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Data & Data Preprocessing

� What is Data: Data Objects and Attribute Types

� Basic Statistical Descriptions of Data

� Measuring Data Similarity and Dissimilarity

� Data Preprocessing: An Overview

� Summary
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What is Data?

� Collection of data objects and their attributes
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What is Data?

� Collection of data objects and their attributes
Tid Refund Marital 

Status 
Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

Attributes

Objects
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Data Objects

� Data sets are made up of data objects

� A data object represents an entity

� Examples: 

� sales database:  customers, store items, sales

� medical database: patients, treatments

� university database: students, professors, courses

� Also called samples , examples, instances, data points, objects, tuples
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Data Objects

� Data sets are made up of data objects

� A data object represents an entity

� Examples: 

� sales database:  customers, store items, sales

� medical database: patients, treatments

� university database: students, professors, courses

� Also called samples , examples, instances, data points, objects, tuples

� Data objects are described by attributes

� Database rows → data objects; columns →�attributes



7

Attributes

� Attribute (or dimensions, features, variables) 
� A data field, representing a characteristic or feature of a data object.
� E.g., customer_ID, name, address

� Types:
� Nominal (e.g., red, blue)
� Binary (e.g., {true, false})
� Ordinal (e.g., {freshman, sophomore, junior, senior})
� Numeric: quantitative
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Attribute Types 
� Nominal: categories, states, or “names of things”

� Hair_color = {auburn, black, blond, brown, grey, red, white}
� marital status, occupation, zip codes
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Attribute Types 
� Nominal: categories, states, or “names of things”

� Hair_color = {auburn, black, blond, brown, grey, red, white}
� marital status, occupation, zip codes

� Binary
� Nominal attribute with only 2 states (0 and 1)
� Symmetric binary: both outcomes equally important

� e.g., gender
� Asymmetric binary: outcomes not equally important.  

� e.g., medical test (positive vs. negative)
� Convention: assign 1 to most important outcome (e.g., HIV positive)
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Attribute Types 
� Nominal: categories, states, or “names of things”

� Hair_color = {auburn, black, blond, brown, grey, red, white}
� marital status, occupation, ID numbers, zip codes

� Binary
� Nominal attribute with only 2 states (0 and 1)
� Symmetric binary: both outcomes equally important, e.g., gender
� Asymmetric binary: outcomes not equally important.  

� e.g., medical test (positive vs. negative)
� Convention: assign 1 to most important outcome (e.g., HIV positive)

� Ordinal
� Values have a meaningful order (ranking) but magnitude between successive 

values is not known
� Size = {small, medium, large}, grades, army rankings
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Numeric Attribute Types 
� Quantity (integer or real-valued)

� Interval-scaled

� Measured on a scale of equal-sized units

� Values have order

� E.g., temperature in C˚or F˚, calendar dates

� No true zero-point
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Numeric Attribute Types 
� Quantity (integer or real-valued)

� Interval-scaled

� Measured on a scale of equal-sized units

� Values have order

� E.g., temperature in C˚or F˚, calendar dates

� No true zero-point

� Ratio-scaled

� Inherent zero-point

� We can speak of values as being an order of magnitude larger than the unit 
of measurement (10 K˚ is twice as high as 5 K˚).

� e.g., temperature in Kelvin, length, counts, monetary quantities
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� Q1:  Is student ID a nominal, ordinal, or  numerical attribute?

� Q2:  What about eye color? Or color in the color spectrum of 
physics?
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Discrete vs. Continuous Attributes 

� Discrete Attribute

� Has only a finite or countably infinite set of values

� E.g., zip codes, profession, or the set of words in a collection of documents 

� Sometimes, represented as integer variables

� Note: Binary attributes are a special case of discrete attributes 
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Discrete vs. Continuous Attributes 

� Discrete Attribute

� Has only a finite or countably infinite set of values

� Sometimes, represented as integer variables

� Note: Binary attributes are a special case of discrete attributes 

� Continuous Attribute

� Has real numbers as attribute values

� E.g., temperature, height, or weight

� Practically, real values can only be measured and represented using a finite number 
of digits

� Continuous attributes are typically represented as floating-point variables
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Types of Data Sets: (1) Record Data

� Relational records
� Relational tables, highly structured
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Types of Data Sets: (1) Record Data

� Data matrix, e.g., numerical matrix, crosstabs
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Types of Data Sets: (1) Record Data

� Transaction data
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Types of Data Sets: (1) Record Data

� Document data: Term-frequency vector (matrix) of text documents

Document 1

season

tim
eout

lost

w
in

gam
e

score

ball

play

coach

team

Document 2

Document 3

3 0 5 0 2 6 0 2 0 2

0

0

7 0 2 1 0 0 3 0 0

1 0 0 1 2 2 0 3 0
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Types of Data Sets: (2) Graphs and Networks

