0.9)
elif red < 192:
 red = int(red * 1.15)
 blue = int(blue * 0.85)
else:
 red = min(int(red * 1.08), 255)
 blue = int(blue * 0.93)

9.	 Darkening an image requires adjusting its pixels toward black as a limit, whereas
lightening an image requires adjusting them toward white as a limit. Because
black is RGB (0, 0, 0) and white is RGB (255, 255, 255), adjusting the three RGB
values of each pixel by the same amount in either direction will have the desired
effect. Of course, the algorithms must avoid exceeding either limit during the
adjustments.

		 Lightening and darkening are actually special cases of a process known as color
filtering. A color filter is any RGB triple applied to an entire image. The filtering
algorithm adjusts each pixel by the amounts specified in the triple. For example,
you can increase the amount of red in an image by applying a color filter with a
positive red value and green and blue values of 0. The filter (20, 0, 0) would make
an image’s overall color slightly redder. Alternatively, you can reduce the amount
of red by applying a color filter with a negative red value. Once again, the algo-
rithms must avoid exceeding the limits on the RGB values.

		 Develop three algorithms for lightening, darkening, and color filtering as three
related Python functions, lighten, darken, and colorFilter. The first two
functions should expect an image and a positive integer as arguments. The third
function should expect an image and a tuple of integers (the RGB values) as argu-
ments. The following session shows how these functions can be used with the
images image1, image2, and image3, which are initially transparent:
>>> image1 = Image(100, 50)
>>> image2 = Image(100, 50)
>>> image3 = Image(100, 50)
>>> darken(image1, 128) # Converts to gray
>>> darken(image2, 64) # Converts to dark gray
>>> colorFilter(image3, (255, 0, 0)) # Converts to red

		 Note that the function colorFilter should do most of the work.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

243

Projects

10.	 The edge-detection function described in this chapter returns a black-and-white
image. Think of a similar way to transform color values so that the new image is still
in its original colors but the outlines within it are merely sharpened. Then, define a
function named sharpen that performs this operation. The function should expect
an image and two integers as arguments. One integer should represent the degree
to which the image should be sharpened. The other integer should represent the
threshold used to detect edges. (Hint: A pixel can be darkened by making its RGB
values smaller.)

11.	 To enlarge an image, one must fill in new rows and columns with color
information based on the colors of neighboring positions in the original image.
Develop and test a function named enlarge. This function should expect an
image and an integer factor as arguments. The function should build and return
a new image that represents the expansion of the original image by the factor.
(Hint: Copy each row of pixels in the original image to one or more rows in the
new image. To copy a row, use two index variables, one that starts on the left
of the row and one that starts on the right. These two indexes converge to the
middle. This will allow you to copy each pixel to one or more positions of a row
in the new image.)

12.	 Each image-processing function that modifies its image argument has the same
loop pattern for traversing the image. The only thing that varies is the code used
to change each pixel within the loop. Section 6.6 of this book, on higher-order
functions, suggests a simpler design pattern for such code. Design a single func-
tion, named transform, which expects an image and a function as arguments.
When this function is called, it should be passed another function that expects a
tuple of integers and returns a tuple of integers. This is the function that trans-
forms the information for an individual pixel (such as converting it to black and
white or gray-scale). The transform function contains the loop logic for travers-
ing its image argument. In the body of the loop, the transform function accesses
the pixel at the current position, passes it as an argument to the other function,
and resets the pixel in the image to the function’s value. Write and test a script
that defines this function and uses it to perform at least two different types of
transformation on an image.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

C h a p t e r 8
Graphical User
Interfaces

After completing this chapter, you will be able to:

Design and code a GUI-based program

Define a new class using subclassing and inheritance

Instantiate and lay out different types of window compo-
nents, such as labels, entry fields, and command buttons,
in a window’s frame

Define methods that handle events associated with window
components

Organize sets of window components in nested frames

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

245

The Behavior of Terminal-Based Programs and GUI-Based Programs

Most people do not judge a book by its cover. They are interested in its contents, not its
appearance. However, users judge a software product by its user interface because they
have no other way to access its functionality. With the exception of Chapter 7, in which
we explored graphics and image processing, this book has focused on programs that pres-
ent a terminal-based user interface. This type of user interface is perfectly adequate for
some applications, and it is the simplest and easiest for beginning programmers to code.
However, 99% of the world’s computer users never see such a user interface. Instead, most
interactive computer software employs a graphical user interface or GUI (or its close
relative, the touchscreen interface). A GUI displays text as well as small images (called
icons) that represent objects such as folders, files of different types, command buttons,
and drop-down menus. In addition to entering text at the keyboard, the user of a GUI can
select some of these icons with a pointing device, such as a mouse, and move them around
on the display. Commands can be activated by pressing the enter key or control keys, by
pressing a command button, by selecting a drop-down menu item, or by double-clicking
on some icons with the mouse. Put more simply, a GUI displays all information, including
text, graphically to its users and allows them to manipulate this information directly with a
pointing device.

In this chapter, you will learn how to develop GUIs. Much GUI-based programming
requires you to use existing classes, objects, and their methods, as you did in previous chap-
ters. Along the way, you will also learn to how to develop new classes of objects, such as
application windows, by extending or repurposing existing classes. Rather than defining a
new class of objects from scratch, you will create a customized version of an existing class
by the mechanisms of subclassing and inheritance. GUI programming provides an engag-
ing area for learning these techniques, which play a prominent role in modern software
development.

The Behavior of Terminal-Based Programs
and GUI-Based Programs
The transition to GUIs involves making a significant adjustment to your thinking. A GUI
program is event driven, meaning that it is inactive until the user clicks a button or selects
a menu option. In contrast, a terminal-based program maintains constant control over
the interactions with the user. Put differently, a terminal-based program prompts users to
enter successive inputs, whereas a GUI program puts users in change, allowing them to
enter inputs in any order and waiting for them to press a command button or select a menu
option.

To make this difference clear, we begin by examining the look and behavior of two differ-
ent versions of the same program from a user’s point of view. This program, first intro-
duced in Chapter 2, computes and displays a person’s income tax, given two inputs—the
gross income and the number of dependents. The first version of the program includes a
terminal-based user interface, whereas the second version uses a graphical user interface.
Although both programs perform the same function, their behavior, look, and feel from a
user’s perspective are quite different.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

246

  Graphical User InterfacesC h a p t e r 8

The Terminal-Based Version
The terminal-based version of the program prompts the user for his gross income and
number of dependents. After he enters his inputs, the program responds by computing and
displaying his income tax. The program then terminates execution. A sample session with
this program is shown in Figure 8-1.

Figure 8-1  A session with the terminal-based tax calculator program

This terminal-based user interface has several obvious effects on its users:

•• The user is constrained to reply to a definite sequence of prompts for inputs. Once an
input is entered, there is no way to back up and change it.

•• To obtain results for a different set of input data, the user must run the program again.
At that point, all of the inputs must be re-entered.

Each of these effects poses a problem for users that can be solved by converting the inter-
face to a GUI.

The GUI-Based Version
The GUI-based version of the program displays a window that contains various compo-
nents, also called widgets. Some of these components look like text, while others provide
visual cues as to their use. Figure 8-2 shows snapshots of a sample session with this version
of the program. The snapshot on the left shows the interface at program start-up, whereas
the snapshot on the right shows the interface after the user has entered inputs and clicked
the Compute button. This program was run on a Macintosh; on a Windows- or Linux-
based PC, the windows look slightly different.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

247

The Behavior of Terminal-Based Programs and GUI-Based Programs

The window in Figure 8-2 contains the following components:

•• A title bar at the top of the window. This bar contains the title of the program, “Tax Cal-
culator.” It also contains three colored disks. Each disk is a command button. The user can
use the mouse to click the left disk to quit the program, the middle disk to minimize the
window, or the right disk to zoom the window. The user can also move the window around
the screen by holding the left mouse button on the title bar and dragging the mouse.

•• A set of labels along the left side of the window. These are text elements that describe
the inputs and outputs. For example, “Gross income” is one label.

•• A set of entry fields along the right side of the window. These are boxes within which the
program can output text or receive it as input from the user. The first two entry fields will
be used for inputs, while the last field will be used for the output. At program start-up,
the fields contain default values, as shown in the window on the left side of Figure 8-2.

•• A single command button labeled Compute. When the user uses the mouse to press
this button, the program responds by using the data in the two input fields to compute
the income tax. This result is then displayed in the output field. Sample input data
and the corresponding output are shown in the window on the right side of Figure 8-2.

•• The user can also alter the size of the window by holding the mouse on its lower-right
corner and dragging in any direction.

Although this review of features might seem tedious to anyone who regularly uses GUI-
based programs, a careful inventory is necessary for the programmer who builds them.
Also, a close study of these features reveals the following effects on users:

•• The user is not constrained to enter inputs in a particular order. Before she presses the
Compute button, she can edit any of the data in the two input fields.

•• Running different data sets does not require re-entering all of the data. The user can
edit just one value and press the Compute button to observe different results.

Figure 8-2  A GUI-based tax calculator program

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

248

  Graphical User InterfacesC h a p t e r 8

When we compare the effects of the two interfaces on users, the GUI seems to be a definite
improvement on the terminal-based user interface. The improvement is even more notice-
able as the number of command options increases and the information to be presented
grows in quantity and complexity.

Event-Driven Programming
Rather than guide the user through a series of prompts, a GUI-based program opens a
window and waits for the user to manipulate window components with the mouse. These
user-generated events, such as mouse clicks, trigger operations in the program to respond
by pulling in inputs, processing them, and displaying results. This type of software sys-
tem is event-driven, and the type of programming used to create it is called event-driven
programming.

Like any complex program, an event-driven program is developed in several steps. In
the analysis step, the types of window components and their arrangement in the win-
dow are determined. Because GUI-based programs are almost always object based, this
becomes a matter of choosing among GUI component classes available in the program-
ming language or inventing new ones if needed. Graphic designers and cognitive psy-
chologists might be called in to assist in this phase, if the analysts do not already possess
this type of expertise. To a certain extent, the number, types, and arrangement of the
window components depend on the nature of the information to be displayed and also
depend on the set of commands that will be available to the user for manipulating that
information.

Let us return to the example of the tax calculator program to see how it might be struc-
tured as an event-driven program. The GUI in this program consists of the window and
its components, including the labeled entry fields and the Compute button. The action
triggered when this button is clicked is a method call. This method fetches the input values
from the input fields and performs the computation. The result is then sent to the output
field to be displayed.

Once the interactions among these resources have been determined, their coding can
begin. This phase consists of several steps:

1.	 Define a new class to represent the main application window.

2.	 Instantiate the classes of window components needed for this application, such as
labels, fields, and command buttons.

3.	 Position these components in the window.

4.	 Register a method with each window component in which an event relevant to the
application might occur.

5.	 Define these methods to handle the events.

6.	 Define a main function that instantiates the window class and runs the appropriate
method to launch the GUI.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

249

Coding Simple GUI-Based Programs

In coding the program, you could initially skip steps 4 and 5, which concern responding to
user events. This would allow you to preview and refine the window and its layout, even
though the command buttons and other GUI elements lack functionality.

In the sections that follow, we explore these elements of GUI-based, event-driven program-
ming with examples in Python.

Exercises

1.	 Describe two fundamental differences between terminal-based user interfaces
and GUIs.

2.	 Give an example of one application for which a terminal-based user interface is
adequate and one example that lends itself best to a GUI.

Coding Simple GUI-Based Programs
In this section, we show some examples of simple GUI-based programs in Python. Python’s
standard tkinter module includes classes for windows and numerous types of window com-
ponents, but its use can be challenging for beginners. Therefore, this book uses a custom,
open-source module called breezypythongui, while occasionally relying upon some of the
simpler resources of tkinter. You will find the code, documentation, and installation instruc-
tions for the breezypythongui module at http://home.wlu.edu/~lambertk/breezypythongui/.
We start with some short demo programs that illustrate some basic GUI components, and, in
later sections, we develop some examples with more significant functionality.

A Simple “Hello World” Program
Our first demo program defines a class for a main window that displays a greeting.
Figure 8-3 shows a screenshot of the window.

Figure 8-3  Displaying a label
with text in a window

As in all of our GUI-based programs, a new window class extends the EasyFrame class. By
“extends,” we mean “repurposes” or “provides extra functionality for.” The EasyFrame class

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

250

  Graphical User InterfacesC h a p t e r 8

provides the basic functionality for any window, such as the command buttons in the title
bar. Our new class, named LabelDemo, provides additional functionality to the EasyFrame
class. Here is the code for the program:
"""
File: labeldemo.py
"""

from breezypythongui import EasyFrame

class LabelDemo(EasyFrame):
 """Displays a greeting in a window."""

 def __init__(self):
 """Sets up the window and the label."""
 EasyFrame.__init__(self)
 self.addLabel(text = "Hello world!", row = 0, column = 0)

def main():
 """Instantiates and pops up the window."""
 LabelDemo().mainloop()

if __name__ == "__main__":
 main()

We will speak more generally about class definitions shortly. For now, note that this pro-
gram performs the following steps:

1.	 Import the EasyFrame class from the breezypythongui module. This class is a sub-
class of tkinter’s Frame class, which represents a top-level window. In many GUI
programs, this is the only import that you will need.

2.	 Define the LabelDemo class as a subclass of EasyFrame. The LabelDemo class
describes the window’s layout and functionality for this application.

3.	 Define an __init__ method in the LabelDemo class. This method is automati-
cally run when the window is created. The __init__ method runs a method
with the same name on the EasyFrame class and then sets up any window com-
ponents to display in the window. In this case, the addLabel method is run on
the window itself. The addLabel method creates a window component, a label
object with the text “Hello world!,” and adds it to the window at the grid posi-
tion (0, 0).

4.	 The last five lines of code define a main function and check to see if the Python
code file is being run as a program. If this is true, the main function is called to cre-
ate an instance of the LabelDemo class. The mainloop method is then run on this
object. At this point, the window pops up for viewing. Note that mainloop, as the
name implies, enters a loop. The Python Virtual Machine runs this loop behind the
scenes. Its purpose is to wait for user events, as mentioned earlier. The loop termi-
nates when the user clicks the window’s close box.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

251

Coding Simple GUI-Based Programs

Because steps 1 and 4 typically have the same format in each program, they will be omitted
from the text of many of the program examples that follow.

A Template for All GUI Programs
Writing the code to pop up a window that says “Hello world!” might seem like a lot of work.
However, the good news is that the structure of a GUI program is always the same, no mat-
ter how complex the application becomes. Here is the template for this structure:
from breezypythongui import EasyFrame

Other imports

class ApplicationName(EasyFrame):

 The __init__ method definition

 Definitions of event handling methods

def main():
 ApplicationName().mainloop()

if __name__ == "__main__":
 main()

A GUI application window is always represented as a class that extends EasyFrame. The
__init__ method initializes the window by setting its attributes and populating it with
the appropriate GUI components. In our example, Python runs this method automatically
when the constructor function LabelDemo is called. The event handling methods provide
the responses of the application to user events (not relevant in this example program). The
last lines of code, beginning with the definition of the main function, create an instance of
the application window class and run the mainloop method on this instance. The window
then pops up and waits for user events. Pressing the window’s close button will quit the
program normally. If you have launched the program from an IDLE window, you can run it
again after quitting by entering main() at the shell prompt.

The Syntax of Class and Method Definitions
Note that the syntax of class and method definitions is a bit like the syntax of function defi-
nitions. Each definition has a one-line header that begins with a keyword (class or def),
followed by a body of code indented one level in the text.

A class header contains the name of the class, conventionally capitalized in Python, fol-
lowed by a parenthesized list of one or more parent classes. The body of a class definition,
nested one tab under the header, consists of one or more method definitions, which may
appear in any order.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

252

  Graphical User InterfacesC h a p t e r 8

A method header looks very much like a function header, but a method always has at least
one parameter, in the first position, named self. At call time, the PVM automatically
assigns to this parameter a reference to the object on which the method is called; thus, you
do not pass this object as an explicit argument at call time. For example, given the method
header
def someMethod(self):

the method call
anObject.someMethod()

automatically assigns the object anObject to the self parameter for this method. The
parameter self is used within class and method definitions to call other methods on the
same object, or to access that object’s instance variables or data, as will be explained shortly.

Subclassing and Inheritance as Abstraction Mechanisms
Our first example program defined a new class named LabelDemo. This class was defined
as a subclass of the class breezypythongui.EasyFrame, which in turn is a subclass of the
class tkinter.Frame. The subclass relationships among these classes are shown in the
class diagram of Figure 8-4.

Figure 8-4  A class diagram for the label demo program

means is a subclass of
another class

Frame

EasyFrame

LabelDemo

Note that the EasyFrame class is the parent of the LabelDemo class, and the Frame class is the
parent of the EasyFrame class. This makes the Frame class the ancestor of the LabelDemo
class. When you make a new class a subclass of another class, your new class inherits and
thereby acquires the attributes and behavior defined by its parent class, and any of its ances-
tor classes, for free. Subclassing and inheritance are thus useful abstraction mechanisms, in
that you do not have to reinvent the entire wheel when defining a new class of objects, but
only customize it a bit. For example, the EasyFrame class customizes the Frame class with
methods to add window components to a window; the LabelDemo class customizes the
EasyFrame method __init__ to set up a window with a specific window component.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

253

Windows and Window Components

As a rule of thumb, when you are defining a new class of objects, you should look around
for a class that already supports some of the structure and behavior of such objects, and
then subclass that class to provide exactly the service that you need.

Exercises

1.	 Describe what usually happens in the __init__ method of a main window class.

2.	 Explain why it’s a good idea to make a new class a subclass of an existing class.

Windows and Window Components
In this section, you will explore the details of windows and window components. In the
process, you will learn how to choose appropriate classes of GUI objects, to access and
modify their attributes, and to organize them to cooperate to perform the task at hand.

Windows and Their Attributes
A window has several attributes. The most important ones are its

•• title (an empty string by default)

•• width and height in pixels

•• resizability (true by default)

•• background color (white by default)

With the exception of the window’s title, the attributes of our label demo program’s win-
dow have the default values. The background color is white and the window is resizable.
The window’s initial dimensions are automatically established by shrink-wrapping the
window around the label contained in it. We can override the window’s default title, an
empty string, by supplying another string as an optional title argument to the EasyFrame
method __init__. Other options are to provide a custom initial width and height in pixels.
Note that whenever we supply arguments to a method call, we use the corresponding key-
words for clarity in the code. For example, you might override the dimensions and title of
our first program’s window as follows:
EasyFrame.__init__(self, width = 300, height = 200,
 title = "Label Demo")

Another way to change a window’s attributes is to reset them in the window’s attribute
dictionary. Each window or window component maintains a dictionary of its attributes and
their values. To access or modify an attribute, the programmer uses the standard subscript
notation with the attribute name as a dictionary key. For example, later in the label demo’s

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

254

  Graphical User InterfacesC h a p t e r 8

__init__ method, the window’s background color can be set to yellow with the following
statement:
self["background"] = "yellow"

Note that self in this case refers to the window itself.

The final way to change a window’s attributes is to run a method included in the EasyFrame
class. This class includes the four methods listed in Table 8-1.

For example, later in the LabelDemo class’s __init__ method, the window’s size can be per-
manently frozen with the following statement:
self.setResizable(False)

Window Layout
Window components are laid out in the window’s two-dimensional grid. The grid’s rows
and columns are numbered from the position (0, 0) in the upper left corner of the window.
A window component’s row and column position in the grid is specified when the compo-
nent is added to the window. For example, the next program (layoutdemo.py) labels the
four quadrants of the window shown in Figure 8-5:
class LayoutDemo(EasyFrame):
 """Displays labels in the quadrants."""

 def __init__(self):
 """Sets up the window and the labels."""
 EasyFrame.__init__(self)
 self.addLabel(text = "(0, 0)", row = 0, column = 0)
 self.addLabel(text = "(0, 1)", row = 0, column = 1)
 self.addLabel(text = "(1, 0)", row = 1, column = 0)
 self.addLabel(text = "(1, 1)", row = 1, column = 1)

EasyFrame Method What It Does

setBackground(color) Sets the window’s background color to color.

setResizable(aBoolean) Makes the window resizable (True) or not
(False).

setSize(width, height) Sets the window’s width and height in pixels.

setTitle(title) Sets the window’s title to title.

Table 8-1  	 Methods to change a window’s attributes

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

255

Windows and Window Components

Because the window is shrink-wrapped around the four labels, they appear to be centered
in their rows and columns. However, when the user stretches this window, the labels stick
to the upper left or northwest corners of their grid positions.

Each type of window component has a default alignment within its grid position. Because
labels frequently appear to the left of data entry fields, their default alignment is northwest.
The programmer can override the default alignment by including the sticky attribute as
a keyword argument when the label is added to the window. The values of sticky are the
strings “N,” “S,” “E,” and “W,” or any combination thereof. The next code segment centers the
four labels in their grid positions:
self.addLabel(text = "(0, 0)", row = 0, column = 0,
 sticky = "NSEW")
self.addLabel(text = "(0, 1)", row = 0, column = 1,
 sticky = "NSEW")
self.addLabel(text = "(1, 0)", row = 1, column = 0,
 sticky = "NSEW")
self.addLabel(text = "(1, 1)", row = 1, column = 1,
 sticky = "NSEW")

Now, when the user expands the window, the labels retain their alignments in the exact
center of their grid positions.

One final aspect of window layout involves the spanning of a window component across
several grid positions. For example, when a window has two components in the first row
and only one component in the second row, the latter component might be centered in
its row, thus occupying two grid positions. The programmer can force a horizontal and/
or vertical spanning of grid positions by supplying the rowspan and columnspan keyword
arguments when adding a component (like merging cells in a table or spreadsheet). The
spanning does not take effect unless the alignment of the component is centered along that
dimension, however. The next code segment adds the three labels shown in Figure 8-6. The
window’s grid cells are outlined in the figure.
self.addLabel(text = "(0, 0)", row = 0, column = 0,
 sticky = "NSEW")
self.addLabel(text = "(0, 1)", row = 0, column = 1,
 sticky = "NSEW")
self.addLabel(text = "(1, 0 and 1)", row = 1, column = 0,
 sticky = "NSEW", columnspan = 2)

Figure 8-5  Laying out labels in
the window’s grid

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

256

  Graphical User InterfacesC h a p t e r 8

Types of Window Components and Their Attributes
GUI programs use several types of window components, or widgets as they are commonly
called. These include labels, entry fields, text areas, command buttons, drop-down menus,
sliding scales, scrolling list boxes, canvases, and many others. The breezypythongui mod-
ule includes methods for adding each type of window component to a window. Each such
method uses the form
self.addComponentType(<arguments>)

When this method is called, breeypythongui

•• Creates an instance of the requested type of window component

•• Initializes the component’s attributes with default values or any values provided by the
programmer

•• Places the component in its grid position (the row and column are required arguments)

•• Returns a reference to the component

The window components supported by breezypythongui are either of the stan-
dard tkinter types, such as Label, Button, and Scale, or subclasses thereof, such as
FloatField, TextArea, and EasyCanvas. A complete list is shown in Table 8-2. Parent
classes are shown in parentheses.

Figure 8-6  Labels with center alignment
and a column span of 2

Type of Window Component Purpose

Label Displays text or an image in the window.

IntegerField(Entry) A box for input or output of integers.

FloatField(Entry) A box for input or output of floating-point
numbers.

TextField(Entry) A box for input or output of a single line of text.

TextArea(Text) A scrollable box for input or output of multiple
lines of text.

EasyListbox(Listbox) A scrollable box for the display and selection of a
list of items.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

257

Windows and Window Components

As with windows, some of a window component’s attributes can be set when the compo-
nent is created, or can be reset by accessing its attribute dictionary at a later time.

Displaying Images
To illustrate the use of attribute options for a label component, let’s examine a program
(imagedemo.py) that displays an image with a caption. The program’s window is shown in
Figure 8-7.

This program adds two labels to the window. One label displays the image and the other
label displays the caption. Unlike earlier examples, the program now keeps variable refer-
ences to both labels for further processing.

The image label is first added to the window with an empty text string. The program then
creates a PhotoImage object from an image file and sets the image attribute of the image
label to this object. Note that the variable used to hold the reference to the image must be an
instance variable (prefixed by self), rather than a temporary variable. The image file must be

Type of Window Component Purpose

Button A clickable command area.

EasyCheckbutton(Checkbutton) A labeled checkbox.

Radiobutton A labeled disc that, when selected, deselects
related radio buttons.

EasyRadiobuttonGroup(Frame) Organizes a set of radio buttons, allowing only
one at a time to be selected.

EasyMenuBar(Frame) Organizes a set of menus.

EasyMenubutton(Menubutton) A menu of drop-down command options.

EasyMenuItem An option in a drop-down menu.

Scale A labeled slider bar for selecting a value from a
range of values.

EasyCanvas(Canvas) A rectangular area for drawing shapes or
images.

EasyPanel(Frame) A rectangular area with its own grid for organiz-
ing window components.

EasyDialog(simpleDialog.Dialog) A resource for defining special-purpose popup
windows.

Table 8-2	 Window components in breezypythongui

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

258

  Graphical User InterfacesC h a p t e r 8

in GIF format. Lastly, the program creates a Font object with a non-standard font and resets
the text label’s font and foreground attributes to obtain the caption shown in Figure 8-7.
The window is shrink-wrapped around the two labels and its dimensions are fixed.

Here is the code for the program:
from breezypythongui import EasyFrame
from tkinter import PhotoImage
from tkinter.font import Font

class ImageDemo(EasyFrame):
 """Displays an image and a caption."""

 def __init__(self):
 """Sets up the window and the widgets."""
 EasyFrame.__init__(self, title = "Image Demo")
 self.setResizable(False);
 imageLabel = self.addLabel(text = "",
    row = 0, column = 0,
    sticky = "NSEW")
 textLabel = self.addLabel(text = "Smokey the cat",
    row = 1, column = 0,
    sticky = "NSEW")

 # Load the image and associate it with the image label.
 self.image = PhotoImage(file = "smokey.gif")
 imageLabel["image"] = self.image

 # Set the font and color of the caption.
 font = Font(family = "Verdana", size = 20,
    slant = "italic")
 textLabel["font"] = font
 textLabel["foreground"] = "blue"

Table 8-3 summarizes the tkinter.Label attributes used in this book.

Figure 8-7  Displaying a captioned image

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

259

Windows and Window Components

You are encouraged to browse the breezypythongui documentation for information on the
different types of window components and their attributes. Python also has excellent documen-
tation on the window components at https://docs.python.org/3/library/tkinter.html#module-
tkinter. For an overview of fonts, see https://en.wikipedia.org/wiki/Font. Learning which
fonts are available on your system requires some geekery with tkinter. A demo program,
fontdemo.py, that lets you view these fonts is available in the example programs for this book.

In the next section, we show how to make GUI programs interactive by responding to user events.

Label Attribute Type of Value

image A PhotoImage object (imported from tkinter.font). Must be
loaded from a GIF file.

text A string.

background A color. A label’s background is the color of the rectangular area
enclosing the text of the label.

foreground A color. A label’s foreground is the color of its text.

font A Font object (imported from tkinter.font).

Table 8-3	 The tkinter.Label attributes

Exercises

1.	 Write a code segment that centers the labels RED, WHITE, and BLUE vertically in
a GUI window. The text of each label should have the color that it names, and the
window’s background color should be green. The background color of each label
should also be green.

2.	 Run the demo program fontdemo.py to explore the font families available on your
system. Then write a code segment that centers the labels COURIER, HELVETICA,
and TIMES horizontally in a GUI window. The text of each label should be the
name of a font family. Substitute a different font family if necessary.

3.	 Write a code segment that uses a loop to create and place nine labels into a 3-by-3
grid. The text of each label should be its coordinates in the grid, starting with (0, 0)
in the upper left corner. Each label should be centered in its grid cell. You should
use a nested for loop in your code.

4.	 Jill has a plan for a window layout with two rows of widgets. The first row contains
two widgets, and the second row contains four widgets. Describe how she can align
the widgets so that they are evenly spaced in each row.

5.	 Describe the procedure for setting up the display of an image in a window.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

260

  Graphical User InterfacesC h a p t e r 8

Command Buttons and Responding to Events
A command button is added to a window just like a label, by specifying its text and posi-
tion in the grid. A button is centered in its grid position by default. The method addButton
accomplishes all this and returns an object of type tkinter.Button. Like a label, a button
can display an image, usually a small icon, instead of a string. A button also has a state
attribute, which can be set to “normal” to enable the button (its default state) or “disabled”
to disable it.

GUI programmers often lay out a window and run the application to check its look and
feel, before adding the code to respond to user events. Let’s adopt this strategy for our next
example. This fanciful program (buttondemo.py) displays a single label and two com-
mand buttons. The buttons allow the user to clear or restore the label. When the user clicks
Clear, the label is erased, the Clear button is disabled, and the Restore button is enabled.
When the user clicks Restore, the label is redisplayed, the Restore button is disabled, and
the Clear button is enabled.

Figure 8-8 shows these two states of the window, followed by the code for the initial version
of the program.

Figure 8-8  Using command buttons

class ButtonDemo(EasyFrame):
 """Illustrates command buttons and user events."""

 def __init__(self):
 """Sets up the window, label, and buttons."""
 EasyFrame.__init__(self)

 # A single label in the first row.
 self.label = self.addLabel(text = "Hello world!",
    row = 0, column = 0,
    columnspan = 2,
    sticky = "NSEW")

 # Two command buttons in the second row.
 self.clearBtn = self.addButton(text = "Clear",
    row = 1, column = 0)
 self.restoreBtn = self.addButton(text = "Restore",
    row = 1, column = 1,
    state = "disabled")

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

261

Command Buttons and Responding to Events

Note that the Restore button, which appears in gray in the window on the left, is initially
disabled. When running the first version of the program, the user can click the Clear but-
ton, but to no effect.

To allow a program to respond to a button click, the programmer must set the button’s
command attribute. There are two ways to do this: either by supplying a keyword argument
when the button is added to the window or, later, by assignment to the button’s attribute
dictionary. The value of the command attribute should be a method of no arguments, defined
in the program’s window class. The default value of this attribute is a method that does
nothing.

The completed version of the example program supplies two methods, which are com-
monly called event handlers, for the program’s two buttons. Each of these methods resets
the label to the appropriate string and then enables and disables the relevant buttons.
class ButtonDemo(EasyFrame):
 """Illustrates command buttons and user events."""

 def __init__(self):
 """Sets up the window, label, and buttons."""
 EasyFrame.__init__(self)

 # A single label in the first row.
 self.label = self.addLabel(text = "Hello world!",
    row = 0, column = 0,
    columnspan = 2,
    sticky = "NSEW")

 # Two command buttons in the second row, with event
 # handler methods supplied.
 self.clearBtn = self.addButton(text = "Clear",
    row = 1, column = 0,
    command = self.clear)
 self.restoreBtn = self.addButton(text = "Restore",
    row = 1, column = 1,
    state = "disabled",
    command = self.restore)

 # Methods to handle user events.
 def clear(self):
 """Resets the label to the empty string and updates
 the button states."""
 self.label["text"] = ""
 self.clearBtn["state"] = "disabled"
 self.restoreBtn["state"] = "normal"

 def restore(self):
 """Resets the label to 'Hello world!' and updates
 the button states."""
 self.label["text"] = "Hello world!"
 self.clearBtn["state"] = "normal"
 self.restoreBtn["state"] = "disabled"

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

262

  Graphical User InterfacesC h a p t e r 8

Now, when the user clicks the Clear button, Python automatically runs the clear method
on the window. Likewise, when the programmer clicks the Restore button, Python auto-
matically runs the restore method on the window.

Exercises

1.	 Explain what happens when a user clicks a command button in a fully functioning
GUI program.

2.	 Why is it a good idea to write and test the code for laying out a window’s com-
ponents before you add the methods that perform computations in response to
events?

Input and Output with Entry Fields
An entry field is a box in which the user can position the mouse cursor and enter a number
or a single line of text. This section explores the use of entry fields to allow a GUI program
to take input text or numbers from a user and display text or numbers as output.

Text Fields
A text field is appropriate for entering or displaying a single-line string of characters. The
programmer uses the method addTextField to add a text field to a window. The method
returns an object of type TextField, which is a subclass of tkinter.Entry. Required argu-
ments to addTextField are text (the string to be initially displayed), row, and column.
Optional arguments are rowspan, columnspan, sticky, width, and state.

A text field is aligned by default to the northeast of its grid cell. A text field has a default
width of 20 characters. This represents the maximum number of characters viewable in the
box, but the user can continue typing or viewing them by moving the cursor key to the right.

The programmer can set a text field’s state attribute to “readonly” to prevent the user from
editing an output field.

The TextField method getText returns the string currently contained in a text field. Thus,
it serves as an input operation. The method setText outputs its string argument to a text
field.

Our example program (textfielddemo.py) converts a string to uppercase. The user enters
text into the input field, clicks the Convert button, and views the result in the output field.
The output field is read only, to prevent editing the result. Figure 8-9 shows an interaction
with the program’s window, and the code follows.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

263

Input and Output with Entry Fields

class TextFieldDemo(EasyFrame):
 """Converts an input string to uppercase and displays
 the result."""

 def __init__(self):
 """Sets up the window and widgets."""
 EasyFrame.__init__(self, title = "Text Field Demo")

 # Label and field for the input
 self.addLabel(text = "Input", row = 0, column = 0)
 self.inputField = self.addTextField(text = "",
    row = 0,
    column = 1)

 # Label and field for the output
 self.addLabel(text = "Output", row = 1, column = 0)
 self.outputField = self.addTextField(text = "",
    row = 1,
    column = 1,
    state = "readonly")

 # The command button
 self.addButton(text = "Convert", row = 2, column = 0,
 columnspan = 2, command = self.convert)

 # The event handling method for the button
 def convert(self):
 """Inputs the string, converts it to uppercase,
 and outputs the result."""
 text = self.inputField.getText()
 result = text.upper()
 self.outputField.setText(result)

Note that the __init__ method contains about 80% of the program’s code. This method is
concerned with setting up the window components. The actual program logic is just the
three lines of code in the convert method. This logic, which takes input data, computes a

Figure 8-9  Using text fields for input and output

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

264

  Graphical User InterfacesC h a p t e r 8

result, and outputs this result, is similar to the logic of the following, ridiculously simple,
terminal-based program:
text = input("Input: ")
result = text.upper()
print("Output:", result)

Integer and Float Fields for Numeric Data
Although the programmer can use a text field for the input and output of numbers, the
data must be converted to strings after input and before output. To simplify the program-
mer’s task, breezypythongui includes two types of data fields, called IntegerField and
FloatField, for the input and output of integers and floating-point numbers, respectively.

The methods addIntegerField and addFloatField are similar in usage to the method
addTextField discussed earlier. However, instead of an initial text attribute, the program-
mer supplies a value attribute. This value must be an integer for an integer field, but can be
either an integer or a floating-point number for a float field. The default width of an integer
field is 10 characters, whereas the default width of a float field is 20 characters.

The method addFloatField allows an optional precision argument. Its value is an integer
that specifies the precision of the number displayed in the field.

The methods getNumber and setNumber are used for the input and output of numbers
with integer and float fields. The conversion between numbers and strings is performed
automatically.

Our example program takes an input integer from a field, computes the square root of this
value, and outputs the result, rounded to the nearest hundredth, to a second field. Figure 8-10
shows an interaction with this program (numberfielddemo.py), and the code follows.

Figure 8-10  Using an integer field and a float field for input and output

class NumberFieldDemo(EasyFrame):
 """Computes and displays the square root of an
 input number."""

 def __init__(self):
 """Sets up the window and widgets."""
 EasyFrame.__init__(self, title = "Number Field Demo")

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

265

Input and Output with Entry Fields

 # Label and field for the input
 self.addLabel(text = "An integer",
 row = 0, column = 0)
 self.inputField = self.addIntegerField(value = 0,
    row = 0,
    column = 1,
    width = 10)

 # Label and field for the output
 self.addLabel(text = "Square root",
 row = 1, column = 0)
 self.outputField = self.addFloatField(value = 0.0,
     row = 1,
    column = 1,
    width = 8,
    precision = 2,
    state = "readonly")

 # The command button
 self.addButton(text = "Compute", row = 2, column = 0,
 columnspan = 2,
 command = self.computeSqrt)

 # The event handling method for the button
 def computeSqrt(self):
 """Inputs the integer, computes the square root,
 and outputs the result."""
 number = self.inputField.getNumber()
 result = math.sqrt(number)
 self.outputField.setNumber(result)

The program as written will run correctly if the inputs are integers, and these integers
are greater than or equal to 0. If the input text is not an integer or is a negative integer,
Python raises an exception and, if the program is terminal based, it crashes (you learned
about exceptions, like dividing by zero and using an index out of range, in earlier chap-
ters). However, when a GUI-based program raises an exception, the GUI stays alive,
allowing the user to edit the input and continue, but a stack trace appears in the terminal
window. We next examine how to trap such errors and respond gracefully with error
messages.

Using Pop-Up Message Boxes
When errors arise in a GUI-based program, the program often responds by popping up
a dialog window with an error message. Such errors are usually the result of invalid input
data. The program detects the error, pops up the dialog to inform the user, and, when the
user closes the dialog, continues to accept and check input data. In a terminal-based pro-
gram, this process usually requires an explicit loop structure. In a GUI-based program,
Python’s implicit event-driven loop continues the process automatically. In this section, we
modify an earlier program example to show how this works.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

266

  Graphical User InterfacesC h a p t e r 8

You have seen examples of errors caused by attempting to divide by zero or using a list
index that is out of bounds. Python raises an exception or runtime error when these events
occur. The square root program raises an exception of type ValueError if the input datum
is not an integer or is a negative integer. To recover gracefully from this event, we can mod-
ify the code of the program’s computeSqrt method by embedding it in Python’s try-except
statement. The syntax of this statement is a bit like that of the if-else statement:
try:
 <statements that might raise an exception>
except <exception type>:
 <statements to recover from the exception>

In the try clause, our program attempts to input the data, compute the result, and output
the result, as before. If an exception is raised anywhere in this process, control shifts imme-
diately to the except clause. Here, in our example, the program pops up a message box with
the appropriate error message. Figure 8-11 shows an interaction with the program, and the
modified code follows.

Figure 8-11  Responding to an input error with a message box

The event handling method for the button
def computeSqrt(self):
 """Inputs the integer, computes the square root,
 and outputs the result. Handles input errors
 by displaying a message box."""
 try:
 number = self.inputField.getNumber()
 result = math.sqrt(number)
 self.outputField.setNumber(result)
 except ValueError:
 self.messageBox(title = "ERROR",
 message = "Input must be an integer >= 0")

Python will raise the ValueError in the getNumber method, if the datum is not an integer, or
in the math.sqrt function, if the integer is negative. In either case, the except clause traps

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

267

Defining and Using Instance Variables

the exception and allows the user to correct the input after closing the message box. A mes-
sage box is a useful way to alert the user to any special event, even if it is not an input error.

Exercises

1.	 Explain why you would not use a text field to perform input and output of numbers.

2.	 Write a line of code that adds a FloatField to a window, at position (1, 1) in the
grid, with an initial value of 0.0, a width of 15, and a precision of 2.

3.	 What happens when you enter a number with a decimal point into an
IntegerField?

4.	 When would you make a data field read-only, and how would you do this?

5.	 Explain what happens when a program receives a non-numeric string when a num-
ber is expected as input, and explain how the try-except statement can be of use in
this situation.

Defining and Using Instance Variables
Earlier we said that methods use the parameter self to call other methods in an object’s
class or to access that object’s instance variables. An instance variable is used to store data
belonging to an individual object. Together, the values of an object’s instance variables make
up its state. The state of a given window, for example, includes its title, background color,
and dimensions, among other things. You have seen that a dictionary maintains these data
within the window object. The window class’s __init__ method establishes the initial state
of a window object when it is created, and other methods within that class are run to access
or modify this state (to make the window larger, change its title, or respond to an event).
These basic elements of a window’s state are defined and managed in the classes
breezypythongui.EasyFrame and tkinter.frame.

When you customize an existing class, you can add to the state of its objects by including
new instance variables. You define these new variables, which must begin with the name
self, within the class’s __init__ method. They then become visible to other methods
throughout the class definition. A simple example will make this clear. A simple counter
application is shown in Figure 8-12.

Figure 8-12  The GUI for a counter application

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

268

  Graphical User InterfacesC h a p t e r 8

At start-up, the window displays a label of 0 and two buttons named Next and Reset.
When the user clicks Next, the window increments the number in the label; when the user
clicks Reset, the window resets the label to 0.

Clearly, the program must have some way to track the value of the counter, as it changes
states after button clicks. We accomplish this by adding an instance variable to the window
class in the __init__ method and updating this variable in the event-handling methods for
the buttons. Here is the code for the CounterDemo class:
class CounterDemo(EasyFrame):
 """Illustrates the use of a counter with an
 instance variable."""

 def __init__(self):
 """Sets up the window, label, and buttons."""
 EasyFrame.__init__(self, title = "Counter Demo")
 self.setSize(200, 75)

 # Instance variable to track the count.
 self.count = 0

 # A label to display the count in the first row.
 self.label = self.addLabel(text = "0",
    row = 0, column = 0,
    sticky = "NSEW",
    columnspan = 2)

 # Two command buttons.
 self.addButton(text = "Next",
 row = 1, column = 0,
 command = self.next)

 self.addButton(text = "Reset",
 row = 1, column = 1,
 command = self.reset)

 # Methods to handle user events.
 def next(self):
 """Increments the count and updates the display."""
 self.count += 1
 self.label["text"] = str(self.count)

 def reset(self):
 """Resets the count to 0 and updates the display."""
 self.count = 0
 self.label["text"] = str(self.count)

The separation of the code for setting up and managing the user interface from the
code for computation and managing the data is a common design pattern seen in
many GUI-based programs. We will explore this design pattern in more detail later in
this book.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

269

Defining and Using Instance Variables

Exercises

1.	 What is meant by the state of an object, and how does the programmer access and
manipulate it?

2.	 Explain the differences between instance variables and temporary variables. Focus
on their visibility in a class definition, and on their roles in managing data for an
object of that class.

3.	 Explain the purpose of the variable self in a Python class definition.

Case Study: The Guessing Game Revisited

We now pause our survey of GUI components to develop a GUI for a significant
application. Chapter 3 presented a guessing game with a terminal-based user
interface. We now revise that program to replace the user interface with a GUI.

Request

Replace the terminal-based interface of the guessing game program with a GUI.

Analysis

The program retains the same functions but presents the user with a different look
and feel. Figure 8-13 shows a sequence of user interactions with the main window.

As you can see, the GUI includes a labeled entry field for the user’s input guesses, a
label for the computer’s greeting and responses to the user, and two buttons, one for
submitting a guess and another for obtaining a new game. The user plays the game
as before, but she enters guesses into the entry field and presses the Next button to
move the game forward. When the game ends, that button is disabled, and the user can
either click the New game button to start a new game or close the window to quit.

Figure 8-13  The GUI for a guessing game

(continues)
Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

270

  Graphical User InterfacesC h a p t e r 8

The program requires one new class, named GuessingGame, which extends the
EasyFrame class.

Laying out the GUI

As in many GUI applications, it’s possible to write the code to lay out the user
interface before designing the logic (in this case, the game logic) of the application.
You can think of this step as part of analysis, in which you create a working
prototype without any real functionality to get an idea of the application’s look and
feel. Therefore, here is the code for this part of the process (guessversion1.py),
which can run without supporting any user interaction:

"""
File: guessversion1.py
A prototype that lays out the user interface for a GUI-based
guessing game.
"""

import random
from breezypythongui import EasyFrame

class GuessingGame(EasyFrame):
 """Plays a guessing game with the user."""

 def __init__(self):
 """Sets up the window, widgets, and data."""
 EasyFrame.__init__(self, title = "Guessing Game")
 # Initialize the instance variables for the data
 self.myNumber = random.randint(1, 100)
 self.count = 0
 # Create and add widgets to the window
 greeting = "Guess a number between 1 and 100."
 self.hintLabel = self.addLabel(text = greeting,
    row = 0, column = 0,
    sticky = "NSEW",
    columnspan = 2)
 self.addLabel(text = "Your guess", row = 1, column = 0)
 self.guessField = self.addIntegerField(0, row = 1, column = 1)
 # Buttons have no command attributes yet
 self.nextButton = self.addButton(text = "Next", row = 2,
 column = 0)
 self.newButton = self.addButton(text = "New game",
    row = 2, column = 1)

def main():
 """Instantiate and pop up the window."""
 GuessingGame().mainloop()

(continued)

(continues)
Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

271

Defining and Using Instance Variables

if __name__ == "__main__":
 main()

Note that the buttons are added without command attributes. Thus, when the user
clicks on these buttons, no responses will be triggered. You will develop this function-
ality in the design phase of the process.

Design

The logic of the guessing game program is to display the computer’s greeting and
then take user guesses as inputs and respond with hints if the guesses are incorrect.
If the user guesses correctly, the process halts with a confirmation message and the
number of guesses made. Here is a pseudocode algorithm for the game logic:

While True
 count += 1
 Input a guess
 If guess == myNumber
 Output "You've guessed it in", count, "attempts"
 Break
 Else if guess < myNumber
 Output "Sorry, too small"
 Else
 Output "Sorry, too large"

As you can see, there is a main loop in which the user’s inputs and the computer’s hints
drive the process forward, until the user guesses correctly. These events will also drive the
process forward in a GUI application, but the loop becomes the window’s event-driven loop.
That is, you will not need an explicit loop in your code; instead, you will embed the logic of
the loop’s body in an event-handling method. The pseudocode for this method follows:

Method nextGuess
 count += 1
 Input a guess
 If guess == myNumber
 Output "You've guessed it in", count, "attempts!"
 Disable the Next button
 Else if guess < myNumber
 Output "Sorry, too small!"
 Else
 Output "Sorry, too large!"

This method is triggered whenever the user clicks the Next button in the GUI. The
inputs now come from the input field, and the outputs go to a label, both also in

(continued)

(continues)
Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

272

  Graphical User InterfacesC h a p t e r 8

the GUI. Note that we disable the Next button to prevent further user input when a
game has finished. The break statement is no longer necessary.

The other event in play occurs when the user clicks the New game button. In this
case, a method is triggered to reset the contents of the GUI to their original state.
Here is the pseudocode for this method:

Method newGame
 myNumber = a random number between 1 and 100
 count = 0
 Hint label = "Guess a number between 1 and 100."
 Guess field = 0
 Enable the Next button

Implementation

The prototype already has most of the code for laying out the GUI. You just have
to add the code for the definitions of the two event-handling methods, and set the
command attributes of the two buttons to these methods when they are added to
the window. Here is the code for the two new methods:

def nextGuess(self):
 """Processes the user's next guess."""
 self.count += 1
 guess = self.guessField.getNumber()
 if guess == self.myNumber:
 self.hintLabel["text"] = "You've guessed it in " + \
    str(self.count) + " attempts!"
 self.nextButton["state"] = "disabled"
 elif guess < self.myNumber:
 self.hintLabel["text"] = "Sorry, too small!"
 else:
 self.hintLabel["text"] = "Sorry, too large!"

def newGame(self):
 """Resets the data and GUI to their original states."""
 self.myNumber = random.randint(1, 100)
 self.count = 0
 greeting = "Guess a number between 1 and 100."
 self.hintLabel["text"] = greeting
 self.guessField.setNumber(0)
 self.nextButton["state"] = "normal"

Note the use of the temporary variables guess and greeting in these two methods.
Because its use is restricted to the method in which it appears, a temporary vari-
able should not begin with the prefix self. By contrast, variables that begin with the

(continues)

(continued)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

273

Other Useful GUI Resources

Other Useful GUI Resources
Many simple GUI-based applications rely on the resources that we have presented thus far in this
chapter. However, as applications become more complex and, in fact, begin to look like the ones
we use on a daily basis, other resources must come into play. The layout of GUI components
can be specified in more detail, and groups of components can be nested in multiple frames in a
window. Paragraphs of text can be displayed in scrolling text boxes. Lists of information can be
presented for selection in scrolling list boxes, as check boxes, and as radio buttons. Finally, GUI-
based programs can be configured to respond to various keyboard and mouse events.

In this section, we provide a brief overview of some of these advanced resources, so that
you may use them to solve problems in the programming projects.

Using Nested Frames to Organize Components
Suppose that a GUI requires a row of three command buttons beneath two columns of
labels and text fields, as shown in Figure 8-14.

prefix self, such as self.count, self.hintLabel, and self.guessField, are
instance variables. Their purpose is to retain the state of an object (here the instance
of GuessingGame) between calls of methods. Put metaphorically, the window object
does not have to remember the user’s guess and the computer’s greeting between
method calls, but it does have to remember the count, the label, and the entry field.
In general, you should try to minimize the use of instance variables, relying on tempo-
raries or parameter names in your methods wherever possible.