� Transportation network

� World Wide Web
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Types of Data Sets: (2) Graphs and Networks

� Transportation network

� World Wide Web

� Molecular Structures

� Social or information networks
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Types of Data Sets: (3) Ordered Data

� Video data: sequence of images

� Temporal data: time-series

� Sequential Data: transaction sequences

� Genetic sequence data
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Types of Data Sets: (4) Spatial, image and multimedia data

� Spatial data: maps

� Image data: 

� Video data:
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Chapter 2.  Getting to Know Your Data

� Data Objects and Attribute Types

� Basic Statistical Descriptions of Data

� Measuring Data Similarity and Dissimilarity

� Data Preprocessing: An Overview

� Summary
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Basic Statistical Descriptions of Data
� Motivation
� To better understand the data: central tendency, variation and spread
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Measuring the Central Tendency:  (1) Mean

�Mean�(algebraic�measure)�(sample�vs.�population):
Note:�n is�sample�size�and�N is�population�size.�

N
x∑=
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Measuring the Central Tendency:  (1) Mean
�Mean�(algebraic�measure)�(sample�vs.�population):

Note:�n is�sample�size�and�N is�population�size.�

� Weighted arithmetic�mean:

� Trimmed mean:�
� Chopping�extreme�values�(e.g.,�Olympics�gymnastics�score�computation)

N
x∑=
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Measuring the Central Tendency: (2) Median
�Median:�
�Middle�value�if�odd�number�of�values,�or�average�of�the�middle�two�values�
otherwise
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Measuring the Central Tendency: (2) Median
�Median:�
� Middle�value�if�odd�number�of�values,�or�average�of�the�middle�two�values�otherwise

� Estimated�by�interpolation�(for�grouped data):

width
freq

freqn
Lmedian

median

l )
)(2/

(1
∑−

+=

Approximate 
median

Low interval limit

Interval width (L2 – L1)

Sum before the median interval
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Measuring the Central Tendency: (3) Mode

� Mode:�Value�that�occurs�most�frequently�in�the�data

� Unimodal
� Empirical�formula:

� Multi-modal
� Bimodal

� Trimodal

)(3 medianmeanmodemean −×=−
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Symmetric vs. Skewed Data

� Median,�mean�and�mode�of�symmetric,�
positively�and�negatively�skewed�data

positively skewed negatively skewed

symmetric
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Properties of Normal Distribution Curve
←�—————Represent data dispersion, spread —————→

Represent central tendency
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Measures Data Distribution: Variance and Standard Deviation

� Variance�and�standard�deviation�(sample: s, population: σ)
� :�(algebraic,�scalable�computation)

� s (or σ) is�the�square�root�of�variance�s2  (orσ2 )

∑∑
==

−=−=
n

i
i

n

i
i x

N
x

N 1

22

1

22 1)(1
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Measures Data Distribution: Variance and Standard Deviation

� Variance�and�standard�deviation�(sample: s, population: σ)
� :�(algebraic,�scalable�computation)

� s (or σ) is�the�square�root�of�variance�s2  (orσ2 )

∑∑
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−=−=
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i
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Standardizing Numeric Data
� Z-score:�

� X:�raw�score�to�be�standardized,�μ:�mean�of�the�population,�σ:�standard�deviation

� the�distance�between�the�raw�score�and�the�population�mean�in�units�of�the�standard�deviation

� negative�when�the�raw�score�is�below�the�mean,�positive�when�above

−= x z
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Standardizing Numeric Data
� Z-score:�

� X:�raw�score�to�be�standardized,�μ:�mean�of�the�population,�σ:�standard�deviation

� the�distance�between�the�raw�score�and�the�population�mean�in�units�of�the�standard�deviation

� negative�when�the�raw�score�is�below�the�mean,�positive�when�above

� Mean�absolute�deviation:

where

� standardized�measure�(z-score):

� Using�mean�absolute�deviation�is�more�robust�than�using�standard�deviation�

−= x z

.)...21
1

nffff xx(xn m +++=

|)|...|||(|1
21 fnffffff mxmxmxns −++−+−=

f

fif
if s

mx
 z

−
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Data & Data Preprocessing

� Data Objects and Attribute Types

� Basic Statistical Descriptions of Data

� Measuring Data Similarity and Dissimilarity

� Data Preprocessing: An Overview

� Summary
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Similarity, Dissimilarity, and Proximity

� Similarity measure or similarity function

� A real-valued function that quantifies the similarity between two objects

� Measure how two data objects are alike: The higher value, the more alike

� Often falls in the range [0,1]:  0: no similarity; 1: completely similar
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Similarity, Dissimilarity, and Proximity

� Similarity measure or similarity function

� A real-valued function that quantifies the similarity between two objects

� Measure how two data objects are alike: The higher value, the more alike

� Often falls in the range [0,1]:  0: no similarity; 1: completely similar

� Dissimilarity (or distance) measure

� Numerical measure of how different two data objects are

� In some sense, the inverse of similarity: The lower, the more alike

� Minimum dissimilarity is often 0 (i.e., completely similar)

� Range�[0,�1]�or�[0,�∞)�,�depending�on�the�definition

� Proximity usually refers to either similarity or dissimilarity
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Data Matrix and Dissimilarity Matrix

� Data matrix

� A data matrix of n data points with l dimensions
11 12 1

21 22 2

1 2

...

...

...

l

l

n n nl

x x x
x x x

D

x x x

§ ·
¨ ¸
¨ ¸=
¨ ¸
¨ ¸
© ¹

� � � �
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Data Matrix and Dissimilarity Matrix

� Data matrix

� A data matrix of n data points with l dimensions

� Dissimilarity (distance) matrix

� n data points, but registers only the distance d(i, j) 
(typically metric)

� Usually symmetric

� Distance functions are usually different for real, boolean, 
categorical, ordinal, ratio, and vector variables

� Weights can be associated with different variables based 
on applications and data semantics

11 12 1

21 22 2

1 2

...

...

...

l

l

n n nl

x x x
x x x

D

x x x

§ ·
¨ ¸
¨ ¸=
¨ ¸
¨ ¸
© ¹

� � � �

0
(2,1) 0

( ,1) ( , 2) ... 0

d

d n d n

§ ·
¨ ¸
¨ ¸
¨ ¸
¨ ¸
© ¹

� � �



42

Example: Data Matrix and Dissimilarity Matrix

Dissimilarity Matrix (by Euclidean Distance)
x1 x2 x3 x4

x1 0
x2 3.61 0
x3 2.24 5.1 0
x4 4.24 1 5.39 0

Data Matrix
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Distance on Numeric Data: Minkowski Distance

� Minkowski distance: A popular distance measure

where  i = (xi1, xi2, …, xil) and j = (xj1, xj2, …, xjl) are two l-dimensional data 
objects, and p is the order (the distance so defined is also called L-p norm)

1 1 2 2( , ) | | | | | |p p pp
i j i j il jld i j x x x x x x= − + − + + −�
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Distance on Numeric Data: Minkowski Distance

� Minkowski distance: A popular distance measure

where  i = (xi1, xi2, …, xil) and j = (xj1, xj2, …, xjl) are two l-dimensional data 
objects, and p is the order (the distance so defined is also called L-p norm)

� Properties

� d(i, j) > 0 if i ≠�j, and d(i, i) = 0 (Positivity)

� d(i, j) = d(j, i) (Symmetry)

� d(i, j) ≤ d(i, k) + d(k, j) (Triangle Inequality)

� A distance that satisfies these properties is a metric

� Note:  There are nonmetric dissimilarities, e.g., set differences

1 1 2 2( , ) | | | | | |p p pp
i j i j il jld i j x x x x x x= − + − + + −�
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Special Cases of Minkowski Distance

� p =�1:�(L1 norm)�Manhattan�(or�city�block)�distance
� E.g.,�the�Hamming�distance:�the�number�of�bits�that�are�different�
between�two�binary�vectors

1 1 2 2( , ) | | | | | |i j i j il jld i j x x x x x x= − + − + + −�
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Special Cases of Minkowski Distance

� p =�1:�(L1 norm)�Manhattan�(or�city�block)�distance
� E.g.,�the�Hamming�distance:�the�number�of�bits�that�are�different�
between�two�binary�vectors

� p =�2:��(L2 norm)�Euclidean�distance
2 2 2

1 1 2 2( , ) | | | | | |i j i j il jld i j x x x x x x= − + − + + −�

1 1 2 2( , ) | | | | | |i j i j il jld i j x x x x x x= − + − + + −�
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Special Cases of Minkowski Distance

� p =�1:�(L1 norm)�Manhattan�(or�city�block)�distance
� E.g.,�the�Hamming�distance:�the�number�of�bits�that�are�different�
between�two�binary�vectors

� p =�2:��(L2 norm)�Euclidean�distance

� p →∞:�(Lmax norm,�L∞norm)�“supremum”�distance
� The�maximum�difference�between�any�component�(attribute)�of�the�
vectors