Figure 8-14  Widgets in uneven columns

This grid appears to have two columns in two rows and three columns in a third row. The
layout is not ragged, but if you look closely, the buttons in the bottom row are unevenly
spaced. Because all of the widgets lie in the same grid, there is no way to center each button
in its own column.

(continued)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

274

  Graphical User InterfacesC h a p t e r 8

A more natural design decomposes the window into two nested frames, sometimes called
panels. Each panel contains its own independent grid. The top panel contains a 2-by-2 grid
of labels and entry fields, whereas the bottom panel contains a 1-by-3 grid of buttons. The
breezypythongui method addPanel adds a panel to the window at a given row and column
in the window’s grid. This method returns an instance of the EasyPanel class, so you can
add widgets to it just as if it were a top-level window. Because EasyPanel is a descendant
of the tkinter.Frame class, and has almost the same interface as the EasyFrame class, you
can run many of the same methods on a panel object that you run on a top-level window
object. The user interface for a new version of the program that organizes the widgets in
two panels is shown in Figure 8-15. Note that we have added background colors gray and
black to the panels for emphasis.

Figure 8-15  Using panels to organize widgets evenly

Here is the code for laying out the GUI shown in Figure 8-15:
class PanelDemo(EasyFrame):

 def __init__(self):

 # Create the main frame
 EasyFrame.__init__(self, "Panel Demo - v2")

 # Create the nested frame for the data panel
 dataPanel = self.addPanel(row = 0, column = 0,
    background = "gray")

 # Create and add widgets to the data panel
 dataPanel.addLabel(text = "Label 1", row = 0, column = 0,
 background = "gray")
 dataPanel.addTextField(text = "Text1", row = 0, column = 1)
 dataPanel.addLabel(text = "Label 2", row = 1, column = 0,
 background = "gray")
 dataPanel.addTextField(text = "Text2", row = 1, column = 1)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

275

Other Useful GUI Resources

 # Create the nested frame for the button panel
 buttonPanel = self.addPanel(row = 1, column = 0,
    background = "black")

 # Create and add buttons to the button panel
 buttonPanel.addButton(text = "B1", row = 0, column = 0)
 buttonPanel.addButton(text = "B2", row = 0, column = 1)
 buttonPanel.addButton(text = "B3", row = 0, column = 2)

As you can see from this code, the grids of the two panels are independent, as multiple
widgets appear to be placed in the same rows and columns. When you design a complex
interface like this one, be sure to draw a sketch of the panels with their grids, so you can
determine the positions of the widgets and eliminate some guesswork.

Multi-Line Text Areas
Although text fields are useful for entering and displaying single lines of text, some applica-
tions need to display larger chunks of text with multiple lines. For instance, the message box
introduced earlier displays a multi-line message in a scrolling text area. In a manner similar
to the editing window of a word processor, a text area widget allows the program to output
and the user to input and edit multiple lines of text.

The method addTextArea adds a text area to the window. The required arguments are the
initial text to display, the row, and the column. Optional arguments include a width and
height in columns (characters) and rows (lines), with defaults of 80 and 5, respectively. The
final optional argument is called wrap. This argument tells the text area what to do with a
line of text when it reaches the right border of the viewable area. The default value of wrap
is “none,” which causes a line of text to continue invisibly beyond the right border. The
other values are “word” and “char,” which break a line at a word or a character, and continue
the text on the next line.

The addTextArea method returns an object of type TextArea, a subclass of
tkinter.Text. This object recognizes three important methods: getText, setText,
and appendText. The first two methods have the same effect as they do with a text field.
The appendText method does not replace the text in the text area with its string argu-
ment, but instead appends this string to the end of the string currently displayed there.
A text area can be disabled to prevent editing, but this disables its input and output
methods as well. Therefore, before text is input or output, a disabled text area must be
re-enabled.

You can use a text area to recast the user interface of the investment calculator program of
Chapter 3. As shown in Figure 8-16, the GUI inputs the initial balance, the number of years,
and the interest rate via entry fields. When the user clicks the Compute button, the pro-
gram displays the table of results in a text area.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

276

  Graphical User InterfacesC h a p t e r 8

Here is the code for the window class:
class TextAreaDemo(EasyFrame):
 """An investment calculator demonstrates the use of a
 multi-line text area."""

 def __init__(self):
 """Sets up the window and widgets."""
 EasyFrame.__init__(self, "Investment Calculator")
 self.addLabel(text = "Initial amount", row = 0, column = 0)
 self.addLabel(text = "Number of years", row = 1, column = 0)
 self.addLabel(text = "Interest rate in %", row = 2, column = 0)
 self.amount = self.addFloatField(value = 0.0, row = 0, column = 1)
 self.period = self.addIntegerField(value = 0, row = 1, column = 1)
 self.rate = self.addIntegerField(value = 0, row = 2, column = 1)

 self.outputArea = self.addTextArea("", row = 4, column = 0,
 columnspan = 2,
 width = 50, height = 15)

 self.compute = self.addButton(text = "Compute", row = 3, column = 0,
    columnspan = 2,
    command = self.compute)

Figure 8-16  Displaying data in a multi-line text area

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

277

Other Useful GUI Resources

 # Event handling method.
 def compute(self):
 """Computes the investment schedule based on the inputs
 and outputs the schedule."""
 # Obtain and validate the inputs
 startBalance = self.amount.getNumber()
 rate = self.rate.getNumber() / 100
 years = self.period.getNumber()
 if startBalance == 0 or rate == 0 or years == 0:
 return

 # Set the header for the table
 result = "%4s%18s%10s%16s\n" % ("Year",
 "Starting balance",
 "Interest",
 "Ending balance")

 # Compute and append the results for each year
 totalInterest = 0.0
 for year in range(1, years + 1):
 interest = startBalance * rate
 endBalance = startBalance + interest
 result += "%4d%18.2f%10.2f%16.2f\n" % \
 (year, startBalance, interest, endBalance)
 startBalance = endBalance
 totalInterest += interest

 # Append the totals for the period
 result += "Ending balance: $%0.2f\n" % endBalance
 result += "Total interest earned: $%0.2f\n" % totalInterest

 # Output the result while preserving read-only status
 self.outputArea["state"] = "normal"
 self.outputArea.setText(result)
 self.outputArea["state"] = "disabled"

File Dialogs
As anyone who has opened or saved a file on a modern computer knows, GUI-based pro-
grams allow the user to browse the computer’s file system with file dialogs. Figure 8-17
shows a file dialog asking for an input file on my computer.

Python’s tkinter.filedialog module includes two functions, askopenfilename and
asksaveasfilename, to support file access in a GUI-based program. Each function pops up
the standard file dialog for the user’s particular computer system. If the user selects the dialog’s
Cancel button, the function returns the empty string. Otherwise, when the user selects the
Open or Save button, the function returns the full pathname of the file that the user has
selected (opening or saving) or entered as input (saving only) in the dialog. The program
can then use the filename to open the file for input or output in the usual manner.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

278

  Graphical User InterfacesC h a p t e r 8

For purposes of this book, we use the following syntax with these two functions:
fList = [("Python files", "*.py"), ("Text files", "*.txt")]
filename = tkinter.filedialog.askopenfilename(parent = self,
 filetypes = fList)

filename = tkinter.filedialog.asksaveasfilename(parent = self)

Note that you can use the optional filetypes argument to mask the types of files available
for input. In our example, we want the user to be able to open files with a .py or .txt exten-
sion, and no others. Table 8-4 lists all of the optional arguments one can supply to the two
file dialog functions.

Figure 8-17  A file dialog

Argument Value

defaultextension The extension to add to the filename, if not given by the user (ignored by
the open dialog).

filetypes A sequence of (label, pattern) tuples. Specifies the file types available for
input.

initialdir A string representing the directory in which to open the dialog.

initialfile A string representing the filename to display in the save dialog name field.

parent The dialog’s parent window.

title A string to display in the dialog’s title bar.

Table 8-4	 The optional arguments to the file dialog methods

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

279

Other Useful GUI Resources

Here is the code for the window class:
from breezypythongui import EasyFrame
import tkinter.filedialog

class FileDialogDemo(EasyFrame):
 """Demonstrates the use of a file dialog."""

 def __init__(self):
 """Sets up the window and widgets."""
 EasyFrame.__init__(self, "File Dialog Demo")
 self.outputArea = self.addTextArea("", row = 0,
    column = 0,
    width = 80,
    height = 15)
 self.addButton(text = "Open", row = 1, column = 0,
 command = self.openFile)

 # Event handling method.
 def openFile(self):
 """Pops up an open file dialog, and if a file is
 selected, displays its text in the text area and
 its pathname in the title bar."""
 fList = [("Python files", "*.py"),
    ("Text files", "*.txt")]

You can use a file dialog and a text area to create a simple browser that allows the user to
view text files. As shown in Figure 8-18, when the user clicks the Open button and chooses
a file from the file dialog, the text of the file is input and displayed in the window’s text area.

Figure 8-18  A simple file browser

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

280

  Graphical User InterfacesC h a p t e r 8

 fileName = tkinter.filedialog.askopenfilename(parent = self,
 filetypes = fList)
 if fileName != "":
 file = open(fileName, 'r')
 text = file.read()
 file.close()
 self.outputArea.setText(text)
 self.setTitle(fileName)

Obtaining Input with Prompter Boxes
You have seen the advantages of displaying fields for multiple inputs in the same window:
you can enter them in any order and change just one or two of them to explore “what if ”
situations in data processing. However, occasionally you might want to guide the user rig-
idly through a sequence of inputs, in the manner of terminal-based programs. For example,
at start-up a program might prompt the user for a username and then for a password, after
launching the main window of the application. GUI applications use a popup dialog called a
prompter box for this purpose. Figure 8-19 shows a prompter box requesting a username.

Figure 8-19  Using a prompter box

The prompter box displays a title, a message for the prompt, an entry field for the user’s
input, and a button to submit the input. The entry field can have some optional initial text.
You popup a prompter box by calling the EasyFrame method prompterBox with the appro-
priate arguments. When the user closes the dialog by clicking the OK button or the dialog’s
close disc, the method returns the contents of the entry field. The next code segment shows
the window class that displays the prompter box in Figure 8-19. The program simply dis-
plays the user’s input in a label.
class PrompterBoxDemo(EasyFrame):

 def __init__(self):
 """Sets up the window and widgets."""
 EasyFrame.__init__(self, title = "Prompter Box Demo",
 width = 300, height = 100)
 self.label = self.addLabel(text = "", row = 0,
    column = 0, sticky = "NSEW")

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

281

Other Useful GUI Resources

 self.addButton(text = "Username", row = 1, column = 0,
 command = self.getUserName)

 def getUserName(self):
 text = self.prompterBox(title = "Input Dialog",
    promptString = "Your username:")
 self.label["text"] = "Hi " + name + "!"

Check Buttons
A check button consists of a label and a box that a user can select or deselect with the
mouse. Check buttons often represent a group of several options, any number of which may
be selected at the same time. The application program can either respond immediately when
a check button is manipulated, or examine the state of the button at a later point in time.

As a simple example, let’s assume that a restaurant serves chicken dinners with a standard
set of sides. These include French fries, green beans, and applesauce. A customer can omit
any of the sides from her order, and vegetarians will want to omit the chicken. The user
selects these options via check buttons and clicks the Place order button to place her order.
A message box then pops up with a summary of the order. Figure 8-20 shows the user inter-
face for the program (checkbuttondemo.py).

Figure 8-20  Using check buttons

The method addCheckbutton expects a text argument (the button’s label) and an optional
command argument (a method to be triggered when the user checks or unchecks the but-
ton), and returns an object of type EasyCheckbutton. The EasyCheckbutton method
isChecked returns True if the button is checked, or False otherwise. Here is the code for
the demo program:
class CheckbuttonDemo(EasyFrame):
 """Allows the user to place a restaurant order from a set
 of options."""

 def __init__(self):
 """Sets up the window and widgets."""
 EasyFrame.__init__(self, "Check Button Demo")

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

282

  Graphical User InterfacesC h a p t e r 8

 # Add four check buttons
 self.chickCB = self.addCheckbutton(text = "Chicken",
    row = 0, column = 0)

 self.taterCB = self.addCheckbutton(text = "French fries",
    row = 0, column = 1)

 self.beanCB = self.addCheckbutton(text = "Green beans",
    row = 1, column = 0)

 self.sauceCB = self.addCheckbutton(text = "Applesauce",
    row = 1, column = 1)

 # Add the command button
 self.addButton(text = "Place order", row = 2, column = 0,
 columnspan = 2, command = self.placeOrder)

 # Event handling method.
 def placeOrder(self):
 """Display a message box with the order information."""
 message = ""
 if self.chickCB.isChecked():
 message += "Chicken\n\n"
 if self.taterCB.isChecked():
 message += "French fries\n\n"
 if self.beanCB.isChecked():
 message += "Green beans\n\n"
 if self.sauceCB.isChecked():
 message += "Applesauce\n"
 if message == "": message = "No food ordered!"
 self.messageBox(title = "Customer Order",
 message = message)

Radio Buttons
Check buttons allow a user to select multiple options in any combination. When the user
must be restricted to one selection only, the set of options can be presented as a group of
radio buttons. Like a check button, a radio button consists of a label and a control widget.
One of the buttons is normally selected by default at program start-up. When the user
selects a different button in the same group, the previously selected button automatically
deselects.

To illustrate the use of radio buttons, consider another restaurant scenario, where a
customer has two choices of meats, potatoes, and vegetables, and must choose exactly
one of each food type (our apologies to vegetarians). Three radio button groups can
be set up to take this order, as shown in the program’s user interface (radiobut-
tondemo.py) in Figure 8-21. The default options are chicken, French fries, and
applesauce.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

283

Other Useful GUI Resources

To add radio buttons to a window, the programmer first adds the radio button group to
which these buttons will belong. The method addRadiobuttonGroup expects the grid coor-
dinates as required arguments. Optional arguments are orient (whose default is “vertical”),
rowspan, and columnspan. In the case of a vertically aligned button group, rowspan should
be set to the number of buttons, and columnspan should be likewise set for a horizontally
aligned group. The method returns an object of type EasyRadiobuttonGroup, which is a
subclass of tkinter.Frame. This allows the programmer to place a custom background
color in the region of the button group.

The EasyRadiobuttonGroup method getSelectedButton returns the currently selected
radio button in a radio button group. The method setSelectedButton selects a radio but-
ton under program control. Once a radio button group is created, the programmer can
add radio buttons to it with the EasyRadiobuttonGroup method addRadiobutton. This
method expects a text argument (the button’s label) and an optional command argument (a
zero-argument method to be triggered when the button is selected). The method returns an
object of type tkinter.Radiobutton.

Here is the code for the main window of the radio button demo program:
class RadiobuttonDemo(EasyFrame):
 """Allows the user to place a restaurant order from a set
 of options."""

 def __init__(self):
 """Sets up the window and widgets."""
 EasyFrame.__init__(self, "Radio Button Demo")

 # Add the label, button group, and buttons for meats
 self.addLabel(text = "Meat", row = 0, column = 0)
 self.meatGroup = self.addRadiobuttonGroup(row = 1,
    column = 0,
    rowspan = 2)
 defaultRB = self.meatGroup.addRadiobutton(text = "Chicken")
 self.meatGroup.setSelectedButton(defaultRB)
 self.meatGroup.addRadiobutton(text = "Beef")

 # Add the label, button group, and buttons for potatoes
 self.addLabel(text = "Potato", row = 0, column = 1)

Figure 8-21  Using radio buttons

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

284

  Graphical User InterfacesC h a p t e r 8

 self.taterGroup = self.addRadiobuttonGroup(row = 1,
    column = 1,
    rowspan = 2)
 defaultRB = self.taterGroup.addRadiobutton(text = "French fries")
 self.taterGroup.setSelectedButton(defaultRB)
 self.taterGroup.addRadiobutton(text = "Baked potato")

 # Add the label, button group, and buttons for veggies
 self.addLabel(text = "Vegetable", row = 0, column = 2)
 self.vegGroup = self.addRadiobuttonGroup(row = 1,
    column = 2,
    rowspan = 2)
 defaultRB = self.vegGroup.addRadiobutton(text = "Applesauce")
 self.vegGroup.setSelectedButton(defaultRB)
 self.vegGroup.addRadiobutton(text = "Green beans")

 self.addButton(text = "Place order", row = 3, column = 0,
 columnspan = 3, command = self.placeOrder)

 # Event handler method.

 def placeOrder(self):
 """Display a message box with the order information."""
 message = ""
 message += self.meatGroup.getSelectedButton()["text"] + "\n\n"
 message += self.taterGroup.getSelectedButton()["text"] + "\n\n"
 message += self.vegGroup.getSelectedButton()["text"]
 self.messageBox(title = "Customer Order",
 message = message)

Note that the code for the placeOrder method is now simpler than in the check button
demo, because exactly one button in each radio button group must be selected.

Keyboard Events
GUI-based programs can also respond to various keyboard events. Perhaps the most common
event is pressing the enter or return key when the mouse cursor has become the insertion
point in an entry field. This event might signal the end of an input and a request for processing.

You can associate a keyboard event and an event-handling method with a widget by calling
the bind method. This method expects a string containing a key event as its first argument,
and the method to be triggered as its second argument. The string for the return key event
is "<Return>". The event-handling method should have a single parameter named event.
This parameter will automatically be bound to the event object that triggered the method.

Let’s revisit the square root program to allow the user to compute a result by pressing the
return key while the insertion point is in the input field. You bind the keyboard return event
to a handler for the inputField widget as follows:
self.inputField.bind("<Return>",
 lambda event: self.computeSqrt())

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

285

Other Useful GUI Resources

You cannot use the computeSqrt method directly as the event handler, because
computeSqrt does not have a parameter for the event. Instead, you package a call of
computeSqrt within a lambda function that accepts the event as an argument and ignores
it. You can set event handlers for the keyboard return event for other fields in a similar
manner.

Working with Colors
You have seen that you can set the background color of a window and most widgets
using the string values of common colors, such as “red” and “blue.” However, in
Chapter 7, you learned that there are millions of colors available to the programmer who
uses the RGB scheme. You saw (in Chapter 7) that Turtle graphics and image process-
ing use a triple with the form (R, G, B) to represent a color in this scheme. Each integer
in the triple represents the saturation level of red, green, and blue in the given color. To
work with colors in a GUI-based application, you must be aware of two other ways of
representing RGB values in Python. Python represents an RGB value as a string contain-
ing a six-digit hexadecimal number, of the form “0xRRGGBB” where the pairs of digits
indicate the values of red, green, and blue in hex. The tkinter module also accepts the
simpler representation “#RRGGBB” for hexadecimal values. We call this representation
a hex string. Table 8-5 lists some basic Python color values in ordinary, RGB triple, and
hex string notations.

Ordinary Value RGB Triple Hex String

"black" (0, 0, 0) "#000000"

"red" (255, 0, 0) "#ff0000"

"green" (0, 255, 0) "#00ff00"

"blue" (0, 0, 255) "#0000ff"

"gray" (127, 127, 127) "#7f7f7f"

"white" (255, 255, 255) "#ffffff"

Table 8-5	 Some basic colors and their RGB values

For example, to set the background color of a window to a less intense shade of red than the
maximum value denoted by “red,” you might run the statement
self["background"] = "#DD0000"

Now suppose you want to use a random color in a GUI. You must find a way to map a triple
of three random integers, (R, G, B), to a hex string. Note that each integer in the (R, G, B)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

286

  Graphical User InterfacesC h a p t e r 8

notation maps to two hex digits in the corresponding hex string. You could use one of the
conversion algorithms discussed in Chapter 4 to perform these conversions, but Python’s
built-in hex function already does that:
>>> hex(255)
'0xff'
>>> hex(8)
'0x8'

To obtain just the hex digits, you would slice away the '0x' prefix as follows:
>>> hex(255)[2:]
'ff'
>>> hex(8)[2:]
'8'

To handle the case of a single digit, you would pad the string to the left by prepending
a '0', as follows:
>>> hexDigits = hex(8)[2:]
>>> if len(digits) == 1:
 hexDigits = '0' + hexDigits
>>> hexDigits
'08'

Because such conversions might occur frequently, let’s define a function, named
rgbToHexString, that expects a triple of integers as arguments and returns the
corresponding hex string. Here is the code (in rgb.py):
def rgbToHexString(rgbTriple):
 """Converts the rgbTriple (R, G, B) to a hex string
 of the form #RRGGBB."""
 hexString = ""
 for i in rgbTriple: # Iterate through the triple
 twoDigits = hex(i)[2:]
 if len(twoDigits) == 1:
 twoDigits = '0' + twoDigits
 hexString += twoDigits
 return '#' + hexString

You are now in a position to easily create colors from RGB triples, including random ones,
for a GUI application, as follows:
>>> rgbToHexString((255, 255, 255))
'#ffffff'
>>> rgbToHexString((10, 8, 32))
'#0a0820'
>>> from random import randint
>>> triple = (randint(0, 255), randint(0, 255), randint(0, 255))
>>> triple
(107,104,145)
>>> rgbToHexString(triple)
'#6b6891'

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

287

Other Useful GUI Resources

Using a Color Chooser
Most graphics software packages allow the user to pick a color with a standard color chooser.
This is a dialog that presents a color wheel from which the user can choose a color with the
mouse. Python’s tkinter.colorchooser module includes an askcolor function for this pur-
pose. Figure 8-22 shows screenshots of a demo program (colorchooserdemo.py) that uses
this resource. The window displays the current color in a canvas widget (a rectangular area
that supports graphics operations). When the user clicks the Choose color button in the
main window, a color chooser dialog pops up. When the user clicks OK to close the dialog,
the main window updates its fields and canvas with the information about the chosen color.

Figure 8-22  Using a color chooser

The tkinter.colorchooser.askcolor function returns a tuple of two elements. If the user
has clicked OK in the dialog, the first element in the tuple is a nested tuple containing the
three RGB values, and the second element is the hex string value of the color. If the user has
clicked Cancel in the dialog, both elements in the tuple are None. Because the RGB values
are returned as floating-point numbers, the demo program converts them to integers for
display. Here is the code for the main window:
import tkinter.colorchooser

class ColorPicker(EasyFrame):
 """Displays the results of picking a color."""

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

288

  Graphical User InterfacesC h a p t e r 8

 def __init__(self):
 """Sets up the window and widgets."""
 EasyFrame.__init__(self,
 title = "Color Chooser Demo")

 # Labels and output fields
 self.addLabel('R', row = 0, column = 0)
 self.addLabel('G', row = 1, column = 0)
 self.addLabel('B', row = 2, column = 0)
 self.addLabel("Color", row = 3, column = 0)
 self.r = self.addIntegerField(value = 0,
    row = 0, column = 1)
 self.g = self.addIntegerField(value = 0,
    row = 1, column = 1)
 self.b = self.addIntegerField(value = 0,
    row = 2, column = 1)
 self.hex = self.addTextField(text = "#000000",
    row = 3, column = 1,
    width = 10)

 # Canvas with an initial black background
 self.canvas = self.addCanvas(row = 0, column = 2,
    rowspan = 4,
    width = 50,
    background = "#000000")

 # Command button
 self.addButton(text = "Choose color", row = 4,
 column = 0, columnspan = 3,
 command = self.chooseColor)

 # Event handling method
 def chooseColor(self):
 """Pops up a color chooser and outputs the results."""
 colorTuple = tkinter.colorchooser.askcolor()
 if not colorTuple[0]: return
 ((r, g, b), hexString) = colorTuple
 self.r.setNumber(int(r))
 self.g.setNumber(int(g))
 self.b.setNumber(int(b))
 self.hex.setText(hexString)
 self.canvas["background"] = hexString

This concludes our introduction to GUI programming. You are now ready to program
applications like the ones you use on a daily basis. Although it might seem like we have
covered many features of GUIs, we have only scratched the surface. For a discussion on
the use of other window components, such as canvases for graphics, sliding scales, and
scrolling list boxes, as well as responding to different types of mouse events, consult the
breezypythongui website at http://home.wlu.edu/~lambertk/breezypythongui/.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

289

Review Questions

Summary
•• GUI-based programs display information using graphical components in a window. They

allow a user to manipulate information by manipulating GUI components with a mouse.

•• A GUI-based program responds to user events by running methods to perform various
tasks.

•• The tkinter and breezypythongui modules include classes, functions, and constants
used in GUI programming.

•• A GUI-based program is structured as a main window class. This class extends the
EasyFrame class. The __init__ method in the main window class creates and lays out
the window components. The main window class also includes the definitions of any
event-handling methods.

•• Examples of window components are labels (either text or images), command buttons,
entry fields, multi-line text areas, and check buttons.

•• Popup dialog boxes are used to display messages and to prompt the user for inputs.

•• Window components can be arranged within a grid in a window. The grid’s attributes
can be set to allow components to expand or align in any direction.

•• Complex layouts can be decomposed into several panels of components.

•• Each component has attributes for the foreground color and background color. Colors
are represented using the RGB system in hexadecimal format.

•• The text of a label has a font attribute that allows the programmer to specify the family,
size, and other attributes of a font.

•• The command attribute of a button can be set to a method that handles a button click.

•• Keyboard events can be associated with event handler methods for window compo-
nents by using the bind method.

Review Questions
1.	 In contrast to a terminal-based program, a GUI-based program

a.	 completely controls the order in which the user enters inputs
b.	 can allow the user to enter inputs in any order

2.	 The main window class in a GUI-based program is a subclass of

a.	 TextArea

b.	 EasyFrame

c.	 Window

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

290

  Graphical User InterfacesC h a p t e r 8

3.	 The attribute used to attach an event-handling method to a button is named

a.	 pressevent

b.	 onclick

c.	 command

4.	 GUIs represent color values using

a.	 RGB triples of integers
b.	 hex strings

5.	 Multi-line text is displayed in a

a.	 text field
b.	 text area
c.	 label

6.	 The window component that allows a user to move the text visible beneath a
TextArea widget is a

a.	 list box
b.	 label
c.	 scroll bar

7.	 The sticky attribute

a.	 controls the alignment of a window component in its grid cell
b.	 makes it difficult for a window component to be moved

8.	 A window component that supports selecting one option only is the

a.	 check button
b.	 radio button

9.	 A rectangular subarea with its own grid for organizing widgets is a

a.	 canvas
b.	 panel

10.	 The rows and columns in a grid layout are numbered starting from

a.	 (0, 0)
b.	 (1, 1)

Projects
1.	 Write a GUI-based program that implements the tax calculator program shown

in Figure 8-2.

2.	 Write a GUI-based program that implements the bouncy program discussed in
program in programming project 4 of Chapter 3.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

291

Projects

3.	 Write a GUI-based program that allows the user to convert temperature values
between degrees Fahrenheit and degrees Celsius. The interface should have
labeled entry fields for these two values. These components should be arranged
in a grid where the labels occupy the first row and the corresponding fields
occupy the second row. At start-up, the Fahrenheit field should contain 32.0, and
the Celsius field should contain 0.0. The third row in the window contains two
command buttons, labeled >>>> and <<<<. When the user presses the first but-
ton, the program should use the data in the Fahrenheit field to compute the Cel-
sius value, which should then be output to the Celsius field. The second button
should perform the inverse function.

4.	 Modify the temperature conversion program so that it responds to the user’s
press of the return or enter key. If the user presses this key when the insertion
point is in a given field, the action which uses that field for input is triggered.

5.	 Write a GUI-based program that plays a guess-the-number game in which the
roles of the computer and the user are the reverse of what they are in the Case
Study of this chapter. In this version of the game, the computer guesses a num-
ber between 1 and 100 and the user provides the responses. The window should
display the computer’s guesses with a label. The user enters a hint in response,
by selecting one of a set of command buttons labeled Too small, Too large, and
Correct. When the game is over, you should disable these buttons and wait for
the user to click New game, as before.

6.	 Add radio button options for filing status to the tax calculator program of Project 1.
The user selects one of these options to determine the tax rate. The Single option’s
rate is 20%. The Married option is 15%. The Divorced option is 10%. The default
option is Single.

7.	 The TidBit Computer Store (Chapter 3, Project 10) has a credit plan for com-
puter purchases. Inputs are the annual interest rate and the purchase price.
Monthly payments are 5% of the listed purchase price, minus the down pay-
ment, which must be 10% of the purchase price. Write a GUI-based program
that displays labeled fields for the inputs and a text area for the output. The
program should display a table, with appropriate headers, of a payment sched-
ule for the lifetime of the loan. Each row of the table should contain the follow-
ing items:

•• The month number (beginning with 1)

•• The current total balance owed

•• The interest owed for that month

•• The amount of principal owed for that month

•• The payment for that month

•• The balance remaining after payment

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

292

  Graphical User InterfacesC h a p t e r 8

		 The amount of interest for a month is equal to balance * rate / 12. The amount of
principal for a month is equal to the monthly payment minus the interest owed.
Your program should include separate classes for the model and the view. The
model should include a method that expects the two inputs as arguments and
returns a formatted string for output by the GUI.

8.	 Write a GUI-based program that allows the user to open, edit, and save text
files. The GUI should include a labeled entry field for the filename and a multi-
line text widget for the text of the file. The user should be able to scroll through
the text by manipulating a vertical scrollbar. Include command buttons labeled
Open, Save, and New that allow the user to open, save, and create new files. The
New command should then clear the text widget and the entry widget.

9.	 Write a GUI-based program that implements an image browser for your com-
puter’s file system. The look, feel, and program logic should be like those of the
simple text file bowser developed in this chapter. The file dialog should filter for
GIF image files, and create and open a PhotoImage when a file is accessed.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

C h a p t e r 9
Design with Classes

After completing this chapter, you will be able to

Determine the attributes and behavior of a class of objects
required by a program

List the methods, including their parameters and return
types, that realize the behavior of a class of objects

Choose the appropriate data structures to represent the
attributes of a class of objects

Define a constructor, instance variables, and methods for
a class of objects

Recognize the need for a class variable and define it

Define a method that returns the string representation of
an object

Define methods for object equality and comparisons

Exploit inheritance and polymorphism when developing
classes

Transfer objects to and from files

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

294

  Design with ClassesC h a p t e r 9

This book has covered the use of many software tools in computational problem solving.
The most important of these tools are the abstraction mechanisms for simplifying designs
and controlling the complexity of solutions. Abstraction mechanisms include functions,
modules, objects, and classes. In each case, we have begun with an external view of a
resource, showing what it does and how it can be used. For example, to use a function in
the built-in math module, you import it, run help to learn how to use the function correctly,
and then include it appropriately in your code. You follow the same procedures for built-in
data structures such as strings and lists, and for library resources such as the Turtle and
Image classes covered in Chapter 7. From a user’s perspective, you shouldn’t be concerned
with how a resource performs its task. The beauty and utility of an abstraction is that it
frees you from the need to be concerned with such details.

Unfortunately, not all useful abstractions are built in. You will sometimes need to custom
design an abstraction to suit the needs of a specialized application or suite of applications
you are developing. You did exactly that while learning how to program GUIs in Chapter 8.
There you learned how to customize an existing class by creating custom subclasses to rep-
resent windows for various applications. However, in defining a new subclass, you are still
working within the helpful confines of already established abstractions, and merely extend-
ing them by adding new features and behavior.

The next step is to learn how to design and implement new classes from scratch. When
designing your own abstraction, you must take a different view from that of users and con-
cern yourself with the inner workings of a resource. In this chapter, we will take a more
detailed internal view of objects and classes than we did in Chapter 8, showing how to
design, implement, and test another useful abstraction mechanism—the class. You will
learn how to take a real-world problem situation and model its structure and behavior with
entirely new classes of objects.

Programming languages that allow the programmer to define new classes of objects are
called object-oriented languages. These languages also support a style of programming
called object-oriented programming. Unlike object-based programming, which simply uses
ready-made objects and classes within a framework of functions and algorithmic code, object-
oriented programming sustains an effort to conceive and build entire software systems from
cooperating classes. We begin this chapter by exploring the definitions of a few classes. We then
discuss how cooperating classes can be organized into complex software systems. This strategy
is rather different from the strategy of procedural design with functions discussed in Chapter 6.
The advantages and disadvantages of each design strategy will become clear as we proceed.

Getting Inside Objects and Classes
Programmers who use objects and classes know several things:

•• The interface or set of methods that can be used with a class of objects

•• The attributes of an object that describe its state from the user’s point of view

•• How to instantiate a class to obtain an object

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

295

Getting Inside Objects and Classes

Like functions, objects are abstractions. A function packages an algorithm in a single opera-
tion that can be called by name. An object packages a set of data values—its state—and a
set of operations—its methods—in a single entity that can be referenced with a name. This
makes an object a more complex abstraction than a function. To get inside a function, you
must view the code contained in its definition. To get inside an object, you must view the
code contained in its class. A class definition is like a blueprint for each of the objects of
that class. This blueprint contains

•• Definitions of all of the methods that its objects recognize

•• Descriptions of the data structures used to maintain the state of an object, or its attri-
butes, from the implementer’s point of view

To illustrate these ideas, we now present a simple class definition for a course-management
application, followed by a discussion of the basic concepts involved.

A First Example: The Student Class
A course-management application needs to represent information about students in a
course. Each student has a name and a list of test scores. We can use these as the attri-
butes of a class named Student. The Student class should allow the user to view a stu-
dent’s name, view a test score at a given position (counting from 1), reset a test score at a
given position, view the highest test score, view the average test score, and obtain a string
representation of the student’s information. When a Student object is created, the user
supplies the student’s name and the number of test scores. Each score is initially pre-
sumed to be 0.

The interface or set of methods of the Student class is described in Table 9-1. Assuming
that the Student class is defined in a file named student.py, the next session shows how it
could be used:
>>> from student import Student
>>> s = Student("Maria", 5)
>>> print(s)
Name: Maria
Scores: 0 0 0 0 0
>>> s.setScore(1, 100)
>>> print(s)
Name: Maria
Scores: 100 0 0 0 0
>>> s.getHighScore()
100
>>> s.getAverage()
20
>>> s.getScore(1)
100
>>> s.getName()
'Maria'

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

296

  Design with ClassesC h a p t e r 9

As you learned in Chapter 8, the syntax of a simple class definition is the following:
class <class name>(<parent class name>):
 <method definition-1>
 …
 <method definition-n>

The class definition syntax has two parts: a class header and a set of method definitions that
follow the class header. The class header consists of the class name and the parent class name.

The class name is a Python identifier. Although built-in type names are not capitalized,
Python programmers typically capitalize their own class names to distinguish them from
variable names.

The parent class name refers to another class. All Python classes, including the built-in
ones, are organized in a tree-like class hierarchy. At the top, or root, of this tree is the most
abstract class, named object, which is built in. Each class immediately below another class
in the hierarchy is referred to as a subclass, whereas the class immediately above it, if there
is one, is called its parent class. If the parenthesized parent class name is omitted from the
class definition, the new class is automatically made a subclass of object. In the example
class definitions shown in this book, we explicitly include the parent class names. More will
be said about the relationships among classes in the hierarchy later in this chapter.

The code for the Student class follows, and its structure is explained in the next few subsections:
"""
File: student.py
Resources to manage a student's name and test scores.
"""
class Student(object):
 """Represents a student."""

Student Method What It Does

s = Student(name, number) Returns a Student object with the given name
and number of scores. Each score is initially 0.

s.getName() Returns the student’s name.

s.getScore(i) Returns the student’s ith score, i must range
from 1 through the number of scores.

s.setScore(i, score) Resets the student’s ith score to score, i must
range from 1 through the number of scores.

s.getAverage() Returns the student’s average score.

s.getHighScore() Returns the student’s highest score.

s.__str()__ Same as str(s). Returns a string representa-
tion of the student’s information.

Table 9-1	 The interface of the Student class

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

297

Getting Inside Objects and Classes

 def __init__(self, name, number):
 """Constructor creates a Student with the given
 name and number of scores and sets all scores
 to 0."""
 self.name = name
 self.scores = []
 for count in range(number):
 self.scores.append(0)

 def getName(self):
 """Returns the student's name."""
 return self.name

 def setScore(self, i, score):
 """Resets the ith score, counting from 1."""
 self.scores[i - 1] = score

 def getScore(self, i):
 """Returns the ith score, counting from 1."""
 return self.scores[i - 1]

 def getAverage(self):
 """Returns the average score."""
 return sum(self.scores) / len(self.scores)

 def getHighScore(self):
 """Returns the highest score."""
 return max(self.scores)

 def __str__(self):
 """Returns the string representation of the
 student."""
 return "Name: " + self.name + "\nScores: " + \
 " ".join(map(str, self.scores))

Docstrings
The first thing to note is the positioning of the docstrings in our code. They can occur
at three levels. The first level is that of the module. Its purpose should be familiar to you
by now. The second level is just after the class header. Because there might be more than
one class defined in a module, each class can have a docstring that describes its purpose.
The third level is located after each method header. Docstrings at this level serve the
same role as they do for function definitions. When you enter help(Student) at a shell
prompt, the interpreter prints the documentation for the class and all of its methods.

Method Definitions
All of the method definitions are indented below the class header. Because methods are a
bit like functions, the syntax of their definitions is similar. As you learned in Chapter 8, each
method definition must include a first parameter named self, even if that method seems to

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

298

  Design with ClassesC h a p t e r 9

expect no arguments when called. When a method is called with an object, the interpreter
binds the parameter self to that object so that the method’s code can refer to the object by
name. Thus, for example, the code

s.getScore(4)

binds the parameter self in the method getScore to the Student object referenced by
the variable s. The code for getScore can then use self to access that individual object’s
test scores.

Otherwise, methods behave just like functions. They can have required and/or
optional arguments, and they can return values. They can create and use temporary
variables. A method automatically returns the value None when it includes no return
statement.

The __init__ Method and Instance Variables
Most classes include a special method named __init__. Here is the code for this method
in the Student class:
def __init__(self, name, number):
 """All scores are initially 0."""
 self.name = name
 self.scores = []
 for count in range(number):
 self.scores.append(0)

Note that __init__ must begin and end with two consecutive underscores. This method is
also called the class’s constructor, because it is run automatically when a user instantiates
the class. Thus, when the code segment
s = Student("Juan", 5)

is run, Python automatically runs the constructor or __init__ method of the Student
class. The purpose of the constructor is to initialize an individual object’s attributes. In
addition to self, the Student constructor expects two arguments that provide the initial
values for these attributes. From this point on, when we refer to a class’s constructor, we
mean its __init__ method.

The attributes of an object are represented as instance variables. Each individual object
has its own set of instance variables. These variables serve as storage for its state. The scope
of an instance variable (including self) is the entire class definition. Thus, all of the class’s
methods are in a position to reference the instance variables. The lifetime of an instance
variable is the lifetime of the enclosing object. An object’s lifetime will be discussed in more
detail later in this chapter.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

299

Getting Inside Objects and Classes

Within the class definition, the names of instance variables must begin with self. For
example, in the definition of the Student class, the instance variables self.name and
self.scores are initialized to a string and a list, respectively.

The __str__ Method
Many built-in Python classes usually include an __str__ method. This method builds and
returns a string representation of an object’s state. When the str function is called with an object,
that object’s __str__ method is automatically invoked to obtain the string that str returns. For
example, the function call str(s) is equivalent to the method call s.__str__(), and is simpler
to write. The function call print(s) also automatically runs str(s) to obtain the object’s string
representation for output. Here is the code for the __str__ method in the Student class:
def __str__(self) :
 """Returns the string representation of the student."""
 return "Name: " + self.name + "\nScores: " + \
 " ".join(map(str, self.scores))

The programmer can return any information that would be relevant to the users of a
class. Perhaps the most important use of __str__ is in debugging, when you often need to
observe the state of an object after running another method.

Accessors and Mutators
Methods that allow a user to observe but not change the state of an object are called accessors.
Methods that allow a user to modify an object’s state are called mutators. The Student class
has just one mutator method. It allows the user to reset a test score at a given position. The
remaining methods are accessors. Here is the code for the mutator method setScore:
def setScore(self, i, score):
 """Resets the ith score, counting from 1."""
 self.scores[i - 1] = score

In general, the fewer the number of changes that can occur to an object, the easier it is to
use it correctly. That is one reason Python strings are immutable. In the case of the Student
class, if there is no need to modify an attribute, such as a student’s name, we do not include
a method to do that.

The Lifetime of Objects
Earlier, we said that the lifetime of an object’s instance variables is the lifetime of that
object. What determines the span of an object’s life? We know that an object comes
into being when its class is instantiated. When does an object die? In Python, an object

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

300

  Design with ClassesC h a p t e r 9

becomes a candidate for the graveyard when the program that created it can no longer
refer to it. For example, the next session creates two references to the same Student
object:
>>> s = Student("Sam", 10)
>>> cscilll = [s]
>>> cscilll
[<__main__.Student instance at 0xllba2b0>]
>>> s
<__main__.Student instance at 0xllba2b0>

The strange-looking code in angle brackets is what Python displays when it prints this type
of object in the shell. As long as one of these references survives, the Student object can
remain alive. Continuing this session, we now sever both references to the Student object:
>>> s = None
>>> cscilll.pop()
<__main__.Student instance at 0xllba2b0>
>>> print(s)
None
>>> cscilll
[]

The Student object still exists, but the Python virtual machine will eventually recycle its
storage during a process called garbage collection. For all intents and purposes, this object
has expired, and its storage will eventually be used to create other objects.

Rules of Thumb for Defining a Simple Class
We conclude this section by listing several rules of thumb for designing and implementing a
simple class:

1.	 Before writing a line of code, think about the behavior and attributes of the
objects of the new class. What actions does an object perform, and how, from
the external perspective of a user, do these actions access or modify the object’s
state?

2.	 Choose an appropriate class name, and develop a short list of the methods available
to users. This interface should include appropriate method names and parameter
names, as well as brief descriptions of what the methods do. Avoid describing how
the methods perform their tasks.

3.	 Write a short script that appears to use the new class in an appropriate way. The
script should instantiate the class and run all of its methods. Of course, you will
not be able to execute this script until you have completed the next few steps,
but it will help to clarify the interface of your class and serve as an initial test
bed for it.

4.	 Choose the appropriate data structures to represent the attributes of the class.
These will be either built-in types such as integers, strings, and lists, or other pro-
grammer-defined classes.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

301

Getting Inside Objects and Classes

5.	 Fill in the class template with a constructor (an __init__ method) and an __str__
method. Remember that the constructor initializes an object’s instance variables,
whereas __str__ builds a string from this information. As soon as you have defined
these two methods, you can test your class by instantiating it and printing the
resulting object.

6.	 Complete and test the remaining methods incrementally, working in a bottom-up
manner. If one method depends on another, complete the second method first.

7.	 Remember to document your code. Include a docstring for the module, the class,
and each method. Do not add docstrings as an afterthought. Write them as soon as
you write a class header or a method header. Be sure to examine the results by run-
ning help with the class name.

Exercises

1.	 What are instance variables, and what role does the name self play in the context
of a class definition?

2.	 Explain what a constructor does.

3.	 Explain what the __str__ method does and why it is a useful method to include in
a class.

4.	 The Student class has no mutator method that allows a user to change a student’s
name. Define a method setName that allows a user to change a student’s name.

5.	 The method getAge expects no arguments and returns the value of an instance
variable named self.age. Write the code for the definition of this method.

6.	 How is the lifetime of an object determined? What happens to an object when it
dies?

Case Study: Playing the Game of Craps

Some college students are known to study hard and play hard. In this case study,
we develop some classes that cooperate to allow students to play and study the
behavior of the game of craps.

Request

Write a program that allows the user to play and study the game of craps.

(continues)
Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

302

  Design with ClassesC h a p t e r 9

Analysis

A player in the game of craps rolls a pair of dice. If the sum of the values on this initial
roll is 2, 3, or 12, the player loses. If the sum is 7 or 11, the player wins. Otherwise,
the player continues to roll until the sum is 7, indicating a loss, or the sum equals the
initial sum, indicating a win.

During analysis, you decide which classes of objects will be used to model the
behavior of the objects in the problem domain. The classes often become evident
when you consider the nouns used in the problem description. In this case, the two
most significant nouns in our description of a game of craps are “player” and “dice.”
Thus, the classes will be named Player and Die (the singular of “dice”).

Analysis also specifies the roles and responsibilities of each class. You can describe
these in terms of the behavior of each object in the program. A Die object can be
rolled and its value examined. That’s about it. A Player object can play a complete
game of craps. During the course of this game, the player keeps track of the rolls of
the dice. After a game is over, the player can be asked for a history of the rolls and
for the game’s outcome. The player can then play another game, and so on.

A terminal-based user interface for this program prompts the user for the number of
games to play. The program plays that number of games and generates and displays
statistics about the results for that round of games. These results, our “study” of the
game, include the number of wins, losses, rolls per win, rolls per loss, and winning
percentage, for the given number of games played.

The program includes two functions, playOneGame and playManyGames, for
convenient testing in the IDLE shell. Here is a sample session with these functions:

>>> playOneGame()
(2, 2) 4
(2, 1) 3
(4, 6) 10
(6, 5) 11
(4, 1) 5
(5, 6) 11
(3, 5) 8
(3, 1) 4
You win!
>>> playManyGames(100)
The total number of wins is 49
The total number of losses is 51
The average number of rolls per win is 3.37
The average number of rolls per loss is 4.20
The winning percentage is 0.490

(continued)

(continues)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

303

Getting Inside Objects and Classes

Design

During design, you choose the appropriate data structures for the instance variables
of each class and develop its methods using pseudocode, if necessary. You can work
from class interfaces provided by analysis or develop the interfaces as the first step
of design. The interfaces of the Die and Player classes are listed in Table 9-2.

A Die object has a single attribute, an integer ranging in value from 1 through 6. At
instantiation, the instance variable self.value is initialized to 1. The method roll
modifies this value by resetting it to a random number from 1 to 6. The method
getValue returns this value. The method __str__ returns its string representation.
The Die class can be coded immediately without further design work.

A Player object has three attributes, a pair of dice and a history of rolls in its most
recent game. We represent each roll as a tuple of two integers and the set of rolls as
a list of these tuples. At instantiation, the instance variable self.rolls is set to an
empty list.

The method __str__ converts the list of rolls to a formatted string that contains a roll
and the sum from that roll on each line.

(continued)

(continues)

Table 9-2	 The interfaces of the Die and Player classes

Player Method What It Does

p = Player() Returns a new player object.

p.play() Plays the game and returns True if there is a win,
False otherwise.

p.getNumberOfRolls() Returns the number of rolls.

p.__str__() Same as str(p). Returns a formatted string rep-
resentation of the rolls.

Die METHOD What It Does

d = Die() Returns a new die object whose initial value is 1.

d.roll() Resets the die’s value to a random number
between 1 and 6.

d.getValue() Returns the die’s value.

d.__str__() Same as str(d). Returns the string representa-
tion of the die’s value.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

304

  Design with ClassesC h a p t e r 9

The play method implements the logic of playing a game and tracking its results.
Here is the pseudocode:

Create a new list of rolls
Roll the dice and add their values to the rolls list
If sum of the initial roll is 2, 3, or 12
 return false
If the sum of the initial roll is 7 or 11
 return true
While true
 Roll the dice and add their values to the rolls list
 If the sum of the roll is 7
 return false
 Else if the sum of the roll equals the initial sum,
 return true

Note that the rolls list, which is an instance variable, is reset to an empty list on each
play. That allows the same player to play multiple games.

The script that defines the Player and Die classes also includes two functions. The
role of these functions is to interact with the human user by playing the games and
displaying their results. The playManyGames function expects the number of games
as an argument, creates a single Player object, plays the games and gathers data
on the results, processes these data, and displays the required information. We also
include a simpler function playOneGame that plays just one game and displays the
results.