2 2 2
1 1 2 2( , ) | | | | | |i j i j il jld i j x x x x x x= − + − + + −�

1 1 2 2( , ) | | | | | |i j i j il jld i j x x x x x x= − + − + + −�

1 1 2 2
1

( , ) lim | | | | | | | |max
lp p pp

i j i j il jl if ifp f
d i j x x x x x x x x

→∞ =
= − + − + + − = −�



48

Example: Minkowski Distance at Special Cases

point attribute 1 attribute 2
x1 1 2
x2 3 5
x3 2 0
x4 4 5

L x1 x2 x3 x4
x1 0
x2 5 0
x3 3 6 0
x4 6 1 7 0

L2 x1 x2 x3 x4
x1 0
x2 3.61 0
x3 2.24 5.1 0
x4 4.24 1 5.39 0

L x1 x2 x3 x4
x1 0
x2 3 0
x3 2 5 0
x4 3 1 5 0

Manhattan 
(L1)

Euclidean 
(L2)

Supremum 
(L ) 
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Proximity Measure for Binary Attributes

� A�contingency�table�for�binary�data

� Distance�measure�for�symmetric�binary�variables:�

� Distance�measure�for�asymmetric binary�variables:�

Object 

Object 
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Proximity Measure for Binary Attributes

� A�contingency�table�for�binary�data

� Distance measure�for�symmetric�binary�variables:�

� Distance measure�for�asymmetric�binary�variables:�

� Jaccard coefficient�(similarity measure�for�asymmetric 

binary�variables):�

� Note:�Jaccard coefficient�is�the�same�as�“coherence”:

Object 

Object 

(a concept discussed in Pattern Discovery)



51

Example: Dissimilarity between Asymmetric Binary Variables

� Gender is a symmetric attribute (not counted in)

� The remaining attributes are asymmetric binary

� Let the values Y and P be 1, and the value N be 0
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Example: Dissimilarity between Asymmetric Binary Variables

� Gender is a symmetric attribute (not counted in)

� The remaining attributes are asymmetric binary

� Let the values Y and P be 1, and the value N be 0

1 0 ∑row

1 2 0 2

0 1 3 4

∑co
l

3 3 6

Jack

Mary

1 0 ∑row

1 1 1 2

0 1 3 4

∑co
l

2 4 6

Jim

1 0 ∑row

1 1 1 2

0 2 2 4

∑col 3 3 6

Jim

Mary

Jack

Contingency table
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Example: Dissimilarity between Asymmetric Binary Variables

� Gender is a symmetric attribute (not counted in)

� The remaining attributes are asymmetric binary

� Let the values Y and P be 1, and the value N be 0

� Distance:�

1 0 ∑row

1 2 0 2

0 1 3 4

∑co
l

3 3 6

Jack

Mary

1 0 ∑row

1 1 1 2

0 1 3 4

∑co
l

2 4 6

Jim

1 0 ∑row

1 1 1 2

0 2 2 4

∑col 3 3 6

Jim

Mary

Jack

Contingency table



54

Proximity Measure for Categorical Attributes

� Categorical data, also called nominal attributes

� Example:  Color (red, yellow, blue, green), profession, etc.  

� Method 1: Simple matching

� m: # of matches, p: total # of variables

� Method 2: Use a large number of binary attributes

� Creating a new binary attribute for each of the M nominal states
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Ordinal Variables

� An ordinal variable can be discrete or continuous

� Order is important, e.g., rank (e.g., freshman, sophomore, junior, senior)

� Can be treated like interval-scaled 

� Replace an ordinal variable value by its rank:

� Map the range of each variable onto [0, 1] by replacing i-th object in 
the f-th variable by 

� Example:  freshman: 0; sophomore: 1/3; junior: 2/3; senior 1

� Then distance:  d(freshman, senior) = 1, d(junior, senior) = 1/3

� Compute the dissimilarity using methods for interval-scaled variables

1
1

if
if

f

r
z

M
−

=
−
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Attributes of Mixed Type

� A�dataset�may�contain�all�attribute�types
� Nominal,�symmetric�binary,�asymmetric�binary,�numeric,�and�ordinal

� One�may�use�a�weighted�formula�to�combine�their�effects:

� If f is�numeric:�Use�the�normalized�distance

� If f is�binary�or�nominal:���dij
(f) =�0��if�xif =�xjf;�or�dij

(f) =�1�otherwise
� If f is�ordinal
� Compute�ranks�zif (where�����������������������)
� Treat�zif as�interval-scaled

1
1

if
if

f

r
z

M
−

=
−

( ) ( )

1

( )

1

( , )

p
f f

ij ij
f

p
f

ij
f

w d
d i j

w

=

=

=
∑

∑
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Cosine Similarity of Two Vectors

� A document can be represented by a bag of terms or a long vector, with each attribute 
recording the frequency of a particular term (such as word, keyword, or phrase) in the 
document

� Other vector objects: Gene features in micro-arrays 
� Applications: Information retrieval, biologic taxonomy, gene feature mapping, etc.

� Cosine measure: If d1 and d2 are two vectors (e.g., term-frequency vectors), then

where • indicates vector dot product, ||d||: the length of vector d

1 2
1 2

1 2

( , )
|| || || ||

d dcos d d
d d

•
=

×
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Example: Calculating Cosine Similarity

� Calculating Cosine Similarity:

where • indicates vector dot product, ||d||: the length of vector d

1 2
1 2

1 2

( , )
|| || || ||

d dcos d d
d d

•
=

×
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Example: Calculating Cosine Similarity

� Calculating Cosine Similarity:

where • indicates vector dot product, ||d||: the length of vector d
� Ex: Find the similarity between documents 1 and 2.

d1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0) d2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)
� First, calculate vector dot product

d1•d2 = 5 X 3 + 0 X 0 + 3 X 2 + 0 X 0 + 2 X 1 + 0 X 1 + 0 X 1 + 2 X 1 + 0
X 0 + 0 X 1 = 25

� Then, calculate ||d1|| and ||d2||

� Calculate cosine similarity: cos(d1, d2 ) = 26/ (6.481 X 4.12) = 0.94

1 3 3 0 0 2 2 0 0 0 0 2 2 0 0 0 0 6.48|| || 5 0 0 15d + + += × + × + × × + + + + =× × × × × ×

2 3 2 2 0 0 1 1 1 1|| | 0 0 1 1 0 0 1 1 4.12| 3 0 0d + + + + + + += × + × + × × × × × × × × =

1 2
1 2

1 2

( , )
|| || || ||

d dcos d d
d d

•
=

×
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KL Divergence: Comparing Two Probability Distributions 

� The Kullback-Leibler (KL) divergence: 
Measure the difference between two 
probability distributions over the same 
variable x
� From information theory, closely related 

to relative entropy, information 
divergence, and information for 
discrimination

� DKL(p(x) || q(x)):  divergence of q(x) from 
p(x), measuring the information lost when 
q(x) is used to approximate p(x)

Ack.: Wikipedia entry: The Kullback-Leibler (KL) divergence 

Discrete form
Continuous form
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More on KL Divergence

� The KL divergence measures the expected number of extra bits required to code 
samples from p(x) (“true” distribution) when using a code based on q(x), which 
represents a theory, model, description, or approximation of p(x)

� The KL divergence is not a distance measure, not a metric: asymmetric (DKL(P‖Q) 
does not equal DKL(Q‖P))

� In applications, P typically represents the "true" distribution of data, observations, or a 
precisely calculated theoretical distribution, while Q typically represents a theory, 
model, description, or approximation of P.

� The Kullback–Leibler divergence from Q to P, denoted DKL(P‖Q), is a measure of the 
information gained when one revises one's beliefs from the prior probability 
distribution Q to the posterior probability distribution P. In other words, it is the amount 
of information lost when Q is used to approximate P.

� The KL divergence is sometimes also called the information gain achieved if P is used 
instead of Q. It is also called the relative entropy of P with respect to Q.
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Subtlety at Computing the KL Divergence

� Base on the formula, DKL(P,Q) ≥�0 and DKL(P || Q) = 0 if and only if P = Q

� How about when p = 0 or q = 0?
� limp→0 p log p = 0
� when p != 0 but q = 0, DKL(p || q) is defined as ∞, i.e., if one event e is possible 

(i.e., p(e) > 0), and the other predicts it is absolutely impossible (i.e., q(e) = 0), then 
the two distributions are absolutely different

� However, in practice, P and Q are derived from frequency distributions, not counting 
the possibility of unseen events. Thus smoothing is needed.
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Subtlety at Computing the KL Divergence

� Base on the formula, DKL(P,Q) ≥�0 and DKL(P || Q) = 0 if and only if P = Q
� How about when p = 0 or q = 0?
� limp→0 p log p = 0
� when p != 0 but q = 0, DKL(p || q) is defined as ∞, i.e., if one event e is possible 

(i.e., p(e) > 0), and the other predicts it is absolutely impossible (i.e., q(e) = 0), then 
the two distributions are absolutely different

� However, in practice, P and Q are derived from frequency distributions, not counting 
the possibility of unseen events. Thus smoothing is needed

� Example: P : (a : 3/5, b : 1/5, c : 1/5).  Q : (a : 5/9, b : 3/9, d : 1/9)
� need to introduce a small constant ϵ, e.g., ϵ = 10−3