Implementation (Coding)

The Die class is defined in a file named die.py. The Player class and the top-level
functions are defined in a file named craps.py. Here is the code for the two modules:

"""
File: die.py
This module defines the Die class.
"""

from random import randint

class Die(object):
 """This class represents a six-sided die."""

 def __init__(self):
 """Sets the initial face of the die."""
 self.value = 1

(continued)

(continues)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

305

Getting Inside Objects and Classes

 def roll(self):
 """Resets the die's value to a random number
 between 1 and 6."""
 self.value = randint(1, 6)

 def getvalue(self):
 """Returns the current face of the die."""
 return self.value

 def __str__(self):
 """Returns the string rep of the die."""
 return str(self.value)
"""
File: craps.py
This module studies and plays the game of craps.
"""
from die import Die

class Player(object):

 def __init__(self):
 """Has a pair of dice and an empty rolls list."""
 self.diel = Die()
 self.die2 = Die()
 self.rolls = []

 def __str__(self):
 """Returns the string rep of the history of
 rolls."""
 result = ""
 for (vl, v2) in self.rolls:
 result = result + str((v1, v2)) + " " + \
 str(v1 + v2) + "\n"
 return result

 def getNumberOfRolls(self):
 """Returns the number of the rolls in one game."""
 return len(self.rolls)

 def play(self):
 """Plays a game, saves the rolls for that game,
 and returns True for a win and False for a loss."""
 self.rolls = []
 self.diel.roll()
 self.die2.roll()

(continued)

(continues)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

306

  Design with ClassesC h a p t e r 9

 (vl, v2) = (self.diel.getvalue(),
 self.die2.getvalue())
 self.rolls.append((vl, v2))
 initialSum = vl + v2
 if initialSum in (2, 3, 12):
 return False
 elif initialSum in (7, 11):
 return True
 while True:
 self.diel.roll()
 self.die2.roll()
 (vl, v2) = (self.diel.getvalue(),
 self.die2.getvalue())
 self.rolls.append((vl, v2))
 laterSum = vl + v2
 if laterSum == 7:
 return False
 elif laterSum == initialSum:
 return True

Functions that interact with the user to play the games
def playOneGame():
 """Plays a single game and prints the results."""
 player = Player()
 youWin = player.play()
 print(player)
 if youWin:
 print("You win!")
 else:
 print("You lose!")

def playManyGames(number):
 """Plays a number of games and prints statistics."""
 wins = 0
 losses = 0
 winRolls = 0
 lossRolls = 0
 player = Player()
 for count in range(number):
 hasWon = player.play()
 rolls = player.getNumberOfRolls()
 if hasWon:
 wins += 1
 winRolls += rolls

(continued)

(continues)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

307

Getting Inside Objects and Classes

 else:
 losses += 1
 lossRolls += rolls
 print("The total number of wins is", wins)
 print("The total number of losses is", losses)
 print("The average number of rolls per win is %0.2f" % \
 (winRolls / wins))
 print("The average number of rolls per loss is %0.2f" % \
 (lossRolls / losses))
 print("The winning percentage is %0.3f" % \
 (wins / number))

def main():
 """Plays a number of games and prints statistics."""
 number = int(input("Enter the number of games: "))
 playManyGames(number)

if __name__ == "__main__":
 main()

A GUI for Dice Games

Gambling is gambling, but it’s more fun on a computer if you can visualize the dice.
You can deploy the skills you picked up in Chapter 8 to create the graphical user
interface shown in Figure 9-1.

(continued)

(continues)

Figure 9-1  Displaying images of dice

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

308

  Design with ClassesC h a p t e r 9

The code for this version of the interface loads and displays images of dice from
a folder of GIF files. It is a good idea to rough out the GUI before incorporating the
game logic. Here is the code for laying out the window and rolling two dice:

"""
File: dicedemo.py
Pops up a window that allows the user to roll the dice.
"""

from breezypythongui import EasyFrame
from tkinter import PhotoImage
from die import Die

class DiceDemo(EasyFrame):

 def __init__(self):
 """Creates the dice, and sets up the Images and
 labels for the two dice to be displayed,
 the state label, and the two command buttons."""
 EasyFrame.__init__(self, title = "Dice Demo")
 self.setSize(220, 200)
 self.die1 = Die()
 self.die2 = Die()
 self.dieLabel1 = self.addLabel("", row = 0,
 column = 0,
 sticky = "NSEW")
 self.dieLabel2 = self.addLabel("", row = 0,
 column = 1,
 sticky = "NSEW",
 columnspan = 2)
 self.stateLabel = self.addLabel("", row = 1,
 column = 0,
 sticky = "NSEW",
 columnspan = 2)
 self.addButton(row = 2,column = 0, text = "Roll",
 command = self.nextRoll)
 self.addButton(text = "New game", row = 2,
 column = 1,
 command = self.newGame)
 self.refreshImages()

 def nextRoll(self):
 """Rolls the dice and updates the view with
 the results."""
 self.die1.roll()
 self.die2.roll()

(continued)

(continues)
Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

309

Data-Modeling Examples

Data-Modeling Examples
As you have seen, objects and classes are useful for modeling objects in the real world. In
this section, we explore several other examples.

Rational Numbers
We begin with numbers. A rational number consists of two integer parts, a numerator and
a denominator, and is written using the format numerator / denominator. Examples are
1/2, 1/3, and so forth. Operations on rational numbers include arithmetic and compari-
sons. Python has no built-in type for rational numbers. Let us develop a new class named
Rational to support this type of data.

The interface of the Rational class includes a constructor for creating a rational number,
an str function for obtaining a string representation, and accessors for the numerator and

(continued)

 total = self.die1.getValue() + self.die2.getValue()
 self.stateLabel["text"] = "Total = " + str(total)
 self.refreshImages()

 def newGame(self):
 """Create new dice and updates the view."""
 self.die1 = Die()
 self.die2 = Die()
 self.stateLabel["text"] = ""
 self.refreshImages()

 def refreshImages(self):
 """Updates the images in the window."""
 fileName1 = "DICE/" + str(self.die1) + ".gif"
 fileName2 = "DICE/" + str(self.die2) + ".gif"
 self.image1 = PhotoImage(file = fileName1)
 self.dieImageLabel1["image"] = self.image1
 self.image2 = PhotoImage(file = fileName2)
 self.dieImageLabel2["image"] = self.image2

def main():
 """Instantiate and pop up the window."""
 DiceDemo().mainloop()

if __name__ == "__main__":
 main()

The completion of a GUI-based craps game is left as an exercise.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

310

  Design with ClassesC h a p t e r 9

denominator. We will also show how to include methods for arithmetic and comparisons.
Here is a sample session to illustrate the use of the new class:
>>> oneHalf = Rational(1, 2)
>>> oneSixth = Rational(1, 6)
>>> print(oneHalf)
1/2
>>> print(oneHalf + oneSixth)
2/3
>>> oneHalf == oneSixth
False
>>> oneHalf > oneSixth
True

Note that this session uses the built-in operators +, ==, and < with objects of the new class,
Rational. Python allows the programmer to overload many of the built-in operators for
use with new data types.

We develop this class in two steps. First, we take care of the internal representation
of a rational number and also its string representation. The constructor expects the
numerator and denominator as arguments and sets two instance variables to this infor-
mation. This method then reduces the rational number to its lowest terms. To reduce
a rational number to its lowest terms, you first compute the greatest common divisor
(GCD) of the numerator and the denominator, using Euclid’s algorithm, as described in
Programming Project 8 of Chapter 3. You then divide the numerator and the denomi-
nator by this GCD. These tasks are assigned to two other Rational methods, _reduce
and _gcd. Because these methods are not intended to be in the class’s interface, their
names begin with the _ symbol. Performing the reduction step in the constructor guar-
antees that it will not have to be done in any other operation. Here is the code for the
first step:
"""
File: rational.py
Resources to manipulate rational numbers.
"""

class Rational(object):
 """Represents a rational number."""

 def __init__(self, numer, denom) :
 """Constructor creates a number with the given
 numerator and denominator and reduces it to lowest
 terms."""
 self.numer = numer
 self.denom = denom
 self._reduce()

 def numerator(self):
 """Returns the numerator."""
 return self.numer

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

311

Data-Modeling Examples

 def denominator(self):
 """Returns the denominator."""
 return self.denom

 def __str__(self):
 """Returns the string representation of the
 number."""
 return str(self.numer) + "/" + str(self.denom)

 def _reduce(self):
 """Helper to reduce the number to lowest terms."""
 divisor = self._gcd(self.numer, self.denom)
 self.numer = self.numer // divisor
 self.denom = self.denom // divisor

 def _gcd(self, a, b):
 """Euclid's algorithm for greatest common
 divisor (hacker's version)."""
 (a, b) = (max(a, b), min(a, b))
 while b > 0:
 (a, b) = (b, a % b)
 return a

 # Methods for arithmetic and comparisons go here

You can now test the class by instantiating numbers and printing them. Note that this class
only supports positive rational numbers. When you are satisfied that the data are being rep-
resented correctly, you can move on to the next step.

Rational Number Arithmetic and Operator Overloading
We now add methods to perform arithmetic with rational numbers. Recall that the ear-
lier session used the built-in operators for arithmetic. For a built-in type such as int or
float, each arithmetic operator corresponds to a special method name. You will see many
of these methods by entering dir(int) or dir(str) at a shell prompt, and they are listed
in Table 9-3. The object on which the method is called corresponds to the left operand,

Operator Method Name

+ __add__

- __sub__

* __mul__

/ __div__

% __mod__

Table 9-3	 Built-in arithmetic operators and their corresponding methods

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

312

  Design with ClassesC h a p t e r 9

whereas the method’s second parameter corresponds to the right operand. Thus, for exam-
ple, the code x + y is actually shorthand for the code x.__add__(y).

To overload an arithmetic operator, you just define a new method using the appropriate
method name. The code for each method applies a rule of rational number arithmetic. The
rules are listed in Table 9-4.

Type of Operation Rule

Addition 1 5 1n /d n /d (n d n d) / d d1 1 2 2 1 2 2 1 1 2

Subtraction 5 2−n /d n /d (n d n d) / d d1 1 2 2 1 2 2 1 1 2

Multiplication 5∗n /d n /d n n / d d1 1 2 2 1 2 1 2

Division 5n /d / n /d n d / d n1 1 2 2 1 2 1 2

Table 9-4	 Rules for rational number arithmetic

Each method builds and returns a new rational number that represents the result of the
operation. Here is the code for the addition operation:
def __add__(self, other):
 """Returns the sum of the numbers.
 self is the left operand and other is
 the right operand."""
 newNumer = self.numer * other.denom + \
 other.numer * self.denom
 newDenom = self.denom * other.denom
 return Rational(newNumer, newDenom)

Note that the parameter self is viewed as the left operand of the operator, whereas the
parameter other is viewed as the right operand. The instance variables of the rational num-
ber named other are accessed in the same manner as the instance variables of the rational
number named self. Note also that this method, like the other methods for rational arithme-
tic, returns a rational number. Arithmetic operations on numbers are said to be closed under
combination, meaning that these operations usually return values of the same types as their
arguments, allowing the user to combine the operations in arbitrarily complex expressions.

Operator overloading is another example of an abstraction mechanism. In this case, pro-
grammers can use operators with single, standard meanings even though the underlying
operations vary from data type to data type.

Comparison Methods
You can compare integers and floating-point numbers using the operators ==, !=, <, >, <=,
and >=. When the Python interpreter encounters one of these operators, it uses a cor-
responding method defined in the float or int class. Each of these methods expects two

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

313

Data-Modeling Examples

arguments. The first argument, self, represents the operand to the left of the operator, and
the second argument represents the other operand. Table 9-5 lists the comparison opera-
tors and the corresponding methods.

Operator Meaning Method

== Equals __eq__

!= Not equals __ne__

< Less than __lt__

<= Less than or equal __le__

> Greater than __gt__

>= Greater than or equal __ge__

Table 9-5	 The comparison operators and methods

To use the comparison operators with a new class of objects, such as rational numbers, the
class must include these methods with the appropriate comparison logic. However, once
the implementer of the class has defined methods for ==, <, and >=, the remaining methods
are automatically provided.

Let’s implement < here and wait on == until the next section. The simplest way to compare
two rational numbers is to compare the product of the extremes and the product of the
means. The extremes are the first numerator and the second denominator, whereas the
means are the second numerator and the first denominator. Thus, the comparison 1/6 , 2/3
translates to 1 * 3 , 2 * 6. The implementation of the __lt__ method for rational numbers
uses this strategy, as follows:
def __lt__(self, other):
 """Compares two rational numbers, self and other,
 using <."""
 extremes = self.numer * other.denom
 means = other.numer * self.denom
 return extremes < means

When objects of a new class are comparable, it’s a good idea to include the comparison
methods in that class. Then, other built-in methods, such as the sort method for lists, will
be able to use your objects appropriately.

Equality and the __eq__ Method
Equality is a different kind of relationship from the other types of comparisons. Not all
objects are comparable using less than or greater than, but any two objects can be com-
pared for equality or inequality. For example, when the variable twoThirds refers to a

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

314

  Design with ClassesC h a p t e r 9

rational number, it does not make sense to say twoThirds < "hi there", but it does make
sense to say twoThirds != "hi there" (true, they aren’t the same). Put another way, the
first expression should generate a semantic error, whereas the second expression should
return True.

The Python interpreter picks out equality from the other comparisons by looking for an
__eq__ method when it encounters the == and != operators. As you’ll recall from Chapter 5,
Python includes an implementation of this method for objects like lists and dictionaries as
well as the numeric types. However, unless you include an implementation of this method
for a new class, Python relies upon the implementation of __eq__ in the object class, which
uses the is operator. This implementation returns True only if the two operands refer to the
exact same object (object identity). This criterion of equality is too narrow for many objects,
such as rational numbers, where you might want two distinct objects that both represent
the same number to be considered equal.

To remedy this problem, you must include an __eq__ method in a new class. This method
supports equality tests with any types of objects. Here is the code for this method in the
Rational class:
def __eq__(self, other):
 """Tests self and other for equality."""
 if self is other: # Object identity?
 return True
 elif type(self) != type(other): # Types match?
 return False
 else:
 return self.numer == other.numer and \
 self.denom == other.denom

Note that the method first tests the two operands for object identity using Python’s is
operator. The is operator returns True if self and other refer to the exact same object.
If the two objects are distinct, the method then uses Python’s type function to determine
whether or not they are of the same type. If they are not of the same type, they cannot be
equal. Finally, if the two operands are of the same type, the second one must be a rational
number, so it is safe to access the components of both operands to compare them for equal-
ity in the last alternative.

As a rule of thumb, you should include an __eq__ method in any class where a comparison
for equality uses a criterion other than object identity. You should also include comparison
methods for < and >= when the objects are comparable using less than or greater than.

Savings Accounts and Class Variables
Turning to the world of finance, banking systems are easily modeled with classes. For exam-
ple, a savings account allows owners to make deposits and withdrawals. These accounts
also compute interest periodically. A simplified version of a savings account includes an

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

315

Data-Modeling Examples

When the interest is computed, a rate is applied to the balance. If you assume that the rate
is the same for all accounts, then it does not have to be an instance variable. Instead, you
can use a class variable. A class variable is visible to all instances of a class and does not
vary from instance to instance. While it normally behaves like a constant, in some situa-
tions a class variable can be modified. But when it is, the change takes effect for the entire
class.

To introduce a class variable, we place the assignment statement that initializes it between
the class header and the first method definition. For clarity, class variables are written in
uppercase only. The code for SavingsAccount shows the definition and use of the class
variable RATE:
"""
File: savingsaccount.py
This module defines the SavingsAccount class.
"""

class SavingsAccount(object):
 """This class represents a savings account
 with the owner's name, PIN, and balance."""

SavingsAccount Method What It Does

a = SavingsAccount(name, pin,
 balance = 0.0)

Returns a new account with the given name, PIN,
and balance.

a.deposit(amount) Deposits the given amount to the account’s balance.

a.withdraw(amount) Withdraws the given amount from the account’s
balance.

a.getBalance() Returns the account’s balance.

a.getName() Returns the account’s name.

a.getPin() Returns the account’s PIN.

a.computeInterest() Computes the account’s interest and deposits it.

a.__str__() Same as str(a). Returns the string representation
of the account.

Table 9-6	 The interface for SavingsAccount

owner’s name, PIN, and balance as attributes. The interface for a SavingsAccount class is
listed in Table 9-6.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

316

  Design with ClassesC h a p t e r 9

 RATE = 0.02 # Single rate for all accounts

 def __init__(self, name, pin, balance = 0.0):
 self.name = name
 self.pin = pin
 self.balance = balance

 def __str__(self) :
 """Returns the string rep."""
 result = 'Name: ' + self.name + '\n'
 result += 'PIN: ' + self.pin + '\n'
 result += 'Balance: ' + str(self.balance)
 return result

 def getBalance(self):
 """Returns the current balance."""
 return self.balance

 def getName(self):
 """Returns the current name."""
 return self.name

 def getPin(self):
 """Returns the current pin."""
 return self.pin

 def deposit(self, amount):
 """Deposits the given amount and returns None."""
 self.balance += amount
 return None

 def withdraw(self, amount):
 """Withdraws the given amount.
 Returns None if successful, or an
 error message if unsuccessful."""
 if amount < 0:
 return "Amount must be >= 0"
 elif self.balance < amount:
 return "Insufficient funds"
 else:
 self.balance -= amount
 return None

 def computeInterest(self):
 """Computes, deposits, and returns the interest."""
 interest = self.balance * SavingsAccount.RATE
 self.deposit(interest)
 return interest

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

317

Data-Modeling Examples

When you reference a class variable, you must prefix it with the class name and a dot, as in
SavingsAccount.RATE. Class variables are visible both inside a class definition and to exter-
nal users of the class.

In general, you should use class variables only for symbolic constants or to maintain data
held in common by all objects of a class. For data that are owned by individual objects, you
must use instance variables instead.

Putting the Accounts into a Bank
Savings accounts most often make sense in the context of a bank. A very simple bank allows
a user to add new accounts, remove accounts, get existing accounts, and compute inter-
est on all accounts. A Bank class thus has these four basic operations (add, remove, get,
and computelnterest) and a constructor. This class, of course, also includes the usual str
function for development and debugging. We assume that Bank is defined in a file named
bank.py. Here is a sample session that uses a Bank object and some SavingsAccount
objects. The interface for Bank is listed in Table 9-7.
>>> from bank import Bank
>>> from savingsaccount import SavingsAccount
>>> bank = Bank()
>>> bank.add(SavingsAccount("Wilma", "1001", 4000.00))
>>> bank.add(SavingsAccount("Fred", "1002", 1000.00))
>>> print(bank)
Name: Fred
PIN: 1002
Balance: 1000.00
Name: Wilma
PIN: 1001
Balance: 4000.00
>>> account = bank.get("Wilma", "1000")
>>> print(account)
None
>>> account = bank.get("Wilma", "1001")
>>> print (account)
Name: Wilma
PIN: 1001
Balance: 4000.00
>>> account.deposit(25.00)
>>> print(account)
Name: Wilma
PIN: 1001
Balance: 4025.00
>>> print(bank)
Name: Fred
PIN: 1002

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

318

  Design with ClassesC h a p t e r 9

To keep the design simple, the bank maintains the accounts in no particular order. Thus,
you can choose a dictionary keyed by owners’ credentials to represent the collection of
accounts. Access and removal then depend on an owner’s credentials. Here is the code for
the Bank class:
"""
File: bank.py
This module defines the Bank class.
"""

from savingsaccount import SavingsAccount

class Bank(object):

 def __init__(self):
 self.accounts = {}

 def __str__(self) :
 """Return the string rep of the entire bank."""
 return '\n'.join(map(str, self.accounts.values()))

 def makeKey(self, name, pin):
 """Makes and returns a key from name and pin."""
 return name + "/" + pin

Bank Method What It Does

b = Bank() Returns a bank.

b.add(account) Adds the given account to the bank.

b.remove(name, pin) Removes the account with the given name and pin from the bank and
returns the account. If the account is not in the bank, returns None.

b.get(name, pin) Returns the account associated with the name and pin if it’s in the
bank. Otherwise, returns None.

b.computelnterest() Computes the interest on each account, deposits it in that account,
and returns the total interest.

b.__str__() Same as str(b). Returns a string representation of the bank (all the
accounts).

Table 9-7	 The interface for the Bank class

Balance: 1000.00
Name: Wilma
PIN: 1001
Balance: 4025.00

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

319

Data-Modeling Examples

 def add(self, account):
 """Inserts an account with name and pin as a key."""
 key = self.makeKey(account.getName(),
 account.getPin())
 self.accounts[key] = account

 def remove(self, name, pin):
 """Removes an account with name and pin as a key."""
 key = self.makeKey(name, pin)
 return self.accounts.pop(key, None)

 def get(self, name, pin):
 """Returns an account with name and pin as a key
 or None if not found."""
 key = self.makeKey(name, pin)
 return self.accounts.get(key, None)

 def computeInterest(self):
 """Computes interest for each account and
 returns the total."""
 total = 0.0
 for account in self.accounts.values():
 total += account.computelnterest()
 return total

Note the use of the value None in the methods remove and get. In this context, None indi-
cates to the user that the given account is not in the bank. Note also that the module names
for the Bank and SavingsAccount classes are bank and savingsaccount, respectively. This
naming convention is standard practice among Python programmers and helps them to
remember where classes are located for import.

Using pickle for Permanent Storage of Objects
Chapter 4 discussed saving data in permanent storage with text files. Now suppose you
want to save new types of objects to files. For example, it would be a wise idea to back up
the information for a savings account to a file whenever that account is modified. You can
convert any object to text for storage, but the mapping of complex objects to text and back
again can be tedious and cause maintenance headaches. Fortunately, Python includes a
module that allows the programmer to save and load objects using a process called pickling.
The term comes from the process of converting cucumbers to pickles for preservation in
jars. However, in the case of computational objects, you can get the cucumbers back from
the pickle jar again. You can pickle an object before it is saved to a file, and then unpickle it
as it is loaded from a file into a program. Python takes care of all of the conversion details
automatically. You start by importing the pickle module. Files are opened for input and
output and closed in the usual manner, except that the flags "rb" and "wb" are used instead
of 'r' and 'w', respectively. To save an object, you use the function pickle.dump. Its first
argument is the object to be “dumped,” or saved to a file, and its second argument is the
file object.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

320

  Design with ClassesC h a p t e r 9

You can use the pickle module to save the accounts in a bank to a file. You start by defining
a Bank method named save. The method includes an optional argument for the filename.
You assume that the Bank object also has an instance variable for the filename. For a new,
empty bank, this variable’s value is initially None. Whenever the bank is saved to a file, this
variable becomes the current filename. When the method’s filename argument is not pro-
vided, the method uses the bank’s current filename if there is one. This is similar to using
the Save option in a File menu. When the filename argument is provided, it is used to save
the bank to a different file. This is similar to the Save As option in a File menu. Here is the
code:
import pickle

def save(self, fileName = None):
 """Saves pickled accounts to a file. The parameter
 allows the user to change filenames."""
 if fileName != None:
 self.fileName = fileName
 elif self.fileName == None:
 return
 fileObj = open(self. fileName, "wb")
 for account in self.accounts.values():
 pickle.dump(account, fileObj)
 fileObj.close()

Input of Objects and the try-except Statement
You can load pickled objects into a program from a file using the function pickle.load.
If the end of the file has been reached, this function raises an exception. This complicates
the input process, because we have no apparent way to detect the end of the file before the
exception is raised. However, Python’s try-except statement comes to our rescue. As you
learned in Chapter 8, this statement allows an exception to be caught and the program to
recover. The syntax of a simple try-except statement is the following:
try:
 <statements>
except <exception type>:
 <statements>

When this statement is run, the statements within the try clause are executed. If one of
these statements raises an exception, control is immediately transferred to the except
clause. If the type of exception raised matches the type in this clause, its statements are exe-
cuted. Otherwise, control is transferred to the caller of the try-except statement and fur-
ther up the chain of calls, until the exception is successfully handled or the program halts
with an error message. If the statements in the try clause raise no exceptions, the except
clause is skipped, and control proceeds to the end of the try-except statement.

We can now construct an input file loop that continues to load objects until the end of
the file is encountered. When this happens, an EOFError is raised. The except clause
then closes the file and breaks out of the loop. We also add a new instance variable to

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

321

Data-Modeling Examples

track the bank’s filename for saving the bank to a file. Here is the code for a Bank method
__init__ that can take some initial accounts from an input file. This method now either
creates a new, empty bank if the filename is not present, or loads accounts from a file into
a Bank object.
def __init__(self, fileName = None):
 """Creates a new dictionary to hold the accounts.
 If a filename is provided, loads the accounts from
 a file of pickled accounts."""
 self.accounts = {}
 self.fileName = fileName
 if fileName != None:
 fileObj = open(fileName, "rb")
 while True:
 try:
 account = pickle.load(fileObj)
 self.add(account)
 except EOFError:
 fileObj.close()
 break

Playing Cards
Many games, such as poker, blackjack, and solitaire, use playing cards. Modeling play-
ing cards provides a nice illustration of the design of cooperating classes. A standard
deck of cards has 52 cards. There are four suits: spades, hearts, diamonds, and clubs.
Each suit contains 13 cards. Each card also has a rank, which is a number used to sort
the cards and determine the count in a hand. The literal numbers are 2 through 10.
An Ace counts as the number 1 or some other number, depending on the game
being played. The face cards, Jack, Queen, and King, often count as 11, 12, and 13,
respectively.

A Card class and a Deck class would be useful resources for game-playing programs. A Card
object has two instance attributes, a rank and a suit. The Card class has two class attributes,
the set of all suits and the set of all ranks. You can represent these two sets of attributes as
instance variables and class variables in the Card class.

Because the attributes are only accessed and never modified, we do not include any meth-
ods other than an __str__ method for the string representation. The __init__ method
expects an integer rank and a string suit as arguments and returns a new card with that
rank and suit. The next session shows the use of the Card class:
>>> threeOfSpades = Card(3, "Spades")
>>> jackOfSpades = Card(11, "Spades")
>>> print(jackOfSpades)
Jack of Spades
>>> threeOfSpades.rank < jackOfSpades.rank
True
>>> print(jackOfSpades.rank, jackOfSpades.suit)
11 Spades

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

322

  Design with ClassesC h a p t e r 9

Note that you can directly access the rank and suit of a Card object by using a dot followed
by the instance variable names. A card is little more than a container of two data values.
Here is the code for the Card class:
class Card(object):
 """ A card object with a suit and rank."""

 RANKS = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)
 SUITS = ("Spades", "Diamonds", "Hearts", "Clubs")

 def __init__(self, rank, suit):
 """Creates a card with the given rank and suit."""
 self.rank = rank
 self.suit = suit

 def __str__(self) :
 """Returns the string representation of a card."""
 if self.rank == 1:
 rank = "Ace"
 elif self.rank == 11:
 rank = "Jack"
 elif self.rank == 12:
 rank = "Queen"
 elif self.rank == 13:
 rank = "King"
 else:
 rank = self.rank
 return str(rank) + " of " + self.suit

Unlike an individual card, a deck has significant behavior that can be specified in an interface.
One can shuffle the deck, deal a card, and determine the number of cards left in it. Table 9-8
lists the methods of a Deck class and what they do. Here is a sample session that tries out a deck:
>>> deck = Deck()
>>> print(deck)
--- the print reps of 52 cards, in order of suit and rank
>>> deck.shuffle()
>>> len(deck)
52
>>> while len(deck) > 0:
 card = deck.deal()
 print(card)
--- the print reps of 52 randomly ordered cards
>>> len(deck)
0

During instantiation, all 52 unique cards are created and inserted in sorted order into a
deck’s internal list of cards. The Deck constructor makes use of the class variables RANKS
and SUITS in the Card class to order the new cards appropriately. The shuffle method sim-
ply passes the list of cards to random.shuffle. The deal method removes and returns the
first card in the list, if there is one, or returns the value None otherwise. The len function,

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

323

Data-Modeling Examples

like the str function, calls a method (in this case, __len__) that returns the length of the list
of cards. Here is the code for Deck:
import random

The definition of the Card class goes here

class Deck(object):
 """ A deck containing 52 cards."""

 def __init__(self):
 """Creates a full deck of cards."""
 self.cards = []
 for suit in Card.SUITS:
 for rank in Card.RANKS:
 c = Card(rank, suit)
 self.cards.append(c)

 def shuffle(self):
 """Shuffles the cards."""
 random.shuffle(self.cards)

 def deal(self):
 """Removes and returns the top card or None
 if the deck is empty."""
 if len(self) == 0:
 return None
 else:
 return self.cards.pop(0)

 def __len__(self):
 """Returns the number of cards left in the deck."""
 return len(self.cards)

Deck Method What It Does

d = Deck() Returns a deck.

d.__len__() Same as len(d). Returns the number of cards currently in the deck.

d.shuffle() Shuffles the cards in the deck.

d.deal() If the deck is not empty, removes and returns the topmost card.
Otherwise, returns None.

d.__str__() Same as str(d). Returns a string representation of the deck (all the
cards in it).

Table 9-8	 The interface for the Deck class

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

324

  Design with ClassesC h a p t e r 9

 def __str__(self) :
 """Returns the string representation of a deck."""
 result = ""
 for c in self.cards:
 result = result + str(c) + '\n'
 return result

Exercises

1.	 Although the use of a PIN to identify a person’s bank account is simple, it’s not very
realistic. Real banks typically assign a unique 12-digit number to each account and
use this as well as the customer’s PIN during a login at an ATM. Suggest how to
rework the banking system discussed in this section to use this information.

2.	 What is a class variable? When should the programmer define a class variable rather
than an instance variable?

3.	 Describe how the arithmetic operators can be overloaded to work with a new class
of numbers.

4.	 Define a method for the Bank class that returns the total assets in the bank (the sum
of all account balances).

5.	 Describe the benefits of pickling objects for file storage.

6.	 Why would you use a try-except statement in a program?

7.	 Two playing cards can be compared by rank. For example, an Ace is less than a 2.
When c1 and c2 are cards, c1.rank < c2.rank expresses this relationship. Explain
how a method could be added to the Card class to simplify this expression to c1 < c2.

Case Study: An ATM

In this case study, we develop a simple ATM program that uses the Bank and
SavingsAccount classes discussed in the previous section.

Request

Write a program that simulates a simple ATM.

Analysis

Our ATM user logs in with a name and a personal identification number, or PIN. If either
string is unrecognized, an error message is displayed. Otherwise, the user can repeatedly

(continues)
Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

325

Data-Modeling Examples

select options to get the balance, make a deposit, and make a withdrawal. A final option
allows the user to log out. Figure 9-2 shows the sample interface for this application.

The data model classes for the program are the Bank and SavingsAccount classes
developed earlier in this chapter. To support user interaction, we also develop a new class
called ATM. The class diagram in Figure 9-3 shows the relationships among these classes.

As you learned in Chapter 8, in a class diagram the name of each class appears in
a box. The lines or edges connecting the boxes show the relationships. Note that
these edges are labeled or contain arrows. This information describes the number of

Figure 9-3  A UML diagram for the ATM program showing the program’s classes

SavingsAccount

Bank

*

displays

EasyFrame

Model classesView classes

* means contains
zero or more

means is a
subclass of

ATM

(continues)

(continued)

Figure 9-2  The user interface for the ATM program

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

326

  Design with ClassesC h a p t e r 9

accounts in a bank (zero or more) and the dependency of one class on another (the
direction of an arrow). Class diagrams of this type are part of a graphical notation
called the Unified Modeling Language, or UML. UML is used to describe and
document the analysis and design of complex software systems.

In general, it is a good idea to divide the code for most interactive applications into
at least two sets of classes. One set of classes, which we call the view, handles the
program’s interactions with human users, including the input and output operations.
The other set of classes, called the model, represents and manages the data used
by the application. In the current case study, the Bank and SavingsAccount classes
belong to the model, whereas the ATM class belongs to the view. One of the benefits of
this separation of responsibilities is that you can write different views for the same data
model, such as a terminal-based view and a GUI-based view, without changing a line
of code in the data model. Alternatively, you can write different representations of the
data model without altering a line of code in the views. In some of the case studies that
follow, we apply this framework, called the model/view pattern, to structure the code.

Design

The ATM class maintains two instance variables. Their values are the following:

•• A Bank object

•• The SavingsAccount of the currently logged-in user

At program start-up, a Bank object is loaded from a file. An ATM object is then created for
this bank. The ATM’s mainloop method is then called. This method enters an event-driven
loop that waits for user events. If a user’s name and PIN match those of an account, the
ATM’s account variable is set to the user’s account, and the buttons for manipulating the
account are enabled. The selection of an option triggers an event-handling method to
process that option. Table 9-9 lists the methods in the ATM class.

ATM Method What It Does

ATM(bank) Returns a new ATM object based on the data model bank.

login() Allows the user to log in.

logout() Allows the user to log out.

getBalance() Displays the user’s balance.

deposit() Allows the user to make a deposit.

withdraw() Allows the user to make a withdrawal and displays any error messages.

Table 9-9	 The interface for the ATM class

(continues)

(continued)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

327

Data-Modeling Examples

The ATM constructor receives a Bank object as an argument and saves a reference to
it in an instance variable. It also sets its account variable to None.

Implementation (Coding)

The data model classes Bank and SavingsAccount are already available in bank.py
and savingsaccount.py. The code for the GUI, in atm.py, includes definitions of a
main window class named ATM and a main function. We discuss this function and sev-
eral of the ATM methods, without presenting the complete implementation here.

Before you can run this program, you need to create a bank. For testing purposes,
we include in the Bank class a simple function named createBank that creates and
returns a Bank object with a number of dummy accounts. Alternatively, the program
can load a bank object that has been saved in a file, as discussed earlier.

The main function creates a bank and passes this object to the constructor of the
ATM class. The ATM object’s mainloop method is then run to pop up the window. Here
is the code for the imports and the main function:

"""
File: atm.py
This module defines the ATM class, which provides a window
for bank customers to perform deposits, withdrawals, and
check balances.
"""

from breezypythongui import EasyFrame
from bank import Bank, createBank

Code for the ATM class goes here (in atm.py)

def main(fileName = None):
 """Creates the bank with the optional file name,
 wraps the window around it, and opens the window.
 Saves the bank when the window closes."""
 if not fileName:
 bank = createBank(5)
 else:
 bank = Bank(fileName)
 print(bank) # For testing only
 atm = ATM(bank)
 atm.mainloop()
 # Could save the bank to a file here.

if __name__ == "__main__":
 main()

(continues)

(continued)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

328

  Design with ClassesC h a p t e r 9

Note that when you launch this as a standalone program, you open the ATM on a
bank with 5 dummy accounts; but if you run main with a filename argument in the
IDLE shell, you open the ATM on a bank created from a saved bank file.

The __init__ method of ATM receives a Bank object as an argument and saves a
reference to it in an instance variable. This step connects the view (ATM) to the model
(Bank) for the application. The ATM object also keeps a reference to the currently
open account, which has an initial value of None. Here is the code for this method,
which omits the straightforward, but rather lengthy and tedious, step of adding the
widgets to the window:

class ATM(EasyFrame):
 """Represents an ATM window.
 The window tracks the bank and the current account.
 The current account is None at startup and logout.
 """

 def __init__(self, bank):
 """Initialize the window and establish
 the data model."""
 EasyFrame.__init__(self, title = "ATM")
 # Create references to the data model.
 self.bank = bank
 self.account = None
 # Create and add the widgets to the window.
 # Detailed code available in atm.py

 # Event handling methods go here

The event handling method to log the user in takes the username and pin from the
input fields and attempts to retrieve an account with these credentials from the bank.
If this step is successful, the account variable will refer to this account, a greeting
will be displayed in the status area, and the buttons to manipulate the account will be
enabled. Otherwise, the program displays an error message in the status area. Here
is the code for the method login:

def login(self):
 """Attempts to login the customer. If successful,
 enables the buttons, including logout."""
 name = self.nameField.getText()
 pin = self.pinField.getText()
 self.account = self.bank.get(name, pin)
 if self.account:
 self.statusField.setText("Hello, " + name + "!")
 self.balanceButton["state"] = "normal"

(continued)

(continues)
Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

329

Data-Modeling Examples

 self.depositButton["state"] = "normal"
 self.withdrawButton["state"] = "normal"
 self.loginButton["text"] = "Logout"
 self.loginButton["command"] = self.logout
 else:
 self.statusField.setText("Name and pin not found!")

Note that if a login succeeds, the text and command attributes of the button named
loginButton are set to the information for logging out. This allows the login and
logout functions to be assigned to a single button, as if it were an on/off switch,
thereby simplifying the user interface.

The logout method clears the view and restores it to its initial state, where it can
await another customer, as follows:

def logout(self):
 """Logs the customer out, clears the fields,
 disables the buttons, and enables login."""
 self.account = None
 self.nameField.setText("")
 self.pinField.setText("")
 self.amountField.setNumber(0.0)
 self.statusField.setText("Welcome to the Bank!")
 self.balanceButton["state"] = "disabled"
 self.depositButton["state"] = "disabled"
 self.withdrawButton["state"] = "disabled"
 self.loginButton["text"] = "Login"
 self.loginButton["command"] = self.login

The remaining three methods cannot be run unless a user has logged in and the
account object is currently available. Each method operates on the ATM object’s
account variable. The getBalance method asks the account for its balance and
displays it in the status field:

def getBalance(self):
 """Displays the current balance in the
 status field."""
 balance = self.account.getBalance()
 self.statusField.setText("Balance: $" + str(balance))

Here you can clearly see the model/view design pattern in action: the user’s
button click triggers the getBalance method, which obtains data from the
SavingsAccount object (the model), and updates the TextField object (the view)
with those data.

(continued)

(continues)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

330

  Design with ClassesC h a p t e r 9

Building a New Data Structure: The Two-Dimensional Grid
Like most programming languages, Python includes several basic types of data structures,
such as strings, lists, tuples, and dictionaries. Each type of data structure has a specific way
of organizing the data contained therein: strings, lists, and tuples are sequences of items
ordered by position, whereas dictionaries are sets of key/value pairs in no particular order.
Another useful data structure is a two-dimensional grid. A grid organizes items by position
in rows and columns. You have worked with grids to organize

•• pixels in images (Chapter 7)

•• widgets in window layouts (Chapter 8)

In Chapter 4, we mentioned that a sophisticated data encryption algorithm uses an invert-
ible matrix, which is also a type of grid. In this section, we develop a new class called Grid
for applications that require grids.

The Interface of the Grid Class
The first step in building a new class is to describe the kind of object it models. You focus
on the object’s attributes and behavior. A grid is basically a container where you organize
items by row and column. You can visualize a grid as a rectangular structure with rows and
columns. The rows are numbered from 0 to the number of rows minus 1. The columns
are numbered from 0 to the number of columns minus 1. Unlike a list, a grid has a height
(number of rows) and a width (number of columns), rather than a length.

The constructor or operation to create a grid allows you to specify the width, the height,
and an optional initial fill value for all of the positions. The default fill value is None. You

The withdraw method exhibits a similar pattern, but it obtains input from the view and
handles possible error conditions as well:

def withdraw(self):
 """Attempts a withdrawal. If not successful,
 displays error message in statusfield;
 otherwise, announces success."""
 amount = ammountField.getNumber()
 message = self.account.withdraw(amount)
 if message: # Check for an error message
 self.statusField.setText(message)
 else:
 self.statusField.setText("Withdrawal successful!")

Note that the logic of error checking (an amount greater than the funds available)
and the logic of the withdrawal itself are the responsibilities of the SavingsAccount
object (the model), not of the ATM object (the view).

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

331

Building a New Data Structure: The Two-Dimensional Grid

access or replace an item at a given position by specifying the row and column of that posi-
tion, using the notation
grid[<row>][<column>]

To assist in operations such as traversals, a grid provides operations to obtain its height
and its width. A search operation returns the position, expressed as (<row>, <column>)
of a given item, or the value None if the item is not present in the grid. Finally, an operation
builds and returns a two-dimensional string representation of the grid. A sample session
shows how these operations might be used:
>>> from grid import Grid
>>> grid = Grid(rows = 3, columns = 4, fillValue = 0)
>>> print(grid)
0 0 0 0
0 0 0 0
0 0 0 0
>>> grid[1][2] = 5
>>> print(grid)
0 0 0 0
0 0 5 0
0 0 0 0
>>> print(grid.find(5))
(1,2)
>>> print(grid.find(6))
None
>>> for row in range(grid.getHeight()):
 for column in range(grid.getWidth()):
 grid[row][column] = (row, column)
>>> print(grid)
(0,0) (0,1) (0,2) (0,3)
(1,0) (1,1) (1,2) (1,3)
(2,0) (2,1) (2,2) (2,3)

Using these requirements, we can provide the interface for the Grid class shown in Table 9-10.

Grid Method What It Does

g = Grid(rows, columns,
 fillValue = None)

Returns a new Grid object.

g.getHeight() Returns the number of rows.

g.getWidth() Returns the number of columns.

g.__str__() Same as str(g). Returns the string representation.

g.__getitem__(row)[column] Same as g.[row][column].

g.find(value) Returns (row, column) if value is found, or None
otherwise.

Table 9-10	 The interface for the GRID class

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

332

  Design with ClassesC h a p t e r 9

The Implementation of the Grid Class: Instance Variables
for the Data
The implementation of a class provides the code for the methods in its interface, as well as
the instance variables needed to track the data contained in objects of that class. Because
none of these resources can be inherited from a parent class, the Grid class will be a sub-
class of object.

The next step is to choose the data structures that will represent the two-dimensional
structure within a Grid object. A list of lists seems like a wise choice, because most of the
grid’s operations can easily map to list operations. A single instance variable named
self.data holds the top-level list of rows, and each item within this list will be a list of the
columns in that row. The method getHeight returns the length of the top-level list, while
the method getWidth returns the length of the list at position 0 within the top-level list.
Note that because the grid is rectangular, all of the nested lists are of the same length. The
expression self.data[row][column] drills into the list at position row within the top-level
list, and then accesses the item at position column in the nested list.

The other two methods to treat in this step are __init__, which initializes the instance
variables, and __str__, which allows you to view the data during testing. Here is the code
for a working prototype of the Grid class with the four methods discussed thus far:
class Grid(object):
 """Represents a two-dimensional grid."""

 def __init__(self, rows, columns, fillValue = None):
 """Sets up the data."""
 self.data = []
 for row in range(rows):
 dataInRow = []
 for column in range(columns):
 dataInRow.append(fillValue)
 self.data.append(dataInRow)

 def getHeight(self):
 """Returns the number of rows."""
 return len(self.data)

 def getWidth(self):
 """Returns the number of columns."""
 return len(self.data[0])

 def __str__(self):
 """Returns a string representation of the grid."""
 result = ""
 for row in range(self.getHeight()):
 for col in range(self.getWidth()):
 result += str(self.data[row][col]) + " "
 result += "\n"
 return result

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

333

Building a New Data Structure: The Two-Dimensional Grid

The Implementation of the Grid Class: Subscript and Search
The remaining methods implement the subscript and the search operations on a grid.

The subscript operator is used to access an item at a grid position or to replace it there.
In the case of access, the subscript appears within an expression, as in grid[1][2]. In this
case, when Python sees the [] following an object, it looks for a method named
__getitem__ in the object’s class. This method expects an index as an argument, and
returns the item at that index in the underlying data structure. In the case of the Grid class,
this method returns a nested list at the given index in the top-level list. This list represents a
row of data in the grid. Python then uses the second subscript on this list to obtain the item
at the given column in this row. Here is the code for this method:
def __getitem__(self, index):
 """Supports two-dimensional indexing with [][].
 Index represents a row number."""
 return self.data[index]

This method also handles the case when the subscript appears on the left side of an assign-
ment statement, during a replacement of at item at a given position in a grid, as in
grid[1][2] = 5

The search operation named find must loop through the grid’s list of lists, until it finds
the target item or runs out of items to examine. The code for the implementation uses the
familiar grid traversal pattern that you learned in Chapters 7 and 8:
def find(self, value):
 """Returns (row, column) if value is found,
 or None otherwise."""
 for row in range(self.getHeight()):
 for column in range(self.getWidth()):
 if self[row][column] == value:
 return (row, column)
 return None

Note how this method uses the subscripts with self rather than self.data. Here we take
advantage of the fact that the subscripts now work with grids as well as lists.

Case Study: Data Encryption with a Block Cipher

In Chapter 4, we developed code to encrypt text with a Caesar cipher. We mentioned
that a linear encryption method like this one is easy to crack, but that a method that
uses a block cipher is harder to crack. In this case study, we use the Grid class to
develop an encryption program that employs a block cipher.

Request

Write a program that uses a block cipher to encrypt text.

(continues)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

334

  Design with ClassesC h a p t e r 9

Analysis

A block cipher encryption method uses a two-dimensional grid of the characters, also
called a matrix, to convert the plaintext to the ciphertext. The algorithm converts
consecutive pairs of characters in the plaintext to pairs of characters in the cipher-
text. For each pair of characters, it locates the positions of those characters in the
matrix. If the two characters are in the same row or column, it simply swaps the posi-
tions of these characters and adds them to the ciphertext. Otherwise, it locates the
two characters at the opposite corners of a rectangle in the matrix, and adds these
two characters to the ciphertext. Figure 9-4 shows a snapshot of this process.

This interface allows the user to step through the encryption process. When the user
clicks the Encrypt button, the program locates the next pair of plaintext characters in
the matrix and marks them with gray boxes. It then marks the ciphertext characters at
the opposite corners, if they exist, with pink boxes. The window on the left in Figure 9-4
shows two sets of marked characters, whereas the window on the right shows gray
marks only. In the first case, the characters in pink are added to the ciphertext; in the
second case, the characters in gray are reversed before this addition.

Note that the characters are in random order in the matrix, and that the program
allows the user to reset the grid to a new randomly ordered set of characters when
the encryption is finished.

Figure 9-4  Encrypting text with a block cipher

(continued)

(continues)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

335

Building a New Data Structure: The Two-Dimensional Grid

Although the GUI shown in Figure 9-4 is available in the example programs for this book, we
develop a simpler terminal-based version here. The following session illustrates its features:

>>> main()
Enter the plaintext: Ken Lambert
Encrypting . . .
 Plain text: Ken Lambert
Cipher text: .n1UM@8Gs/t
Decrypting . . .
 Cipher text: .n1UM@8Gs/t
Plain text: Ken Lambert
>>> main("Weather: cloudy tomorrow")
Encrypting . . .
 Plain text: Weather: cloudy tomorrow
Cipher text: q-taPgfQ@solWQgUTa];rr;T
Decrypting . . .
 Cipher text: q-taPgfQ@solWQgUTa];rr;T
Plain text: Weather: cloudy tomorrow

Note that the main function defaults to a prompt for user input if an argument is not
supplied. Otherwise, main uses its argument as the plaintext.

Design and Implementation

The first step in this design is to define a function that builds the matrix for the
block cipher. This function, makeMatrix, fills a list with the characters from ASCII 32
through ASCII 127. These are the printable characters in this set (except for the new-
line and tab characters). The function then shuffles the list to randomize the charac-
ters. It next creates a new 8-by-12 Grid object and copies the characters from the list
to the grid. Finally, the grid is returned. Here is the code for the makeMatrix function:

from grid import Grid
import random

def makeMatrix():
 """Builds and returns an encryption matrix."""
 listOfChars = []
 for ascii in range(32, 128):
 listOfChars.append(chr(ascii))
 random.shuffle(listOfChars)
 matrix = Grid(8, 12)
 i = 0
 for row in range(matrix.getHeight()):
 for column in range(matrix.getWidth()):
 matrix[row][column] = listOfChars[i]
 i += 1
 return matrix

(continued)

(continues)
Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

336

  Design with ClassesC h a p t e r 9

The next step is the design of the encrypt function. This function expects the
plaintext and a matrix as arguments and returns the ciphertext. The function guides
the process of moving through consecutive pairs of characters in the plaintext and
adding the corresponding pairs of characters to the ciphertext under construction.
Because the process of converting a pair of characters is rather complicated, we
delegate it to a helper function named encryptPair. The encrypt function also
handles the oddball case of a plaintext with an odd number of characters. In that
case, the function simply adds the last plaintext character to the ciphertext. Here is
the code for the encrypt function:

def encrypt(plainText, matrix):
 """Uses matrix to encrypt plainText,
 and returns cipherText."""
 cypherText = ""
 limit = len(plainText)
 # Adjust for an odd number of characters
 if limit % 2 == 1:
 limit -= 1
 # Use the matrix to encrypt pairs of characters
 i = 0
 while i < limit:
 cypherText += encryptPair(plainText, i, matrix)
 i += 2
 # Add the last character if length was odd
 if limit < len(plainText):
 cypherText += plainText[limit]
 return cypherText

The encryptPair function expects the plaintext, the current character position, and
the matrix as arguments and returns a string containing a two-character ciphertext. The
function first searches the matrix for the characters at the current and next positions
in the plaintext. The function then uses the results, two pairs of grid coordinates, to
generate the pair of characters in the ciphertext. In one case, where the two rows or
the two columns in the coordinates are the same, the function just swaps the positions
of the plaintext characters. In the other case, it retrieves the ciphertext characters
from the opposite corners of the rectangle formed by the positions of the plaintext
characters in the matrix. Here is the code for the encryptPair function:

def encryptPair(plainText, i, matrix):
 """Returns the cipherText of the pair of
 characters at i and i + 1 in plainText."""
 # Locate the characters in the matrix
 (row1, col1) = matrix.find(plainText[i])
 (row2, col2) = matrix.find(plainText[i + 1])

(continued)

(continues)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

337

Structuring Classes with Inheritance and Polymorphism

 # Swap them if they are in the same row or column
 if row1 == row2 or col1 == col2:
 return plainText[i + 1] + plainText[i]
 # Otherwise, use the characters at the opposite
 # corners of the rectangle in the matrix
 else:
 ch1 = matrix[row2][col1]
 ch2 = matrix[row1][col2]
 return ch1 + ch2

The good news is that the algorithm to decrypt a ciphertext with a block cipher
is the same as the algorithm to encrypt a plaintext with the same block cipher.
Therefore, the decrypt function simply calls encrypt with the ciphertext and matrix
as arguments:

def decrypt(cipherText, matrix):
 """Uses matrix to decrypt cipherText,
 and returns plainText."""
 return encrypt(cipherText, matrix)

One limitation of our design is that it works only for one-line strings of text. A more
general method would add all 128 ASCII values, including the newline and tab characters,
to the matrix. Then you would be able to encrypt and decrypt entire text files.