� The sample set observed in P, SP = {a, b, c},  SQ = {a, b, d},  SU = {a, b, c, d}
� Smoothing, add missing symbols to each distribution, with probability ϵ
� P′ : (a : 3/5 − ϵ/3, b : 1/5 − ϵ/3, c : 1/5 − ϵ/3, d : ϵ)�
� Q′ : (a : 5/9 − ϵ/3, b : 3/9 − ϵ/3, c : ϵ, d : 1/9 − ϵ/3)
� DKL(P’ || Q’) can then be computed easily
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Data & Data Preprocessing

� Data Objects and Attribute Types

� Basic Statistical Descriptions of Data

� Measuring Data Similarity and Dissimilarity

� Data Preprocessing: An Overview

� Summary
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Why Preprocess the Data? -Data Quality Issues 

� Measures for data quality: A multidimensional view

� Accuracy: correct or wrong, accurate or not

� Completeness: not recorded, unavailable, …

� Consistency: some modified but some not, dangling, …

� Timeliness: timely update? 

� Believability: how trustable the data are correct?

� Interpretability: how easily the data can be understood?
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Data Quality Issues - Examples

� Data in the Real World Is Dirty: Lots of potentially incorrect data, e.g., instrument faulty, 
human or computer error, and transmission error
� Incomplete: lacking attribute values, lacking certain attributes of interest, or containing 

only aggregate data
� e.g., Occupation = “ ” (missing data)

� Noisy: containing noise, errors, or outliers
� e.g., Salary = “−10” (an error)

� Inconsistent: containing discrepancies in codes or names, e.g.,
� Age = “42”, Birthday = “03/07/2010”
� Was rating “1, 2, 3”, now rating “A, B, C”
� discrepancy between duplicate records

� Intentional (e.g., disguised missing data)
� Jan. 1 as everyone’s birthday?
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Missing (Incomplete) Values
� Reasons for missing values
� Information is not collected 

(e.g., people decline to give their age and weight)

� Attributes may not be applicable to all cases 
(e.g., annual income is not applicable to children)
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Missing (Incomplete) Values
� Reasons for missing values
� Information is not collected 

(e.g., people decline to give their age and weight)

� Attributes may not be applicable to all cases 
(e.g., annual income is not applicable to children)

How to handle them? 
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How to Handle Missing Data?

� Ignore the tuple: usually done when class label is missing (when doing classification)—
not effective when the % of missing values per attribute varies considerably

� Fill in the missing value manually: tedious + infeasible?

� Fill in it automatically with

� a global constant : e.g., “unknown”, a new class?! 

� the attribute mean

� the attribute mean for all samples belonging to the same class: smarter

� the most probable value: inference-based such as Bayesian formula or decision 
tree
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Noise
� Noise refers to modification of original values
� Examples: distortion of a person’s voice when talking on a poor phone and 

“snow” on television screen

Two Sine Waves Two Sine Waves + Noise
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How to Handle Noisy Data?
� Binning
� First sort data and partition into (equal-frequency) bins
� Then one can smooth by bin means, smooth by bin median, smooth by bin 

boundaries, etc.
� Regression
� Smooth by fitting the data into regression functions

� Clustering
� Detect and remove outliers

� Semi-supervised: Combined computer and human inspection
� Detect suspicious values and check by human (e.g., deal with possible outliers)



72

Data Cleaning as a Process
� Data discrepancy detection

� Use metadata (e.g., domain, range, dependency, distribution)
� Check field overloading 
� Check uniqueness rule, consecutive rule and null rule
� Use commercial tools
� Data scrubbing: use simple domain knowledge (e.g., postal code, spell-check) to detect 

errors and make corrections
� Data auditing: by analyzing data to discover rules and relationship to detect violators 

(e.g., correlation and clustering to find outliers)
� Data migration and integration

� Data migration tools: allow transformations to be specified
� ETL (Extraction/Transformation/Loading) tools: allow users to specify transformations 

through a graphical user interface
� Integration of the two processes

� Iterative and interactive
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Data & Data Preprocessing

� Data Objects and Attribute Types

� Basic Statistical Descriptions of Data

� Measuring Data Similarity and Dissimilarity

� Data Preprocessing: An Overview

� Summary
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Summary

� Data attribute types: nominal, binary, ordinal, interval-scaled, ratio-scaled

� Many types of data sets, e.g., numerical, text, graph, Web, image.