(continued)

Structuring Classes with Inheritance and Polymorphism
Object-based programming involves the use of objects, classes, and methods to solve prob-
lems. Object-oriented programming requires the programmer to master the following addi-
tional concepts:

1.	 Data encapsulation. Restricting the manipulation of an object’s state by external
users to a set of method calls.

2.	 Inheritance. Allowing a class to automatically reuse and extend the code of similar
but more general classes.

3.	 Polymorphism. Allowing several different classes to use the same general method
names.

Although Python is considered an object-oriented language, its syntax does not enforce
data encapsulation. As you have seen, in the case of simple container objects, like playing
cards, with little special behavior, it is handy to be able to access the objects’ data without a
method call.

Unlike data encapsulation, inheritance and polymorphism are built into Python’s syntax. In
this section we examine how they can be exploited to structure code.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

338

  Design with ClassesC h a p t e r 9

Inheritance Hierarchies and Modeling
Objects in the natural world and objects in the world of artifacts can be classified using
inheritance hierarchies. A simplified hierarchy of natural objects is depicted in Figure 9-5.

Figure 9-5  A simplified hierarchy of objects in the natural world

Stone Asteroid

Living thing

InsectMammal

Physical object

Cat Ant

Inanimate object

At the top of a hierarchy is the most general class of objects. This class defines features that are
common to every object in the hierarchy. For example, every physical object has a mass. Classes
just below this one have these features as well as additional ones. Thus, a living thing has a
mass and can also grow and die. The path from a given class back up to the topmost one goes
through all of that given class’s ancestors. Each class below the topmost one inherits attributes
and behaviors from its ancestors and extends these with additional attributes and behavior.

An object-oriented software system models this pattern of inheritance and extension in
real-world systems by defining classes that extend other classes. In Python, all classes auto-
matically extend the built-in object class, which is the most general class possible. How-
ever, as you learned in Chapter 8, it is possible to extend any existing class using the syntax:
class <new class name>(<existing parent class name>):

Thus, for example, PhysicalObject would extend object, LivingThing would extend
PhysicalObject, and so on.

The real advantage of inheritance in a software system is that each new subclass acquires all
of the instance variables and methods of its ancestor classes for free. Like function definitions
and class definitions, inheritance hierarchies provide an abstraction mechanism that allows
the programmer to avoid reinventing the wheel or writing redundant code, as you clearly saw
in Chapter 8. To review how inheritance works in Python, we explore two more examples.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

339

Structuring Classes with Inheritance and Polymorphism

Example 1: A Restricted Savings Account
So far, our examples have focused on ordinary savings accounts. Banks also provide cus-
tomers with restricted savings accounts. These are like ordinary savings accounts in most
ways, but with some special features, such as allowing only a certain number of deposits
or withdrawals a month. Let’s assume that a savings account has a name, a PIN, and a bal-
ance. You can make deposits and withdrawals and access the account’s attributes. Let’s also
assume that this restricted savings account permits only three withdrawals per month. The
next session shows an interaction with a RestrictedSavingsAccount that permits up to
three withdrawals:
>>> account = RestrictedSavingsAccount("Ken", "1001", 500.00)
>>> print(account)
Name: Ken
PIN: 1001
Balance: 500.0
>>> account.getBalance()
500.0
>>> for count in range(3):
 account.withdraw(100)
>>> account.withdraw(50)
'No more withdrawals this month'
>>> account.resetCounter()
>>> account.withdraw(50)

The fourth withdrawal has no effect on the account, and it returns an error message. A new
method named resetCounter is called to enable withdrawals for the next month.

If RestrictedSavingsAccount is defined as a subclass of SavingsAccount, every method
but withdraw can simply be inherited and used without changes. The withdraw method
is redefined in RestrictedSavingsAccount to return an error message if the number of
withdrawals has exceeded the maximum. The maximum will be maintained in a new class
variable, and the monthly count of withdrawals will be tracked in a new instance variable.
Finally, a new method, resetCounter, is included to reset the number of withdrawals to 0 at
the end of each month. Here is the code for the RestrictedSavingsAccount class, followed
by a brief explanation:
"""
File: restrictedsavingsaccount.py
This module defines the RestrictedSavingsAccount class.
"""

from savingsaccount import SavingsAccount

class RestrictedSavingsAccount(SavingsAccount):
 """This class represents a restricted
 savings account."""

 MAX_WITHDRAWALS = 3

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

340

  Design with ClassesC h a p t e r 9

 def __init__(self, name, pin, balance = 0.0):
 """Same attributes as SavingsAccount, but with
 a counter for withdrawals."""
 SavingsAccount.__init__(self, name, pin, balance)
 self.counter = 0

 def withdraw(self, amount):
 """Restricts number of withdrawals to MAX_WITHDRAWALS."""
 if self.counter == RestrictedSavingsAccount.MAX_WITHDRAWALS:
 return "No more withdrawals this month"
 else:
 message = SavingsAccount.withdraw(self, amount)
 if message == None:
 self.counter += 1
 return message

 def resetCounter(self):
 """Resets the withdrawal count."""
 self.counter = 0

The RestrictedSavingsAccount class includes a new class variable not found in
SavingsAccount. This variable, called MAX_WITHDRAWALS, is used to restrict the number
of withdrawals that are permitted per month.

The RestrictedSavingsAccount constructor first calls the constructor in the
SavingsAccount class to initialize the instance variables for the name, PIN, and balance
defined there. The syntax uses the class name before the dot, and explicitly includes self as
the first argument. The general form of the syntax for calling a method in the parent class
from within a method with the same name in a subclass follows:
<parent class name>.<method name>(self, <other arguments>)

Continuing in RestrictedSavingsAccount’s constructor, the new instance variable
counter is then set to 0. The rule of thumb to remember when writing the constructor for a
subclass is that each class is responsible for initializing its own instance variables. Thus, the
constructor of the parent class should always be called to do this.

The withdraw method is redefined in RestrictedSavingsAccount to override the defini-
tion of the same method in SavingsAccount. You allow a withdrawal only when the counter’s
value is less than the maximum, and you increment the counter only after a withdrawal is suc-
cessful. Note that this version of the method calls the same method in the parent or superclass
to perform the actual withdrawal. The syntax for this is the same as is used in the constructor.

Finally, the new method resetCounter is included to allow the user to continue withdraw-
als in the next month.

Example 2: The Dealer and a Player in the Game of Blackjack
The card game of blackjack is played with at least two players, one of whom is also a dealer.
The object of the game is to receive cards from the deck and play to a count of 21 without
going over 21. A card’s point equals its rank, but all face cards are 10 points, and an Ace

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

341

Structuring Classes with Inheritance and Polymorphism

can count as either 1 or 11 points as needed. At the beginning of the game, the dealer and
the player each receive two cards from the deck. The player can see both of her cards and
just one of the dealer’s cards initially. The player then “hits” or takes one card at a time until
her total exceeds 21 (a “bust” or loss), or she “passes” (stops taking cards). When the player
passes, the dealer reveals his other card and must keep taking cards until his total is greater
than or equal to 17. If the dealer’s final total is greater than 21, he also loses. Otherwise, the
player with the higher point total wins, or else there is a tie.

A computer program that plays this game can use a Dealer object and a Player object. The
dealer’s moves are completely automatic, whereas the player’s moves (decisions to pass or
hit) are partly controlled by a human user. A third object belonging to the Blackjack class
sets up the game and manages the interactions with the user. The Deck and Card classes
developed earlier are also included. A class diagram of the system is shown in Figure 9-6.

Figure 9-6  The classes in the blackjack game application

Deck Blackjack

Player

Dealer

Card

1

1

1

0..52

Here is a sample run of the program:
>>> from blackjack import Blackjack
>>> game = Blackjack()
>>> game.play()
Player:
2 of Spades, 5 of Spades
7 points Dealer:
5 of Hearts
Do you want a hit? [y/n]: y
Player:
2 of Spades, 5 of Spades, King of Hearts
17 points
Do you want a hit? [y/n]: n
Dealer:
5 of Hearts, Queen of Hearts, 7 of Diamonds
22 points
Dealer busts and you win

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

342

  Design with ClassesC h a p t e r 9

When a Player object is created, it receives two cards. A Player object can be
hit with another card, can be asked for the points in its hand, and can be asked for
its string representation. Here is the code for the Player class, followed by a brief
explanation:
from cards import Deck, Card

class Player(object):
 """This class represents a player in
 a blackjack game."""

 def __init__(self, cards):
 self.cards = cards

 def __str__(self):
 """Returns string rep of cards and points."""
 result = ", ".join(map(str, self.cards))
 result += "\n " + str(self.getPoints()) + " points"
 return result

 def hit(self, card):
 self.cards.append(card)

 def getPoints(self) :
 """Returns the number of points in the hand."""
 count = 0
 for card in self.cards:
 if card.rank > 9:
 count += 10
 elif card.rank == 1:
 count += 11
 else:
 count += card.rank
 # Deduct 10 if Ace is available and needed as 1
 for card in self.cards:
 if count <= 21:
 break
 elif card.rank == 1:
 count -= 10
 return count

 def hasBlackjack(self):
 """Dealt 21 or not."""
 return len(self.cards) == 2 and self.getPoints() == 21

The problem of computing the points in a player’s hand is complicated by the fact that an
Ace can count as either 1 or 11. The getPoints method solves this problem by first total-
ing the points using an Ace as 11. If this initial count is greater than 21, then there is a need
to count an Ace, if there is one, as a 1. The second loop accomplishes this by counting such
Aces as long as they are available and needed. The other methods require no comment.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

343

Structuring Classes with Inheritance and Polymorphism

A Dealer object also maintains a hand of cards and recognizes the same methods as a
Player object. However, the dealer’s behavior is a bit more specialized. For example, the
dealer at first shows just one card, and the dealer repeatedly hits until 17 points are reached
or exceeded. Thus, as Figure 9-6 shows, Dealer is best defined as a subclass of Player. Here
is the code for the Dealer class, followed by a brief explanation:

class Dealer(Player) :
 """Like a Player, but with some restrictions."""

 def __init__(self, cards):
 """Initial state: show one card only."""
 Player.__init__(self, cards)
 self.showOneCard = True

 def __str__(self) :
 """Return just one card if not hit yet."""
 if self.showOneCard:
 return str(self.cards[0])
 else:
 return Player.__str__(self)

 def hit(self, deck):
 """Add cards while points < 17,
 then allow all to be shown."""
 self.showOneCard = False
 while self.getPoints() < 17:
 self.cards.append(deck.deal())

Dealer maintains an extra instance variable, showOneCard, which restricts the number of
cards in the string representation to one card at start-up. As soon as the dealer hits, this
variable is set to False, so all of the cards will be included in the string from then on. The
hit method actually receives a deck rather than a single card as an argument, so cards may
repeatedly be dealt and added to the dealer’s list at the close of the game.

The Blackjack class coordinates the interactions among the Deck object, the Player object,
the Dealer object, and the human user. Here is the code:

class Blackjack(object):

 def __init__(self):
 self.deck = Deck()
 self.deck.shuffle()
 # Pass the player and the dealer two cards each
 self.player = Player([self.deck.deal(),
 self.deck.deal()])
 self.dealer = Dealer([self.deck.deal(),
 self.deck.deal()])
 def play(self):
 print("Player:\n", self.player)
 print("Dealer:\n", self.dealer)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

344

  Design with ClassesC h a p t e r 9

 # Player hits until user says NO
 while True:
 choice = input("Do you want a hit? [y/n]: ")
 if choice in ("Y", "y"):
 self.player.hit(self.deck.deal())
 points = self.player.getPoints()
 print("Player:\n", self.player)
 if points >= 21:
 break
 else:
 break
 playerPoints = self.player.getPoints()
 if playerPoints > 21:
 print("You bust and lose")
 else:
 # Dealer's turn to hit
 self.dealer.hit(self.deck)
 print("Dealer:\n", self.dealer)
 dealerPoints = self.dealer.getPoints()
 # Determine the outcome
 if dealerPoints > 21:
 print("Dealer busts and you win")
 elif dealerPoints > playerPoints:
 print("Dealer wins")
 elif dealerPoints < playerPoints and \
 playerPoints <= 21:
 print("You win")
 elif dealerPoints == playerPoints:
 if self. player.hasBlackjack() and \
 not self.dealer.hasBlackjack():
 print("You win")
 elif not self.player.hasBlackjack() and \
 self.dealer.hasBlackjack():
 print("Dealer wins")
 else:
 print("There is a tie")

Polymorphic Methods
As we have seen in our two examples, a subclass inherits data and methods from its parent
class. We would not bother subclassing unless the two classes shared a substantial amount
of abstract behavior. By this term, we mean that the classes have similar sets of methods or
operations. A subclass usually adds something extra, such as a new method or a data attri-
bute, to the ensemble provided by its superclass. A new data attribute is included in both of
our examples, and a new method is included in the first one.

In some cases, the two classes have the same interface, or set of methods available to exter-
nal users. In these cases, one or more methods in a subclass override the definitions of the

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

345

Structuring Classes with Inheritance and Polymorphism

same methods in the superclass to provide specialized versions of the abstract behavior.
Like any object-oriented language, Python supports this capability with polymorphic
methods. The term polymorphic means “many bodies,” and it applies to two methods that
have the same header but have different definitions in different classes. Two examples are
the withdraw method in the bank account hierarchy and the hit method in the blackjack
player hierarchy. The __str__ method is a good example of a polymorphic method that
appears throughout Python’s system of classes.

Like other abstraction mechanisms, polymorphic methods make code easier to understand
and use, because the programmer does not have to remember so many different names.

The Costs and Benefits of Object-Oriented Programming
Whenever you learn a new style of programming, you sooner or later become acquainted
with its costs and benefits. To hasten this process, we conclude this section by comparing
several programming styles, all of which have been used in this book.

The approach with which this book began is called imperative programming. Code in this
style consists of input and output statements, assignment statements, and control state-
ments for selection and iteration. The name derives from the idea that a program consists
of a set of commands to the computer, which responds by performing such actions as
manipulating data values in memory. This style is appropriate for writing very short code
sequences that accomplish simple tasks, such as solving the problems that were introduced
in Chapters 1 through 5 of this book.

However, as problems become more complex, the imperative programming style does not
scale well. In particular, the number of interactions among statements that manipulate the
same data variables quickly grows beyond the point of comprehension of a human pro-
grammer who is trying to verify or maintain the code.

As we saw in Chapter 6, you can mitigate some of this complexity by embedding sequences
of imperative code in function definitions or subprograms. It then becomes possible to
decompose complex problems into simpler subproblems that can be solved by these
subprograms. In other words, the use of subprograms reduces the number of program
components that one must keep track of. Moreover, when each subprogram has its own
temporary variables and receives data from the surrounding program by means of explicit
parameters, the number of possible dependencies and interactions among program com-
ponents also decreases. The use of cooperating subprograms to solve problems is called
procedural programming.

Although procedural programming takes a step in the direction of controlling program
complexity, it simply masks and ultimately recapitulates the problems of imperative pro-
gramming at a higher level of abstraction. When many subprograms share and modify a
common data pool, as they did in some of our early examples, it becomes difficult once
again for the programmer to keep track of all of the interactions among the subprograms
during verification and maintenance.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

346

  Design with ClassesC h a p t e r 9

One cause of this problem is the use of the assignment statement to modify data. Some
computer scientists have developed a style of programming that dispenses with assign-
ment altogether. This radically different approach, called functional programming, views
a program as a set of cooperating functions. A function in this sense is a highly restricted
subprogram. Its sole purpose is to transform the data in its arguments into other data, its
returned value. Because assignment does not exist, functions perform computations by
either evaluating expressions or calling other functions. Selection is handled by a condi-
tional expression, which is like an if-else statement that returns a value, and iteration
is implemented by recursion. By restricting how functions can use data, this very simple
model of computation dramatically reduces the conceptual complexity of programs. How-
ever, some argue that this style of programming does not conveniently model situations
where data objects must change their state.

Object-oriented programming attempts to control the complexity of a program while still
modeling data that change their state. This style divides up the data into relatively small
units called objects. Each object is then responsible for managing its own data. If an object
needs help with its own tasks, it can call upon another object or relies on methods defined in
its superclass. The main goal is to divide responsibilities among small, relatively independent
or loosely coupled components. Cooperating objects, when they are well designed, decrease
the likelihood that a system will break when changes are made within a component.

Although object-oriented programming has become quite popular, it can be overused
and abused. Many small and medium-sized problems can still be solved effectively, sim-
ply, and—most important—quickly using any of the other three styles of programming
mentioned here, either individually or in combination. The solutions of problems, such as
numerical computations, often seem contrived when they are cast in terms of objects and
classes. For other problems, the use of objects is easy to grasp, but their implementation
in the form of classes reflects a complex model of computation with daunting syntax and
semantics. Finally, hidden and unpleasant interactions can lurk in poorly designed inheri-
tance hierarchies that resemble those afflicting the most brittle procedural programs.

To conclude, whatever programming style or combination of styles you choose to solve a
problem, good design and common sense are essential.

Exercises

1.	 What are the benefits of having class B extend or inherit from class A?

2.	 Describe what the __init__ method should do in a class that extends another class.

3.	 Class B extends class A. Class B defines an __str__ method that returns the string
representation of its instance variables. Class B defines a single instance variable
named age, which is an integer. Write the code to define the __str__ method for
class B. This method should return the combined string information from both
classes. Label the data for age with the string "Age: ".

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

347

Summary

Summary
•• A simple class definition consists of a header and a set of method definitions. Several

related classes can be defined in the same module. Each element, a module, a class, and
a method, can have a separate docstring associated with it.

•• In addition to methods, a class can also include instance variables. These represent the
data attributes of the class. Each instance or object of a class has its own chunk of mem-
ory storage for the values of its instance variables.

•• The constructor or __init__ method is called when a class is instantiated. This method
initializes the instance variables. The method can expect required and/or optional argu-
ments to allow the users of the class to provide initial values for the instance variables.

•• A method contains a header and a body. The first parameter of a method is always the
reserved word self. This parameter is bound to the object with which the method is
called, so that the code within the method can reference that particular object.

•• An instance variable is introduced and referenced like any other variable, but it is always
prefixed with self. The scope of an instance variable is the body of the enclosing class
definition, whereas its lifetime is the lifetime of the object associated with it.

•• Some standard operators can be overloaded for use with new classes of objects. One
overloads an operator by defining a method that has the corresponding name.

•• When a program can no longer reference an object, it is considered dead, and the gar-
bage collector recycles its storage.

•• A class variable is a name for a value that all instances of a class share in common. It is
created and initialized when a class is defined and must be accessed by using the class
name, a dot, and the variable name.

•• Pickling is the process of converting an object to a form that can be saved to permanent
file storage. Unpickling is the inverse process.

•• The try-except statement is used to catch and handle exceptions that might be raised
in a set of statements.

•• The three most important features of object-oriented programming are encapsulation,
inheritance, and polymorphism. All three features simplify programs and make them
more maintainable.

•• Encapsulation restricts access to an object’s data to users of the methods of its class.
This helps to prevent indiscriminant changes to an object’s data.

•• Inheritance allows one class to pick up the attributes and behavior of another class for
free. The subclass may also extend its parent class by adding data and/or methods or
modifying the same methods. Inheritance is a major means of reusing code.

•• Polymorphism allows methods in several different classes to have the same headers.
This reduces the need to learn new names for standard operations.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

348

  Design with ClassesC h a p t e r 9

•• A data model is a set of classes that are responsible for managing the data of a program.
A view is a set of classes that are responsible for presenting information to a human user
and handling user inputs. The model/view pattern structures software systems using
these two sets of components.

Review Questions
1.	 An instance variable refers to a data value that

a.	 is owned by a particular instance of a class and no other
b.	 is shared in common and can be accessed by all instances of a given class

2.	 The name used to refer to the current instance of a class within the class defini-
tion is

a.	 this

b.	 other

c.	 self

3.	 The purpose of the __init__ method in a class definition is to

a.	 build and return a string representation of the instance variables
b.	 set the instance variables to initial values

4.	 A method definition

a.	 can have zero or more parameter names
b.	 always must have at least one parameter name, called self

5.	 The scope of an instance variable is

a.	 the statements in the body of the method where it is introduced
b.	 the entire class in which it is introduced
c.	 the entire module where it is introduced

6.	 An object’s lifetime ends

a.	 several hours after it is created
b.	 when it can no longer be referenced anywhere in a program
c.	 when its data storage is recycled by the garbage collector

7.	 A class variable is used for data that

a.	 all instances of a class have in common
b.	 each instance owns separately

8.	 Class B is a subclass of class A. The __init__ methods in both classes expect no
arguments. The call of class A’s __init__ method in class B is

a.	 A.__init__()

b.	 A.__init__(self)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

349

Projects

9.	 The easiest way to save objects to permanent storage is to

a.	 convert them to strings and save this text to a text file
b.	 pickle them using the pickle function dump

10.	 A polymorphic method

a.	 has a single header but different bodies in different classes
b.	 creates harmony in a software system

Projects
1.	 Add three methods to the Student class that compare two Student objects. One

method should test for equality. A second method should test for less than. The
third method should test for greater than or equal to. In each case, the method
returns the result of the comparison of the two students’ names. Include a main
function that tests all of the comparison operators.

2.	 This project assumes that you have completed Project 1. Place several Student
objects into a list and shuffle it. Then run the sort method with this list and dis-
play all of the students’ information.

3.	 The str method of the Bank class returns a string containing the accounts in ran-
dom order. Design and implement a change that causes the accounts to be placed
in the string by order of name. (Hint: You will also have to define some methods
in the SavingsAccount class.)

4.	 The ATM program allows a user an indefinite number of attempts to log in. Fix
the program so that it displays a popup message that the police will be called
after a user has had three successive failures. The program should also disable the
login button when this happens.

5.	 The Doctor program described in Chapter 5 combines the data model of a doc-
tor and the operations for handling user interaction. Restructure this program
according to the model/view pattern so that these areas of responsibility are
assigned to separate sets of classes. The program should include a Doctor class
with an interface that allows one to obtain a greeting, a signoff message, and a
reply to a patient’s string. The rest of the program, in a separate main program
module, handles the user’s interactions with the Doctor object. You may develop
either a terminal-based user interface or a GUI.

6.	 The play method in the Player class of the craps game plays an entire game
without interaction with the user. Revise the Player class so that its user can
make individual rolls of the dice and view the results after each roll. The Player
class no longer accumulates a list of rolls, but saves the string representation of
each roll after it is made. Add new methods rollDice, getRollsCount, isWinner,
and isLoser to the Player class. The last three methods allow the user to obtain
the number of rolls and to determine whether there is a winner or a loser. The

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

350

  Design with ClassesC h a p t e r 9

last two methods are associated with new Boolean instance variables. Two other
instance variables track the number of rolls and the string representation of the
most recent roll. Another instance variable tracks whether or not the first roll
has occurred. At instantiation, the roll, rollsCount, atStartup, winner, and
loser variables are set to their appropriate initial values. All game logic is now in
the rollDice method. This method rolls the dice once, updates the state of the
Player object, and returns a tuple of the values of the dice for that roll. Include in
the module the playOneGame and playManyGames functions, suitably updated for
the new interface to the Player class.

7.	 Convert the DiceDemo program discussed in this chapter to a completed craps
game application, using the Player data model class you developed in Project 6.
A screen shot of a possible window is shown in Figure 9-7.

Figure 9-7  A GUI-based craps game

8.	 In many card games, cards are either face up or face down. Add a new instance
variable named faceup to the Card class to track this attribute of a card. Its
default value is False. Then add a turn method to turn the card over. This
method resets the faceup variable to its logical negation.

9.	 Computer card games are more fun if you can see the images of the cards in a
window, as shown in the screen shot in Figure 9-8.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

351

Projects

		 Assume that the 52 images for a deck of cards are in a DECK folder, with the file
naming scheme <rank number><suit letter>.gif. Thus, for example, the image
for the Ace of Hearts is in a file named 1h.gif, and the image for the King of
Spades is in a file named 13s.gif. Furthermore, there is an image file named b.gif
for the backside image of all the cards. This will be the card’s image if its faceup
variable is False. Using the DiceDemo program as a role model, write a GUI
program that allows you to deal and view cards from a deck. Be sure to define a
helper method that takes a Card object as an argument and returns its associated
image, and remember to turn the cards as you deal them.

10.	 Geometric shapes can be modeled as classes. Develop classes for line segments,
circles, and rectangles. Each shape object should contain a Turtle object and a
color that allow the shape to be drawn in a Turtle graphics window (see Chapter 7
for details). Factor the code for these features (instance variables and methods)
into an abstract Shape class. The Circle, Rectangle, and Line classes are all sub-
classes of Shape. These subclasses include other information about the specific
types of shapes, such as a radius or a corner point and a draw method. Write a
script that uses several instances of the different shape classes to draw a house
and a stick figure.

Figure 9-8  Viewing images of playing cards

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

C h a p t e r 10
Multithreading,
Networks, and Client/
Server Programming

After completing this chapter, you will be able to

Describe what threads do and how they are manipulated in
an application

Code an algorithm to run as a thread

Use conditions to solve a simple synchronization problem
with threads

Use IP addresses, ports, and sockets to create a simple
client/server application on a network

Decompose a server application with threads to handle cli-
ent requests efficiently

Restructure existing applications for deployment as client/
server applications on a network

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

353

Threads and Processes

Thus far in this book we have explored ways of solving problems by using multiple cooper-
ating algorithms and data structures. Another commonly used strategy for problem solving
involves the use of multiple threads. Threads describe processes that can run concurrently
to solve a problem. They can also be organized in a system of clients and servers. For
example, a Web browser runs in a client thread and allows a user to view Web pages that
are sent by a Web server, which runs in a server thread. Client and server threads can run
concurrently on a single computer or can be distributed across several computers that are
linked in a network. The technique of using multiple threads in a program is known as mul-
tithreading. This chapter offers an introduction to multithreading, networks, and client/
server programming. We provide just enough material to get you started with these topics;
more complete surveys are available in advanced computer science courses.

Threads and Processes
You are well aware that an algorithm describes a computational process that runs to com-
pletion. You are also aware that a process consumes resources, such as CPU (central pro-
cessing unit) cycles and memory. Until now, we have associated an algorithm or a program
with a single process, and we have assumed that this process runs on a single computer.
However, your program’s process is not the only one that runs on your computer, and a
single program could describe several processes that could run concurrently on your com-
puter or on several networked computers. The following historical summary shows how
this is the case.

Time-sharing operating systems: In the late 1950s and early 1960s, computer scientists
developed the first time-sharing operating systems. These systems allow several programs
to run concurrently on a single computer. Instead of giving their programs to a human
scheduler to run one after the other on a single machine, users log in to the computer via
remote terminals. They then run their programs and have the illusion, if the system per-
forms well, of having sole possession of the machine’s resources (CPU, disk drives, printer,
etc.). Behind the scenes, the operating system creates separate processes for these pro-
grams. The system gives each process a turn at the CPU and other resources, and it per-
forms all the work of scheduling. When a process is about to be swapped out of the CPU,
the system saves its state (the values of variables currently in play and the call stack for any
active subroutines) and then restores the state of the process about to execute. If this pro-
cedure, called a context switch, happens very rapidly, the illusion of concurrency is main-
tained. Time-sharing systems are still in widespread use in the form of Web servers, e-mail
servers, print servers, and other kinds of servers on networked systems.

Multiprocessing systems: Most time-sharing systems allow a single user to run one pro-
gram and then return to the operating system to run another program before the first
program is finished. The concept of a single user running several programs at once was
extended to desktop microcomputers in the late 1980s, when these machines became more
powerful. For example, the Macintosh MultiFinder allowed a user to run a word proces-
sor, a spreadsheet, and the Finder (the file browser) concurrently and to switch from one
application to another by selecting an application’s window. Users of stand-alone PCs now

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

354

  Multithreading, Networks, and Client/Server ProgrammingC h a p t e r 1 0

take this capability for granted. A related development was the ability of a program to start
another program by “forking,” or creating a new process. For example, a word processor
might create another process to print a document in the background, while the user is star-
ing at the window thinking about the next words to type.

Networked or distributed systems: The late 1980s and early 1990s saw the rise of net-
worked systems. At that time, the processes associated with a single program or with
several programs began to be distributed across several CPUs linked by high-speed com-
munication lines. Thus, for example, the Web browser that appears to be running on my
machine is actually making requests as a client to a Web server application that runs on a
multiuser machine at a remote location on the Internet. The problems of scheduling and
running processes are more complex on a networked system, but the basic ideas are the
same.

Parallel systems: As CPUs became less expensive and smaller, it became feasible to run
a single program on several CPUs at once. Parallel computing is the discipline of build-
ing the hardware architectures, operating systems, and specialized algorithms for run-
ning a program on a cluster of processors. The multi-core technology now found in all
new PCs can be used to run a single program or multiple programs on several processors
simultaneously.

Threads
Most modern computers, whether they are networked or stand-alone machines, represent
some processes as threads. For example, a Web browser uses one thread to load an image
from the Internet while using another thread to format and display text. The Python virtual
machine runs several threads that you have already used without realizing it. For example,
the IDLE editor runs as a separate thread, as does your main Python application program.
The garbage collector that recycles objects in your Python programs runs as a separate
thread in the Python virtual machine.

In Python, a thread is an object like any other in that it can hold data, be stored in data
structures, and be passed as parameters to methods. However, some code defined in a
thread can also be executed as a process. To execute this code, a thread’s class must imple-
ment a run method.

During its lifetime, a thread can be in various states. Figure 10-1 shows some of the states in
the lifetime of a Python thread. In this diagram, the box labeled “The ready queue” is a data
structure, whereas the box labeled “The CPU” is a hardware resource. The thread states are
the labeled ovals.

After it is created, a thread remains newborn and inactive until someone runs its start
method. Running this method also makes the thread “ready” and places a reference to it in
the ready queue. A queue is a data structure that enforces first-come, first-served access to
a single resource. The resource in this case is the CPU, which can execute the instructions
of just one thread at a time. A newly started thread’s run method is also activated. However,
before its first instruction can be executed, the thread must wait its turn in the ready queue

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

355

Threads and Processes

for access to the CPU. After the thread gets access to the CPU and executes some instruc-
tions in its run method, the thread can lose access to the CPU in several ways:

•• Time-out—Most computers running Python programs automatically time-out a run-
ning thread every few milliseconds. The process of automatically timing-out, also
known as time slicing, has the effect of pausing the running thread’s execution and
sending it to the rear of the ready queue. The thread at the front of the ready queue is
then given access to the CPU.

•• Sleep—A thread can be put to sleep for a given number of milliseconds. When the
thread wakes up, it goes to the rear of the ready queue.

•• Block—A thread can wait for some event, such as user input, to occur. When a blocked
thread is notified that an event has occurred, it goes to the rear of the ready queue.

•• Wait—A thread can voluntarily relinquish the CPU to wait for some condition to
become true. A waiting thread can be notified when the condition becomes true and
move again to the rear of the ready queue.

When a thread gives up the CPU, the computer saves its state (the values of its instance
variables and data on its call stack), so that when the thread returns to the CPU, its run
method can pick up where it left off. As mentioned earlier, the process of saving or restor-
ing a thread’s state is called a context switch.

When a thread’s run method has executed its last instruction, the thread dies as a process but con-
tinues to exist as an object. A thread object can also die if it raises an exception that is not handled.

Python’s threading module includes resources for creating threads and managing multi-
threaded applications. The most common way to create a thread is to define a class that

Figure 10-1  States in the life of a thread

dead
start complete

sleep

wait

I/O interruptI/O complete

wake up

notify

yield or timed out
The CPUThe ready queue

run

waiting

blocked

sleeping

newborn ready running

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

356

  Multithreading, Networks, and Client/Server ProgrammingC h a p t e r 1 0

extends the class threading.Thread. The new class should include a run method that exe-
cutes the algorithm in the new thread. The start method places a thread at the rear of the
ready queue. The next code segment defines a simple thread class that prints its name.
from threading import Thread

class MyThread (Thread):
 """A thread that prints its name."""

 def __init__(self, name):
 Thread.__init__(self, name = name)

 def run(self):
 print("Hello, my name is %s" % self.getName())

The session that follows instantiates this class and starts up the thread.
>>> process = MyThread("Ken")
>>> process.start()
Hello, my name is Ken

The thread’s start method automatically invokes its run method. When you run this code in
the IDLE shell, your new thread runs to completion but does not appear to quit and return
you to another shell prompt. To do so, you must press Control1C to interrupt the process.
Because IDLE itself runs in a thread, it is not generally a good idea to test a multithreaded
application in that environment. From now on, we will launch Python programs containing
threads from a terminal prompt rather than from an IDLE window. Here is the code for a
main function that starts up a thread and runs to a normal termination at the terminal:
def main():
 MyThread("Ken").start()
if __name__ == "__main__":
 main()

The Thread class maintains an instance variable for the thread’s name and includes the asso-
ciated methods getName and setName. Table 10-1 lists some important Thread methods.

Thread Method What It Does

__init__(name = None) Initializes the thread’s name.

getName() Returns the thread’s name.

setName(newName) Sets the thread’s name to newName.

run() Executes when the thread acquires the CPU.

start() Makes the new thread ready. Raises an exception if run more
than once.

isAlive() Returns True if the thread is alive or False otherwise.

Table 10-1	 Some Thread Methods

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

357

Threads and Processes

Other important resources used with threads include the function time.sleep and the
class threading.Condition. We now consider some example programs that illustrate the
use of these resources.

Sleeping Threads
In our first example, we develop a program that allows the user to start several threads.
Each thread does not do much when started; it simply prints a message, goes to sleep for a
random number of seconds, and then prints a message and terminates on waking up. The
program allows the user to specify the number of threads to run and the maximum sleep
time. When a thread is started, it prints a message identifying itself and its sleep time and
then goes to sleep. When a thread wakes up, it prints another message identifying itself. A
session with this program is shown in Figure 10-2.

Figure 10-2  A run of the sleeping threads program

Note the following points about the example in Figure 10-2:

•• When a thread goes to sleep, the next thread has an opportunity to acquire the CPU
and display its information in the view.

•• Threads with random sleep times do not necessarily wake up in the order in which
they were started. The size of the sleep interval determines this order. In Figure 10-2,
thread 2 has the shortest sleep time, so it wakes up first. Thread 3 wakes up before
thread 1, because thread 1 has the longest sleep time.

The program consists of the class SleepyThread, a subclass of Thread, and a main function.
When called within a thread’s run method, the function time.sleep puts that thread to
sleep for the specified number of seconds. Here is the code:
"""
File: sleepythreads.py
Illustrates concurrency with multiple threads.
"""

import random, time
from threading import Thread

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

358

  Multithreading, Networks, and Client/Server ProgrammingC h a p t e r 1 0

class SleepyThread(Thread):
 """Represents a sleepy thread."""

 def __init__(self, number, sleepMax):
 """Create a thread with the given name
 and a random sleep interval less than the
 maximum."""
 Thread.__init__(self, name = "Thread " + str(number))
 self.sleepInterval = random.randint(1, sleepMax)

 def run(self):
 """Print the thread's name and sleep interval
 and sleep for that interval. Print the name
 again at wake-up."""
 print("%s starting, with sleep interval: %d seconds" % \
 (self.getName(), self.sleepInterval))
 time.sleep(self.sleepInterval)
 print("%s waking up" % self.getName())

 def main():
 """Create the user's number of threads with sleep
 intervals less than the user's maximum. Then start
 the threads."""
 numThreads = int(input("Enter the number of threads: "))
 sleepMax = int(input("Enter the maximum sleep time: "))
 threadList = []
 for count in range(numThreads):
 threadList.append(SleepyThread(count + 1, sleepMax))
 for thread in threadList: thread.start()

if __name__ == "__main__":
 main()

Producer, Consumer, and Synchronization
In the previous example, the threads ran independently and did not interact. However, in
many applications, threads interact by sharing data. One such interaction is the producer/
consumer relationship. Think of an assembly line in a factory. Worker A, at the beginning
of the line, produces an item that is then ready for access by the next person on the line,
Worker B. In this case, Worker A is the producer, and Worker B is the consumer. Worker B
then becomes the producer, processing the item in some way until it is ready for Worker C,
and so on.

Three requirements must be met for the assembly line to function properly:

1.	 A producer must produce each item before a consumer consumes it.

2.	 Each item must be consumed before the producer produces the
next item.

3.	 A consumer must consume each item just once.
Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

359

Threads and Processes

Let us now consider a computer simulation of the producer/consumer relationship. In its
simplest form, the relationship has only two threads: a producer and a consumer. They
share a single data cell that contains an integer. The producer sleeps for a random interval,
writes an integer to the shared cell, and generates the next integer to be written, until the
integer reaches an upper bound. The consumer sleeps for a random interval and reads the
integer from the shared cell, until the integer reaches the upper bound. Figure 10-3 shows
two runs of this program. The user enters the number of accesses (data items produced and
consumed). The output announces that the producer and consumer threads have started
up and shows when each thread accesses the shared data.

Figure 10-3  Two runs of the producer/consumer program

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

360

  Multithreading, Networks, and Client/Server ProgrammingC h a p t e r 1 0

In the first run of the program, the producer happens to update the shared data each time before
the consumer accesses it. However, some bad things happen in the second run of the program:

1.	 The consumer accesses the shared cell before the producer has written its first datum.

2.	 The producer then writes two consecutive data (1 and 2) before the consumer has
accessed the cell again.

3.	 The consumer accesses data 2 but misses data 1.

Although the producer always produces all of its data, the consumer can access data that
are not there, can miss data, and can access the same data more than once. These are
known as synchronization problems. Before we explain why they occur, we present the
essential parts of the program itself (producerconsumer1.py), which consists of the four
resources in Table 10-2.

Class or Function Role and Responsibility

main Manages the user interface. Creates the shared cell and producer and
consumer threads and starts the threads.

SharedCell Represents the shared data, which is an integer (initially -1).

Producer Represents the producer process. Repeatedly writes an integer to the cell
and increments the integer, until it reaches an upper bound.

Consumer Represents the consumer process. Repeatedly reads an integer from the
cell, until it reaches an upper bound.

Table 10-2	 The classes and main function in the producer/consumer program

The code for the main function is similar to the one in the previous example:
def main():
 """Get the number of accesses from the user, create a
 shared cell, and create and start up a producer and a
 consumer."""
 accessCount = int(input("Enter the number of accesses: "))
 sleepMax = 4
 cell = SharedCell()
 producer = Producer(cell, accessCount, sleepMax)
 consumer = Consumer(cell, accessCount, sleepMax)
 print("Starting the threads")
 producer.start()
 consumer.start()

Here is the code for the classes SharedCell, Producer, and Consumer:
import time, random
from threading import Thread, currentThread

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

361

Threads and Processes

class SharedCell(object):
 """Shared data for the producer/consumer problem."""

 def __init__(self):
 """Data undefined at startup."""
 self.data = -1

 def setData(self, data):
 """Producer's method to write to shared data."""
 print("%s setting data to %d" % \
 (currentThread().getName(), data))
 self.data = data

 def getData(self):
 """Consumer's method to read from shared data."""
 print("%s accessing data %d" % \
 (currentThread().getName(), self.data))
 return self.data

class Producer(Thread):
 """A producer of data in a shared cell."""

 def __init__(self, cell, accessCount, sleepMax):
 """Create a producer with the given shared cell,
 number of accesses, and maximum sleep interval."""
 Thread.__init__(self, name = "Producer")
 self.accessCount = accessCount
 self.cell = cell
 self.sleepMax = sleepMax

 def run(self):
 """Announce start-up, sleep and write to shared
 cell the given number of times, and announce
 completion."""
 print("%s starting up" % self.getName())
 for count in range(self.accessCount):
 time.sleep(random.randint(1, self.sleepMax))
 self.cell.setData(count + 1)
 print("%s is done producing\n" % self.getName())

class Consumer(Thread):
 """ A consumer of data in a shared cell."""

 def __init__(self, cell, accessCount, sleepMax):
 """Create a consumer with the given shared cell,
 number of accesses, and maximum sleep interval."""
 Thread.__init__(self, name = "Consumer")
 self.accessCount = accessCount
 self.cell = cell
 self.sleepMax = sleepMax

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

362

  Multithreading, Networks, and Client/Server ProgrammingC h a p t e r 1 0

 def run(self):
 """Announce start-up, sleep, and read from shared
 cell the given number of times, and announce completion."""
 print("%s starting up" % self.getName())
 for count in range(self.accessCount):
 time.sleep(random.randint(1, self.sleepMax))
 value = self.cell.getData()
 print("%s is done consuming\n" % self.getName())

The cause of the synchronization problems is not hard to spot in this code. On each pass
through their main loops, the threads sleep for a random interval of time. Thus, if the
consumer thread has a shorter interval than the producer thread on a given cycle, the con-
sumer wakes up sooner and accesses the shared cell before the producer has a chance to
write the next datum. Conversely, if the producer thread wakes up sooner, it accesses the
shared data and writes the next datum before the consumer has a chance to read the previ-
ous datum.

To solve this problem, we need to synchronize the actions of the producer and consumer
threads. In addition to holding data, the shared cell must be in one of two states: writeable
or not writeable. The cell is writeable if it has not yet been written to (at start-up) or if it has
just been read from. The cell is not writeable if it has just been written to. These two condi-
tions can now control the callers of the setData and getData methods in the SharedCell
class as follows:

1.	 While the cell is writeable, the caller of getData (the consumer) must wait or
suspend activity, until the producer writes a datum. When this happens, the cell
becomes not writeable, the other thread (the producer) is notified to resume activ-
ity, and the data are returned (to the consumer).

2.	 While the cell is not writeable, the caller of setData (the producer) must wait or
suspend activity, until the consumer reads a datum. When this happens, the cell
becomes writeable, the other thread (the consumer) is notified to resume activity,
and the data are modified (by the producer).

To implement these restrictions, the SharedCell class now includes two additional instance
variables:

1.	 A Boolean flag named writeable. If this flag is True, only writing to the cell is
allowed; if it is False, only reading from the cell is allowed.

2.	 An instance of the threading. Condition class. This object allows each thread to
block until the Boolean flag is in the appropriate state to write to or read from the cell.

A Condition object is like a lock on a resource. When a thread acquires this lock, no other
thread can access the resource, even if the acquiring thread is timed-out. After a thread suc-
cessfully acquires the lock, it can do its work or relinquish the lock in one of two ways:

1.	 By calling the condition’s wait method. This method causes the thread to block
until it is notified that it can continue its work.

2.	 By calling the condition’s release method. This method unlocks the resource and
allows it to be acquired by other threads.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

363

Threads and Processes

When other threads attempt to acquire a locked resource, they block until the thread is
released or a thread holding the lock calls the condition’s notify method. To summarize,
the pattern for a thread accessing a resource with a lock is the following:
Run acquire on the condition
While it's not OK to do the work
 Run wait on the condition
Do the work with the resource
Run notify on the condition
Run release on the condition

Computer scientists call the step labeled Do the work with the resource a critical
section. The code in a critical section must be run in a thread-safe manner, meaning that
the thread executing this code must be able to finish it before another thread accesses the
same resource. Table 10-3 lists the methods of the Condition class.

Condition Method What It Does

acquire() Attempts to acquire the lock. Blocks if the lock is already taken.

release() Relinquishes the lock, leaving it to be acquired by others.

wait() Releases the lock, blocks the current thread until another thread calls
notify or notifyAll on the same condition, and then reacquires the
lock. If multiple threads are waiting, the notify method wakes up only
one of the threads, while notifyAll always wakes up all of the threads.

notify() Lets the next thread waiting on the lock know that it’s available.

notifyAll() Lets all threads waiting on the lock know that it’s available.

Table 10-3	 The methods of the Condition class

Here is the code that shows the addition of synchronization to the SharedCell class
(producerconsumer2.py):
import time, random
from threading import Thread, currentThread, Condition

class SharedCell(object):
 """Shared data that sequences writing before reading."""

 def __init__(self):
 """Can produce but not consume at startup."""
 self.data = -1
 self.writeable = True
 self.condition = Condition()

 def setData(self, data):
 """Second caller must wait until someone has
 consumed the data before resetting it."""

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

364

  Multithreading, Networks, and Client/Server ProgrammingC h a p t e r 1 0

 self.condition.acquire()
 while not self.writeable:
 self.condition.wait()
 print("%s setting data to %d" % \
 (currentThread().getName(), data))
 self.data = data
 self.writeable = False
 self.condition.notify()
 self.condition.release()

 def getData(self):
 """Caller must wait until someone has produced the
 data before accessing it."""
 self.condition.acquire()
 while self.writeable:
 self.condition.wait()
 print("%s accessing data %d" % \
 (currentThread().getName(), self.data))
 self.writeable = True
 self.condition.notify()
 self.condition.release()
 return self.data

Exercises

1.	 What does a thread’s run method do?

2.	 What is time slicing?

3.	 What is a synchronization problem?

4.	 What is the difference between a sleeping thread and a waiting thread?

5.	 Give two real-world examples of the producer-consumer problem.

The Readers and Writers Problem
In many applications, threads may share data as readers and writers in a looser manner than
producers and consumers. Unlike producers and consumers, readers and writers may access the
shared data in any order, and there may be multiple readers and writers. For example different
threads may access a database, either in primary memory or secondary file storage, to access or
modify the state of the data. In this situation, also known as the readers and writers problem,

•• readers access the data to observe it

•• writers access the data to modify it

•• only one writer can be writing at a given time, and that writer must be able to finish
before other writers or readers can begin writing or reading

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

365

The Readers and Writers Problem

•• multiple readers can read the shared data concurrently without waiting for each other to
finish, but all active readers must finish before a writer starts writing

Obviously, reader and writer threads must be synchronized around the shared data, to
avoid having a reader or writer access the data at an inappropriate moment. For example,
although it’s okay for two readers to access the shared data at the same time, we would not
want two writers to do so. Moreover, we would not want a writer and a reader to access the
shared data at the same time.

Some Python data structures, such as lists and dictionaries, are already thread-safe, because
they provide automatic support for synchronizing multiple readers and writers. Thus, in
the case of a dictionary, Python guarantees that multiple threads may access the data to
read from it (using any of the operations such as get, the subscript, or len). But if a thread
is writing to a dictionary (using the subscript or pop), no other thread may read or write
until the current writer completes its operation.

By contrast, many other objects, including those that might be contained in a list or a dictionary,
are not themselves thread-safe. Examples include many of the new types of objects you defined
in Chapter 9, such as SavingsAccount objects. In these cases, you would need to include extra
machinery to ensure thread-safety, when using such objects in a multithreaded program.

A solution to the readers and writers problem is to encase the shared data in a shared cell
object, with a locking mechanism to synchronize access for multiple readers and writers. We
next develop an abstraction of a shared cell (sharedcell.py) that can be used in any applica-
tion to synchronize readers and writers. The interface for this resource is listed in Table 10-4.

SharedCell Method What It Does

SharedCell(data) Constructor, creates a shared cell containing data.

read(readerFunction) Applies readerFunction to the cell’s shared data in a critical
section. readerFunction must be a function of one argument,
which is of the same type as the shared data. The function’s code
should only observe, not modify, the data. Returns the result of
this function.

write(writerFunction) Applies writerFunction to the cell’s shared data in a critical
section. writerFunction must be a function of one argument,
which is of the same type as the shared data. The function’s code
can observe or modify the data. Returns the result of this function.

Table 10-4	 SharedCell methods

Using the SharedCell Class
To see how a shared cell is used, suppose that readers and writers must access a common
SavingsAccount object, of the type discussed in Chapter 9. Readers can use the getBalance
method to observe the account’s balance, while writers can use the deposit, withdraw, or
computeInterest methods to make changes to the account’s balance. But they must use

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

366

  Multithreading, Networks, and Client/Server ProgrammingC h a p t e r 1 0

these methods in a thread-safe manner, and that’s where our SharedCell resource comes
into play. Let’s assume that we create a shared cell containing a SavingsAccount object for
multiple readers and writers, as follows:
account = SavingsAccount(name = "Ken", balance = 100.00)
cell = SharedCell(account)

Then at some point, a reader could run the code
print("The account balance is ",
 cell.read(lambda account: account.getBalance()))

to display the account’s balance. A writer could run the code
amount = 200.00
cell.write(lambda account: account.deposit(amount))

to deposit $200.00 into the account.