� Gain insight into the data by:

� Basic statistical data description: central tendency, dispersion

� Measure data similarity

� Data quality issues and preprocessing 

� Many methods have been developed but still an active area of research
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Backup slides 
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Basic Statistical Descriptions of Data
� Motivation
� To better understand the data: central tendency, variation and spread

� Data dispersion characteristics
� Median, max, min, quantiles, outliers, variance, ...
� Numerical dimensions correspond to sorted intervals
� Data dispersion: 
� Analyzed with multiple granularities of precision
� Boxplot or quantile analysis on sorted intervals
� Dispersion analysis on computed measures
� Folding measures into numerical dimensions
� Boxplot or quantile analysis on the transformed cube
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Basic Statistical Descriptions of Data
� Motivation
� To better understand the data: central tendency, variation and spread

� Data dispersion characteristics
� Median, max, min, quantiles, outliers, variance, ...
� Numerical dimensions correspond to sorted intervals
� Data dispersion: 
� Analyzed with multiple granularities of precision
� Boxplot or quantile analysis on sorted intervals
� Dispersion analysis on computed measures
� Folding measures into numerical dimensions
� Boxplot or quantile analysis on the transformed cube
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Graphic Displays of Basic Statistical Descriptions

� Boxplot: graphic display of five-number summary

� Histogram: x-axis are values, y-axis represents frequencies 

� Quantile plot:  each value xi is paired with fi indicating that approximately 100% * fi
of data are ≤ xi

� Quantile-quantile (q-q) plot: graphs the quantiles of one univariant distribution 
against the corresponding quantiles of another

� Scatter plot: each pair of values is a pair of coordinates and plotted as points in the 
plane
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Measuring the Dispersion of Data: Quartiles & Boxplots   

� :�Q1 (25th percentile),�Q3 (75th percentile)

� :�IQR�=�Q3�–Q1�

� :�min,�Q1,�median, Q3,�max

� :�Data�is�represented�with�a�box

� Q1,�Q3,�IQR:��The�ends�of�the�box�are�at�the�first�and�
third�quartiles,�i.e.,�the�height�of�the�box�is�IQR

� Median�(Q2)�is�marked�by�a�line�within�the�box�

� Whiskers:�two�lines�outside�the�box�extended�to�
Minimum�and�Maximum

� Outliers:�points�beyond�a�specified�outlier�threshold,�plotted�individually

� :�usually,�a�value�higher/lower�than�1.5�x�IQR
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Visualization of Data Dispersion: 3-D Boxplots
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Histogram Analysis

� Histogram:�Graph�display�of�tabulated�frequencies,�shown�as�bars
� Differences�between�histograms�and�bar�chart

Histogram Bar chart



85

Histogram Analysis

� Histogram:�Graph�display�of�tabulated�
frequencies,�shown�as�bars

� Differences�between�histograms�and�bar�
charts
� Histograms are used to show distributions of 

variables while bar charts are used to compare 
variables

� Histograms plot binned quantitative data while 
bar charts plot categorical data

� Bars can be reordered in bar charts but not in 
histograms

� Differs from a bar chart in that it is the area of 
the bar that denotes the value, not the height as 
in bar charts, a crucial distinction when the 
categories are not of uniform width 

Histogram

Bar chart
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Histograms Often Tell More than Boxplots

� The�two�histograms�shown�in�the�left�may�have�
the�same�boxplot�representation
� The�same�values�for:�min,�Q1,�median,�Q3,�

max

� But�they�have�rather�different�data�distributions
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Quantile Plot

Data Mining: Concepts and Techniques

� Displays all of the data (allowing the user to assess both the overall behavior and 
unusual occurrences)

� Plots quantile information

� For a data xi and data sorted in increasing order, fi indicates that approximately 
100*fi% of the data are below or equal to the value xi
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Quantile-Quantile (Q-Q) Plot
� Graphs the quantiles of one univariate distribution against the corresponding quantiles of 

another

� View: Is there a shift in going from one distribution to another?

� Example shows unit price of items sold at Branch 1 vs. Branch 2 for each quantile.  Unit prices 
of items sold at Branch 1 tend to be lower than those at Branch 2
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Scatter plot
� Provides a first look at bivariate data to see clusters of points, outliers, etc.
� Each pair of values is treated as a pair of coordinates and plotted as points in the 

plane



91

Positively and Negatively Correlated Data？
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Positively and Negatively Correlated Data

� The left half fragment is positively correlated

� The right half is negative correlated
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Chapter 2.  Getting to Know Your Data

� Data Objects and Attribute Types

� Basic Statistical Descriptions of Data

� Data Visualization

� Measuring Data Similarity and Dissimilarity

� Summary



94

Data Visualization
� Why data visualization?
� Gain insight into an information space by mapping data onto graphical primitives
� Provide qualitative overview of large data sets
� Search for patterns, trends, structure, irregularities, relationships among data
� Help find interesting regions and suitable parameters for further quantitative analysis
� Provide a visual proof of computer representations derived

� Categorization of visualization methods:
� Pixel-oriented visualization techniques
� Geometric projection visualization techniques
� Icon-based visualization techniques
� Hierarchical visualization techniques
� Visualizing complex data and relations
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Pixel-Oriented Visualization Techniques