Note the use of Python’s lambda expression, introduced in Chapter 6. The syntax of the
lambda expressions used here is
lambda <parameter name>: <expression>

When Python sees a lambda expression, it creates a function to be applied later. When this
function is called, in the read or write method, the function’s single parameter becomes
the data object encased in the shared cell. The lambda’s expression is then evaluated in a
critical section. This expression should contain an operation on the encased object. The
operation’s value is then returned. Although the construction and use of lambda expressions
might seem challenging at first, they provide a very clean and powerful way to structure the
shared cell abstraction for any readers and writers.

Implementing the Interface of the SharedCell Class
Two locks or conditions are needed to synchronize multiple readers and writers: one on
which the readers wait and the other on which the writers wait. Two other data values
belong to the shared cell’s state: a Boolean value to indicate whether a writer is currently
writing, and a counter to track the number of readers currently reading (remember that
only one writer can be writing, but many readers can be concurrently reading).

Consequently, the instance variables of a SharedCell object include the shared data object named
data, two conditions named okToRead and okToWrite, a Boolean variable named writing, and
an integer variable named readerCount. Here is the code for the __init__ method:
class SharedCell(object):
 """Synchronizes readers and writers around shared data,
 to support thread-safe reading and writing."""

 def __init__(self, data):
 """Sets up the conditions and the count of
 active readers."""

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

367

The Readers and Writers Problem

 self.data = data
 self.writing = False
 self.readerCount = 0
 self.okToRead = Condition()
 self.okToWrite = Condition()

Note that the user of a shared cell object will pass the shared data to the cell when it is
instantiated. This will allow the shared cell to be used for any kind of data that we want to
make thread-safe for reading and writing.

The next step is to develop the code for accessing the shared cell for reading and writing.
Recall that the SharedCell class for the producer-consumer problem includes the methods
setData and getData for the use of the producer and consumer threads, respectively. For
the readers and writers problem, there are two similar methods, named read and write,
for the use of reader and writer threads (see Table 10-4). You’ll also recall that the meth-
ods getData and setData have a similar structure. They each acquire access to a lock on
the shared data, run a critical section of code, and then release the lock. The design of the
methods read and write also has this pattern, as shown in the following pseudocode:
Acquire access to the two locks on the shared data
Perform actions on the data in the critical section
Release access to the two locks on the shared data

Because readers and writers have different mechanisms for acquiring and releasing the
locks, we package this code in the helper methods beginRead, endRead, beginWrite, and
endWrite. Likewise, the code to be executed in the critical section will vary with the appli-
cation, as one can read or write in many different ways. Therefore, we package this code in
a function that gets passed as an argument to the read and write methods. This function
expects one argument, a data object of the type encased within the shared cell. The code
of the function runs an accessor method on its argument for a reader, or runs a mutator
method on this argument for a writer. In either case, the read or write method returns the
result. Here is the code for the SharedCell methods read and write:
def read(self, readerFunction):
 """Observe the data in the shared cell."""
 self.beginRead()
 # Enter the reader's critical section
 result = readerFunction(self.data)
 # Exit the reader's critical section
 self.endRead()
 return result

def write(self, writerFunction):
 """Modify the data in the shared cell."""
 self.beginWrite()
 # Enter the writer's critical section
 result = writerFunction(self.data)
 # Exit the writer's critical section
 self.endWrite()
 return result

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

368

  Multithreading, Networks, and Client/Server ProgrammingC h a p t e r 1 0

The beauty of these operations is their abstract and general character: they will work with
any type of data we want to share among threads, and with any operations can observe
(read) or modify (write) the shared data.

Implementing the Helper Methods of the SharedCell Class
Our final task is to tackle the implementation of the methods that acquire and release the
locks for reading and writing. As in the producer-consumer problem, a thread will be either
executing in the CPU (the current thread), active on the ready queue (ready), or asleep or
waiting on a condition (blocked). When multiple threads wait on a condition, they go onto
a queue associated with that condition. Python’s Condition class has an instance variable,
named _waiters, which refers to a condition’s queue. Armed with this information, we can
now consider the code for the methods beginRead and endRead, which acquire and release
access to the critical section for readers.

In beginRead, the reader thread must wait on its condition if a writer is currently writing or
writers are waiting on their condition. Otherwise, the reader is free to increment the count
of active readers, notify the next reader waiting on its condition, and enter the critical sec-
tion. Here is the code for method beginRead:
def beginRead(self):
 """Waits until a writer is not writing or the writers
 condition queue is empty. Then increments the reader
 count and notifies the next waiting reader."""
 self.okToRead.acquire()
 self.okToWrite.acquire()
 while self.writing or len(self.okToWrite._waiters) > 0:
 self.okToRead.wait()
 self.readerCount += 1
 self.okToRead.notify()

When a reader is finished in its critical section, the method endRead decrements the count
of active readers. It then notifies the next waiting writer, if there are no active readers:
def endRead(self):
 """Notifies a waiting writer if there are
 no active readers."""
 self.readerCount -= 1
 if self.readerCount == 0:
 self.okToWrite.notify()
 self.okToWrite.release()
 self.okToRead.release()

Note that beginRead acquires both locks and endRead releases both locks.

The methods beginWrite and endWrite show a similar pattern. A writer can enter its critical
section if there is no current writer and there are no active readers. When leaving its critical
section, a writer notifies the next reader waiting on its condition, if there are any such readers.
Otherwise, it notifies the next waiting writer. Here is the code for these two methods:

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

369

The Readers and Writers Problem

def beginWrite(self):
 """Can write only when someone else is not
 writing and there are no readers ready."""
 self.okToWrite.acquire()
 self.okToRead.acquire()
 while self.writing or self.readerCount != 0:
 self.okToWrite.wait()
 self.writing = True

def endWrite(self):
 """Notify the next waiting writer if the readers
 condition queue is empty. Otherwise, notify the
 next waiting reader."""
 self.writing = False
 if len(self.okToRead._waiters) > 0:
 self.okToRead.notify()
 else:
 self.okToWrite.notify()
self.okToRead.release()
self.okToWrite.release()

Testing the SharedCell Class with a Counter Object
Figure 10-4 shows a run of a tester program that creates a shared cell on a
Counter object (discussed in Chapter 9).

Figure 10-4  A run of the readers and writers program

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

370

  Multithreading, Networks, and Client/Server ProgrammingC h a p t e r 1 0

At start-up, the program wraps a shared cell around a new Counter object. The program then
starts several reader and writer threads that access the shared cell. The readers print the cur-
rent value of the counter, whereas the writers increment and print the updated value. As in our
producer-consumer example, threads begin by sleeping a random interval, so they arrive at the
shared cell in a random order. As you can see, all of the threads obtain access to the shared coun-
ter, and the counter retains its integrity throughout the process. The coding of this program,
which is similar in structure to the producer-consumer program, is left as an exercise for you.

Defining a Thread-Safe Class
We mentioned earlier that Python data structures such as lists and dictionaries are thread-safe,
but the data objects contained therein might not be. For example, the dictionary that contains
the accounts in the Bank class of Chapter 9 is thread-safe, but the individual accounts, of type
SavingsAccount, are not. How can we use the technology of our shared cell to fix this problem?

The solution is to apply a design pattern known as the decorator pattern. In this strategy, we
define a new class that has the same interface or set of methods as the class that it “decorates.”
Thus, programmers can substitute objects of this new class wherever they have used objects
of the decorated class. Figure 10-5 shows the decorator relationship between two classes,
ThreadSafeSavingsAccount and the class it decorates, SavingsAccount.

Figure 10-5  Using the decorator pattern

Decorator class

ThreadSafeSavingsAccount SharedCell SavingsAccount

Decoration (extra functionality) Decorated class

The new class encases an object of the decorated class, as well as other information necessary
to accomplish its decoration. When the unsuspecting programmer calls a method on an object
of the new class, the object behaves just as it did before, but with extra functionality—in this
case, thread-safety. The beauty of this solution is that none of the code in the application must
change, except for the name of the class being decorated. For example, applications that create
instances of SavingsAccount need only change this name to ThreadSafeSavingsAccount, and
they can make thread-safe accounts available to multiple readers and writers.

The code for the ThreadSafeSavingsAccount class (threadsafesavingsaccount.py) con-
tains a SharedCell object, which in turn contains a SavingsAccount object. The construc-
tor for ThreadSafeSavingsAccount creates a new SavingsAccount object and passes this to
a new SharedCell object, as follows:
from savingsaccount import SavingsAccount
from sharedcell import SharedCell

class ThreadSafeSavingsAccount(object):
 """This class represents a thread-safe savings account
 with the owner's name, PIN, and balance."""

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

371

Networks, Clients, and Servers

 def __init__(self, name, pin, balance = 0.0):
 """Wrap a new account in a shared cell for
 thread-safety."""
 account = SavingsAccount(name, pin, balance)
 self.cell = SharedCell(account)

The other methods in ThreadSafeSavingsAccount observe or modify the data in the
account by running the read or write methods on the shared cell. For example, here is the
code for the getBalance and deposit methods:
def getBalance(self):
 """Returns the current balance."""
 return self.cell.read(lambda account: account.getBalance())

def deposit(self, amount):
 """If the amount is valid, adds it
 to the balance and returns None;
 otherwise, returns an error message."""
 return self.cell.write(lambda account: account.deposit(amount))

The remaining methods in ThreadSafeSavingsAccount follow a similar pattern. The only
change you need to make in the bank module is where you create accounts to test the module.
For example, the function createBank now adds the new type of account with the statement
bank.add(ThreadSafeSavingsAccount(name, str(pinNumber), balance))

Exercises

1.	 Give two real-world examples of the readers and writers problem.

2.	 State two ways in which the readers and writers problem is different from the
producer-consumer problem.

3.	 Describe how you would make the Student class from Chapter 9 thread-safe for
readers and writers.

4.	 Define a new class called PCCell. This class provides an abstraction of a shared
cell for the producer-consumer problem. The design pattern should be similar for
the one presented for the shared cell for readers and writers, but it should use the
mechanism specific to the producer-consumer situation.

Networks, Clients, and Servers
Clients and servers are applications or processes that can run locally on a single
computer or remotely across a network of computers. As explained in the following
sections, the resources required for this type of application are IP addresses, sockets,
and threads.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

372

  Multithreading, Networks, and Client/Server ProgrammingC h a p t e r 1 0

IP Addresses
Every computer on a network has a unique identifier called an IP address (IP stands
for Internet Protocol). This address can be specified either as an IP number or as an
IP name. An IP number typically has the form ddd.ddd.ddd.ddd, where each d is a
digit. The number of digits to the right or the left of a decimal point may vary but does
not exceed three. For example, the IP number of the author’s office computer might be
137.112.194.77. Because IP numbers can be difficult to remember, people customarily use
an IP name to specify an IP address. For example, the IP name of the author’s computer
might be lambertk.

Python’s socket module includes two functions that can look up these items of
information. These functions are listed in Table 10-5, followed by a short session showing
their use.

socket Function What It Does

gethostname() Returns the IP name of the host computer running the Python
interpreter. Raises an exception if the computer does not have an
IP address.

gethostbyname(ipName) Returns the IP number of the computer whose IP name is
ipName. Raises an exception if ipName cannot be found.

Table 10-5	 socket functions for IP addresses

>>> from socket import *
>>> gethostname()
'kenneth-lamberts-powerbook-g4-15.local'
>>> gethostbyname(gethostname())
'193.169.1.209'
>>> gethostbyname("Ken")
Traceback (most recent call last):
File "<pyshell#7>", line 1, in <module>
gethostbyname('Ken')
gaierror: (7, 'No address associated with nodename')

Note that these functions raise exceptions if they cannot locate the information. To handle
this problem, one can embed these function calls in a try-except statement. The next
code segment recovers from an unknown IP address error by printing the exception’s error
message:
try:
 print(gethostbyname('Ken'))
except Exception as exception:
 print(exception)

When developing a network application, the programmer can first try it out on a local
host—that is, on a standalone computer that may or may not be connected to the Internet.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

373

Networks, Clients, and Servers

The computer’s IP name in this case is "localhost", a name that is standard for any com-
puter. The IP number of a computer that acts as a local host is distinct from its IP number
as an Internet host, as shown in the next session:
>>> gethostbyname(gethostname())
'196.128.1.159'
>>> gethostbyname("localhost")
'127.0.0.1'

When the programmer is satisfied that the application is working correctly on a local
host, the application can then be deployed on the Internet host simply by changing
the IP address. In the discussion that follows, we use a local host to develop network
applications.

Ports, Servers, and Clients
Clients connect to servers via objects known as ports. A port serves as a channel through
which several clients can exchange data with the same server or with different servers.
Ports are usually specified by numbers. Some ports are dedicated to special servers or tasks.
For example, almost every computer reserves port number 13 for the day/time server,
which allows clients to obtain the date and time. Port number 80 is reserved for a Web
server, and so forth. Most computers also have hundreds or even thousands of free ports
available for use by any network applications.

Sockets and a Day/Time Client Script
You can write a Python script that is a client to a server. To do this, you need to use a
socket. A socket is an object that serves as a communication link between a single server
process and a single client process. You can create and open several sockets on the same
port of a host computer. Figure 10-6 shows the relationships between a host computer,
ports, servers, clients, and sockets.

Figure 10-6  Setup of day/time host and clients

Server

Port

Host

Client 1 Client 2

Socket Socket

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

374

  Multithreading, Networks, and Client/Server ProgrammingC h a p t e r 1 0

A Python day/time client script uses the socket module introduced earlier. This script does
the following:

•• Creates a socket object.

•• Opens the socket on a free port of the local host. We use a large number, 5000, for this port.

•• Reads and decodes the day/time from the socket.

•• Displays the day/time.

Here is a Python script that performs these tasks:
"""
Client for obtaining the day and time.
"""
from socket import *
from codecs import decode

HOST = "localhost"
PORT = 5000
BUFSIZE = 1024
ADDRESS = (HOST, PORT)

server = socket(AF_INET, SOCK_STREAM)
server.connect(ADDRESS)
dayAndTime = decode(server.recv(BUFSIZE), "ascii")
print(dayAndTime)
server.close()

Although we cannot run this script until we write and launch the server program,
Figure 10-7 shows the client’s anticipated output.

Figure 10-7  The user interface of the day/time client script

As you can see, a Python socket is fairly easy to set up and use. A socket resembles a file
object, in that the programmer opens it, receives data from it, and closes it when finished.
We now explain these steps in our client script in more detail.

The script creates a socket by running the function socket in the socket module. This
function returns a new socket object, when given a socket family and a socket type as argu-
ments. We use the family AF_INET and the type SOCK_STREAM, both socket module con-
stants, in all of our examples.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

375

Networks, Clients, and Servers

To connect the socket to a host computer, one runs the socket’s connect method. This
method expects as an argument a tuple containing the host’s IP address and a port number.
In this case, these values are "localhost" and 5000, respectively. These two values should
be the same as the ones used in the server script.

To obtain information sent by the server, the client script runs the socket’s recv method.
This method expects as an argument the maximum size in bytes of the data to be read
from the socket. The recv method returns an object of type bytes. You convert this to a
string by calling the codecs function decode, with the encoding "ascii" as the second
argument.

After the client script has printed the string read from the socket, the script closes the con-
nection to the server by running the socket’s close method.

A Day/Time Server Script
You can also write a day/time server script in Python to handle requests from many clients.
Figure 10-8 shows the interaction between a day/time server and two clients in a series of
screenshots. In the first shot, the day/time server script is launched in a terminal window, and
it’s waiting for a connection. In the second shot, two successive clients are launched in a sepa-
rate terminal window (you can open several terminal windows at once). They have connected
to the server and have received the day/time. The third shot shows the updates to the server’s
window after it has served these two clients. Note that the two clients terminate execution
after they print their results, whereas the server appears to continue waiting for another client.

Figure 10-8  A day/time server and two clients

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

376

  Multithreading, Networks, and Client/Server ProgrammingC h a p t e r 1 0

A Python day/time server script also uses the resources of the socket module. The basic
sequence of operations for a simple day/time server script is the following:
Create a socket and open it on port 5000 of the local host
While true
 Wait for a connection from a client
 When the connection is made,
 send the date to the client

Our script also displays information about the host, the port, and the client. Here is the
code, followed by a brief explanation:
"""
Server for providing the day and time.
"""
from socket import *
from time import ctime

HOST = "localhost"
PORT = 5000
ADDRESS = (HOST, PORT)

server = socket(AF_INET, SOCK_STREAM)
server.bind(ADDRESS)
server.listen(5)
while True:
 print("Waiting for connection ...")
 (client, address) = server.accept()
 print("... connected from: ", address)
 client.send(bytes(ctime() + "\nHave a nice day!",
 "ascii"))
 client.close()

The server script uses the same information to create a socket object as the client script
presented earlier. In particular, the IP address and port number must be exactly the same as
they are in the client’s code.

However, connecting the socket to the host and to the port so as to become a server socket
is done differently. First, the socket is bound to this address by running its bind method.

Figure 10-8  (Continued)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

377

Networks, Clients, and Servers

Second, the socket then is made to listen for up to five requests at a time from clients by
running its listen method. If you want the server to handle more concurrent requests
before rejecting additional ones, you can increase this number.

After the script enters its main loop, it prints a message indicating that it is waiting for a
connection. The socket’s accept method then pauses execution of the script, in a manner
similar to Python’s input function, to wait for a request from a client.

When a client connects to this server, accept returns a tuple containing the client’s socket
and its address information. Our script binds the variables client and address to these
values and uses them in the next steps.

The script prints the client’s address, and then sends the current day/time to the client by
running the send method with the client’s socket. The send method expects a bytes object
as an argument. You create a bytes object from a string by calling the built-in bytes func-
tion, with the string and an encoding, in this case, "ascii", as arguments. The Python
function time.ctime returns a string representing the day/time.

Finally, the script closes the connection to the client by running the client socket’s close
method. The script then returns in its infinite loop to accept another client connection.

A Two-Way Chat Script
The communication between the day/time server and its client is one-way. The client sim-
ply receives a message from the server and then quits. In a two-way chat, the client con-
nects to the server, and the two programs engage in a continuous communication until one
of them, usually the client, decides to quit.

Once again, there are two distinct Python scripts, one for the server and one for the client.
The setup of a two-way chat server is similar to that of the day/time server discussed ear-
lier. The server script creates a socket with a given IP address and port and then enters an
infinite loop to accept and handle clients. When a client connects to the server, the server
sends the client a greeting.

Instead of closing the client’s socket and listening for another client connection, the server
then enters a second, nested loop. This loop engages the server in a continuous conversa-
tion with the client. The server receives a message from the client. If the message is an
empty string, the server displays a message that the client has disconnected, closes the
client’s socket, and breaks out of the nested loop. Otherwise, the server prints the client’s
message and prompts the user for a reply to send to the client.

Here is the code for the two loops in the server script:

CODE = "ascii"

while True:
 print("Waiting for connection ...")
 client, address = server.accept()
 print("... connected from: ", address)
 client.send(bytes("Welcome to my chat room!", CODE))

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

378

  Multithreading, Networks, and Client/Server ProgrammingC h a p t e r 1 0

 while True:
 message = decode(client.recv(BUFSIZE), CODE)
 if not message:
 print("Client disconnected")
 client.close()
 break
 else:
 print(message)
 client.send(bytes(input("> "), CODE)

The client script for the two-way chat sets up a socket in a similar manner to the day/time
client. After the client has connected to the server, it receives and displays the server’s initial
greeting message.

Instead of closing the server’s socket, the client then enters a loop to engage in a continuous
conversation with the server. This loop mirrors the loop that is running in the server script.
The client’s loop prompts the user for a message to send to the server. If this string is empty,
the loop breaks. Otherwise, the client sends the message to the server’s socket and receives the
server’s reply. If this reply is the empty string, the loop also breaks. Otherwise, the server’s reply
is displayed. The server’s socket is closed after the loop has terminated. Here is the code for the
part of the client script following the client’s connection to the server:
print(decode(server.recv(BUFSIZE), CODE))
while True:
 message = input("> ")
 if not message:
 break
 server.send(bytes(message, CODE))
 reply = decode(server.recv(BUFSIZE), CODE)
 if not reply:
 print("Server disconnected")
 break
 print(reply)
server.close()

As you can see, it is important to synchronize the sending and the receiving of messages
between the client and the server. If you get this right, the conversation can proceed, usually
without a hitch.

Handling Multiple Clients Concurrently
The client/server programs that we have discussed thus far are rather simple and limited.
First, the server handles a client’s request and then returns to wait for another client. In the
case of the day/time server, the processing of each request happens so quickly that clients
will never notice a delay. However, when a server provides extensive processing, other cli-
ents will have to wait until the currently connected client is finished.

To solve the problem of giving many clients timely access to the server, we relieve the
server of the task of handling the client’s request and assign it instead to a separate client-
handler thread. Thus, the server simply listens for client connections and dispatches these
to new client-handler objects. The structure of this system is shown in Figure 10-9.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

379

Networks, Clients, and Servers

Figure 10-9  A day/time server with a client handler

spawns

Server

Client
Handler

Client

Server application

Client application

send/recv

waits for connection
request

socket
connection

The use of separate server and client handler objects accomplishes two things in this design:

1.	 The details of fielding a request for service are separated from the details of per-
forming that service, making the design of each task simpler and more maintainable.

2.	 Because the server object and the client handler objects run in separate threads,
their processes can run concurrently. This means that new clients will not have
to wait for service until a connected client has been served (think of a busy server
running for Google or Amazon, with hundreds of millions of clients being served
simultaneously).

Returning to the day/time server script, we now add a client handler to improve efficiency.
This handler is an instance of a new class, TimeClientHandler, which is defined in its own
module. This class extends the Thread class. Its constructor receives the client’s socket from
the server and assigns it to an instance variable. The run method includes the code to send
the date to the client and close its socket. Here is the code for the TimeClientHandler class:
"""
File: timeclienthandler.py
Client handler for providing the day and time.
"""
from time import ctime
from threading import Thread

class TimeClientHandler(Thread):
 """Handles a client request."""

 def __init__(self, client):
 Thread.__init__(self)
 self.client = client

 def run(self):
 self.client.send(bytes(ctime() + \
 "\nHave a nice day!",
 "ascii"))
 self.client.close()

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

380

  Multithreading, Networks, and Client/Server ProgrammingC h a p t e r 1 0

The code for the server’s script now imports the TimeClientHandler class. The server
creates a socket and listens for requests, as before. However, when a request comes in, the
server creates a client socket and passes it to a new instance of TimeClientHandler for pro-
cessing. The server then immediately returns to listen for new requests. Here is the code for
the modified day/time server:
"""
File: timeserver2.py
Server for providing the day and time. Uses client
handlers to handle clients' requests.
"""
from socket import socket
from timeClienthandler import TimeClientHandler

HOST = "localhost"
PORT = 5000
ADDRESS = (HOST, PORT)

server = socket(AF_INET, SOCK_STREAM)
server.bind(ADDRESS)
server.listen(5)
The server now just waits for connections from clients
and hands sockets off to client handlers
while True:
 print("Waiting for connection ... ")
 client, address = server.accept()
 print("... connected from: ", address)
 handler = TimeClientHandler(client)
 handler.start()

The code for the day/time client’s script does not change at all. Moreover, to create a new
server for different kind of service, you just define a new type of client handler and use it in
the code for the server just presented.

Exercises

1.	 Explain the role that ports and IP addresses play in a client/server program.

2.	 What is a local host, and how is it used to develop networked applications?

3.	 Why is it a good idea for a server to create threads to handle clients’ requests?

4.	 Describe how a menu-driven command processor of the type developed for an
ATM application in Chapter 9 could be run on a network.

5.	 The ATM application discussed in Chapter 9 has a single user. Will there be a syn-
chronization problem if we deploy that application with threads for multiple users?
Justify your answer.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

381

Networks, Clients, and Servers

Case Study: Setting Up Conversations between Doctors and Patients

Now that we have modified the day/time server to handle multiple clients, can we
also modify the two-way chat program to support chats among multiple clients? Let
us consider first the problem of supporting multiple two-way chats. We don’t want
to involve the server in the chat, much less the human user who is running the
server. Can we first set up a chat between a human user and an automated agent?
The doctor program developed in a Case Study in Chapter 5 is a good example of
an automated agent or bot that chats with its client, who is a human user.

Request

Write a program that allows multiple clients to be served by doctors who provide non-
directive psychotherapy.

Analysis

A doctor server program listens for requests from clients for doctors. Upon receiving
a request, the server dispatches the client’s socket to a new a handler thread. This
thread creates a new Doctor object (see Programming Project 5 in Chapter 9) and
then manages the conversation between the doctor and the client. The server returns
to field more requests from clients for sessions with their doctors. Figure 10-10
shows the structure of this program.

Figure 10-10  The structure of a client/server program for patients and doctors

spawns

Server

Client
Handler

Doctor

Client

Server application

Client application

waits for connection
request

greeting reply,
etc.

send/recv

socket
connection

(continues)

6.	 The servers discussed in this section all contain infinite loops. Thus, the applications run-
ning them cannot do anything else while the server is waiting for a client’s request, and
they cannot even gracefully be shut down. Suggest a way to restructure these applications
so that the applications can do other things, including performing a graceful shutdown.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

382

  Multithreading, Networks, and Client/Server ProgrammingC h a p t e r 1 0

The user interface for the server script is terminal-based, as you have seen in our
other examples. The client script provides a GUI for clients, as shown in Figure 10-11.
The GUI provides widgets for the user’s inputs and the doctor’s replies, and a button
to connect or disconnect to the server.

Design and Implementation

The design of the server script is the same as that of the multithreaded day/time
server, but it now uses a DoctorClientHandler class to be developed shortly.

In the code that follows, we assume that a Doctor class is defined in the module
doctor.py. This class includes two methods. The method greeting returns a string
representing the doctor’s welcome. The method reply expects the patient’s string as
an argument and returns the doctor’s response string.

Figure 10-11  The user interface of clients in the doctor program

(continued)

(continues)
Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

383

Networks, Clients, and Servers

The client handler resembles the day/time client handler, but it includes the following
changes:

•• The client handler’s __init__ method creates a Doctor object and assigns it to an
extra instance variable.

•• The client handler’s run method includes a conversation management loop similar to the
one in the chat server. However, when the client handler receives a message from the
client socket, this message is sent to the Doctor object rather than being displayed in
the server’s terminal window. Then, instead of taking input from the server’s keyboard
and sending it to the client, the client handler obtains this reply from the Doctor object.

Here is the code for the client handler:

"""
File: doctorclienthandler.py
Client handler for a therapy session. Handles multiple clients
concurrently.
"""
from codecs import decode
from threading import Thread
from doctor import Doctor

BUFSIZE = 1024
CODE = "ascii"

class DoctorClientHandler(Thread):
 """Handles a session between a doctor and a patient."""

 def __init__(self, client):
 Thread.__init__(self)
 self.client = client
 self.dr = Doctor()

 def run(self):
 self.client.send(bytes(self.dr.greeting(), CODE)
 while True:
 message = decode(self.client.recv(BUFSIZE), CODE)
 if not message:
 print("Client disconnected")
 self.client.close()
 break
 else:
 self.client.send(bytes(self.dr.reply(message),
 CODE)

The doctorclient module includes the code for the GUI and the code for managing
the connection to the server. When the user clicks the Connect button, the program

(continued)

(continues)
Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

384

  Multithreading, Networks, and Client/Server ProgrammingC h a p t e r 1 0

connects to the server, as in previous examples. It then receives and displays the
doctor’s greeting and waits for the user’s input. The user replies by entering text in
an input field and clicking the Send button. The user signals the end of a session by
clicking the Disconnect button, which closes the server’s socket.

Here is the code for the client, which includes the class DoctorClient

"""
File: doctorclient.py
GUI-based view for client for nondirective psychotherapy.
"""
from socket import *
from codecs import decode
from breezypythongui import EasyFrame

HOST = "localhost"
PORT = 5000
BUFSIZE = 1024
ADDRESS = (HOST, PORT)
CODE = "ascii"

class DoctorClient(EasyFrame):
 """Represents the client's window."""

 COLOR = "#CCEEFF" # Light blue

 def __init__(self):
 """Initialize the window and widgets."""
 EasyFrame.__init__(self, title = "Doctor",
 background = DoctorClient.COLOR)
 # Add the labels, fields, and buttons
 self.drLabel = self.addLabel("Want to connect?",
 row = 0, column = 0,
 columnspan = 2,
 background = DoctorClient.COLOR)
 self.ptField = self.addTextField(text = "",
 row = 1,
 column = 0,
 columnspan = 2,
 width = 50)
 self.sendBtn = self.addButton(row = 2, column = 0,
 text = "Send",
 command = self.sendReply,
 state = "disabled")
 self.connectBtn = self.addButton(row = 2,
 column = 1,
 text = "Connect",
 command = self.connect)

(continued)

(continues)
Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

385

Networks, Clients, and Servers

 # Support the return key in the input field
 self.ptField.bind("<Return>",
 lambda event: self.sendReply())

 def sendReply(self):
 """Sends patient input to doctor, receives
 and outputs the doctor's reply."""
 ptInput = self.ptField.getText()
 if ptInput != "":
 self.server.send(bytes(ptInput, CODE))
 drReply = decode(self.server.recv(BUFSIZE),
 CODE)
 if not drReply:
 self.messageBox(message = "Doctor disconnected")
 self.disconnect()
 else:
 self.drLabel["text"] = drReply
 self.ptField.setText("")

 def connect(self):
 """Starts a new session with the doctor."""
 self.server = socket(AF_INET, SOCK_STREAM)
 self.server.connect(ADDRESS)
 self.drLabel["text"] = decode(self.server.recv(BUFSIZE),
 CODE)
 self.connectBtn["text"] = "Disconnect"
 self.connectBtn["command"] = self.disconnect
 self.sendBtn["state"] = "normal"

 def disconnect(self):
 """Ends the session with the doctor."""
 self.server.close()
 self.ptField.setText("")
 self.drLabel["text"] = ""
 self.connectBtn["text"] = "Connect"
 self.connectBtn["command"] = self.connect
 self.sendBtn["state"] = "disabled"

def main():
 """Instantiate and pop up the window."""
 DoctorClient().mainloop()

if __name__ == "__main__":
 main()

You might have noticed that each client interacts with its own Doctor object. Thus, no
synchronization problems arise when a patient’s replies are added to the doctor’s his-
tory list, because the client threads do not access any shared data.

(continued)

(continues)
Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

386

  Multithreading, Networks, and Client/Server ProgrammingC h a p t e r 1 0

Summary
•• Threads allow the work of a single program to be distributed among several computa-

tional processes. These processes may be run concurrently on the same computer or
may collaborate by running on separate computers.

•• A thread can have several states during its lifetime, such as newborn, ready, executing
(in the CPU), sleeping, and waiting. A ready queue schedules the threads for access to
the CPU in first-come, first-served order.

•• After a thread is started, it goes to the end of the ready queue to be scheduled for a turn
in the CPU.

•• A thread may give up the CPU when it is timed-out, goes to sleep, waits on a condition,
or finishes its run method.

•• When a thread wakes up, is timed-out, or is notified that it can stop waiting, it returns
to the rear of the ready queue.

•• Thread synchronization problems can occur when two or more threads share data. These
threads can be synchronized by waiting on conditions that control access to the data.

•• Each computer on a network has a unique IP address that allows other computers to
locate it. An IP address contains an IP number but can also be labeled with an IP name.

•• Servers and clients can communicate on a network by means of sockets. A socket is cre-
ated with a port number and an IP address of the server on the client’s computer and on
the server’s computer.

•• Clients and servers communicate by sending and receiving bytes through their socket
connections. A string is converted to bytes before being sent, and the bytes are con-
verted to a string after receipt.

•• A server can handle several clients concurrently by assigning each client request to a
separate handler thread.

However, in other applications, such as the ATM developed in Chapter 9, concurrent
users would be accessing shared data. In the case of the ATM application, the server
would create the common Bank object and pass it to the client handlers. Because this
object holds the accounts in a dictionary and dictionaries are thread-safe, additions or
removals of accounts pose no synchronization problems. However, the SavingsAccount
objects within the Bank object’s dictionary are not themselves thread-safe, and thus they
could cause synchronization problems when two or more users access a joint account.
The solution is to provide a lock and condition mechanism for a SavingsAccount object,
to allow concurrent access to readers and writers of that shared object. You will work
with shared data in client server applications in the programming projects.

(continued)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

387

Review Questions

Review Questions
1.	 Multiple threads can run on the same desktop computer by means of

a.	 time-sharing
b.	 multiprocessing
c.	 distributed computing

2.	 A Thread object moves to the ready queue when

a.	 its wait method is called
b.	 its sleep method is called
c.	 its start method is called

3.	 The method that executes a thread’s code is called

a.	 the start method
b.	 the run method
c.	 the execute method

4.	 A lock on a resource is provided by an instance of the

a.	 Thread class
b.	 Condition class
c.	 Lock class

5.	 If multiple threads share data, they can have

a.	 total cooperation
b.	 synchronization problems

6.	 The object that uniquely identifies a host computer on a network is a(n)

a.	 port
b.	 socket
c.	 IP address

7.	 The object that allows several clients to access a server on a host computer is a(n)

a.	 port
b.	 socket
c.	 IP address

8.	 The object that effects a connection between an individual client and a server
is a(n)

a.	 port
b.	 socket
c.	 IP address

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

388

  Multithreading, Networks, and Client/Server ProgrammingC h a p t e r 1 0

9.	 The data that are transmitted between client and server are

a.	 of any type
b.	 strings

10.	 The best way for a server to handle requests from multiple clients is to

a.	 directly handle each client’s request
b.	 create a separate client-handler thread for each client

Projects
1.	 Redo the producer/consumer program so that it allows multiple consumers. Each

consumer must be able to consume the same data before the producer produces
more data.

2.	 Sometimes servers are down, so clients cannot connect to them. Python raises an
exception of type ConnectionRefusedError in a client program when a network
connection is refused. Add code to the day/time client program to catch and
recover from this kind of exception.

3.	 Modify the code in the day/time server application so that the user on the server
side can shut the server down. That user should be able to press the return or
enter key at the terminal to do this.

4.	 Modify the doctor application discussed in this chapter so that it tracks clients by
name and history. A Doctor object has its own history list of a patient’s inputs for
generating replies that refer to earlier conversations, as discussed in Chapter 5.
A Doctor object is now associated with a patient’s name. The client application
takes this name as input and sends it to the client handler when the patient con-
nects. The client handler checks for a pickled file with the patient’s name as its
filename (“<patient name>.dat”). If that file exists, it will contain the patient’s his-
tory, and the client handler loads the file to create the Doctor object. Otherwise,
the patient is visiting the doctor for the first time, so the client handler creates a
brand-new Doctor object. When the client disconnects, the client handler pickles
the Doctor object in a file with the patient’s name.

5.	 Design, implement, and test a network application that maintains an online phone
book. The data model for the phone book is saved in a file on the server’s computer.
Clients should be able to look up a person’s phone number or add a name and num-
ber to the phone book. The server should handle multiple clients without delays.
Unlike the doctor program, there should be just one phone book that all clients
share. The server creates this object at start-up and passes it to the client handlers.

6.	 Convert the ATM application presented in Chapter 9 to a networked applica-
tion. The client manages the user interface, whereas the server and client handler
manage connecting to and the transactions with the bank. Do not be concerned
about synchronization problems in this project.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

389

Projects

7.	 Write the tester program for readers and writers of a shared Counter object. A
sample run is shown in Figure 10-4.

8.	 Add synchronization to the ATM program of Project 6. You will need to give
concurrent readers access to a single account, as long as a writer is not writing
to it, and give a single writer access, as long as other writers and readers are not
accessing the account. Hint: just complete the ThreadSafeSavingsAccount class
discussed in this chapter, and use it to create account objects in the Bank class.

9.	 Jack has been working on the shared cell classes for the producer-consumer
problem and the readers and writers problem, and he notices some serious
redundancy in the code. The read and write methods are the same in both
classes, and both classes include an instance variable for the data. Jill, his team
manager, advises him to place this redundant code in a parent class named
SharedCell. Then two subclasses, named PCSharedCell and RWSharedCell, can
inherit this code and define the methods beginRead, endRead, beginWrite, and
endWrite, to enforce their specific synchronization protocols. Also, the __init__
method in each subclass first calls the __init__ method in the SharedCell class
to set up the data, and then adds the condition(s) and other instance variables for
its specific situation. Jack has called in sick, so you must complete this hierarchy
of classes and redo the demo programs so that they use them.

10.	 A crude multi-client chat room allows two or more users to converse by sending
and receiving messages. On the client side, a user connects to the chat room as
in the ATM application, by clicking a Connect button. At that point, a transcript
of the conversation thus far appears in a text area. At any time, the user can send
a message to the chat room by entering it as input and clicking a Send button.
When the user sends a message, the chat room returns another transcript of the
entire conversation to display in the text area. The user disconnects by clicking
the Disconnect button.

		 On the server side, there are five resources: a server, a client handler, a transcript,
a thread-safe transcript, and a shared cell. Their roles are much the same as they
are in the ATM application of Project 8. The server creates a thread-safe tran-
script at start-up, listens for client connections, and passes a client’s socket and the
thread-safe transcript to a client handler when a client connects. The client handler
receives the client’s name from the client socket, adds this name and the connection
time to the thread-safe transcript, sends the thread-safe transcript’s string to the cli-
ent, and waits for a reply. When the client’s reply comes in, the client handler adds
the client’s name and time to it, adds the result to the thread-safe transcript, and
sends the thread-safe transcript’s string back to the client. When the client discon-
nects, her name and a message to that effect are added to the thread-safe transcript.

		 The SharedCell class includes the usual read and write methods for a readers
and writers protocol, and the SharedTranscript and Transcript classes include
an add method and an __str__ method. The add method adds a string to a list of
strings, while __str__ returns the join of this list, separated by newlines.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

After completing this chapter, you will be able to

Measure the performance of an algorithm by obtaining
running times and instruction counts with different data sets

Analyze an algorithm’s performance by determining its
order of complexity, using big-O notation

Distinguish the common orders of complexity and the algo-
rithmic patterns that exhibit them

Distinguish between the improvements obtained by tweak-
ing an algorithm and reducing its order of complexity

Design, implement, and analyze search and sort
algorithms

C h a p t e r 11
Searching, Sorting,
and Complexity
Analysis

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Measuring the Efficiency of Algorithms

391

Earlier in this book, you learned about several criteria for assessing the quality of an algo-
rithm. The most essential criterion is correctness, but readability and ease of maintenance
are also important. This chapter examines another important criterion of the quality of
algorithms—run-time performance.

Algorithms describe processes that run on real computers with finite resources. Processes
consume two resources: processing time and space or memory. When run with the same
problems or data sets, processes that consume less of these two resources are of higher
quality than processes that consume more, and so are the corresponding algorithms.
In this chapter, we introduce tools for complexity analysis—for assessing the run-time
performance or efficiency of algorithms. We also apply these tools to search algorithms
and sort algorithms.

Measuring the Efficiency of Algorithms
Some algorithms consume an amount of time or memory that is below a threshold of toler-
ance. For example, most users are happy with any algorithm that loads a file in less than one
second. For such users, any algorithm that meets this requirement is as good as any other.
Other algorithms take an amount of time that is totally impractical (say, thousands of years)
with large data sets. We can’t use these algorithms, and instead we need to find others, if
they exist, that perform better.

When choosing algorithms, we often have to settle for a space/time tradeoff. An algorithm
can be designed to gain faster run times at the cost of using extra space (memory), or the
other way around. Some users might be willing to pay for more memory to get a faster
algorithm, whereas others would rather settle for a slower algorithm that economizes on
memory. Memory is now quite inexpensive for desktop and laptop computers, but not yet
for some miniature devices.

In any case, because efficiency is a desirable feature of algorithms, it is important to pay
attention to the potential of some algorithms for poor performance. In this section, we con-
sider several ways to measure the efficiency of algorithms.

Measuring the Run Time of an Algorithm
One way to measure the time cost of an algorithm is to use the computer’s clock to obtain
an actual run time. This process, called benchmarking or profiling, starts by determin-
ing the time for several different data sets of the same size and then calculates the aver-
age time. Next, similar data are gathered for larger and larger data sets. After several such
tests, enough data are available to predict how the algorithm will behave for a data set of
any size.

Consider a simple, if unrealistic, example. The following program implements an algorithm
that counts from 1 to a given number. Thus, the problem size is the number. We start with
the number 10,000,000, time the algorithm, and output the running time to the terminal

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

  Searching, Sorting, and Complexity AnalysisC h a p t e r 1 1

392

window. We then double the size of this number and repeat this process. After five such
increases, there is a set of results from which you can generalize. Here is the code for the
tester program:
"""
File: timing1.py
Prints the running times for problem sizes that double,
using a single loop.
"""

import time

problemSize = 10000000
print("%12s16s" % ("Problem Size", "Seconds"))
for count in range(5):

 start = time.time()
 # The start of the algorithm
 work = 1
 for x in range(problemSize):
 work += 1
 work -= 1
 # The end of the algorithm
 elapsed = time.time() - start

 print("%12d%16.3f" % (problemSize, elapsed))
 problemSize *= 2

The tester program uses the time() function in the time module to track the running
time. This function returns the number of seconds that have elapsed between the cur-
rent time on the computer’s clock and January 1, 1970 (also called “The Epoch”). Thus,
the difference between the results of two calls of time.time() represents the elapsed
time in seconds. Note also that the program does a constant amount of work, in the
form of two extended assignment statements, on each pass through the loop. This work
consumes enough time on each pass through the loop so that the total running time is
significant, but it has no other impact on the results. Figure 11-1 shows the output of the
program.

Figure 11-1  The output of the tester program

Problem Size Seconds

10000000 3.8

20000000 7.591

40000000 15.352

80000000 30.697

160000000 61.631

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Measuring the Efficiency of Algorithms

393

A quick glance at the results reveals that the running time more or less doubles when the
size of the problem doubles. Thus, one might predict that the running time for a problem of
size 32,000,000 would be approximately 124 seconds.

As another example, consider the following change in the tester program’s algorithm:
for j in range(problemSize):
 for k in range(problemSize):
 work += 1
 work -= 1

In this version, the extended assignments have been moved into a nested loop. This loop
iterates through the size of the problem within another loop that also iterates through the
size of the problem. This program was left running overnight. By morning it had processed
only the first data set, 1,000,000. The program was then terminated and run again with a
smaller problem size of 1,000. Figure 11-2 shows the results.

Note that when the problem size doubles, the number of seconds of running time more or
less quadruples. At this rate, it would take 175 days to process the largest number in the
previous data set!

This method permits accurate predictions of the running times of many algorithms.
However, there are two major problems with this technique:

1.	 Different hardware platforms have different processing speeds, so the running times
of an algorithm differ from machine to machine. Also, the running time of a pro-
gram varies with the type of operating system that lies between it and the hardware.
Finally, different programming languages and compilers produce code whose per-
formance varies. For example, an algorithm coded in C usually runs slightly faster
than the same algorithm in Python byte code. Thus, predictions of performance
generated from the results of timing on one hardware or software platform gener-
ally cannot be used to predict potential performance on other platforms.

2.	 It is impractical to determine the running time for some algorithms with very large data
sets. For some algorithms, it doesn’t matter how fast the compiled code or the hardware
processor is. They are impractical to run with very large data sets on any computer.

Figure 11-2  The output of the second tester program with a nested
loop and initial problem size of 1000

Problem Size Seconds

1000 0.387

2000 1.581

4000 6.463

8000 25.702

16000 102.666

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

  Searching, Sorting, and Complexity AnalysisC h a p t e r 1 1

394

Although timing algorithms may in some cases be a helpful form of testing, we also want
an estimate of the efficiency of an algorithm that is independent of a particular hardware or
software platform. As you will learn in the next section, such an estimate tells us how well
or how poorly the algorithm would perform on any platform.

Counting Instructions
Another technique used to estimate the efficiency of an algorithm is to count the instruc-
tions executed with different problem sizes. These counts provide a good predictor of the
amount of abstract work performed by an algorithm, no matter what platform the algo-
rithm runs on. Keep in mind, however, that when you count instructions, you are counting
the instructions in the high-level code in which the algorithm is written, not instructions in
the executable machine language program.

When analyzing an algorithm in this way, you distinguish between two classes of
instructions:

1.	 Instructions that execute the same number of times regardless of the problem size

2.	 Instructions whose execution count varies with the problem size

For now, you ignore instructions in the first class, because they do not figure significantly
in this kind of analysis. The instructions in the second class normally are found in loops or
recursive functions. In the case of loops, you also zero in on instructions performed in any
nested loops or, more simply, just the number of iterations that a nested loop performs. For
example, let us wire the algorithm of the previous program to track and display the number
of iterations the inner loop executes with the different data sets:
"""
File: counting.py
Prints the number of iterations for problem sizes
that double, using a nested loop.
"""

problemSize = 1000
print("%12s%15s" % ("Problem Size", "Iterations"))
for count in range(5):
 number = 0
 # The start of the algorithm
 work = 1
 for j in range(problemSize):
 for k in range(problemSize):
 number += 1
 work += 1
 work -= 1
 # The end of the algorithm

 print("%12d%15d" % (problemSize, number))
 problemSize *= 2

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Measuring the Efficiency of Algorithms

395

As you can see from the results, the number of iterations is the square of the problem size
(Figure 11-3).

Here is a similar program that tracks the number of calls of a recursive Fibonacci func-
tion, introduced in Chapter 6, for several problem sizes. Note that the function now has an
optional second argument, which is a Counter object, as discussed in Chapter 9. Each time
the function is called at the top level, a new Counter object is created and passed to it. On
that call and each recursive call, the function’s counter object is incremented.
"""
File: countfib.py
Prints the number of calls of a recursive Fibonacci
function with problem sizes that double.
"""

from counter import Counter

def fib(n, counter = None):
 """Count the number of calls of the Fibonacci function."""
 if counter: counter.increment()
 if n < 3:
 return 1
 else:
 return fib(n - 1, counter) + fib(n - 2, counter)

problemSize = 2
print("%12s%15s" % ("Problem Size", "Calls"))
for count in range(5):
 counter = Counter()
 # The start of the algorithm
 fib(problemSize, counter)
 # The end of the algorithm

 print("%12d%15s" % (problemSize, counter))
 problemSize *= 2

Figure 11-3  The output of a tester program that counts iterations

Problem Size Iterations

1000 1000000

2000 4000000

4000 16000000

8000 64000000

16000 256000000

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

  Searching, Sorting, and Complexity AnalysisC h a p t e r 1 1

396

The output of this program is shown in Figure 11-4.

Exercises

1.	 Write a tester program that counts and displays the number of iterations of the fol-
lowing loop:
while problemSize > 0:
 problemSize = problemSize // 2

2.	 Run the program you created in Exercise 1 using problem sizes of 1000, 2000, 4000,
10,000, and 100,000. As the problem size doubles or increases by a factor of 10,
what happens to the number of iterations?

3.	 The difference between the results of two calls of the time function time() is an
elapsed time. Because the operating system might use the CPU for part of this time,
the elapsed time might not reflect the actual time that a Python code segment uses
the CPU. Browse the Python documentation for an alternative way of recording the
processing time and describe how this would be done.

As the problem size doubles, the instruction count (number of recursive calls) grows slowly
at first and then quite rapidly. At first, the instruction count is less than the square of the
problem size. However, the instruction count for a problem size of 16, 1973, is significantly
larger than 256, the square of 16.

The problem with tracking counts in this way is that, with some algorithms, the computer
still cannot run fast enough to show the counts for very large problem sizes. Counting
instructions is the right idea, but we need to turn to logic and mathematical reasoning for
a complete method of analysis. The only tools we need for this type of analysis are paper
and pencil.

Figure 11-4  The output of a tester program that runs the Fibonacci function

Problem Size Calls

2 1

4 5

8 41

16 1973

32 4356617

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Complexity Analysis

397

Complexity Analysis
In this section, we develop a method of determining the efficiency of algorithms that allows
us to rate them independently of platform-dependent timings or impractical instruction
counts. This method, called complexity analysis, entails reading the algorithm and using
pencil and paper to work out some simple algebra.

Orders of Complexity
Consider the two counting loops discussed earlier. The first loop executes n times for
a problem of size n. The second loop contains a nested loop that iterates n2 times. The
amount of work done by these two algorithms is similar for small values of n, but is very
different for large values of n. Figure 11-5 and Table 11-1 illustrate this divergence. Note
that when we say “work,” we usually mean the number of iterations of the most deeply
nested loop.

Figure 11-5  A graph of the amounts of work
done in the tester programs

Problem size

n2
n

O
pe

ra
tio

ns

Problem Size
Work of the First

Algorithm
Work of the Second

Algorithm

2 2 4

10 10 100

1000 1000 1,000,000

Table 11-1	 The amounts of work in the tester programs

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

  Searching, Sorting, and Complexity AnalysisC h a p t e r 1 1

398

The performances of these algorithms differ by what we call an order of complexity. The
performance of the first algorithm is linear in that its work grows in direct proportion to
the size of the problem (problem size of 10, work of 10; 20 and 20, etc.). The behavior of the
second algorithm is quadratic in that its work grows as a function of the square of the prob-
lem size (problem size of 10, work of 100). As you can see from the graph and the table,
algorithms with linear behavior do less work than algorithms with quadratic behavior for
most problem sizes n. In fact, as the problem size gets larger, the performance of an algo-
rithm with the higher order of complexity becomes worse more quickly.

Several other orders of complexity are commonly used in the analysis of algorithms. An
algorithm has constant performance if it requires the same number of operations for any
problem size. List indexing is a good example of a constant-time algorithm. This is clearly
the best kind of performance to have.

Another order of complexity that is better than linear but worse than constant is called
logarithmic. The amount of work of a logarithmic algorithm is proportional to the log2
of the problem size. Thus, when the problem doubles in size, the amount of work only
increases by 1 (that is, just add 1).

The work of a polynomial time algorithm grows at a rate of nk, where k is a constant
greater than 1. Examples are n2, n3, and n10.

Although n3 is worse in some sense than n2, they are both of the polynomial order and
are better than the next higher order of complexity. An order of complexity that is
worse than polynomial is called exponential. An example rate of growth of this order
is n2 . Exponential algorithms are impractical to run with large problem sizes. The most
common orders of complexity used in the analysis of algorithms are summarized in
Figure 11-6 and Table 11-2.

Figure 11-6  A graph of some sample orders of complexity

Problem size

2n n2
n

log2n

O
pe

ra
tio

ns

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Complexity Analysis

399

Big-O Notation
An algorithm rarely performs a number of operations exactly equal to n, n2, or k n. An
algorithm usually performs other work in the body of a loop, above the loop, and below the
loop. For example, we might more precisely say that an algorithm performs 2n 1 3 or n2 2
operations. In the case of a nested loop, the inner loop might execute one less pass after
each pass through the outer loop. Thus, the total number of iterations would equal
n 1 (n 2 1) 1 (n 2 2) 1 … 1 1, or 2n n1

2
2 1

2 , rather than n2.

The amount of work in an algorithm typically is the sum of several terms in a
polynomial. Whenever the amount of work is expressed as a polynomial, we focus on
one term as dominant. As n becomes large, the dominant term becomes so large that
the amount of work represented by the other terms can be ignored. In general, the
dominant term of a given polynomial is the term with the largest power of n. For
example, the powers of n in the terms of 1 2n n3 5 102 are 2, 1, and 0, respectively,
so the dominant term is n3 2. The term with the largest exponent is usually the
leftmost one.

Let’s consider another example. In the polynomial 2n n1
2

2 1
2 , we focus on the quadratic

term, ½ n2, in effect dropping the linear term, ½ n, from consideration. We can also drop
the coefficient ½ because the ratio between ½ n2 and n2 does not change as n grows. For
example, if you double the problem size, the run times of algorithms that are ½ n2 and n2
both increase by a factor of 4. This type of analysis is sometimes called asymptotic analysis
because the value of a polynomial asymptotically approaches or approximates the value of
its largest term as n becomes very large.

One notation that computer scientists use to express the efficiency or computational com-
plexity of an algorithm is called big-O notation. “O” stands for “on the order of,” a reference
to the order of complexity of the work of the algorithm. Thus, for example, the order of
complexity of a linear-time algorithm is O(n). Big-O notation formalizes our discussion of
orders of complexity.

n Logarithmic n(log)2 Linear (n) Quadratic n()2 Exponential n(2)

100 7 100 10,000 Off the charts

1,000 10 1000 1,000,000 Off the charts

1,000,000 20 1,000,0000 1,000,000,000,000 Really off the
charts

Table 11-2	 Some sample orders of complexity

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

  Searching, Sorting, and Complexity AnalysisC h a p t e r 1 1

400

The Role of the Constant of Proportionality
The constant of proportionality involves the terms and coefficients that are usually ignored
during big-O analysis. However, when these items are large, they may have an impact on
the algorithm, particularly for small and medium-sized data sets. For example, no one can
ignore the difference between n and n / 2, when n is $1,000,000. In the example algorithms
discussed thus far, the instructions that execute within a loop are part of the constant of
proportionality, as are the instructions that initialize the variables before the loops are
entered. When analyzing an algorithm, one must be careful to determine that any instruc-
tions do not hide a loop that depends on a variable problem size. If that is the case, then the
analysis must move down into the nested loop.

Let’s determine the constant of proportionality for the first algorithm discussed in this
chapter. Here is the code:
work = 1
for x in range(problemSize):
 work += 1
 work -= 1

Note that, aside from the loop itself, there are three lines of code, each of them assignment
statements. Each of these three statements runs in constant time. Let’s also assume that
on each iteration, the overhead of managing the loop, which is hidden in the loop header,
runs two more instructions that require constant time. Thus, the amount of abstract work
performed by this algorithm is 4n 1 1. Although this number is greater than just n, the run-
ning times for the two amounts of work, n and 4n 1 1, increase at the same rate.

Measuring the Memory Used by an Algorithm
A complete analysis of the resources used by an algorithm includes the amount of memory
required. Once again, we focus on rates of potential growth. Some algorithms require the
same amount of memory to solve a problem of any size. Other algorithms require more
memory as the problem size gets larger.

For example, consider the recursive summation function, as defined in Chapter 6:
def summation(lower, upper):
 """Returns the sum of the numbers from lower through
 upper."""
 if lower > upper:
 return 0
 else:
 return lower + summation(lower + 1, upper)

As mentioned in Chapter 6, each recursive call requires a new chunk of memory for a stack
frame on the system call stack. A call of summation(1, 6) requires 6 such stack frames, and
a call of summation(1, n) requires n of them. We therefore can conclude that the rate of
growth of memory for the recursive summation function is linear. By contrast, the version

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Search Algorithms

401

of summation that uses a loop, also discussed in Chapter 6, requires just one stack frame,
for the top-level call, and so there is no growth of memory required as the problem size
increases.

Exercises

1.	 Assume that each of the following expressions indicates the number of operations
performed by an algorithm for a problem size of n. Point out the dominant term of
each algorithm, and use big-O notation to classify it.

a.	 2 1n nn2 4 52

b.	 1n3 62

c.	 1 2n n n3 2

2.	 For problem size n, algorithms A and B perform n2 and ½ n2 1 ½ n instructions,
respectively. Which algorithm does more work? Are there particular problem sizes
for which one algorithm performs significantly better than the other? Are there
particular problem sizes for which both algorithms perform approximately the same
amount of work?

3.	 At what point does an n4 algorithm begin to perform better than a n2 algorithm?

Search Algorithms
Searching and sorting have widespread application, so much effort is devoted to discov-
ering the fastest search and sort algorithms. Thus, analysis of the performance of these
algorithms is critical. We now present several algorithms that can be used for searching
and sorting lists. In what follows, we first discuss the design of an algorithm, we then
show its implementation as a Python function, and, finally, we provide an analysis of the
algorithm’s computational complexity. To keep things simple, each function processes
a list of integers. Lists of different sizes can be passed as parameters to the functions.
The functions are defined in a single module that is used in the case study later in this
chapter.

Search for a Minimum
Python’s min function returns the minimum or smallest item in a list. To study the com-
plexity of this algorithm, let’s develop an alternative version that returns the position of the
minimum item. The algorithm assumes that the list is not empty and that the items are in
arbitrary order. The algorithm begins by treating the first position as that of the minimum

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

  Searching, Sorting, and Complexity AnalysisC h a p t e r 1 1

402

item. It then searches to the right for an item that is smaller and, if it is found, resets the
position of the minimum item to the current position. When the algorithm reaches the end
of the list, it returns the position of the minimum item. Here is the code for the algorithm,
in function ourMin:
def ourMin(lyst):
 """Returns the position of the minimum item."""
 minpos = 0
 current = 1
 while current < len(lyst):
 if lyst[current] < lyst[minpos]:
 minpos = current
 current += 1
 return minpos

As you can see, there are three instructions outside the loop that execute the same number
of times regardless of the size of the list. Thus, we can discount them. Within the loop, we
find three more instructions. Of these, the comparison in the if statement and the incre-
ment of current execute once on each pass through the loop. There are no nested or hid-
den loops in these instructions. This algorithm must visit every item in the list to guarantee
that it has located the position of the minimum item. Thus, the algorithm must make n 2 1
comparisons for a list of size n. Therefore, the algorithm’s complexity is O(n).

Sequential Search of a List
Python’s in operator is implemented as a method named __contains__ in the list class.
This method searches for a particular item (called the target item) within a list of arbitrarily
arranged items. In such a list, the only way to search for a target item is to begin with the
item at the first position and compare it to the target. If the items are equal, the method
returns True. Otherwise, the method moves on to the next position and compares items
again. If the method arrives at the last position and still cannot find the target, it returns
False. This kind of search is called a sequential search or a linear search. A more useful
search function would return the index of a target if it’s found, or 21 otherwise. Here is the
Python code for a sequential search function:
def sequentialSearch(target, lyst):
 """Returns the position of the target item if found,
 or -1 otherwise."""
 position = 0
 while position < len(lyst):
 if target == lyst[position]:
 return position
 position += 1
 return -1

Note that the loop in sequentialSearch, unlike the loop in ourMin, may end early because
of the nested return statement. This makes the analysis of a sequential search a bit differ-
ent from the analysis of a search for a minimum, as we shall see in the next subsection.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Search Algorithms

403

Best-Case, Worst-Case, and Average-Case Performance
The performance of some algorithms depends on the placement of the data that are pro-
cessed. The sequential search algorithm does less work to find a target at the beginning of a
list than at the end of the list. For such algorithms, one can determine the best-case perfor-
mance, the worst-case performance, and the average performance. A thorough analysis of
an algorithm’s complexity divides its behavior into these three types of cases:

1.	 Best case—Under what circumstances does an algorithm do the least amount of
work? What is the algorithm’s complexity in this best case?

2.	 Worst case—Under what circumstances does an algorithm do the most amount of
work? What is the algorithm’s complexity in this worst case?

3.	 Average case—Under what circumstances does an algorithm do a typical amount
of work? What is the algorithm’s complexity in this typical case?

In general, we worry more about average and worst-case performances than about best-
case performances.

Our analysis of a sequential search considers three cases:

1.	 In the worst case, the target item is at the end of the list or not in the list at all. Then
the algorithm must visit every item and perform n iterations for a list of size n.
Thus, the worst-case complexity of a sequential search is O(n).

2.	 In the best case, the algorithm finds the target at the first position, after making one
iteration, for an O(1) complexity.

3.	 To determine the average case, you add the number of iterations required to find the
target at each possible position and divide the sum by n. Thus, the algorithm per-
forms (n 1 n 2 1 1 n 2 2 1 . . . 1 1) / n, or (n 1 1) / 2 iterations. For very large n,
the constant factor of /2 is insignificant, so the average complexity is still O(n).

Clearly, the best-case performance of a sequential search is rare when compared with the
average and worst-case performances, which are essentially the same.

Binary Search of a List
A sequential search is necessary for data that are not arranged in any special order. When
searching sorted data, you can use a binary search.

To understand how a binary search works, think about what happens when you look up a
term in this book’s index (assuming you have the print edition). The terms in an index are
already sorted, so you don’t do a sequential search. Instead, you estimate the term’s alpha-
betical position in the index, and open the index pages as close to that position as possible.
You then determine if the target term lies, alphabetically, on an earlier page or later page,
and flip back or forward through the pages as necessary. You repeat this process until you
find the term or conclude that it’s not in the index.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

  Searching, Sorting, and Complexity AnalysisC h a p t e r 1 1

404

Now let’s consider an example of a binary search of a list in Python. To begin, let’s assume
that the items in the list are sorted in ascending order (as they are in an index). The
search algorithm goes directly to the middle position in the list and compares the item at
that position to the target. If there is a match, the algorithm returns the position. Other-
wise, if the target is less than the current item, the algorithm searches the portion of the
list before the middle position. If the target is greater than the current item, the algorithm
searches the portion of the list after the middle position. The search process stops when
the target is found or the current beginning position is greater than the current ending
position.

Here is the code for the binary search function:
def binarySearch(target, lyst):
 """Returns the position of the target item if found,
 or -1 otherwise."""
 left = 0
 right = len(lyst) - 1
 while left <= right:
 midpoint = (left + right) // 2
 if target == lyst[midpoint]:
 return midpoint
 elif target < lyst[midpoint]:
 right = midpoint – 1 # Search to left
 else:
 left = midpoint + 1 # Search to right
 return -1

There is just one loop with no nested or hidden loops. Once again, the worst case occurs
when the target is not in the list. How many times does the loop run in the worst case?
This is equal to the number of times the size of the list can be divided by 2 until the quo-
tient is 1. For a list of size n, you essentially perform the reduction n / 2 / 2 . . . / 2 until
the result is 1. Let k be the number of times we divide n by 2. To solve for k, you have

5n k/2 1, and 5n k2 , and 5k nlog2 . Thus, the worst-case complexity of binary search is
nO(log)2 .

Figure 11-7 shows the portions of the list being searched in a binary search with a
list of 9 items and a target item, 10, that is not in the list. The items compared to the
target are shaded. Note that none of the items in the left half of the original list are
visited.

The binary search for the target item 10 requires four comparisons, whereas a linear search
would have required 10 comparisons. This algorithm actually appears to perform better as
the problem size gets larger. Our list of 9 items requires at most 4 comparisons, whereas a
list of 1,000,000 items requires at most only 20 comparisons!

Binary search is certainly more efficient than sequential search. However, the kind of search
algorithm we choose depends on the organization of the data in the list. There is some
additional overall cost to a binary search, which has to do with keeping the list in sorted
order. In the next section, we examine several strategies for sorting a list and analyze their
complexity.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Basic Sort Algorithms

405

Basic Sort Algorithms
You have just seen how a sorted list is a critical precondition of a log n search algorithm.
Lists whose items are in random order cannot be searched in this manner; you need to
run a sort algorithm on such lists at some point, to guarantee optimal searches. Python’s
sort method accomplishes this, but how does it work, and how fast does it run? Computer

Exercises

1.	 Suppose that a list contains the values

		 20 44 48 55 62 66 74 88 93 99

		 at index positions 0 through 9. Trace the values of the variables left, right, and
midpoint in a binary search of this list for the target value 90. Repeat for the target
value 44.

2.	 The method we usually use to look up an entry in a phone book is not exactly the same
as a binary search because, when using a phone book, we don’t always go to the mid-
point of the sublist being searched. Instead, we estimate the position of the target based
on the alphabetical position of the first letter of the person’s last name. For example,
when we are looking up a number for “Smith,” we first look toward the middle of the sec-
ond half of the phone book, instead of in the middle of the entire book. Suggest a modifi-
cation of the binary search algorithm that emulates this strategy for a list of names. Is its
computational complexity any better than that of the standard binary search?

Figure 11-7    The items of a list visited during a binary search for 10

Comparison

1 1

2

3

4

2 3 4 5 6 7 8 9

1 2 3 4 6 7 8 9

1 3 4

4 9

6 8 9

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

  Searching, Sorting, and Complexity AnalysisC h a p t e r 1 1

406

scientists have devised many ingenious strategies for sorting a list of items. In this section,
we examine some algorithms that are easy to write but are inefficient, and we consider
some faster but more complicated algorithms in the next section.

Each of the Python sort functions that we develop operates on a list of integers and uses a
swap function to exchange the positions of two items in the list. Here is the code for that
function:
def swap(lyst, i, j):
 """Exchanges the items at positions i and j."""
 # You could say lyst[i], lyst[j] = lyst[j], lyst[i]
 # but the following code shows what is really going on
 temp = lyst[i]
 lyst[i] = lyst[j]
 lyst[j] = temp

Selection Sort
Perhaps the simplest strategy is to search the entire list for the position of the smallest
item. If that position does not equal the first position, the algorithm swaps the items at
those positions. It then returns to the second position and repeats this process, swapping
the smallest item with the item at the second position, if necessary. When the algorithm
reaches the last position in this overall process, the list is sorted. The algorithm is called
selection sort because each pass through the main loop selects a single item to be moved.
Table 11-3 shows the states of a list of five items after each search and swap pass of selec-
tion sort. The two items just swapped on each pass have asterisks next to them, and the
sorted portion of the list is shaded.

Unsorted List After 1st Pass After 2nd Pass After 3rd Pass After 4th Pass

5 1* 1 1 1

3 3 2* 2 2

1 5* 5 3* 3

2 2 3* 5* 4*

4 4 4 4 5*

Table 11-3	 A trace of the data during a selection sort (passes through outer loop)

Here is the Python function for a selection sort:
def selectionSort(lyst):
 """Sorts the items in lyst in ascending order."""
 i = 0
 while i < len(lyst) - 1: # Do n – 1 searches

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Basic Sort Algorithms

407

 minIndex = i # for the smallest item
 j = i + 1
 while j < len(lyst): # Start a search
 if lyst[j] < lyst[minIndex]:
 minIndex = j
 j += 1
 if minIndex != i: # Swap if necessary
 swap(lyst, minIndex, i)
 i += 1

This function includes a nested loop. For a list of size n, the outer loop executes n 2 1
times. On the first pass through the outer loop, the inner loop executes n 2 1 times. On the
second pass through the outer loop, the inner loop executes n 2 2 times. On the last pass
through the outer loop, the inner loop executes once. Thus, the total number of compari-
sons for a list of size n is the following:

(1) (2) . . . 1
(1)/2

1
2

2 1
2

2 1 2 1 1 5

2 5

2

n n
n n

n n

For large n, you can pick the term with the largest degree and drop the coefficient, so selec-
tion sort is nO()2 in all cases. For large data sets, the cost of swapping items might also be
significant. Because data items are swapped only in the outer loop, this additional cost for
selection sort is linear in the worst and average cases.

Bubble Sort
Another sort algorithm that is relatively easy to conceive and code is called a bubble sort.
Its strategy is to start at the beginning of the list and compare pairs of data items as it moves
down to the end. Each time the items in the pair are out of order, the algorithm swaps them.
This process has the effect of bubbling the largest items to the end of the list. The algorithm
then repeats the process from the beginning of the list and goes to the next-to-last item,
and so on, until it begins with the last item. At that point, the list is sorted.

Table 11-4 shows a trace of a single bubbling process through a list of five items. This pro-
cess makes four passes through a nested loop to bubble the largest item down to the end

Unsorted List After 1st Pass After 2nd Pass After 3rd Pass After 4th Pass

5 4* 4 4 4

4 5* 2* 2 2

2 2 5* 1* 1

1 1 1 5* 3*

3 3 3 3 5*

Table 11-4	 A trace of the data during a bubble sort (passes through inner loop)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

  Searching, Sorting, and Complexity AnalysisC h a p t e r 1 1

408

of the list. Once again, the items just swapped are marked with asterisks, and the sorted
portion is shaded.

Here is the Python function for a bubble sort:
def bubbleSort(lyst):
 """Sorts the items in lyst in ascending order."""
 n = len(lyst)
 while n > 1: # Do n - 1 bubbles
 i = 1 # Start each bubble
 while i < n:
 if lyst[i] < lyst[i - 1]: # Exchange if needed
 swap(lyst, i, i - 1)
 i += 1
 n -= 1

As with the selection sort, a bubble sort has a nested loop. The sorted portion of the
list now grows from the end of the list up to the beginning, but the performance of the
bubble sort is quite similar to the behavior of selection sort: the inner loop executes

2n n1
2

2 1
2 times for a list of size n. Thus, bubble sort is nO()2 . Like selection sort, bubble

sort won’t perform any swaps if the list is already sorted. However, bubble sort’s worst-
case behavior for exchanges is greater than linear. The proof of this is left as an exercise
for you.

You can make a minor adjustment to the bubble sort to improve its best-case perfor-
mance to linear. If no swaps occur during a pass through the main loop, then the list
is sorted. This can happen on any pass, and in the best case will happen on the first
pass. You can track the presence of swapping with a Boolean flag and return from the
function when the inner loop does not set this flag. Here is the modified bubble sort
function:
def bubbleSort(lyst):
 """Sorts the items in lyst in ascending order."""
 n = len(lyst)
 while n > 1: # Do n - 1 bubbles
 swapped = False # Start each bubble
 i = 1
 while i < n:
 if lyst[i] < lyst[i - 1]: # Exchange if needed
 swap(lyst, i, i - 1)
 swapped = True
 i += 1
 if not swapped: return # Exit if no swaps
 n -= 1

Note that this modification only improves best-case behavior. On the average, the behavior
of bubble sort is still nO()2 .

Insertion Sort
Our modified bubble sort performs better than a selection sort for lists that are already
sorted. But our modified bubble sort can still perform poorly if only a few items are out of

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Basic Sort Algorithms

409

order in the list. Another algorithm, called an insertion sort, attempts to exploit the partial
ordering of the list in a different way. The strategy is as follows:

•• On the ith pass through the list, where i ranges from 1 to n – 1, the ith item should be
inserted into its proper place among the first i items in the list.

•• After the ith pass, the first i items should be in sorted order.

•• This process is analogous to the way in which many people organize playing cards in
their hands. That is, if you hold the first i – 1 cards in order, you pick the ith card and
compare it to these cards until its proper spot is found.

•• As with our other sort algorithms, insertion sort consists of two loops. The outer loop
traverses the positions from 1 to n – 1. For each position i in this loop, you save the item
and start the inner loop at position i – 1. For each position j in this loop, you move the
item to position j 1 1 until you find the insertion point for the saved (ith) item.

Here is the code for the insertionSort function:
def insertionSort(lyst):
 """Sorts the items in lyst in ascending order."""
 i = 1
 while i < len(lyst):
 itemToInsert = lyst[i]
 j = i - 1
 while j >= 0:
 if itemToInsert < lyst[j]:
 lyst[j + 1] = lyst[j]
 j -= 1
 else:
 break
 lyst[j + 1] = itemToInsert
 i += 1

Table 11-5 shows the states of a list of five items after each pass through the outer loop of
an insertion sort. The item to be inserted on the next pass is marked with an arrow; after it
is inserted, this item is marked with an asterisk.

Once again, analysis focuses on the nested loop. The outer loop executes n – 1 times. In
the worst case, when all of the data are out of order, the inner loop iterates once on the first

Unsorted List After 1st Pass After 2nd Pass After 3rd Pass After 4th Pass

2 2 1* 1 1

5 ← 5 (no insertion) 2 2 2

1 1 ← 5 4* 3*

4 4 4 ← 5 4

3 3 3 3 ← 5

Table 11-5	 A trace of the data during an insertion sort (passes through outer loop)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

  Searching, Sorting, and Complexity AnalysisC h a p t e r 1 1

410

pass through the outer loop, twice on the second pass, and so on, for a total of 2n n1
2

2 1
2

times. Thus, the worst-case behavior of insertion sort is nO()2 .

The more items in the list that are in order, the better insertion sort gets until, in the best
case of a sorted list, the sort’s behavior is linear. In the average case, however, insertion sort
is still quadratic.

Best-Case, Worst-Case, and Average-Case Performance Revisited
As mentioned earlier, for many algorithms, a single measure of complexity cannot be
applied to all cases. Sometimes an algorithm’s behavior improves or gets worse when
it encounters a particular arrangement of data. For example, the bubble sort algorithm
can terminate as soon as the list becomes sorted. If the input list is already sorted, the
bubble sort requires approximately n comparisons. In many other cases, however, bub-
ble sort requires approximately n2 comparisons. Clearly, a more detailed analysis may be
needed to make programmers aware of these special cases. Let’s apply this kind of analy-
sis to the search for a minimum algorithm and to the smarter version of the bubble sort
algorithm.

Because the search for a minimum algorithm must visit each number in the list, unless it is
sorted, the algorithm is always linear. Therefore, its best-case, worst-case, and average-case
performances are O(n).

The smarter version of bubble sort can terminate as soon as the list becomes sorted. In the
best case, this happens when the input list is already sorted. Therefore, bubble sort’s best-
case performance is O()n . However, this case is rare (1 out of n!). In the worst case, even
this version of bubble sort will have to bubble each item down to its proper position in the
list. The algorithm’s worst-case performance is clearly O(n2). Bubble sort’s average-case
performance is closer to nO()2 than to O(n), although the demonstration of this fact is a bit
more involved than it is for sequential search.

As we will see, there are algorithms whose best-case and average-case performances are
similar, but whose performance can degrade to a worst case. Whether you are choosing an
algorithm or developing a new one, it is important to be aware of these distinctions.

Exercises

1.	 Which configuration of data in a list causes the smallest number of exchanges in a
selection sort? Which configuration of data causes the largest number of exchanges?

2.	 Explain the role that the number of data exchanges plays in the analysis of selection
sort and bubble sort. What role, if any, does the size of the data objects play?

3.	 Explain why the modified bubble sort still exhibits nO()2 behavior on the average.

4.	 Explain why insertion sort works well on partially sorted lists.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Faster Sorting

411

Faster Sorting
The three sort algorithms considered thus far have nO()2 running times. There are several
variations on these sort algorithms, some of which are marginally faster, but they, too, are

nO()2 in the worst and average cases. However, you can take advantage of some better algo-
rithms that are O(n log n). The secret to these better algorithms is a divide-and-conquer
strategy. That is, each algorithm finds a way of breaking the list into smaller sublists. These
sublists are then sorted recursively. Ideally, if the number of these subdivisions is log(n) and
the amount of work needed to rearrange the data on each subdivision is n, then the total
complexity of such a sort algorithm is O(n log n). In Table 11-6, you can see that the growth
rate of work of an O(n log n) algorithm is much slower than that of an nO()2 algorithm.

n n Log n n2

512 4,608 262,144

1,024 10,240 1,048,576

2,048 22,458 4,194,304

8,192 106,496 67,108,864

16,384 229,376 268,435,456

32,768 491,520 1,073,741,824

Table 11-6	 Comparing n log n and 2n

In this section, we examine two recursive sort algorithms that break the n2 barrier:
quicksort and merge sort.

Quicksort
Here is an outline of the strategy used in the quicksort algorithm:

1.	 Begin by selecting the item at the list’s midpoint. We call this item the pivot. (Later,
we discuss alternative ways to choose the pivot.)

2.	 Partition items in the list so that all items less than the pivot are moved to the left
of the pivot, and the rest are moved to its right. The final position of the pivot itself
varies, depending on the actual items involved. For instance, the pivot ends up
being rightmost in the list if it is the largest item and leftmost if it is the smallest.
But wherever the pivot ends up, that is its final position in the fully sorted list.

3.	 Divide and conquer. Reapply the process recursively to the sublists formed by splitting
the list at the pivot. One sublist consists of all items to the left of the pivot (now the
smaller ones), and the other sublist has all items to the right (now the larger ones).

4.	 The process terminates each time it encounters a sublist with fewer than two items.
Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

  Searching, Sorting, and Complexity AnalysisC h a p t e r 1 1

412

Partitioning
From the programmer’s perspective, the most complicated part of the algorithm is the
operation of partitioning the items in a sublist. There are two principal ways of doing this.
What follows is an informal description of the easier method as it applies to any sublist:

1.	 Swap the pivot with the last item in the sublist.

2.	 Establish a boundary between the items known to be less than the pivot and the rest
of the items. Initially, this boundary is positioned immediately before the first item.

3.	 Starting with the first item in the sublist, scan across the sublist. Every time an item
less than the pivot is encountered, swap it with the first item after the boundary and
advance the boundary.

4.	 Finish by swapping the pivot with the first item after the boundary.

Table 11-7 lists these steps as applied to the numbers 12 19 17 18 14 11 15 13 16. In Step 1,
the pivot is established and swapped with the last item. In Step 2, the boundary is estab-
lished before the first item. In Steps 3–6, the sublist is scanned for items less than the pivot,
these are swapped with the first item after the boundary, and the boundary is advanced.
Notice that items to the left of the boundary are less than the pivot at all times. Finally, in
Step 7, the pivot is swapped with the first item after the boundary, and the sublist has been
successfully partitioned.

1 Let the sublist consist of the numbers shown with a pivot
of 14.
Swap the pivot with the last item.

12 19 17 18 14 11 15 13 16

12 19 17 18 16 11 15 13 14

2 Establish the boundary before the first item. : 12 19 17 18 16 11 15 13 14

3 Scan for the first item less than the pivot.
Swap this item with the first item after the boundary.
In this example, the item gets swapped with itself.
Advance the boundary.

: 12 19 17 18 16 11 15 13 14
: 12 19 17 18 16 11 15 13 14
12 : 19 17 18 16 11 15 13 14

4 Scan for the next item less than the pivot.
Swap this item with the first item after the boundary.
Advance the boundary.

12 : 19 17 18 16 11 15 13 14
12 : 11 17 18 16 19 15 13 14
12 11 : 17 18 16 19 15 13 14

5 Scan for the next item less than the pivot.
Swap this item with the first item after the boundary.
Advance the boundary.

12 11 : 17 18 16 19 15 13 14
12 11 : 13 18 16 19 15 17 14
12 11 13 : 18 16 19 15 17 14

6 Scan for the next item less than the pivot; however, there
is not one.

12 11 13 : 18 16 19 15 17 14

7 Interchange the pivot with the first item after the bound-
ary. At this point, all items less than the pivot are to the
pivot’s left and the rest are to its right.

12 11 13 : 14 16 19 15 17 18

Table 11-7	 Partitioning a sublist in quicksort

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Faster Sorting

413

After a sublist has been partitioned, we reapply the process to its left and right sublists
(12 11 13 and 16 19 15 17 18) and so on, until the sublists have lengths of at most one.

Complexity Analysis of Quicksort
We now present an informal analysis of the quicksort’s complexity. During the first parti-
tion operation, we scan all of the items from the beginning of the list to its end. Thus, the
amount of work during this operation is proportional to n, the list’s length.

The amount of work after this partition is proportional to the left sublist’s length plus the right
sublist’s length, which together yield n – 1. And when these sublists are divided, there are four
pieces whose combined length is approximately n, so the combined work is proportional to n
yet again. As the list is divided into more pieces, the total work remains proportional to n.

To complete the analysis, we need to determine how many times the lists are partitioned.
We will make the optimistic assumption that, each time, the dividing line between the new
sublists turns out to be as close to the center of the current sublist as possible. In practice,
this is not usually the case. You already know from the discussion of the binary search algo-
rithm that when you divide a list in half repeatedly, you arrive at a single element in about
log2 n steps. Thus, the algorithm is O(n log n) in the best-case performance.

For the worst-case performance, consider the case of a list that is already sorted. If the pivot
element chosen is the first element, then there are n – 1 elements to its right on the first par-
tition, n – 2 elements to its right on the second partition, and so on, as shown in Figure 11-8.

Figure 11-8  A worst-case scenario for quicksort (arrows indicate pivot elements)

34 41 56 63 72 89 95

41 56 63 72 89 95

56 63 72 89 95

63 72 89 95

72 89 95

89 95

95

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

  Searching, Sorting, and Complexity AnalysisC h a p t e r 1 1

414

Although no elements are exchanged, the total number of partitions is n – 1 and the total
number of comparisons performed is 2n n1

2
2 1

2 , the same number as in selection sort and
bubble sort. Thus, in the worst case, the quicksort algorithm is nO()2 .

If quicksort is implemented as a recursive algorithm, analysis must also consider memory
usage for the call stack. Each recursive call requires a constant amount of memory for a
stack frame, and there are two recursive calls after each partition. Thus, memory usage is
O(log n) in the best case and O(n) in the worst case.

Although the worst-case performance of quicksort is rare, programmers certainly prefer to
avoid it. Choosing the pivot at the first or last position is not a wise strategy. Other meth-
ods of choosing the pivot, such as selecting a random position or choosing the median of
the first, middle, and last elements, can help to approximate O(n log n) performance in the
average case.

Implementation of Quicksort
The quicksort algorithm is most easily coded using a recursive approach. The
following script defines a top-level quicksort function for the client, a recursive
quicksortHelper function to hide the extra arguments for the end points of a sublist,
and a partition function. The script runs quicksort on a list of 20 randomly ordered
integers.
def quicksort(lyst):
 """Sorts the items in lyst in ascending order."""
 quicksortHelper(lyst, 0, len(lyst) - 1) # Top-level call of helper

def quicksortHelper(lyst, left, right):
 """Partition lyst, then sort the left segment and
 sort the right segment."""
 if left < right:
 pivotLocation = partition(lyst, left, right)
 quicksortHelper(lyst, left, pivotLocation - 1)
 quicksortHelper(lyst, pivotLocation + 1, right)

def partition(lyst, left, right):
 """Shifts items less than the pivot to its left,
 and items greater than the pivot to its right,
 and returns the position of the pivot."""
 # Find the pivot and exchange it with the last item
 middle = (left + right) // 2
 pivot = lyst[middle]
 lyst[middle] = lyst[right]
 lyst[right] = pivot
 # Set boundary point to first position
 boundary = left
 # Move items less than pivot to the left

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Faster Sorting

415

 for index in range(left, right):
 if lyst[index] < pivot:
 swap(lyst, index, boundary)
 boundary += 1
 # Exchange the pivot item and the boundary item
 swap(lyst, right, boundary)
 return boundary

swap is defined as before

import random

def main(size = 20, sort = quicksort):
 """Sort a randomly ordered list and print
 before and after."""
 lyst = list(range(1, size + 1))
 random.shuffle(lyst)
 print(lyst)
 sort(lyst)
 print(lyst)

 if __name__ == "__main__":
 main()

Merge Sort
Another algorithm called merge sort employs a recursive, divide-and-conquer strategy to
break the nO()2 barrier. Here is an informal summary of the algorithm:

•• Compute the middle position of a list and recursively sort its left and right sublists
(divide and conquer).

•• Merge the two sorted sublists back into a single sorted list.

•• Stop the process when sublists can no longer be subdivided.

Three Python functions collaborate in this top-level design strategy:

•• mergeSort—The function called by users.

•• mergeSortHelper—A helper function that hides the extra parameters required by
recursive calls.

•• merge—A function that implements the merging process.

Implementing the Merging Process
The merging process uses a temporary list of the same size as the list being sorted.
We call this list the copyBuffer. To avoid the overhead of allocating and deallocat-
ing the copyBuffer each time merge is called, the buffer is allocated once in mergeSort

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

  Searching, Sorting, and Complexity AnalysisC h a p t e r 1 1

416

and subsequently passed as an argument to mergeSortHelper and merge. Each time
mergeSortHelper is called, it needs to know the bounds of the sublist with which it is work-
ing. These bounds are provided by two other parameters, low and high. Here is the code for
mergeSort:
def mergeSort(lyst):
 # lyst list being sorted
 # copyBuffer temporary space needed during merge
 copyBuffer = list(lyst)
 mergeSortHelper(lyst, copyBuffer, 0, len(lyst) - 1)

After checking that it has been passed a sublist of at least two items, mergeSortHelper
computes the midpoint of the sublist, recursively sorts the portions below and above the
midpoint, and calls merge to merge the results. Here is the code for mergeSortHelper:
def mergeSortHelper(lyst, copyBuffer, low, high):
 # lyst list being sorted
 # copyBuffer temporary space needed during merge
 # low, high bounds of sublist
 # middle midpoint of sublist
 if low < high:
 middle = (low + high) // 2
 mergeSortHelper(lyst, copyBuffer, low, middle)
 mergeSortHelper(lyst, copyBuffer, middle + 1, high)
 merge(lyst, copyBuffer, low, middle, high)

Figure 11-9 shows the sublists generated during recursive calls to mergeSortHelper,
starting from a list of eight items.

Figure 11-9  Sublists generated during calls of mergeSortHelper

Level 0

Level 1

Level 2

Level 3 4 1 7 6 5 3 8 2

4 1 7 6 5 3 8 2

4 1 7 6 5 3 8 2

4 1 7 6 5 3 8 2

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Faster Sorting

417

Note that, in this example, the sublists are evenly subdivided at each level and there are k2
sublists to be merged at level k. Had the length of the initial list not been a power of two,
then an exactly even subdivision would not have been achieved at each level, and the last
level would not have contained a full complement of sublists. Figure 11-10 traces the pro-
cess of merging the sublists generated in Figure 11-9.

Figure 11-10  Merging the sublists during a merge sort

Level 0

Level 1

Level 2

Level 3

1 2 3 4 5 6 7 8

1 4 6 7 2 3 5 8

1 4 6 7 3 5 2 8

4 1 7 6 5 3 8 2

Finally, here is the code for the merge function:
def merge(lyst, copyBuffer, low, middle, high):
 # lyst list that is being sorted
 # copyBuffer temp space needed during the merge process
 # low beginning of first sorted sublist
 # middle end of first sorted sublist
 # middle + 1 beginning of second sorted sublist
 # high end of second sorted sublist

 # Initialize i1 and i2 to the first items in each sublist
 i1 = low
 i2 = middle + 1

 # Interleave items from the sublists into the
 # copyBuffer in such a way that order is maintained.
 for i in range(low, high + 1):
 if i1 > middle:
 copyBuffer[i] = lyst[i2] # First sublist exhausted
 i2 += 1

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

  Searching, Sorting, and Complexity AnalysisC h a p t e r 1 1

418

 elif i2 > high:
 copyBuffer[i] = lyst[i1] # Second sublist exhausted
 i1 += 1
 elif lyst[i1] < lyst[i2]:
 copyBuffer[i] = lyst[i1] # Item in first sublist <
 i1 += 1
 else:
 copyBuffer[i] = lyst[i2] # Item in second sublist <
 i2 += 1

 for i in range(low, high + 1): # Copy sorted items back to
 lyst[i] = copyBuffer[i] # proper positions in lyst

The merge function combines two sorted sublists into a larger sorted sublist. The first
sublist lies between low and middle and the second between middle + 1 and high. The
process consists of three steps:

1.	 Set up index pointers to the first items in each sublist. These are at positions low
and middle + 1.

2.	 Starting with the first item in each sublist, repeatedly compare items. Copy the
smaller item from its sublist to the copy buffer and advance to the next item in
the sublist. Repeat until all items have been copied from both sublists. If the end of
one sublist is reached before the other’s, finish by copying the remaining items from
the other sublist.

3.	 Copy the portion of copyBuffer between low and high back to the corresponding
positions in list.

Complexity Analysis of Merge Sort
The running time of the merge function is dominated by the two for statements, each of which
loops (high 2 low 1 1) times. Consequently, the function’s running time is O(high 2 low),
and all the merges at a single level take O(n) time. Because mergeSortHelper splits sublists as
evenly as possible at each level, the number of levels is O(log n), and the running time for this
function is O(n log n) in all cases.

The merge sort has two space requirements that depend on the list’s size. First, O(log n)
space is required on the call stack to support recursive calls. Second, O(n) space is used by
the copy buffer.

Exercises

1.	 Describe the strategy of quicksort and explain why it can reduce the time complex-
ity of sorting from nO()2 to O(n log n).

2.	 Why is quicksort not O(n log n) in all cases? Describe the worst-case situation for
quicksort and give a list of 10 integers, 1–10, that would produce this behavior.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

An Exponential Algorithm: Recursive Fibonacci

419

An Exponential Algorithm: Recursive Fibonacci
Earlier in this chapter, we ran the recursive Fibonacci function to obtain a count of the
recursive calls with various problem sizes. You saw that the number of calls seemed to grow
much faster than the square of the problem size. Here is the code for the function once
again:
def fib(n):
 """Returns the nth Fibonacci number."""
 if n < 3:
 return 1
 else:
 return fib(n - 1) + fib(n - 2)

Another way to illustrate this rapid growth of work is to display a call tree for the function
for a given problem size. Figure 11-11 shows the calls involved when we use the recursive
function to compute the sixth Fibonacci number. To keep the diagram reasonably compact,
we write (6) instead of fib(6).

Figure 11-11  A call tree for fib(6)

(4)

(3) (2)

(2) (1)

(2) (2)(1) (1)

(3)

(5) (4)

(3)

(6)

(2)

3.	 The partition operation in quicksort chooses the item at the midpoint as the pivot.
Describe two other strategies for selecting a pivot value.

4.	 Jill has a bright idea: When the length of a sublist in quicksort is less than a certain
number—say, 30 elements—run an insertion sort to process that sublist. Explain
why this is a bright idea.

5.	 Why is merge sort an O(n log n) algorithm in the worst case?

Note that fib(4) requires only 4 recursive calls, which seems linear, but fib(6) requires
2 calls of fib(4), among a total of 14 recursive calls. Indeed, it gets much worse as the
problem size grows, with possibly many repetitions of the same subtrees in the call tree.

Exactly how bad is this behavior, then? If the call tree were fully balanced, with the bot-
tom two levels of calls completely filled in, a call with an argument of 6 would generate

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

  Searching, Sorting, and Complexity AnalysisC h a p t e r 1 1

420

1 1 1 52 4 8 16 30 recursive calls. Note that the number of calls at each filled level is
twice that of the level above it. Thus, the number of recursive calls generally is 2 21n 22 in
fully balanced call trees, where n is the argument at the top or root of the call tree. This is
clearly the behavior of an exponential, k nO() algorithm. Although the bottom two levels of
the call tree for recursive Fibonacci are not completely filled in, its call tree is close enough
in shape to a fully balanced tree to rank recursive Fibonacci as an exponential algorithm.
The constant k for recursive Fibonacci is approximately 1.63.

Exponential algorithms are generally impractical to run with any but very small problem
sizes. Although recursive Fibonacci is elegant in its design, there is a less beautiful but much
faster version that uses a loop to run in linear time (see the next section).

Alternatively, recursive functions that are called repeatedly with the same arguments, such
as the Fibonacci function, can be made more efficient by a technique called memoization.
According to this technique, the program maintains a dictionary of the values for each
argument used with the function. Before the function recursively computes a value for a
given argument, it checks the dictionary to see if that argument already has a value. If so,
that value is simply returned. If not, the computation proceeds, and the argument and value
are added to the dictionary afterward.

Computer scientists devote much effort to the development of fast algorithms. As a rule,
any reduction in the order of magnitude of complexity, say, from nO()2 to O(n), is preferable
to a “tweak” of code that reduces the constant of proportionality.

Converting Fibonacci to a Linear Algorithm
Although the recursive Fibonacci function reflects the simplicity and elegance of the
recursive definition of the Fibonacci sequence, the run-time performance of this function
is unacceptable. A different algorithm improves on this performance by several orders of
magnitude and, in fact, reduces the complexity to linear time. In this section, we develop
this alternative algorithm and assess its performance.

Recall that the first two numbers in the Fibonacci sequence are 1s, and each number after that
is the sum of the previous two numbers. Thus, the new algorithm starts a loop if n is at least the
third Fibonacci number. This number will be at least the sum of the first two 1 5(1 1 2). The
loop computes this sum and then performs two replacements: the first number becomes the sec-
ond one, and the second one becomes the sum just computed. The loop counts from 3 through n.

The sum at the end of the loop is the nth Fibonacci number. Here is the pseudocode for this
algorithm:
Set sum to 1
Set first to 1
Set second to 1
Set count to 3
While count <= n
 Set sum to first + second
 Set first to second
 Set second to sum
 Increment count

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Converting Fibonacci to a Linear Algorithm

421

Case Study: An Algorithm Profiler

Profiling is the process of measuring an algorithm’s performance, by counting instruc-
tions and/or timing execution. In this case study, we develop a program to profile
sort algorithms.

Request

Write a program that allows a programmer to profile different sort algorithms.

Analysis

The profiler should allow a programmer to run a sort algorithm on a list of numbers. The
profiler can track the algorithm’s running time, the number of comparisons, and
the number of exchanges. In addition, when the algorithm exchanges two values,

The Python function fib now uses a loop. The function can be tested within the script
used for the earlier version. Here is the code for the function, followed by the output of the
script:
def fib(n, counter = None):
 """Count the number of iterations in the Fibonacci
 function."""
 theSum = 1
 first = 1
 second = 1
 count = 3
 while count <= n:
 if counter: counter.increment()
 theSum = first + second
 first = second
 second = theSum
 count += 1
 return theSum

Problem Size	 Iterations
 2 0
 4 2
 8 6
 16 14
 32 30

As you can see, the performance of the new version of the function has improved to linear.
Removing recursion by converting a recursive algorithm to one based on a loop can some-
times reduce its run-time complexity.

(continues)
Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

  Searching, Sorting, and Complexity AnalysisC h a p t e r 1 1

422

the profiler can print a trace of the list. The programmer can provide her own list
of numbers to the profiler or ask the profiler to generate a list of randomly ordered
numbers of a given size. The programmer can also ask for a list of unique numbers
or a list that contains duplicate values. For ease of use, the profiler allows the pro-
grammer to specify most of these features as options before the algorithm is run.
The default behavior is to run the algorithm on a randomly ordered list of 10 unique
numbers where the running time, comparisons, and exchanges are tracked.

The profiler is an instance of the class Profiler. The programmer profiles a sort
function by running the profiler’s test method with the function as the first argument
and any of the options mentioned earlier. The next session shows several test runs of
the profiler with the selection sort algorithm and different options:

>>> from profiler import Profiler
>>> from algorithms import selectionSort
>>> p = Profiler()
>>> p.test(selectionSort) # Default behavior
Problem size: 10
Elapsed time: 0.0
Comparisons: 45
Exchanges:7
>>> p.test(selectionSort, size = 5, trace = True)
[4, 2, 3, 5, 1]
[1, 2, 3, 5, 4]
Problem size: 5
Elapsed time: 0.117
Comparisons: 10
Exchanges:2
>>> p.test(selectionSort, size = 100)
Problem size: 100
Elapsed time: 0.044
Comparisons: 4950
Exchanges:97
>>> p.test(selectionSort, size = 1000)
Problem size: 1000
Elapsed time: 1.628
Comparisons: 499500
Exchanges:995
>>> p.test(selectionSort, size = 10000,
 exch = False, comp = False)
Problem size: 10000
Elapsed time: 111.077

The programmer configures a sort algorithm to be profiled as follows:

1.	 Define a sort function and include an optional second parameter, a Profiler
object, in the sort function’s header.

(continued)

(continues)
Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Converting Fibonacci to a Linear Algorithm

423

2.	 In the sort algorithm’s code, run the methods comparison and exchange with
the Profiler object where relevant, to count comparisons and exchanges.

3.	 The interface for the Profiler class is listed in Table 11-8.

Design

The programmer uses two modules:

1.	 profiler—This module defines the Profiler class.

2.	 algorithms—This module defines the sort functions, as configured for
profiling.

The sort functions have the same design as those discussed earlier in this chapter,
except that they receive a Profiler object as an additional parameter. The Profiler
methods comparison and exchange are run with this object whenever a sort func-
tion performs a comparison or an exchange of data values, respectively. In fact, any
list-processing algorithm can be added to this module and profiled just by includ-
ing a Profiler parameter and running its two methods when comparisons and/or
exchanges are made.

As shown in the earlier session, one imports the Profiler class and the algorithms
module into a Python shell and performs the testing at the shell prompt. The profiler’s
test method sets up the Profiler object, runs the function to be profiled, and prints
the results.

(continued)

Profiler Method What it Does

p.test (function, lyst = None,
size = 10, unique = True,
comp = True, exch = True,
trace = False)

Runs function with the given settings and
prints the results.

p.comparison() Increments the number of comparisons if
that option has been specified.

p.exchange() Increments the number of exchanges if that
option has been specified.

p.__str__() Returns a string representation of the
results, depending on the options.

Table 11-8	 The interface for the Profiler class

(continues)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

  Searching, Sorting, and Complexity AnalysisC h a p t e r 1 1

424

Implementation (Coding)

Here is a partial implementation of the algorithms module. We omit most of the
sort algorithms developed earlier in this chapter, but include one, selectionSort, to
show how the statistics are updated.

"""
File: algorithms.py
Algorithms configured for profiling.
"""

def selectionSort(lyst, profiler = None):
 """Sorts the items in lyst in ascending order."""
 i = 0
 while i < len(lyst) - 1:
 minIndex = i
 j = i + 1
 while j < len(lyst):
 if profiler: profiler.comparison()
 if lyst[j] < lyst[minIndex]:
 minIndex = j
 j += 1
 if minIndex != i:
 swap(lyst, minIndex, i, profiler)
 i += 1

def swap(lyst, i, j, profiler = None):
 """Exchanges the elements at positions i and j."""
 if profiler: profiler.exchange()
 temp = lyst[i]
 lyst[i] = lyst[j]
 lyst[j] = temp

Testing code can go here, optionally

The Profiler class includes the four methods listed in the interface as well as some
helper methods for managing the clock.

"""
File: profiler.py
Defines a class for profiling sort algorithms.
A Profiler object tracks the list, the number of comparisons and
exchanges, and the running time. The Profiler can also print a trace
and can create a list of unique or duplicate numbers.

(continued)

(continues)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Converting Fibonacci to a Linear Algorithm

425

Example use:

from profiler import Profiler
from algorithms import selectionSort

p = Profiler()
p.test(selectionSort, size = 15, comp = True,
 exch = True, trace = True)
"""

import time
import random

class Profiler(object):

 def test(self, function, lyst = None, size = 10,
 unique = True, comp = True, exch = True,
 trace = False):
 """
 function: the algorithm being profiled
 lyst: allows the caller to use her list
 size: the size of the list, 10 by default
 unique: if True, list contains unique integers
 comp: if True, count comparisons
 exch: if True, count exchanges
 trace: if True, print the list after each exchange

 Run the function with the given
 attributes and print its profile results.
 """
 self.comp = comp
 self.exch = exch
 self.trace = trace
 if lyst != None:
 self.lyst = lyst
 elif unique:
 self.lyst = list(range(1, size + 1))
 random.shuffle(self.lyst)
 else:
 self.lyst = []
 for count in range(size):
 self.lyst.append(random.randint(1, size))

(continued)

(continues)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

  Searching, Sorting, and Complexity AnalysisC h a p t e r 1 1

426

 self.exchCount = 0
 self.cmpCount = 0
 self.startClock()
 function(self.lyst, self)
 self.stopClock()
 print(self)

 def exchange(self):
 """Counts exchanges if on."""
 if self.exch:
 self.exchCount += 1
 if self.trace:
 print(self.lyst)

 def comparison(self):
 """Counts comparisons if on."""
 if self.comp:
 self.cmpCount += 1

 def startClock(self):
 """Record the starting time."""
 self.start = time.time()

 def stopClock(self):
 """Stops the clock and computes the elapsed time
 in seconds, to the nearest millisecond."""
 self.elapsedTime = round(time.time() - self.start, 3)

 def __str__(self):
 """Returns the results as a string."""
 result = "Problem size: "
 result += str(len(self.lyst)) + "\n"
 result += "Elapsed time: "
 result += str(self.elapsedTime) + "\n"
 if self.comp:
 result += "Comparisons: "
 result += str(self.cmpCount) + "\n"
 if self.exch:
 result += "Exchanges: "
 result += str(self.exchCount) + "\n"
 return result

(continued)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Summary

427

Summary
•• Different algorithms for solving the same problem can be ranked according to

the time and memory resources that they require. Generally, algorithms that
require less running time and less memory are considered better than those that
require more of these resources. However, there is often a tradeoff between the
two types of resources. Running time can occasionally be improved at the cost
of using more memory, or memory usage can be improved at the cost of slower
running times.

•• The running time of an algorithm can be measured empirically using the computer’s
clock. However, these times will vary with the hardware and the types of programming
language used.

•• Counting instructions provides another empirical measurement of the amount of
work that an algorithm does. Instruction counts can show increases or decreases in
the rate of growth of an algorithm’s work, independently of hardware and software
platforms.

•• The rate of growth of an algorithm’s work can be expressed as a function of the size of
its problem instances. Complexity analysis examines the algorithm’s code to derive these
expressions. Such an expression enables the programmer to predict how well or poorly
an algorithm will perform on any computer.

•• Big-O notation is a common way of expressing an algorithm’s run-time behavior. This
notation uses the form O(f(n)), where n is the size of the algorithm’s problem and f(n) is
a function expressing the amount of work done to solve it.

•• Common expressions of run-time behavior are nO(log)2 (logarithmic), O(n) (linear),
nO()2 (quadratic), and k nO() (exponential).

•• An algorithm can have different best-case, worst-case, and average-case behaviors. For
example, bubble sort and insertion sort are linear in the best case, but they are quadratic
in the average and worst cases.

•• In general, it is better to try to reduce the order of an algorithm’s complexity than it is to
try to enhance performance by tweaking the code.

•• A binary search is substantially faster than a linear search. However, the data in the
search space for a binary search must be in sorted order.

•• The n log n sort algorithms use a recursive, divide-and-conquer strategy to break the n2
barrier. Quicksort rearranges items around a pivot item and recursively sorts the sub-
lists on either side of the pivot. Merge sort splits a list, recursively sorts each half, and
merges the results.

•• Exponential algorithms are primarily of theoretical interest and are impractical to run
with large problem sizes.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

  Searching, Sorting, and Complexity AnalysisC h a p t e r 1 1

428

Review Questions
1.	 Timing an algorithm with different problem sizes

a.	 can give you a general idea of the algorithm’s run-time behavior
b.	 can give you an idea of the algorithm’s run-time behavior on a particular

hardware platform and a particular software platform

2.	 Counting instructions

a.	 provide the same data on different hardware and software platforms
b.	 can demonstrate the impracticality of exponential algorithms with large

problem sizes

3.	 The expressions O(n), O n()2 , and O k n() are, respectively,

a.	 exponential, linear, and quadratic
b.	 linear, quadratic, and exponential
c.	 logarithmic, linear, and quadratic

4.	 A binary search

a.	 assumes that the data are arranged in no particular order
b.	 assumes that the data are sorted

5.	 A selection sort makes at most

a.	 n2 exchanges of data items
b.	 n exchanges of data items

6.	 The best-case behavior of insertion sort and modified bubble sort is

a.	 linear
b.	 quadtric
c.	 exponential

7.	 An example of an algorithm whose best-case, average-case, and worst-case
behaviors are the same is

a.	 sequential search
b.	 insertion sort
c.	 selection sort

8.	 Generally speaking, it is better

a.	 to tweak an algorithm to shave a few seconds of running time
b.	 to choose an algorithm with the lowest order of computational complexity

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Projects

429

9.	 The recursive Fibonacci function makes approximately

a.	 n2 recursive calls for problems of a large size n
b.	 n2 recursive calls for problems of a large size n

10.	 Each level in a completely filled binary call tree has

a.	 twice as many calls as the level above it
b.	 the same number of calls as the level above it

Projects
1.	 A sequential search of a sorted list can halt when the target is less than a given

element in the list. Define a modified version of this algorithm, and state the
computational complexity, using big-O notation, of its best-, worst-, and average-
case performances.

2.	 The list method reverse reverses the elements in the list. Define a function
named reverse that reverses the elements in its list argument (without using the
method reverse!). Try to make this function as efficient as possible, and state its
computational complexity using big-O notation.

3.	 Python’s pow function returns the result of raising a number to a given power.
Define a function expo that performs this task, and state its computational com-
plexity using big-O notation. The first argument of this function is the number,
and the second argument is the exponent (nonnegative numbers only). You may
use either a loop or a recursive function in your implementation. Caution: do not
use Python’s ** operator or pow function in this exercise!

4.	 An alternative strategy for the expo function uses the following recursive definition:
expo(number, exponent)
= 1, when exponent = 0
= number * expo(number, exponent – 1), when exponent is odd
= (expo(number, exponent // 2))2, when exponent is even

		 Define a recursive function expo that uses this strategy, and state its computa-
tional complexity using big-O notation.

5.	 Python’s list method sort includes the keyword argument reverse, whose
default value is False. The programmer can override this value to sort a list in
descending order. Modify the selectionSort function discussed in this chapter
so that it allows the programmer to supply this additional argument to redirect
the sort.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

  Searching, Sorting, and Complexity AnalysisC h a p t e r 1 1

430

6.	 Modify the recursive Fibonacci function to employ the memoization technique
discussed in this chapter. The function creates a dictionary and then defines a
nested recursive helper function. The base case is the same as before. However,
before making a recursive call, the helper function looks up the value for the
function’s current argument in the dictionary (use the method get, with None
as the default value). If the value exists, the function returns it. Otherwise, after
the helper function adds the results of its two recursive calls, it saves the sum in
the dictionary with the current argument of the function as the key. Also use the
Counter object discussed in this chapter to count the number of recursive calls of
the helper function.

7.	 Profile the performance of the memoized version of the Fibonacci function
defined in Project 6. The function should count the number of recursive calls.
State its computational complexity using big-O notation, and justify your answer.

8.	 The function makeRandomList creates and returns a list of numbers of a given
size (its argument). The numbers in the list are unique and range from 1 through
the size. They are placed in random order. Here is the code for the function:
def makeRandomList(size):
 lyst = []
 for count in range(size):
 while True:
 number = random.randint(1, size)
 if not number in lyst:
 lyst.append(number)
 break
 return lyst

		 You may assume that range, randint, and append are constant time functions.
You may also assume that random.randint more rarely returns duplicate num-
bers as the range between its arguments increases. State the computational com-
plexity of this function using big-O notation, and justify your answer.

9.	 As discussed in Chapter 6, a computer supports the calls of recursive functions
using a structure called the call stack. Generally speaking, the computer reserves
a constant amount of memory for each call of a function. Thus, the memory used
by a recursive function can be subjected to complexity analysis. State the compu-
tational complexity of the memory used by the recursive factorial and Fibonacci
functions, as defined in Chapter 6.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Projects

431

10.	 The function that draws c-curves, and which was discussed in Chapter 7, has two
recursive calls. Here is the code:
def cCurve(t, x1, y1, x2, y2, level):

 def drawLine(x1, y1, x2, y2):
 """Draws a line segment between the endpoints."""
 t.up()
 t.goto(x1, y1)
 t.down()
 t.goto(x2, y2)

 if level == 0:
 drawLine(x1, y1, x2, y2)
 else:
 xm = (x1 + x2 + y1 - y2) // 2
 ym = (x2 + y1 + y2 - x1) // 2
 cCurve(t, x1, y1, xm, ym, level - 1)
 cCurve(t, xm, ym, x2, y2, level - 1)

		 You can assume that the function drawLine runs in constant time. State the com-
putational complexity of the cCurve function, in terms of the level, using big-O
notation. Also, draw a call tree for a call of this function with a level of 3.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

A P P E N D I X A
Python Resources
Table A-1 provides information on an excellent Web site where programmers can find
complete documentation for the Python API (Application Programming Interface) and
download Python and other resources.

Description Url Explanation

Python’s top-level
Web page

http://www.python.org/ This page contains news about events
in the Python world and links to docu-
mentation, Python-related products,
program examples, and free downloads
of resources.

Downloads http://www.python.org/
download/

This page allows you to select the version
of Python that matches your computer
and to begin the download process.

Documentation
and training

http://www.python.org/doc/ This page allows you to browse the
documentation for the Python API, tutori-
als, and other training aids. You can also
download many of these items to your
computer for offline reference.

Table A-1	 Online Python Documentation

The following sections discuss some situations that involve downloading files or informa-
tion from the Web.

Installing Python on Your Computer
As of this writing, the current version of Python is 3.6.1. This version likely will not come
preinstalled on a Windows computer. Therefore, you must download the Windows installer
from http://www.python.org/download/. The installer might then run automatically, or you
might have to doubleclick an icon for the installer to launch it. The installer automatically

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

puts Python into a folder and inserts various command options on the All Programs
menu. Note that administrators installing Python for all users on Windows need to be
logged in as Administrator.

Macintosh users running macOS will need to update the version of Python that comes
preinstalled on their systems (Python 2 comes preinstalled, but you don’t want to use that).
A macOS installer can be downloaded for this purpose and behaves in a manner similar to
that of the Windows installer.

Unix and Linux users also might need to upgrade the version of Python that comes prein-
stalled on their systems. In these cases, they have to download a compressed Python source
code “tarball” from the same site and install it.

Most users will also want to place aliases of the important Python commands, such as the
one that launches IDLE, on their desktops, docks, or trays.

Using the Terminal Command Prompt,
IDLE, and Other IDEs
To launch an interactive session with Python’s shell from a terminal command prompt,
open a terminal window, and enter python3 at the prompt. To end the session on Unix
machines (including macOS), press the Control+D key combination at the session prompt.
To end a session on Windows, press Control+Z, and then press Enter.

Before you run a Python script from a terminal command prompt, the script file must be
in the current working directory, or the system path must be set to the file’s directory. You
should consult your system’s documentation on how to set a path. To run a script, enter
python3, followed by a space, followed by the name of the script’s file (including the .py
extension), followed by any command-line arguments that the script expects.

On Windows, you can also launch a Python script by double-clicking the script’s file icon.
On Macintosh, Unix, and Linux systems, you must first configure the system to launch
Python when files of this type are launched. The File/Get Info option on a Macintosh, for
example, allows you to do this. You can also configure your system to launch Python using
the simpler python command rather than python3.

You can also launch an interactive session with a Python shell by launching IDLE (as of
this writing, the specific command to run is idle3). There are many advantages to using
an IDLE shell rather than a terminal-based shell, such as color-coded program elements,
menu options for editing code and consulting documentation, and the ability to repeat
commands.

IDLE also helps you manage program development with multiple editor windows. You can
run code from these windows and easily move code among them. Although this book does
not discuss it, a debugging tool is also available within IDLE.

The are several other free and commercial IDEs with capabilities that extend those of IDLE.
jEdit (http://www.jedit.org/) is a free, lightweight IDE that has widespread use in academic
environments because it also supports Java and C++ program development.

433

Using the Terminal Command Prompt, IDLE, and Other IDEs

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

A p p e n d i x B
Installing the
images and
breezypythongui
Libraries
The images library is a nonstandard, open-source Python module developed to support
easy image processing.

The images library supports the processing of GIF images only. The source code for the
library, in the file images.py, is available on the author's Web site at http://home.wlu
.edu/~lambertk/python/, or from your instructor.

In general, there are two ways to install a Python library:

1.	 Place the source file for the library in the current working directory. Then, when
you launch a Python script from this directory or load it from an IDLE window into
a shell, Python can locate the library resources that are imported by that script. The
disadvantage of this installation option is that the library must be moved whenever
you change working directories.

2.	 Place the source file in the directory that Python has established for third-party
libraries. The path to this directory will vary, depending on your system. For Win-
dows users, this path will be something like c:\python31\Lib\site-packages.
For Unix or Macintosh users, it might be something like /usr/local/bin/lib/
python3.1/site-packages. Once a library is placed in this directory, a Python script
can access its resources from any directory on your system.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

The images.py file can be installed using one of the preceding methods, and your client
code will be ready to use this module.

The breezypythongui library is a nonstandard, open-source Python module
developed to support easy GUI programming. The source code for the library, in the
file breezypythongui.py, is available on the author’s Web site at http://home.wlu
.edu/~lambertk/breezypythongui/, or from your instructor.

The installation of breezypythongui is very similar to the installation of images described
earlier. You will also find complete documentation and a tutorial for the use of this library at
the author’s Web site.

435

Installing the images and breezypythongui Libraries

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

A p p e n d i x C
The API for Image
Processing
The images image-processing library is based on Python’s standard tkinter library. The
API (Application Programming Interface) for the images library follows.

The images module includes a single class named Image. Each Image object represents an
image. The programmer can supply the filename of an image on disk when Image is instan-
tiated. The resulting Image object contains pixels loaded from an image file on disk. If a
filename is not specified, a height and width must be specified. The resulting Image object
contains the specified number of pixels with a single default color.

When the programmer imports the Image class and instantiates it, no window opens. At
that point, the programmer can run various methods with this Image object to access or
modify its pixels, as well as save the image to a file. At any point in your code, you may run
the draw method with an Image object. At this point, a window will open and display the
image. The program then waits for you to close the window before allowing you, either in
the shell or in a script, to continue running more code.

The positions of pixels in an image are the same as screen coordinates for display in a win-
dow. That is, the origin (0, 0) is in the upper-left corner of the image, and its (width, height)
is in the lower-right corner.

Images can be manipulated either interactively within a Python shell or from a Python
script. We recommend that the shell or script be launched from a system terminal, rather
than from IDLE.

Image objects cannot be viewed in multiple windows at the same time from the same script.
If you want to view two or more Image objects simultaneously, you can create separate
scripts for them and launch the scripts in separate terminal windows.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

As mentioned earlier, the images module supports the use of GIF files only. Here is a list of
the Image methods:

•• Image (filename) Loads an image from the file named filename and returns an Image
object that represents this image. The file must exist in the current working directory.

•• Image(width, height) Returns an Image object of the specified width and height with
a single default color.

•• getWidth() Returns the width of the image in pixels.

•• getHeight() Returns the height of the image in pixels.

•• getPixel(x, y) Returns the pixel at the specified coordinates. A pixel is of the form
(r, g, b), where the letters are integers representing the red, green, and blue values of a
color in the RGB system.

•• setPixel(x, y, (r, g, b)) Resets the pixel at position (x, y) to the color value
represented by (r, g, b). The coordinates must be in the range of the image’s
coordinates, and the RGB values must range from 0 through 255.

•• draw() Opens a window and displays the image. The user must close the window to
continue the program.

•• save() Saves the image to its current file, if it has one. Otherwise, it does nothing.

•• save(filename) Saves the image to the given file and makes it the current file. This is
similar to the Save As option in most File menus.

437

The API for Image Processing

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

A p p e n d i x D
Transition from
Python to Java
and C++
Although Python is an excellent teaching language and has widespread in industry,
Java and the C/C++ family of languages remain the most widespread languages used in
higher education and real-world settings. Thus, computer science students must become
proficient in these languages, both to continue in their course work and to prepare for
careers in the field.

Fortunately, the transition from Python to Java or C++ is not difficult. Although the syntactic
structures of Python and these other languages are somewhat different, the languages sup-
port the same programming styles. For an overview of all the essential differences between
Python, Java, and C++, see the author’s Web site at http://home.wlu.edu/~lambertk/python/.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Glossary

A
abacus—An early computing device that
allowed users to perform simple calculations by
moving beads along wires.

absolute pathname—A pathname that begins
with the file system’s root directory. See also
pathname.

abstract behavior—Operations that multiple
classes have in common.

abstraction—A simplified view of a task or data
structure that ignores complex detail.

accessor—A method used to examine an attri-
bute of an object without changing it.

accessor method —A method used to examine
an attribute of an object without changing it.

algorithm—A finite sequence of instructions
that, when applied to a problem, will solve it.

alias—A name that refers to the same memory
location as another name.

aliasing—A situation in which two or more
names in a program can refer to the same mem-
ory location.

analog information—Information that con-
tains a continuous range of values.

analysis—The phase of the software life cycle
in which the programmer describes what the
program will do.

ancestor—Any class that is either a parent of
a class or lies on a path in the class hierarchy
above that parent.

anonymous function—A function without a
name, constructed in Python using lambda.

applications software—Programs that allow
human users to accomplish specialized tasks,
such as word processing or database manage-
ment. Also called applications or apps.

argument—A value or expression passed as
data by the caller to a function or method.

arithmetic expression—A sequence of oper-
ands and operators that computes a value.

artificial intelligence—A field of computer
science whose goal is to build machines that can
perform tasks that require human intelligence.

ASCII character set—The American Standard
Code for Information Interchange ordering for a
character set.

aspect ratio—The ratio of width to height of
an image.

assembler—A program that translates an
assembly language program to machine code.

assembly language—A computer language that
allows the programmer to express operations and
memory addresses with mnemonic symbols.

assignment statement—A method of giving
values to variables.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

association—A pair of items consisting of a key
and a value.

association list—See dictionary.

asymptotic analysis—The view of a polyno-
mial wherein its value approaches or approxi-
mates that of its dominant term, as the size of
the problem gets vary large.

augmented assignment operation—An
assignment operation that performs a desig-
nated operation, such as addition, before storing
the result in a variable.

B
base case—The condition in a recursive
algorithm that is tested to halt the recursive
process.

batch processing—The scheduling of multiple
programs so that they run in sequence on the
same computer.

base ten number system—See decimal
number system.

base two number system—See binary
number system.

benchmarking—The process of determining
the running time and memory cost of an algo-
rithm by gathering data on actual running times
and memory usage.

big-O notation—A notation expressing the rate
of growth of the work of an algorithm as a func-
tion of the size of a problem.

big data—The gathering and analysis of
massive amounts of data.

binary digit—A digit, either 0 or 1, in the
binary number system. Program instructions are
stored in memory using a sequence of binary
digits. See also bit.

binary number system—A number system
that represents base two numbers, using the
digits 1 and 0.

bit—A binary digit.

bit shift—The process of moving the bits in a bit
string to the left or to the right, wrapping them
around the end of the string as necessary.

bit string—A string containing the binary digits
0 and 1.

bit-mapped display screen—A type of display
screen that supports the display of graphics and
images.

block cipher—An encryption method that
replaces characters with other characters
located in a two-dimensional grid of characters.

block—The making of a thread inactive until
some event occurs.

blurring—The process of making the edges of a
shape less ragged by softening them.

body—The code segment nested within a loop,
selection statement, function definition, method
definition, or class definition.

Boolean data type—A data type whose values
are True and False.

Boolean expression—An expression whose
value is either true or false. See also compound
Boolean expression.

Boolean function—A function, also called a
predicate, that returns the Boolean value true or
false.

bot—An automated software agent.

bottom-up implementation—A method of
coding a program that starts with lower-level
modules and a test driver module.

bottom-up testing—The process of testing
more basic program components before one
tests the components that depend on them.

bubble sort—A sort algorithm that repeatedly
swaps elements that are out of order in a list
until they are in their sorted positions.

buffer—An area of computer memory used to
transmit data to and from external storage.

byte code—The kind of object code gener-
ated by a Python compiler and interpreted by a

440

  g l o s s a r y

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

class hierarchy—An arrangement of classes
that shows the subclass/superclass/inheritance
relationships among them.

class variable—A variable that is visible to all
instances of a class and is accessed by specifying
the class name.

classes—Types of objects with state and behavior.

client—A computational object that receives a
service from another computational object, usu-
ally over a network.

client—An agent that requests and receives
some service.

client/server application—A type of applica-
tion that allows many agents to receive service
from one provider.

client/server relationship—A means of
describing the organization of computing
resources in which one resource provides a ser-
vice to another resource.

closed under combination—The property of
operations on a data type whereby the operand data
types and the result data type are the same type.

color filtering—The process of applying a triple
of color values to modify the color of each pixel
in an image.

color palette—A table of colors used to save
memory in representing a digital image.

command button—A window component that
allows the user to execute a command by press-
ing or clicking it with the mouse.

compiler—A computer program that automati-
cally converts instructions in a high-level lan-
guage to machine language.

complexity analysis—The process of determining
the running time and memory cost of an algorithm
by reading the code, which results in a mathemati-
cal formula expressing this cost for any computer.

compound Boolean expression—Refers to
the complete expression when logical connec-
tives and negation are used to generate Boolean

Python virtual machine. Byte code is platform
independent.

C
Caesar cipher—An encryption method that
replaces characters with other characters a given
distance away in the character set.

call stack—The area of computer memory
reserved for managing data associated with
function and method calls.

call tree—A diagram that traces the calls of a
recursive function, beginning with the top-level
call at the root and branching to the recursive
calls below.

canvas—A rectangular area of a window within
which geometric shapes, images, and text can be
drawn.

card reader—A device that inputs informa-
tion from punched cards into the memory of a
computer.

cathode ray tube screen—The first type of dis-
play device used to show computer output to users.

condition-controlled loop—A type of loop
whose continuation depends on the value of a
Boolean expression.

c-curve—A fractal shape that resembles the
letter C.

central processing unit (CPU)—A major
hardware component that consists of the arith-
metic/logic unit and the control unit. Also
sometimes called a processor.

character set—The list of characters available
for data and program statements.

check button—A window component with a
label and a control that the user can select or
deselect, and which can be selected concur-
rently with other check buttons in the window.

cipher text—The output of an encryption process.

class diagram—A graphical notation that
describes the relationships among the classes in
a software system.

441

g l ossa r y

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

coordinate system—A grid that allows a
programmer to specify positions of points in a
plane or of pixels on a computer screen.

correct program—A program whose outputs
match those expected for the corresponding
inputs.

count-controlled loop—A loop that stops when
a counter variable reaches a specified limit.

critical section—Code that must be able to fin-
ish execution before another thread can access
the same resource.

current working directory—The directory to
which a running program is attached, in which a
file can be accessed directly by its name.

customer request—A description of the func-
tions of a program for its intended users, as
provided by the party purchasing the software.

D
data decryption—The process of translating
encrypted data to a form that can be used.

data encapsulation—Restricting access to an
object’s data to method calls on that object.

data encryption—The process of transforming
data so that others cannot use it.

data science—The discipline of gathering and
analyzing massive amounts of data.

data structure—A compound unit consisting
of several data values.

data—The symbols that are used to represent
information in a form suitable for storage, pro-
cessing, and communication.

data type(s)—A set of values and operations on
those values.

decimal notation—The use of the decimal dig-
its 0..9 and a decimal point in representing real
numbers in a program.

decimal number system—A numbers system
that represents base ten numbers, using the dig-
its 0 through 9.

values. See also Boolean expression and
simple Boolean expression.

computing agent—The entity that executes
instructions in an algorithm.

concurrent processing—The simultaneous
performance of two or more tasks.

condition—A Boolean expression used to con-
trol the flow of a computation.

conditional iteration—A type of loop that con-
tinues as long as a condition is true.

conditional statement—See selection
statement.

conjunction—The connection of two Boolean
expressions using the logical operator and,
returning False if at least one of the expressions
is false, or True if they are both true.

constant—A function expressing a rate of
increase in work that does not grow with the
size of the problem.

constant of proportionality—Terms and coef-
ficients that are usually ignored in complexity
analysis.

constructor—A method that is run when an
object is instantiated, usually to initialize that
object’s instance variables. This method is
named ___init___ in Python.

context switch—The process whereby a
thread’s state is saved or restored when it
relinquishes or gains access to the CPU.

continuation condition—A Boolean expression
that is checked to determine whether or not to
continue iterating within a loop. If this expres-
sion is true, iteration continues.

continuous range—A range containg an infi-
nite number of values between two values.

control statement—A statement that
allows the computer to repeat or select an
action.

conversion function—An operation that
transforms one type of data into another type
of data.

442

  g l o s s a r y

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

E
edge detection—The process of discovering
boundaries between shapes in an image.

element—A value that is stored in an array or a
collection.

empty string—A string that contains no characters.

encryption—The process of transforming data
so that others cannot use it.

end-of-line comment—Part of a single line of
text in a program that is not executed, but that
serves as documentation for readers.

entry field—A rectangular box that supports
the input and output of a single line of text.

entry—See association.

entry-control loop—A type of loop whose con-
tinuation condition is tested at the beginning of
the loop.

escape sequence—A sequence of two char-
acters in a string, the first of which is /. The
sequence stands for another character, such as
the tab or newline.

event handler—A method that is triggered
when an event occurs.

event-driven programming—The program-
ming of operations that handle events.

execute—To carry out the instructions of a program.

exponential—A function expressing a rate of
increase in work in which the size of the problem is
an exponent.

expression—A description of a computation
that produces a value.

extends—The process whereby a given class
becomes a subclass of another class, thereby
inheriting its attributes and behavior.

extension—The characters following the period
in a filename, indicating the type of file.

external memory—Also called secondary
memory, a device such as a hard drive or flash stick
where data can be backed up or stored permanently.

decorator pattern—A design pattern in which
a new class adds functionality to an existing
class but keeps the same interface.

decrypt—To translate a cipher text to the origi-
nal plaintext.

default argument— A special type of argument
that is automatically provided if the caller does
not supply one.

default behavior—Behavior that is expected
and provided under normal circumstances.

defining—The process whereby a variable
receives its initial value.

definite iteration—The process of repeating a
given action a preset number of times.

design error—An error such that a program
runs but produces unexpected results. Also
referred to as a logic error. See also syntax error.

design—The phase of the software life cycle in
which the programmer describes how the pro-
gram will accomplish its tasks.

dictionary—A data structure that allows the
programmer to access values by specifying
keys.

discrete values—Values, such as integers,
in a range between which there are no other
values.

disjunction—The connection of two Boolean
expressions using the logical operator or, return-
ing True if at least one of the expressions is True,
or False if they are both False.

docstring—A sequence of characters enclosed
in triple quotation marks (""") that Python uses
to document program components such as
modules, classes, methods, and functions.

dominant term—The term in a polynomial
expression with the largest exponent of n, the
size of the problem.

dominant—The term in a formula which grows
the fastest as the size of a problem increases.

driver—A method used to test other methods.

443

g l ossa r y

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

cooperating functions, where a function maps
data into new data and no function modifies the
state of a variable or data structure.

G
garbage collection—The automatic process of
reclaiming memory when the data of a program
no longer need it.

general method—A method that solves a
class of problems, not just one individual
problem.

grammar—The set of rules for constructing
sentences in a language.

graphical user interface (GUI)—A means
of communication between human beings
and computers that uses a pointing device for
input and a bitmapped screen for output. The
bitmap displays images of windows and win-
dow objects such as buttons, text fields, and
drop-down menus. The user interacts with
the interface by using the mouse to directly
manipulate the window objects. See also
window object.

graphics—The set of techniques for creating
and manipulating images and geometric shapes.

grid—A data structure in which the items are
accessed by specifying at least two index posi-
tions, one that refers to the item’s row and
another that refers to the item’s column.

H
hardware—The physical computing machine
and its support devices.

header—The first line in a loop, selection state-
ment, function definition, method definition, or
class definition.

hex string—A string with the format #RRGGBB,
where each letter is a hexadecimal digit, to rep-
resent information about an RGB color value in
Python.

hexadecimal—Base 16, using the digits 0
through 9 and A through F.

F
Fibonacci numbers—A series of numbers
generated by taking the sum of the previous two
numbers in the series. The series begins with
the numbers 1, 1, and 2.

field width—The number of columns used for
the output of text.

file dialog—A type of dialog that allows the user
to browse the file system to open or save a file.

file system—Software that organizes data on
secondary storage media.

filtering—The successive application of a Bool-
ean function to a sequence of arguments that
returns a sequence of the arguments that make
this function return True.

first-class data objects—Data objects that
can be passed as arguments to functions and
returned as their values.

floating-point number—A data type that
represents real numbers in a computer program.

for loop—A structured loop consisting of an
initializer expression, a termination expression,
an update expression, and a statement.

format operator—The operator %, when used
with a format string and a set of one or more
data values, returns a string with the given
format.

format string—A special syntax within a string
that allows the programmer to specify the num-
ber of columns within which data are placed in
a string.

fractal geometry—A theory of shapes that are
reflected in various phenomena, such as coast-
lines, water flow, and price fluctuations.

fractal object—A type of mathematical object
that maintains self-sameness when viewed at
greater levels of detail.

function—A chunk of code that can be treated
as a unit and called to perform a task.

functional programming—A program-
ming style that views a program as a set of

444

  g l o s s a r y

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

index—The relative position of a component of
a linear data structure or collection.

indirect recursion—A recursive process that
results when one function calls another, which
results at some point in a second call to the first
function.

infinite loop—A loop in which the controlling
condition is not changed in such a manner to
allow the loop to terminate.

infinite precision—The property of a real num-
ber, in which its fractional part consists of an
infinite number of digits.

infinite recursion—In a running program, the
state that occurs when a recursive method can-
not reach a stopping state.

information processing—The transformation
of one piece of information into another piece of
information.

inheritance hierarchies—See class hierarchy.

inheritance—The process by which a subclass
can reuse attributes and behavior defined in a
superclass. See also subclass and superclass.

Initializing—See defining.

input—Data obtained by a program from the
external world during execution.

input/Output devices—Devices that allow infor-
mation to be transmitted between the central pro-
cessing unit of a computer and the external world.

insertion sort—A sort algorithm that repeatedly
inserts the ith element into its proper place in the
first i items in the list.

instance—A computational object bearing the
attributes and behavior specified by a class.

instance variable—Storage for data in an
instance of a class.

instantiation—The process whereby an object
is created.

integer—A positive or negative whole number,
or the number 0. The magnitude of an integer is
limited by a computer’s memory.

higher-order function—A function that
expects another function as an argument and/or
returns another function as a value.

high-level programming languages—
Programming languages whose vocabulary and
sentence structure are fairly close to those of
English.

home—The initial position of the turtle in a
turtle graphics application.

hypermedia—A data structure that allows the
user to access different kinds of information
(text, images, sound, video, applications) by
traversing links.

I
if statement—A type of control statement that
prevents a program from performing an action
if the condition is false.

if-else statement—A selection statement
that allows a program to perform alternative
actions based on a condition.

immutable data structure—A data structure
in which one cannot insert, remove, or replace
the values contained therein.

immutable object—An object whose internal
data or state cannot be changed.

imperative programming—A program-
ming style that views a program as a set of
statements that issue commands to a com-
puter, especially to modify variables with
assignment.

implementation—The phase of the software life
cycle in which the program is coded in a pro-
gramming language.

Incremental—The process of developing
software by gradually filling in an outline or
sketch of the code, starting with minimal func-
tionality, until the completed functionality is
achieved.

indefinite iteration—The process of repeat-
ing a given action until a condition stops the
repetition.

445

g l ossa r y

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

K
key—An item that is associated with a value
and which is used to locate that value in a
collection.

keypunch machine—An early input device
that allowed the user to enter programs and data
onto punched cards.

keys—Resources used to encrypt or decrypt
data.

keyword parameter—A type of parameter
that allows the programmer to specify the name
of the parameter and its value at the point of a
function or method call.

L
label object—A window object that displays
text or an image, usually to describe the roles of
other window objects.

lambda—The mechanism by which an anony-
mous function is created.

lifetime—The time during which a data object
or method call exists.

linear—A function expressing a rate of growth
of work in direct proportion to the size of a
problem.

linear loop structure—A loop that does not
contain a nested loop.

linear search—A type of search that examines
each value in a sequence, until a target value is
found or the end of the sequence is reached.

list—A sequence of items ordered by position.

literal—An element of a language that evaluates
to itself, such as 34 or "hi there."

loader—A software program that copies pro-
gram code and data from secondary memory
into primary memory before program execution
begins.

local host—The property of a computer that
allows it to receive connections from clients that

integrated circuit—The arrangement of
computer hardware components in a single
miniaturized unit.

integration—The phase of the software devel-
opment life cycle during which program compo-
nents are brought together and tested.

interface—A formal statement of how commu-
nication occurs between the user of a module
(class or method) and its implementer.

internal memory—Also called primary mem-
ory, a device that provides temporary storage
for data and programs for fast access by a com-
puter’s central processing unit. See also random
access memory.

Internet host—The property of a computer that
allows it to receive connections from other com-
puters on the Internet.

interpreter—A program that translates and
executes another program.

invertible matrix—A data structure used in a
block cipher.

IP address—The unique location of an indi-
vidual computer on the Internet.

IP name—A representation of an IP address
that uses letters and periods.

IP number—A representation of an IP address
that uses digits and periods.

item—See element.

iteration—See loop.

iterative—The process of moving forward
through the phases of software develop-
ment and returning to earlier phases to make
improvements or corrections.

J
jump table—A dictionary that associates com-
mand names with functions that are invoked
when those functions are looked up in the
table.

446

  g l o s s a r y

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

maintenance—The phase of software develop-
ment in which the software is returned to the
shop to correct errors, make improvements, or
add features.

mapping—The successive application of a func-
tion to a sequence of arguments that returns a
sequence of results.

matrix—A data structure in which the items are
accessed by specifying two or more indices.

median—The item in a set of data values
wherein half of the data values are greater than
and half of the data values are less than said
item.

memoization—A programming technique in
which intermediate values are saved when they
are computed so they can be reused when they
are needed again.

memory—The ordered sequence of storage
cells that can be accessed by address. Instruc-
tions and variables of an executing program are
temporarily held here. See also main memory
and secondary memory.

merge sort—A sort algorithm that repeatedly
subdivides a list of items and merges the result-
ing sublists by placing the items in order.

method—A chunk of code that can be treated
as a unit and invoked by name. A method is
called with an object or class.

methods—Operations that are called by name
and run on or associated with objects.

microprocessor—A processor that incorpo-
rates the entire central processing unit on a
single integrated chip.

mixed-mode arithmetic—Expressions con-
taining data of different types; the values of
these expressions will be of either type, depend-
ing on the rules for evaluating them.

mode string—A string argument to the open
function, such as 'r' or 'w', that indicates
whether the file is being opened for input or
output.

are running on it as a standalone computer, not
necessarily connected to the Internet.

lock—A software object that restricts access to
a resource to one thread at a time.

logarithmic—A function expressing a rate of
growth of work that is the log2 of the size of a
problem.

logic error—See design error.

logical operator—Any of the logical connec-
tive operators and, or, or not.

loop—A type of statement that repeatedly exe-
cutes a set of statements.

loop body—The action(s) performed on each
iteration through a loop.

loop control variable—A variable that is checked
within the continuation condition of a loop.

loop header—Information at the beginning of a
loop that includes the conditions for continuing
the iteration process.

lossless compression—A compression
scheme in which no information is lost.

lossy scheme—A compression scheme in
which information is lost.

luminance—A property of light and its effect
on the human retina that makes the retina more
sensitive to some colors than to others.

M
machine code—The language used directly
by the computer in all its calculations and
processing.

magnetic storage media—Any media that allow
data to be stored as patterns in a magnetic field.

main module—A Python module containing
code that serves as the starting point of program
execution.

mainframe computer—Large computers typi-
cally used by major companies and universities.

447

g l ossa r y

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

networked or distributed systems—Appli-
cations that run by assigning tasks to different
computers on a network.

newline character—A special character ('\n')
used to indicate the end of a line of characters in
a string or a file.

numeric data types—Sets of values that repre-
sent integers or real numbers.

O
object—A data value that has an internal state
and a set of operations for manipulating that
state.

object identity—The property of an object that
makes it possible for it to be the same thing at
different points in time, even though the values
of its attributes might change.

object-based programming—The construc-
tion of software systems that use objects.

object-oriented languages—Languages that
support object-oriented programming. See
object-oriented programming.

object-oriented programming—The construc-
tion of software systems that define classes and
rely on data encapsulation, inheritance, and
polymorphism.

octal—Base 8.

off-by-one error—Usually seen with loops, this
error shows up as a result that is one less or one
greater than the expected value.

one-way selection statement—See if statement.

operating system—A large program that
allows the user to communicate with the hard-
ware and performs various management tasks.

operator overloading—The process of
using the same operator symbol or identifier
to refer to many different functions. See also
polymorphism.

optical storage media—Devices such as CDs
and DVDs that store data permanently and

mode—The value that appears most frequently
in a set of data values.

model—A computational representation of a
object or system of objects and their relation-
ships that occur in a problem domain.

model/view pattern—A design pattern in
which the roles and responsibilities of the sys-
tem are cleanly divided between data manage-
ment (model) and user interface display (view).

module—An independent program component
that can contain variables, functions, and classes.

module variable—A variable defined within
a module whose scope is the entire module.
See also scope.

Moore’s Law—A hypothesis that states that the
processing speed and storage capacity of com-
puters will increase by a factor of two every 18
months.

multiprocessing systems—An operating sys-
tem that runs several processes concurrently on
the same computer.

multi-way selection statement—A type of
control statement that includes two or more
conditions and possible courses of action.

mutator—A method used to change the value
of an attribute of an object.

N
namespace—The set of all of a program’s vari-
ables and their values.

natural ordering—The placement of data items
relative to each other by some internal criteria,
such as numeric value or alphabetical value.

negation—The use of the logical operator not
with a Boolean expression, returning True if the
expression is false, and False if the expression is
true.

nested loop structure—A loop as one of the
statements in the body of another loop.

network—A collection of resources that are
linked together for communication.

448

  g l o s s a r y

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

pickling—The process of converting objects for
storage in files.

pixel—A picture element or dot of color used to
display images on a computer screen.

pixilation—The ragged appearance of the
edges of a shape caused by low-resolution
images.

plaintext—The source text or input for an
encryption process.

polymorphic methods—Methods that have
the same headers but are defined in different
classes.

polymorphism—The property of one operator
symbol or method identifier having many mean-
ings. See also overloading.

polynomial time algorithm—A function
expressing a rate of growth of work that is nk,
where n is the size of the problem and k is a
constant greater than 1.

port—A channel through which several clients
can exchange data with the same server.

positional notation—The type of representa-
tion used in based number systems, in which
the position of each digit denotes a power in the
system’s base.

positional value—The value resulting from
raising a digit at a given position in a number to
its base.

precedence rules—Rules that govern the order
in which operators are applied in expressions.

predicate—A function that returns a Boolean
value.

primary memory—See main memory and
memory.

problem decomposition—The process of
breaking a problem into subproblems.

problem instance—An individual problem that
belongs to a class of problems.

procedural programming—A program-
ming style that decomposes the tasks of

from which the data are accessed by using laser
technology.

optional arguments—Arguments to a function
or method that may be omitted.

order of complexity—A mathematical formula
which expresses running time or memory usage
as a function of the size of the problem.

origin—The point (0,0) in a coordinate system.

output—Information that is produced by a pro-
gram and sent to the external world.

overload—The process of adding new defini-
tions of built-in operators.

P
panel—A rectangular window component with
its own grid that is useful for organizing other
window components.

parallel computing—The assignment of tasks
in an application to multiple CPUs, either on a
single (multicore) computer or on multiple com-
puters connected in a network.

parallel systems—Software systems that sup-
port the assignment of tasks to multiple CPUs.

parameter—See argument.

parent class—The immediate superclass of a
class.

pass—The execution of a set of statements with
a loop.

path—A sequence of edges that allows one ver-
tex to be reached from another.

pathname—A chain of directory names that
allows the computer to access a file on a file
system.

pattern matching—The use of a data struc-
ture containing variables to access data within
another structure.

personal digital assistant (PDA)—A handheld
device that allows the user to perform some
simple tasks.

449

g l ossa r y

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

quicksort—A sort algorithm that partitions a
list around a pivot item and sorts the resulting
sublists.

R
radio button—A window component with a
label and a control that a user can select, which
has the effect of deselecting the other radio but-
tons in the same radio button group.

random access memory (RAM)—Memory
where a program and data are loaded for execu-
tion. Same as primary memory.

random numbers—Numbers chosen from a
given sequence to simulate randomness in a
computer application.

rational number—A number consisting of a
numerator and a denominator, written using the
format numerator / denominator.

raw image file—The data captured directly
from an image with a recording device, before
any data compression is applied.

readers and writers problem—A situation
in which multiple readers and writers can have
access to shared data, in any order.

ready queue—A data structure used to sched-
ule processes or threads for CPU access.

recursion—The process of a subprogram call-
ing itself. A clearly defined stopping state must
exist. Any recursive subprogram can be rewrit-
ten using a loop.

recursive call—The call of a function that
already has a call waiting in the current chain of
function calls.

recursive definition—A set of statements in
which at least one statement is defined in terms
of itself.

recursive design—The process of decompos-
ing a problem into subproblems of exactly
the same form that can be solved by the same
algorithm.

recursive function—A function that calls
itself.

imperative programming into subtasks to be
handled by subprograms. See also imperative
programming.

processor—The hardware components that
perform computation and control the flow of
execution.

producer/consumer relationship—The shar-
ing of data in which one thread or process mod-
ifies the data before other threads or processes
access that data.

profiling—See benchmarking.

program—A set of instructions that tells the
machine (the hardware) what to do.

program comments—Text in a program that
is not program code, but is intended to docu-
ment its structure or behavior for the human
reader.

program libraries—Software tools or resources
used in applications.

programming language—A formal language
that computer scientists use to give instructions
to the computer.

prompter box—A popup dialog box that
accepts input from the user.

prototype—A rough draft or outline of a
program, which runs but without its full
functionality.

pseudocode—A stylized half-English, half-code
language written in English but suggesting
program code.

Python shell—An interactive program that
allows the programmer to enter Python code
and receive immediate feedback.

Python virtual machine (PVM)—A program
that interprets Python byte codes and executes
them.

Q
quadratic—A function expressing a rate of
increase in work that is the square of the size of
a problem.

450

  g l o s s a r y

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

scope—The area of program text in which the
value of a variable is visible.

screen coordinate system—A coordinate
system used by most programming languages
in which the origin is in the upper-left corner
of the screen, window, or panel, and the y
values increase toward the bottom of the
drawing area.

secondary memory—An auxiliary device for
memory, usually a disk or magnetic tape. See
also main memory and memory.

selection sort—A sort algorithm that repeat-
edly swaps the smallest element in the unsorted
portion of a list with the element at the begin-
ning of the unsorted portion.

selection statement—A control statement that
selects some particular logical path based on
the value of an expression. Also referred to as a
conditional statement.

semantic error—A type of error that occurs
when the computer cannot carry out the
instruction specified.

semantics—The rules for interpreting the
meaning of a program in a language.

semiconductor storage media—Devices,
such as flash sticks, that use solid state circuitry
to store data permanently.

sentinel value (or sentinel)—A special value
that indicates the end of a set of data or of a
process.

sequential search—See linear search.

server—A computational object that provides a
service from another computational object, usu-
ally over a network.

shell—A program that allows users to enter and
run Python program expressions and statements
interactively.

short-circuit evaluation—The process by
which a compound Boolean expression halts
evaluation and returns the value of the first sub-
expression that evaluates to true, in the case of
or, or false, in the case of and.

recursive step—A step in the recursive pro-
cess that solves a similar problem of smaller
size and eventually leads to a termination of the
process.

reducing—The application of a function to a
sequence of its arguments to produce a single
value.

regular polygon— A figure of three or more
sides, each of which is the same length.

relative pathname—A pathname that begins
just above or below the current working direc-
tory. See also pathname.

required arguments—Arguments that must be
supplied by the programmer when a function or
method is called.

resolution—The number of pixels per unit of
distance (usually an inch) in an image.

responsibility-driven design—The assignment
of roles and responsibilities to different actors in
a program.

returning a value—The process whereby a
function or method makes the value that it
computes available to its caller.

RGB system—The representation of
color values using red, green, and blue
components.

root directory—The directory at the top or
beginning of a file system.

row-major traversal—The process whereby
each cell in a row is visited before any cells in
the following row.

run-time system—Software that supports the
execution of a program.

S
sample—The process of selecting a discrete
color value from a continuous range of color
values.

scientific notation—The representation of a
floating-point number that uses a decimal point
and an exponent to express its value.

451

g l ossa r y

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

step value—The amount by which a counter
is incremented or decremented in a count-
controlled loop.

stepwise refinement—The process of repeat-
edly subdividing tasks into subtasks until
each subtask is easily accomplished. See also
top-down design.

string—A sequence of zero or more characters
enclosed in quote marks.

strongly typed programming language—A
language in which the types of operands are
checked prior to applying an operator to them,
and which disallows such applications, either
at run time or at compile time, when operands
are not of the appropriate type.

structural equivalence—A criterion of equal-
ity between two distinct objects in which one or
more of their attributes are equal.

subclass—A class that inherits attributes and
behaviors from another class.

subclassing—The process of making a new
class a subclass of an existing class.

subscript operator—The [] symbol,
which contains an integer or a key, used
to access a value in a sequence or a
dictionary.

subscript—See index.

substring—A string that represents a segment
of another string.

summation—The accumulation of the sum of a
sequence of numbers.

superclass—The class from which a sub-
class inherits attributes and behavior. See also
inheritance and subclass.

symbolic constant—A name that receives
a value at program start-up and whose value
cannot be changed.

synchronization problem—A type of problem
arising from the execution of threads or pro-
cesses that share memory.

side effect—A change in a variable that is the
result of some action taken in a program, usually
from within a method.

sleep—The making of a thread inactive for a
designated period of time.

slicing—An operation that returns a subsection
of a linear collection, for example, a sublist or a
substring.

sniffing software—programs that allow
the user to spy on data transmissions over a
network.

socket—An object that serves as a communica-
tion link between a single server process and a
single client process.

software development life cycle (SDLC)—
The process of development, maintenance, and
demise of a software system. Phases include
analysis, design, coding, testing/verification,
maintenance, and obsolescence.

software development—The planning and
organizing of a program.

software—Programs that make the machine
(the hardware) do something, such as word pro-
cessing, database management, or games.

solid-state device—An electronic device, typi-
cally based on a transistor, and which has no
moving parts.

source code—The program text as viewed by
the human being who creates or reads it, prior
to compilation.

stack frame—An area of computer memory
that keeps track of a function or method call’s
parameters, local values, return value, and the
caller’s return address.

stack overflow error—A situation that occurs
when the computer runs out of memory to
allocate for its call stack. This situation usually
arises during an infinite recursion.

state—The set of all the values of the vari-
ables of a program at any point during its
execution.

452

  g l o s s a r y

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

time-out—The notification of a thread to relin-
quish the CPU after a designated interval of time.

time-sharing operating system—A computer
system that can run multiple programs in such a
manner that its users have the illusion that they
are running simultaneously.

title bar—The top border of a window that can
contain a title and can be dragged with a mouse.

top-down design—A method for coding by
which the programmer starts with a top-level
task and implements subtasks. Each subtask is
then subdivided into smaller subtasks. This pro-
cess is repeated until each remaining subtask is
easily coded. See also stepwise refinement.

touchscreen interface—A user interface that
allows the user to enter input by tapping or ges-
turing while touching its screen.

transistor—A device with no moving parts that
can hold an electromagnetic signal and that is
used to build computer circuitry for memory
and a processor.

translator—A program that converts a program
written in one language to an equivalent pro-
gram in another language.

true color—The use of enough color values that
the human eye cannot distinguish adjacent col-
ors on the scale.

truth table—A means of listing all of the pos-
sible values of a Boolean expression.

tuple—A linear, immutable collection.

Turtle graphics—A set of resources that
manipulate a pen in a graphics window.

two-dimensional grid—A data structure whose
items can be accessed by specifying two indices,
a row and a column.

two-way selection statement—See if-else
statement.

type conversion function—A function that
takes one type of data as an argument and
returns the same data represented in another
type.

syntax error—An error in spelling, punctua-
tion, or placement of certain key symbols in a
program. See also design error.

syntax—The form or structure of a sentence in
a programming language.

system software—The programs that allow users
to write and execute other programs, including
operating systems such as Windows and macOS.

T
table—See dictionary.

tabular format—The presentation of output in
columns of data that are either left-aligned or
right-aligned.

temporary variable—A variable that is intro-
duced in the body of a function or method for
the use of that subroutine only.

terminal I/O interface—A user interface that
allows the user to enter input from a keyboard
and view output as text in a window. Also called
a terminal-based interface.

termination condition—A Boolean expression
that is checked to determine whether or not to
stop iterating within a loop. If this expression is
true, iteration stops.

test suite—A set of test cases that exercise the
capabilities of a software component.

text editor—A program that allows the user to
enter text, such as a program, and save it in a file.

text files—Files that contain characters and are
readable and writable by text editors.

thread—A type of process that can run concur-
rently with other processes.

thread-safe—The property of a data structure
in which threads are automatically provided
synchronized access.

time slicing—A means of scheduling threads
or processes wherein each process receives a
definite amount of CPU time before returning
to the ready queue.

453

g l ossa r y

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

vocabulary—The set of words in a language.

W
wait—The making of a thread inactive until a
condition becomes true.

waterfall model—A series of steps in which a
software system trickles down from analysis to
design to implementation. See also software
development life cycle.

Web application—A program that runs on a
remote server but uses clients’ Web browsers to
deliver them services.

Web browser—Software that makes requests
for Web pages, receives them from a Web server,
and renders them on a display.

Web client—Software on a computer that
makes requests for resources and receives them
from the Web.

Web server—Software on a computer that
responds to requests for resources and makes
them available on the Web.

while loop—A pretest loop that examines a
Boolean expression before causing a statement
to be executed.

widget—A computational object that displays
an image, such as a button or a text field, in a
window and supports interaction with the
user.

window—A rectangular area of a computer
screen that can contain window objects.
Windows typically can be resized, minimized,
maximized, zoomed, or closed.

U
Unicode—A character set that uses 16 bits to
represent over 65,000 possible characters. These
include the ASCII character set as well as sym-
bols and ideograms in many international lan-
guages. See also ASCII character set.

Unified Modeling Language (UML)—A graph-
ical notation for describing a software system in
various phases of development.

user interfaces—Software and hardware
devices that present information to human users
and receive input data or commands from them.

V
value—An item that is associated with a key
and is located by a key in a collection.

variable—A memory location, referenced by an
identifier, whose value can be changed during
execution of a program.

variable reference—The process whereby the
computer looks up and returns the value of a
variable.

vector graphics—The drawing of simple two-
dimenional shapes.

view—The set of resources that are responsible
for displaying data in a program and interacting
with the user.

virtual machine—A software tool that behaves
like a high-level computer.

virtual reality—A technology that allows a user to
interact with a computer-generated environment,
usually simulating movement in three dimensions.

454

  g l o s s a r y

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

accessor methods, 214
acquire method, 363
__add__ method, 311
add(account) method, 318
addButton method, 260
addFloatField method, 264
addIntegerField method, 264
addition operator (1), 45, 84
addTextArea method, 275
Advanced Research Projects Agency

Network (ARPANET), 19
Aiken, Howard, 14
algorithms, 2–4

information processing related, 5
aliasing, 141–143
Al-Khwarizmi, Muhammad

ibn Musa, 11
Allen, Paul, 18
Altair, 18
Alto, 18
analog information, 223
analysis phase. See also software

development
and logical operator, 82–83
anonymous functions, 198
append method, 139–141, 144
Apple Computer, 18, 19

HyperCard, 19

Special Characters
 \ (backslash), 43, 52, 60
, (left angle bracket), 24, 77, 84, 137,

312, 313
. (right angle bracket), 24, 77, 84, 137,

312, 313
! (exclamation mark), 77, 84, 137, 312, 313
“ (double quotation mark), 43
% (percent sign), 50, 77, 84, 311
‘ (single quotation mark), 42
* (asterisk), 50, 84, 311
1 (plus sign), 50, 137, 311
2 (minus sign), 84, 311
/ (forward slash), 50, 84, 311
5 (equal sign), 77, 78, 84, 136, 312, 313
[] (square brackets), 117–118, 135, 138
_ (underscore), 44
. . . (ellipsis), 25

A
abacus, 11
ABC (Atanasoff-Berry Computer), 14
absolute pathname, 122
abstract behavior, 344
abstraction, 16, 45, 169
accept method, 377
acceptCommand function, 186
accessor(s), 299

Index
Note: Boldface type indicates key terms.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

base cases, 176
base ten number system, 109. See also

decimal number system
base two number system, 109. See also

binary number system
batch processing, 16
begin_fill method, 208
benchmarking, 391
benefits, object-oriented programming,

345–346
Berners-Lee, Tim, 19, 20
Berry, Clifford, 14
big-O notation, 399
binary digits, 6
binary number system, 109

converting binary to decimal, 111–113
converting decimal to binary, 112–113

binary search, 403–405
bind method, 376
bit(s), 7
bit strings, 111
bit-mapped display screens, 17
black and white, converting images to,

230–231
blackAndWhite function, 230–231
Blackjack class, 340–344
block cipher encryption method, 333–337
block ciphers, 109
Block, threads, 355, 399
blur function, 233–234
blurring images, 233–234
Boole, George, 13
Boolean data type, 77
Boolean expressions, compound, 77–78
Boolean functions, 148
bottom-up testing, 129
break statements, 88–90
bubble sort, 407–408
Bush, Vannevar, 17, 19
byte code, 28
bytes function, 377
bytes object, 377

applications software (applications), 8
approximating square roots case study,

92–95
arguments

default (keyword), namespace,
193–194

functions, 146
arithmetic

mixed-mode, 52–53
rational numbers, 311

arithmetic expressions, 50–52
arithmetic negation operator ({), 50, 84
arithmetic operators, 50, 84

overloading, 312
ARPANET (Advanced Research Projects

Agency Network), 19
artificial intelligence, 15
ASCII set, 48
aspect ratio, 236
assemblers, 15
assembly languages, 15
assignment operator (5), 83, 142
assignment statements, 44–45
association, 153
association lists, 153
asterisk (*)

exponentiation operator (**), 50, 84
__mul__ method, 311
multiplication operator (*), 50, 84

asymptotic analysis, 399
Atanasoff, John, 14
Atanasoff-Berry Computer (ABC), 14
ATM case studies, 324–330
augmented assignment operations,

67–70

B
Babbage, Charles, 13, 14
backslash character (\), 43, 52
backspace character (\b), 43
Backus, John, 15
Bank class, 317–319, 325–330

456

  i n d e x

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

class hierarchies, 296
class variables, 314–317
classes listed by name

Bank class, 317–319, 325–330
Blackjack class, 340–344
Canvas class, 209
Card class, 321–322
Condition class, 362–363
Consumer class, 360, 361
Deck class, 322–324
Die class, 302–307
Doctor class, 382
EasyFrame class, 249–250
object class, 296
PhotoImage class, 257
Player class, 302–307
Producer class, 360, 361
Rational class, 309–311
SavingsAccount class, 314–317,

325–327, 329, 330
Screen class, 209
SharedCell class, 360–364
SleepyThread class, 357–358
Student class (See Student class)
Thread class, 356, 379

clear operation, 156
client(s), 373

multiple (See multiple clients)
ClientHandler class, 379–380
client/server programming, 352–386

clients, 373
day/time client script, 373–375
day/time server script, 375–377
history, 353–354
IP addresses, 372–373
multiple concurrent clients, 378–380
ports, 373
producer/consumer relationship,

358–364
servers, 373
setting up conversations for others,

381–386

C
Caesar ciphers, 107
call stacks, 180
Canvas class, 209
Card class, 321–322
card readers, 15
case studies of software development. See

software development
cathode ray tubes (CRTs), 17
c-curve, 218–222
cCurve function, 221
center method, 116
central processing unit (CPU), 6

functions, 6
cfg files, setting up, 209–210
changePerson function, 160–161
character sets, 47–49
chat script, two-way, 377–378
chdir function, 124
check button, 281–282
chips, microprocessor, 18
cipher(s), block, 109
cipher text, 107
class(es), 293–346. See also classes listed

by name
accessors, 299
data-modeling examples (See data

modeling)
defining, rules of thumb for, 300–301
docstrings, 297
__init__ method, 298
instance variables, 298–299
lifetime of objects, 299–300
method definitions, 297–298
mutators, 299
overview, 294
parent, 296
__str__ method, 299
structuring with inheritance and

polymorphism, 337–346
subclasses, 296

class diagrams, 325

457

i n d e x

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

computer systems. See also hardware;
software

history, 10–22
structure, 6–9

computing agents, 3
concatenation operator (1), 43, 136–137

object identity and structural
equivalence, 143

concatenation, strings, 43–44
concurrent processing, 17
condition(s), 86
Condition class, 362–363
conditional iteration, 86–91. See also

while loops
connect method, 375
constant of proportionality, 400
constants, symbolic, 44
constructors, 210
Consumer class, 360, 361
context switches, 355
continuation condition, 86
continuous ranges of values, 223
Control Program for Microcomputers

(CP/M), 18
control statements, 65

conditional iteration (See while loops)
definite iteration (See for loops)
formatting text for output, 70–72
selection, 77–85

convert function, 157
coordinate systems, 206

screen, 225
copying images, 232–233
correct programs, 40
costs

maintenance, 37
object-oriented programming,

345–346
recursion, 180–181
repairing mistakes, 36

count method, 127

client/server programming (continued)
sockets, 373–375
synchronization, 360–364
threads, 354–358
two-way chat script, 377–378

clone method, 226, 232
close method, 119, 122, 375
COBOL (Common Business Oriented

Language), 15
coding. See implementation phase
color(s)

random, filling radial patterns with,
216–218

RGB system, 215–216
Color attribute, Turtle graphics, 207
color palettes, 224
Colossus, 14
command buttons, 247, 260–262
command prompts, running scripts,

57–59
Common Business Oriented Language

(COBOL), 15
comparison methods, 312–313
compilers, 15
complexity analysis

big-O notation, 399
constant of proportionality, 400
memory, 400–401
orders of, 397–399

complexity, hiding of, by
functions, 170

compound Boolean expressions,
82–84

compression, lossless and lossy, 224
Compute button, 246–248
computeInterest method, 315, 318
computer(s)

electronic, first, 11–13
mainframe, 14
mechanical, 9–13
personal, 17–19

458

  i n d e x

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

defining
classes, rules of thumb, 300–301
functions (See function definitions)
methods, 297–298
recursive functions, 176–177
variables, 44

defining the variable, 44
definite iteration, 65–70. See also for

loops
augmented assignment operations,

67–70
count-controlled loops, 66–67
counting down, 88
executing statements a given number

of times, 65–66
off-by-one error, 68
specifying steps in range, 69
traversing contents of data sequences,

68–69
deposit method, 315, 371
_deposit method, 326
design errors, 40
design phase, 35. See also software

development
detectEdges function, 234–235
Dict operation, 156
dictionaries, 135, 153–158

accessing values, 154–155
adding keys, 154
finding mode of a list of values,

157–158
hexadecimal system, 156–157
literals, 153–154
operations, 156
removing keys, 155
replacing values, 154
traversing, 155–156

Die class, 302–307
digitizing images, 223–224
discrete values, 223
display screens, bit-mapped, 17

count variable, 88
countBytes function, 187
count-controlled loops

conditional iteration, 86–91
definite iteration, 65–70

CounterDemo class, 268
countFiles function, 186
CP/M (Control Program for

Microcomputers), 18
CPU. See central processing unit (CPU)
craps game case study, 301–309
CRTs (cathode ray tubes), 17
current directory, 123–124
customer request phase, 35. See also

software development

D
data, 5
data encapsulation, 337
data encryption, 106–109
data modeling, rational numbers,

309–312
data sequences, traversing contents,

68–69
data structure, 103–104
data types, 41–42

numeric, 41–42
day/time client script, 373–375
day/time server script, 375–377
Dealer object, 340–344
decimal notation, 47
decimal number system, 109

converting binary to decimal,
111–113

converting decimal to binary,
112–113

Deck class, 322–324
decode function, 375
decrypt script, 109
decryption, 109
default arguments, namespace, 193–194

459

i n d e x

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

entry fields, 247
__eq__ method, 313–314
equal sign (5)

assignment operator (5), 83, 84
equals (equality) operator (55), 77,

136, 143, 312, 313
greater than or equal operator (.5),

139, 312, 313
less than or equal operator (,5), 139,

312, 313
not equals operator (!5), 77, 84, 139,

312, 313
equals (equality) operator (55), 77, 136,

143, 312, 313
error(s)

costs of repairing mistakes, 36
design, 40
logic, 40, 68
off-by-one, 68
semantic, 51

error messages, syntax errors, 29–30
escape sequences, 43
Ethernet, 19
Euclid, 11
event(s), 248, 284
event-driven programming, 248–249
event-driven software systems, 248
exclamation mark (!), not equals operator

(!5), 77, 84, 92, 99, 137, 312, 313
executing actions, 4
exists function, 125
exponential algorithms, 398, 419–420
exponentiation operator (**), 50, 84
expressions, 49–53

arithmetic, 50–52
mixed-mode arithmetic, 52–53
spacing within, 51
type conversions, 52–53

extend method, 139, 140
extensions, 105
external memory, 7

displaying images, 257–259
distributed systems, 354
__div__ method, 311
division of labor, support by

functions, 171
division operator (/), 50, 84
docstrings, 45

classes, 297
Doctor class, 382
doctor program, 159–162

design, 174–175
dots per inch (DPI), 235
double quotation mark character (”), 42
Down attribute, Turtle graphics, 207
down method, 208
draw method, 226, 227
drawLine function, 221–222
drawSquare function, 209, 212
Dynabook, 18

E
EasyFrame class, 249–250, 252
EasyRadiobuttonGroup method, 283
Eckert, J. Presper, 14
edge detection, 234–235
efficiency

counting instructions, 394–396
time() function, 391–392

Electronic Numerical Integrator
and Calculator (ENIAC), 14

elements, lists, 135
empty strings, 42
encrypt function, 333–337
encryption, 107
end_fill method, 208
end-of-line comments, 45
endswith method, 116
Engelbart, Douglas, 17, 18
ENIAC (Electronic Numerical Integrator

and Calculator), 14
Enigma code, 14

460

  i n d e x

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

format operator (%), 71
format strings, 71
FORTRAN (Formula Translation

Language), 15, 16
forward method, 208
forward slash (/)

__div__ method, 311
quotient operator (//), 51

fractal objects, 218
recursive patterns in fractals case study,

218–222
Frame class, 252
function(s), 54. See also functions listed

by name
calling, 54–55
modules, 55–57
by name

abstraction mechanism, 169–171
anonymous, 198
elimination of redundancy, 169–170
hiding of complexity, 170
higher-order (See higher-order

functions)
namespace (See namespace)
recursive (See recursive functions)
support for division of labor, 171
support of general methods with

systematic variations, 170–171
top-down design (See top-down

design)
function definitions, 146–149

arguments, 147
Boolean functions, 148
main functions, 148–149
parameters, 147
return statement, 147–148
syntax, 146–147

functional programming, 346
functions listed by name

acceptCommand function, 186
blackAndWhite function, 230–231

F
False Boolean value, 77, 78
False value, 82–83

object identity and structural
equivalence, 143

field width, 71
file dialogs, 277–280
file formats

images, 224
text files, 118

file object, 119
file systems, 8

information gathering from, case study,
183–190

filename extensions, 105
filesys.py program, 184–190
fillcolor method, 208
filling radial patterns with random colors,

216–218
filter function, 197
filtering, 197
find method, 116, 140, 143–144
findFiles function, 187
first-class data objects, functions as,

195–196
Flesch Index, 126
Flesch, Rudolf, 126
Flesch-Kincaid Grade level

Formula, 127
float data type, 60
float function, 26, 51, 52
floating-point numbers, 52
for loops, 120–121, 138, 144, 155

count control, 87–88
dictionaries, 155, 156
executing a given number of times,

65–66
finding median of a set of

numbers, 143
range function, 68–70

for method, 122

461

i n d e x

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

print function (See print function)
randint function, 90
randomWalk function, 214–215
range function, 137
reduce function, 197–198
rename function, 124
reply function, 160–162, 174–175
repToInt function, 193
rmdir function, 124
round function, 52, 54
runCommand function, 186, 199
sentence function, 151
shrink function, 236
socket function, 375
square function, 146
str function, 53
summation function, 177

G
garbage collection, 300
Gates, Bill, 18
__ge__ method, 313
general methods, support by functions,

170–171
generating sentences case study, 150–153
get method, 155
get(pin) method, 318
get operation, 156
getAverage method, 296
getBalance method, 315, 371
_getBalance method, 326
getcwd function, 124
getData method, 362
getHeight method, 226
getHighScore method, 296
gethostbyname function, 372
gethostname function, 372
getName method, 296, 315, 356
getPin method, 315
getPixel method, 226, 227
getPoints method, 342

functions listed by name (continued)
blur function, 233–234
bytes function, 377
cCurve function, 221
changePerson function, 160–161
chdir function, 124
convert function, 157
countBytes function, 187
countFiles function, 186
decode function, 375
detectEdges function, 234–235
drawLine function, 221–222
drawSquare function, 209, 212
exists function, 125
filter function, 197
findFiles function, 187
float function, 51, 52
getcwd function, 124
gethostbyname function, 372
gethostname function, 372
getsize function, 125
grayscale function, 231
help function, 55, 57
if statements, 79–80
if-else statements, 78–79
int function, 52–53, 121
isdir function, 125
isfile function, 125
lambda function, 198
len function, 103, 156
list function, 156–158
main function (See main function)
map function, 196–197
max function, 79, 157
min function, 79
mkdir function, 124
nounPhrase function, 151–153
odd function, 148
open function, 122
playManyGames function, 304
playOneGame function, 304

462

  i n d e x

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

guessing game, 269–273
instance variables, 267–268
integer and float fields, 264–265
keyboard events, 284–285
labels, 249–251
multi-line text areas, 275–277
nested frames, 273–275
pop-up message boxes, 265–267
prompter box, 280–281
radio buttons, 282–284
template for, 251
text fields, 262–264
window attributes, 253–254
window components, 256–257
window layout, 254–256
windows, 249–251
working with colors, 285–286

H
hardware, 6
Heading attribute, Turtle graphics, 207
heading method, 208
help function, 55, 57
hexadecimal number system, 110,

113–114, 156–157
hideturtle method, 208
higher-order functions, 195–199

creating anonymous functions with
lambda, 198

filtering, 197
functions as first-class data objects,

195–1936
jump tables, 199
mapping, 96–197
reducing, 197–198

high-level programming languages,
8, 10

hit method, 343
Hollerith, Herman, 13
home method, 208
Homebrew Computer Club, 18
Hopper, Grace Murray, 15

getScore method, 296, 298
getsize function, 124
getValue method, 303
getWidth method, 226
GIF (Graphics Interchange Format), 224
goto method, 208
grammar rules, 150
graphical user interfaces (GUIs), 8

event-driven programming, 248–249
GUI-based programs (See GUI-based

programs)
terminal-based programs, 246

graphics
Turtle (See Turtle graphics)
vector, 212

Graphics Interchange Format (GIF), 224
grayscale, 231

converting images to, 231–232
grayscale function, 231
greater than operator (.), 77, 84, 139,

312, 313
greater than or equal operator

(.5), 139
greater than or equal operator (.5), 77,

84, 312, 313
greeting method, 382
Grid class, 330–333
grid(s), loop pattern for traversing,

228–229
grid method, 254
__gt__ method, 313
GUI(s). See graphical user interfaces

(GUIs)
GUI-based programs, 246–249

abstraction mechanism, 252–253
check button, 281–282
class and method definitions,

251–252
color chooser, 287–288
command buttons, 260–262
displaying images, 257–259
file dialog, 277–280

463

i n d e x

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

images module, 225–228
loop pattern for traversing a grid,

228–229
reducing image size, 235–237
sampling images, 223–224
tuples, 229–230

images module, 225–228
immutable data structure, 104
imperative programming, 345
implementation phase, 36, 37. See also

software development
import statement, 152
importing resources, modules, 56
in operator, 140

testing for substrings, 105–106
income tax calculator case study, 38–41
incremental software

development, 35
indefinite iteration, 65
index(es), 104

lists, 139
index method, 140
indirect recursion, 179
infinite loops, 86
infinite precision, 47
infinite recursion, 179–180
information gathering from a file system

case study, 183–190
information processing, 2–5

concurrent, 17
inheritance, 252–253, 337
inheritance hierarchies, 338
__init__ method, 250, 298, 321, 383
initializing the variable, 44
input(s), 5

shell, 24
input function, 25–26
input/output devices, 6
insert method, 139, 141
insertionSort function, 408–410
instance(s), 210
instance variable, 267–268

horizontal tab character (t), 43
HTML (Hypertext Markup Language), 20
HTTP (Hypertext Transfer Protocol), 20
HyperCard, 19, 20
hypermedia, 19
Hypertext Markup Language (HTML), 20
Hypertext Transfer Protocol (HTTP), 20

I
IBM (International Business Machines)

founding, 13
Microsoft’s early partnership with, 18

IBM PC, 18
IDLE

defining functions, 147, 149
description, 22–24
launching, 22
line breaks, 43
running, 209–210
running scripts from within, 22, 23
threads, 354

if statements, 94–95
multi-way, 80–81

if-else statements, 78–79
image(s)

displaying, 257–259
processing (See image processing;

imageprocessing library)
image processing, 222–237

analog and digital information, 223
blurring images, 233–234
converting images to black and white,

230–231
converting images to grayscale,

231–232
copying images, 232–233
digitizing images, 223–224
edge detection, 234–235
file formats, 224
image properties, 225
image-manipulation operations,

224–225

464

  i n d e x

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

J
Jacquard, Joseph, loom built by, 12, 14
Jobs, Steve, 18
join method, 116
Joint Photographic Experts Group (JPEG)

file format, 224
jump tables, 199

K
Kay, Alan, 18
Kaypro, 18
key(s), 153

adding to dictionaries, 154
removing from dictionaries, 155

keypunch machines, 15
keyword arguments, namespace,

193–194

L
label(s), 247

GUI-based programs, 250
LabelDemo class, 250, 252
lambda function, 198
__le__ method, 313
left angle bracket (,)

less than operator (,), 77, 139, 312, 313
less than or equal operator (,5), 77,

141, 143, 312, 313
syntax, 24

left associative operations, 50
left method, 208
Leibniz, Gottfried, 12
len function, 103, 136, 137
len method, 323–324
length variable, 29
less than operator (,), 77, 139, 312, 313
less than or equal operator (,5), 77, 141,

143, 312, 313
lifetime

namespace, 192–193
objects, 299–300

line breaks, IDLE, 43

instance variables, 298–299
instantiation, 210–211
int data type, 47, 60
int function, 26, 52, 121
integers, 47
integrated circuits, 16
integration phase, 35
Intel 8080 processor, 18
interfaces. See also graphical user

interfaces (GUIs); user
interfaces

classes, 209
internal memory, 7
International Business Machines. See

IBM (International Business
Machines)

Internet, birth, 20
Internet host, 373
interpreters, 9, 15

operation, 9
invertible matrices, 109
investment report case study, 73–76
IP addresses, 372–373
IP names, 372
IP numbers, 372
is operator, 143
isAlive method, 356
isalpha method, 116
isdigit method, 116
isdir function, 124
isdown method, 208
isfile function, 124
items, lists, 156
items method, 155
iterations, 65. See also for loops; while

loops
conditional, 86–91 (See also while

loops)
definite (See definite iteration; for

loops)
indefinite, 65

iterative software development, 35

465

i n d e x

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

definite iteration (See definite iteration;
for loops)

indefinite iteration, 65
infinite, 86
passes (iterations), 65

loop body, 65
loop control variables, 87
loop headers, 65
lossless compression, 224
lossy scheme, 224
lower method, 116
__lt__ method, 313
luminance, 232

M
machine code, 8
Macintosh, first, 18
Macintosh MultiFinder, 353
magnetic storage media, 7
main function, 148–149, 172, 186, 221,

231, 360
doctor program, 174–175
sentence-generator program, 173–174
text-analysis program, 172–173

main method, 250
main module, 56–57
mainframe computers, 14
mainloop method, 250
maintenance costs, 37
maintenance phase, 36, 37
map function, 196–197
mapping, 196–197
Mark I, 14
math module, 55–56
matrices, invertible, 109
Mauchly, John, 14
max function, 79, 157
McCarthy, John, 15, 16
median, 143

finding, 143–144
memoization, 420

linear algorithm, 398, 420–421
linear loop structure, 228
LISP (List Processing), 15
list(s), 68, 135–145

aliasing, 141–143
association, 153
basic operators, 135–137
examples, 135
finding median of a set of numbers,

143–144
finding the mode of a list of values,

157–158
indexes, 140
lists of lists, 135
literals, 135–137
mutability, 141
searching, 140
side effects, 141–143
sorting, 140–141

list class, 402
list methods, 138–140
List Processing (LISP), 15
listen method, 377
literals, 41

dictionaries, 153–154
lists, 135–137
string, 42–43

loaders, 8
local host, 373
locks, 362
logarithmic, 398
logic errors, 40, 68
logical conjunction operator (and), 82–84
logical disjunction operator (or), 82–84
logical negation, 82
logical negation operator (not), 82, 84
logical operators, 82–84
lookup tables, 157
loop(s)

count-controlled, 66–67
counting down, 67

466

  i n d e x

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

methods listed by name
accept method, 377
acquire method, 363
__add__ method, 311
add(account) method, 318
append method, 139–141, 144
bind method, 376
center method, 116
close method, 119, 122, 375
computeInterest method,

315, 318
connect method, 375
count method, 124
deposit method, 315
_deposit method, 326
__div__ method, 311
endswith method, 124
__eq__ method, 313–314
extend method, 139, 140
find method, 116, 140, 143–144
__ge__ method, 313
get(pin) method, 318
getAverage method, 296
getBalance method, 315
_getBalance method, 326
getData method, 362
getHighScore method, 296
getName method, 296, 315, 356
getPin method, 315
getPoints method, 342
getScore method, 296, 298
getValue method, 303
greeting method, 382
grid method, 254
__gt__ method, 313
hit method, 343
index method, 140
__init__ method, 250, 298,

321, 383
insert method, 139, 141
isAlive method, 356

memory, 6
external (secondary), 7
random access (internal; primary), 7

merge function, 417–418
merge sort

complexity analysis, 418
implementation, 415–418

Metcalfe, Bob, 19
method(s). See also methods listed by

name
begin_fill method, 208
clone method, 226, 232
definitions, 297–298
down method, 208
draw method, 226, 227
end_fill method, 208
fillcolor method, 208
forward method, 208
general, support by functions,

170–171
getHeight method, 226
getPixel method, 226, 227
getWidth method, 226
goto method, 208
heading method, 208
hideturtle method, 208
home method, 208
isdown method, 208
left method, 208
pencolor method, 208, 215–217
polymorphic, 344–345
position method, 208
right method, 208
save method, 226, 228
setheading method, 208
setPixel method, 226, 227
showturtle method, 208
strings, 115–118
Turtle graphics, 206–209
up method, 208
width method, 208

467

i n d e x

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

strip method, 116
__sub__ method, 311
upper method, 116
wait method, 362, 363
withdraw method, 315, 345
_withdraw method, 326
write method, 112, 119

microprocessor chip, 18
Microsoft Disk Operating System

(MS-DOS), 18
min function, 79
minicomputers, 16, 18
2(minus sign), 50
minus sign (2)

negation operator, 50, 84
sub method, 311

mixed-mode arithmetic, 52
mkdir function, 124
__mod__ method, 311
mode, finding the mode of a list

of values, 157–158
mode string, 119
model, 326
model/view pattern, 326–327
module(s)

importing resources, 56
importing script as, 57
main module, 56–57

module variables, namespace, 191
modulus (%), 50, 84
Moore’s Law, 16, 17
MS-DOS (Microsoft Disk Operating

System), 18
__mul__ method, 311
multiple clients

chats among, 381–386
handling concurrently, 378–380

multiplication operator (*), 50, 84
multiprocessing systems, 353–354
multi-way selection statements, 81
mutability, 141

methods listed by name (continued)
isalpha method, 124
isdigit method, 124
items method, 155
join method, 127
__le__ method, 313
__len__ method, 323–324
listen method, 377
lower method, 116
__lt__ method, 313
main method, 250
mainloop method, 250
for method, 122
__mod__ method, 311
__mul__ method, 311
__neq__ method, 313
notify method, 363
notifyAll method, 363
open method, 119, 122, 124
play method, 304
pop method, 141, 155
read method, 120, 122
readline method, 121, 122
recv method, 375
release method, 362, 363
remove(pin) method, 318
replace method, 116
reply method, 382
run method, 354–357, 379
save method, 320
send method, 377
setData method, 362
setName method, 356
setScore method, 296
sort method, 141
split method, 115–119, 121, 122,

127–129, 138
start method, 354, 356
startswith method, 116
__str__ method, 299, 303, 315, 318,

321–322, 345

468

  i n d e x

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

octal, 110, 113–114
positional system for representing

numbers, 110
numeric data types, 47–49

floating-point numbers, 47
integers, 47

O
object(s)

inheritance hierarchies, 338
input, 320
lifetime, 299–300
pickle for permanent storage,

319–320
object class, 296
object identity, 143
object-oriented languages, 294
object-oriented programming, 294

costs and benefits, 345–346
octal number system, 110, 113–114
odd function, 148
off-by-one errors, 68–69
one-way selection statements,

79–80
oNLine System (NLS) Augment, 18
open function, 119
open method, 122
operating system.path module, 186
operating systems, 8

MS-DOS, 18
time-sharing, 16–17, 353

operator overloading, 312
or logical operator, 82–84
order of complexity, 398
order of precedence, 78
os module, 186
Osborne, 18
output(s), 5

formatting text, 70–72
shell, 22

overloading arithmetic operators, 312

mutator(s), 141, 299
mutator methods, 213

N
names, variables, 44
namespace, 190–194

default arguments, 193–194
lifetime, 192–193
method names, 191
module variables, 190–191
parameters, 191
scope, 191–192
temporary variables, 190–191

natural ordering, 140
negation operator (2), 50, 84
__neq__ method, 313
nested loop structure, 228–229
network(s), 6
networked systems, 354
Neumann, John von, 14
newline character (n), 43
Newton, Isaac, 12, 93, 94
NLS (oNLine System) Augment, 18
nondirective psychotherapy case study,

159–163
None value, 141
not equals operator (!5), 77, 139, 312, 313
not logical operator, 83, 84
notify method, 363
notifyAll method, 363
nounPhrase function, 151
number(s)

random, 90–91
rational, 309–312
writing to files, 119

number systems, 109–114
binary (base two), 109
converting binary to decimal, 111–113
converting decimal to binary, 112–113
decimal (base ten), 109
hexadecimal, 110, 113–114, 156–157

469

i n d e x

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

polynomial time algorithm, 398
pop operation, 141, 155
ports, 6, 373
position method, 208
positional notation, 110
precedence rules, 50–51
primary memory, 7
print function, 24–25, 27, 137, 141

formatting text, 71
string literals, 42–43

problem decomposition, 172
problem instances, 170
procedural programming, 345
processors, 7. See also central processing

unit (CPU)
Producer class, 360, 361
producer/consumer relationship,

358–364
Profiler class, 421–426
profiling, 421–426
program(s), 6

correct, 40
format, 57
GUI-based, 246–248 (See GUI-based

programs)
structure, 57
terminal-based, 246

program comments, 45–46
docstrings, 45
end-of-line, 46

program libraries, 27
programming

event-driven, 248–249
functional, 346
imperative, 345
object-oriented (See object-oriented

programming)
procedural, 345

programming languages, 6
assembly languages, 15
first, 14–16

P
Papert, Seymour, 206
parallel computing, 354
parallel systems, 354
parameters

functions, 147
namespace, 191

parent(s), 184
parent classes, 296
Pascal, Blaise, calculator built by, 11–12
passes, 65. See also conditional iteration;

definite iteration; for loops;
indefinite iteration; iterations;
while loops

paths, 184
pencolor method, 208, 215–217
percent sign (%)

format operator (%), 71
__mod__ method, 311
remainder operator (modulus),

50, 84
PhotoImage class, 257
pickle module, 319–320
pickling, 319–320
pixels, 215
pixilation, 233
play method, 304
Player class, 302–307
Player object, 340–344
playing cards, 321–324
playing the game of craps case study,

301–309
playManyGames function, 304
playOneGame function, 304
plus sign (1)

__add__ method, 311
addition operator, 50, 84
concatenation operator, 43–44,

136, 137
polymorphic methods, 344–345
polymorphism, 337

470

  i n d e x

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

readerFunction, 364–365
reading

numbers from a file, 121–122
text from a file, 120–121

readline method, 120, 122
ready queue, 354
recursion

indirect, 179
infinite, 179–180

recursive calls, 176
recursive definition, 178
recursive design, 176
recursive Fibonacci function

exponential algorithm, 419–420
linear algorithm, 420–421

recursive functions, 176–181
constructing using recursive

definitions, 178
costs and benefits of recursion,

180–182
defining, 176–177
infinite recursion, 179–180
tracing, 177–178

recursive patterns in fractals case study,
218–222

recursive steps, 176
recv method, 375
reduce function, 197–198
reducing, 197–198
reducing image size, 235–237
redundancy, elimination by functions,

169–170
relative pathname, 122
release method, 362, 363
remainder operator (%), 50, 84
remove(pin) method, 318
rename function, 124
repetition statements. See conditional

iteration; definite iteration; for
loops; indefinite iteration; loop(s);
while loops

high-level, 8, 9
strongly typed, 53

prompter box, 280–281
prototypes, 35, 74
pseudocode, 39
psychotherapy, nondirective, case study,

159–162
Python

invention, 20
overview, 22

Python Shell window, 23
Python Virtual Machine (PVM), 28

threads, 354

Q
quadratic algorithm, 398
quicksort algorithm

complexity analysis, 413–414
implementation, 414–415
partitioning, 412–413

quotient operator (//), 51

R
radio buttons, 282–284
RAM (random access memory), 7
randint function, 90
random access memory (RAM), 7
random module, 90
random numbers, 90–91
randomWalk function, 214–215
range function, 68–70, 137

for loop, 70
specifying steps in range, 69

Rational class, 309–311
rational numbers, 309–31

arithmetic, 311
operator overloading, 312

raw image files, 224
read method, 120, 122
readability, text analysis case study,

126–130

471

i n d e x

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Screen object, 214
scripts, 27–28

importing as a module, 57
running, 27–28
running from terminal command

prompts, 57–59
search algorithms

average-case, 403
best case, 403
binary search, 403–405
list class, 402
min function, 401–402
worst-case, 403

searching lists, 140
secondary memory, 7
selection sort, 406–407
selection statements, 77–85. See also

if statements; if-else statements
Boolean data type, 77
Boolean expressions (See Boolean

expressions)
logical operators, 82
multi-way, 80–81
one-way, 79–80
short-circuit evaluation, 84
testing, 84–85
two-way, 78

self parameter, 297–298
self._name instance variable, 298–299
self._scores instance variable, 298–299
semantic errors, 51
semantics, 51
semiconductor storage media, 7
send method, 377
sentence function, 153
sentence generation case study,

150–153
sentence structure, recursion, 179
sentence-generator program, design,

173–174
sentinels, 86

replace method, 116
replacements dictionary, 160, 161
reply function, 160–161

doctor program, 174–175
reply method, 382
resolution, 235–237
RestrictedSavingsAccount subclass,

339–340
return statement, 147–148, 153
RGB system, 215–216
right angle bracket (.)

greater than operator (.),77, 84, 92,
99, 139, 312, 313

greater than or equal operator (.5),
77, 84, 141, 312, 313

shell prompt (...), 23
syntax, 24

right associative operations, 50
right method, 208
rmdir function, 124
root directory, 184
Rossum, Guido van, 22
round function, 52
row-major traversal, 229
run method, 354–357, 379
runCommand function, 186, 199
running scripts

terminal command prompts, 57–59
running scripts, 22–24
run-time system, 9
Russell, Stephen “Slug,” 15

S
sampling, 223–224
save method, 226, 228, 320
saving, pickle for permanent storage

of objects, 319–320
scientific notation, 47
scope, namespace, 191–192
Screen class, 209
screen coordinate systems, 225

472

  i n d e x

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

costs, 36–37
generating sentences case study,

150–153
income tax calculator case study,

38–41
incremental and iterative nature of, 35
information gathering from a file

system case study, 183–190
investment report case study, 73–76
nondirective psychotherapy case study,

159–162
playing the game of craps case study,

301–309
prototypes, 35
recursive patterns in fractals case study,

218–222
text analysis case study, 126–130
waterfall model, 35

solid-state devices, 16
sort algorithm

average-case, 410
best-case, 410
bubble sort, 407–408
insertion sort, 408–410
merge sort, 415–418
n log n and n2, 411
quicksort, 412–415
selection sort, 406–407
swap function, 406
worst-case, 410

sort method, 141
source code, 28
spacing expressions, 51
split method, 115–119, 121, 122,

127–129, 138
square brackets ([])

lists, 135
subscript operator, 117–118, 138

square function, 146
square root approximation case study,

92–95

servers, 373
setData method, 362
setheading method, 208
setName method, 356
setPixel method, 226, 227
setScore method, 296
Shannon, Claude, 13
SharedCell class, 360–370
shell, 22

inputs, 25–26
outputs, 25
running code in, 22–24

shell prompt (...), 23
short-circuit evaluation, 84
_showOneCard instance variable, 343
showturtle method, 208
shrink function, 236
side effects, lists, 141–143
single quotation mark character (’), 42
sizing

reducing image size, 235–237
Sleep, threads, 355
sleeping threads, 357–358
SleepyThread class, 357–358
slicing

substrings, 105, 140
time slicing, 355

Smalltalk, 18
sniffing software, 106
socket(s), 373–375
socket function, 375
socket module, 372–376
software, 8

applications, 8
operating systems, 8, 353
system, 8

software development, 35–37
approximating square roots case study,

92–95
ATM case study, 324–330

473

i n d e x

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

slicing, 105, 140
testing for, with in operator,

105–106
subtraction operator (2), 50, 84
summation function, 177, 400–401
swap function, 406
symbolic constants, 44
synchronization problems, 360–364
syntax, 29–30

angle brackets (,.), 24
function definitions, 146–147

syntax errors, 9
detecting and correcting, 29–30

system software, 8

T
tables, 153
tabular format, 70–72
targets, 140
temporary variables, namespace, 191
terminal command prompts

running scripts, 57–59
terminal-based interfaces, 8
terminal-based programs, 246
termination condition, 89
test suites, 40
testing

selection statements, 84–85
for substrings with in operator,

105–106
text

cipher, 107
formatting for output, 70–72
reading from a file, 120–121
writing to files, 119–120

text analysis case study, 126–130
text editors, 9
text files, 118–125

accessing and manipulating multiple
files and directories on a disk,
122–125

stack frames, 180
start method, 354, 356
startswith method, 116
step values, 69
stepwise refinement, 172
storage media

magnetic, 7
optical, 7, 19
semiconductor, 7

str function, 53
__str__ method, 299, 303, 315, 318,

321–322
string(s)

concatenation, 43–44
construction from numbers and other

strings, 53
empty, 42
format, 70
structure, 103–104
substrings (See substrings)

string literals, 42–43
string methods, 115–118

list, 116
strip method, 116
strongly typed programming

languages, 53
structural equivalence, 143
structure charts, 172–173
Student class, 295–297

accessor methods, 299
init method, 298
lifetime of objects, 299–300
mutator method, 299

__sub__ method, 311
subclass(es), 252, 296
subclass names

RestrictedSavingsAccount subclass,
339–340

subscript operator ([]), 104–105, 138,
140

substrings, 105

474

  i n d e x

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

try-except statement, 320–321, 372
tuples, 144–145, 229–230
Turing, Alan, 13, 14
Turtle graphics, 206–237

colors, 215–216
coordinate system, 206
drawing two-dimensional shapes,

212–213
filling radial patterns with random

colors, 216–218
manipulating screen, 214
object attributes, 213–214
object instantiation, 210–211
operations, 207–209
overview, 206–207
random walk, 214–215
running IDLE, 209–210
setting up a cfg file, 209–210

turtle module, 210–211
two-dimensional grid, 330–333
two-way chat script, 377–378
two-way selection statements, 78
type conversion functions, 26, 52–53

U
UML (Unified Modeling Language)

diagrams, 326
underscore (_), 44
Unicode set, 48
Unified Modeling Language (UML)

diagrams, 326
up method, 208
upper method, 116
user interfaces, 8

GUIs (See graphical user interfaces
(GUIs))

terminal-based, 8

V
values

accessing in dictionaries, 154–155
continuous range of, 223

format, 118–119
reading numbers from a file, 121–122
reading text from a file, 120–121
writing numbers to a file, 119–120
writing text to a file, 119

text-analysis programs
design, 172–173
doctor program, 174–175
problem decomposition, 172
sentence-generator program, 173–174

TextField method, 262–264
thread(s), 354–357

sleeping, 357–358
Thread class, 356, 379
threading module, 355
Thread-Safe class, 370–371
ThreadSafeSavingsAccount class,

370–371
time() function, 391–392
time slicing, 355
Time-out, threads, 355
time-sharing operating systems,

16, 353
title bar, 247
tkinter component, 249
tkinter.colorchooser.askcolor

function, 287–288
top-down design, 172–175

stepwise refinement, 172
text-analysis program, 172–173

tracing recursive functions, 177–178
transistors, 16
translators, 9
traversing

dictionaries, 155–156
grids, loop pattern for, 228–229

true color system, 216
True value, 77–79, 81–83

object identity and structural
equivalence, 143

truth tables, 82–83

475

i n d e x

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

logic, 91
operation, 71–72
random numbers, 90–91
semantics, 86
structure, 86–87
testing, 91
True Boolean value, 96

while True loops, 89–91, 94–95
wide area networks (WANs), 19
widgets, 246
Width attribute

Turtle graphics, 207
width method, 208
window(s)

GUI-based programs, 253–256
IDLE (See IDLE)

window objects, 246
withdraw method, 315, 345
_withdraw method, 326
World Wide Web, 19, 20
write method, 119, 122
writerFunction, 364–365
writing

numbers to a file, 119–120
text to a file, 119

X
Xerox, 18

values (continued)
discrete, 223
replacing in dictionaries, 155

variable(s), 26, 44–45
defining (initializing), 44
instance, 298–299
names, 44
purposes, 44

variable identifiers (variables), 26
variable references, 44
vector graphics, 212
virtual machines, 9
virtual reality, 19
vocabulary, 150

W
wait method, 362, 363
Wait, threads, 355
WANs (wide area networks), 19
waterfall model, 35
Web browsers, 20
Web clients, 20
Web servers, 20
Weizenbaum, Joseph, 159
while loops, 86–91, 160

break statements, 88–90
count control, 87–88
errors, 91

476

  i n d e x

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

	Cover
	Table of Contents
	Preface
	Chapter 1: Introduction
	Two Fundamental Ideas of Computer Science: Algorithms and Information Processing���
	Exercises����������������
	The Structure of a Modern Computer System��
	Exercises����������������
	A Not-So-Brief History of Computing Systems��
	Getting Started with Python Programming��
	Exercises����������������
	Detecting and Correcting Syntax Errors���
	Exercises����������������
	Suggestions for Further Reading��������������������������������������
	Summary��������������
	Review Questions�����������������������
	Projects���������������

	Chapter 2: Software Development, Data Types, and Expressions
	The Software Development Process���������������������������������������
	Exercises����������������
	Case Study: Income Tax Calculator��
	Strings, Assignment, and Comments��
	Exercises����������������
	Numeric Data Types and Character Sets��
	Exercises����������������
	Expressions������������������
	Exercises����������������
	Using Functions and Modules����������������������������������
	Exercises����������������
	Summary��������������
	Review Questions�����������������������
	Projects���������������

	Chapter 3: Loops and Selection Statements
	Definite Iteration: The for Loop���������������������������������������
	Exercises����������������
	Formatting Text for Output���������������������������������
	Exercises����������������
	Case Study: An Investment Report���������������������������������������
	Selection: if and if-else Statements���
	Exercises����������������
	Conditional Iteration: The while Loop��
	Exercises����������������
	Case Study: Approximating Square Roots���
	Summary��������������
	Review Questions�����������������������
	Projects���������������

	Chapter 4: Strings and Text Files
	Accessing Characters and Substrings in Strings���
	Exercises����������������
	Data Encryption����������������������
	Exercises����������������
	Strings and Number Systems���������������������������������
	Exercises����������������
	String Methods���������������������
	Exercises����������������
	Text Files�����������������
	Exercises����������������
	Case Study: Text Analysis��������������������������������
	Summary��������������
	Review Questions�����������������������
	Projects���������������

	Chapter 5: Lists and Dictionaries
	Lists������������
	Exercises����������������
	Defining Simple Functions��������������������������������
	Exercises����������������
	Case Study: Generating Sentences���������������������������������������
	Dictionaries�������������������
	Exercises����������������
	Case Study: Nondirective Psychotherapy���
	Summary��������������
	Review Questions�����������������������
	Projects���������������

	Chapter 6: Design with Functions
	A Quick Review of What Functions Are and How They Work���
	Exercises����������������
	Problem Solving with Top-Down Design���
	Exercises����������������
	Design with Recursive Functions��������������������������������������
	Exercises����������������
	Case Study: Gathering Information from a File System���
	Managing a Program's Namespace
	Exercises����������������
	Higher-Order Functions�����������������������������
	Exercises����������������
	Summary��������������
	Review Questions�����������������������
	Projects���������������

	Chapter 7: Simple Graphics and Image Processing
	Simple Graphics����������������������
	Exercises����������������
	Case Study: Recursive Patterns in Fractals���
	Image Processing�����������������������
	Exercises����������������
	Summary��������������
	Review Questions�����������������������
	Projects���������������

	Chapter 8: Graphical User Interfaces
	The Behavior of Terminal-Based Programs and GUI-Based Programs���
	Exercises����������������
	Coding Simple GUI-Based Programs���������������������������������������
	Exercises����������������
	Windows and Window Components������������������������������������
	Exercises����������������
	Command Buttons and Responding to Events���
	Exercises����������������
	Input and Output with Entry Fields���
	Exercises����������������
	Defining and Using Instance Variables��
	Exercises����������������
	Case Study: The Guessing Game Revisited��
	Other Useful GUI Resources���������������������������������
	Summary��������������
	Review Questions�����������������������
	Projects���������������

	Chapter 9: Design with Classes
	Getting Inside Objects and Classes���
	Exercises����������������
	Case Study: Playing the Game of Craps��
	Data-Modeling Examples�����������������������������
	Exercises����������������
	Case Study: An ATM�������������������������
	Building a New Data Structure: The Two-Dimensional Grid��
	Case Study: Data Encryption with a Block Cipher��
	Structuring Classes with Inheritance and Polymorphism��
	Exercises����������������
	Summary��������������
	Review Questions�����������������������
	Projects���������������

	Chapter 10: Multithreading, Networks, and Client/Server Programming
	Threads and Processes����������������������������
	Exercises����������������
	The Readers and Writers Problem��������������������������������������
	Exercises����������������
	Networks, Clients, and Servers�������������������������������������
	Exercises����������������
	Case Study: Setting Up Conversations between Doctors and Patients��
	Summary��������������
	Review Questions�����������������������
	Projects���������������

	Chapter 11: Searching, Sorting, and Complexity Analysis
	Measuring the Efficiency of Algorithms���
	Exercises����������������
	Complexity Analysis��������������������������
	Exercises����������������
	Search Algorithms������������������������
	Exercises����������������
	Basic Sort Algorithms����������������������������
	Exercises����������������
	Faster Sorting���������������������
	Exercises����������������
	An Exponential Algorithm: Recursive Fibonacci��
	Converting Fibonacci to a Linear Algorithm���
	Case Study: An Algorithm Profiler��
	Summary��������������
	Review Questions�����������������������
	Projects���������������

	Appendix A: Python Resources
	Appendix B: Installing the images and breezypythongui Libraries
	Appendix C: The API for Image Processing
	Appendix D: Transition from Python to Java and C++
	Glossary���������������
	Index������������

		2018-01-23T00:12:40+0000
	Preflight Ticket Signature