� For�a�data�set�of�m dimensions,�create�m windows�on�the�screen,�one�for�each�dimension
� The�m dimension�values�of�a�record�are�mapped�to�m pixels�at�the�corresponding�positions�

in�the�windows
� The�colors�of�the�pixels�reflect�the�corresponding�values

(a) Income (b) Credit Limit (c) transaction volume (d) age
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Laying Out Pixels in Circle Segments

� To save space and show the connections among multiple dimensions, space 
filling is often done in a circle segment
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Geometric Projection Visualization Techniques

� Visualization of geometric transformations and projections of the data

� Methods

� Direct visualization

� Scatterplot and scatterplot matrices

� Landscapes

� Projection pursuit technique: Help users find meaningful projections of 
multidimensional data

� Prosection views

� Hyperslice

� Parallel coordinates
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Direct Data Visualization

Data Mining: Concepts and Techniques
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Scatterplot Matrices

� Matrix of scatterplots (x-y-
diagrams) of the k-dim. data 
[total of (k2/2 ─ k) scatterplots]
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100 news articles visualized as a landscape
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Landscapes

� Visualization of the data as 
perspective landscape

� The data needs to be 
transformed into a (possibly 
artificial) 2D spatial 
representation which 
preserves the characteristics 
of the data 
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Parallel Coordinates

� n equidistant axes which are parallel to 
one of the screen axes and correspond 
to the attributes 

� The axes are scaled to the [minimum, 
maximum]: range of the corresponding 
attribute

� Every data item corresponds to a 
polygonal line which intersects each of 
the axes at the point which corresponds 
to the value for the attribute



Parallel Coordinates of a Data Set
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Icon-Based Visualization Techniques

� Visualization of the data values as features of icons

� Typical visualization methods

� Chernoff Faces

� Stick Figures

� General techniques

� Shape coding: Use shape to represent certain information encoding

� Color icons: Use color icons to encode more information

� Tile bars: Use small icons to represent the relevant feature vectors in document 
retrieval
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Chernoff Faces
� A�way�to�display�variables�on�a�two-dimensional�surface,�e.g.,�let�x�be�eyebrow�slant,�

y�be�eye�size,�z�be�nose�length,�etc.�

� The�figure�shows�faces�produced�using�10�characteristics--head�eccentricity,�eye�size,�
eye�spacing,�eye�eccentricity,�pupil�size,�eyebrow�slant,�nose�size,�mouth�shape,�
mouth�size,�and�mouth�opening):�Each�assigned�one�of�10�possible�values,�generated�
using�Mathematica (S.�Dickson)

� REFERENCE:�Gonick,�L.�and�Smith,�W.�The 
Cartoon Guide to Statistics. New�York:�Harper�
Perennial,�p.�212,�1993

� Weisstein,�Eric�W.�"Chernoff Face."�From�
MathWorld--A�Wolfram�Web�Resource.�
mathworld.wolfram.com/ChernoffFace.html



Stick Figure

� A�census�data�figure�showing�
age,�income,�gender,�
education,�etc.

� A�5-piece�stick�figure�(1�body�
and�4�limbs�w.�different�
angle/length)
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Hierarchical Visualization Techniques

� Visualization of the data using a hierarchical partitioning into subspaces

� Methods

� Dimensional Stacking

� Worlds-within-Worlds

� Tree-Map 

� Cone Trees

� InfoCube



107

Dimensional Stacking

� Partitioning�of�the�n-dimensional�attribute�space�in�2-D�subspaces,�which�are�
‘stacked’�into�each�other

� Partitioning�of�the�attribute�value�ranges�into�classes.��The�important�attributes�
should�be�used�on�the�outer�levels.

� Adequate�for�data�with�ordinal�attributes�of�low�cardinality
� But,�difficult�to�display�more�than�nine�dimensions
� Important�to�map�dimensions�appropriately



Used by permission of M. Ward, Worcester Polytechnic Institute

Visualization�of�oil�mining�data�with�longitude�and�latitude�mapped�to�the�
outer�x-,�y-axes�and�ore�grade�and�depth�mapped�to�the�inner�x-,�y-axes

Dimensional Stacking
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Worlds-within-Worlds

� Assign�the�function�and�two�most�important�parameters�to�innermost�world�
� Fix�all�other�parameters�at�constant�values�- draw�other�(1�or�2�or�3�dimensional�

worlds�choosing�these�as�the�axes)
� Software�that�uses�this�paradigm

� N –vision:�Dynamic�interaction�through�
data�glove�and�stereo�displays,�
including��rotation,�scaling�(inner)�and�
translation�(inner/outer)

� Auto�Visual:�Static�interaction�by�
means�of�queries
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Tree-Map
� Screen-filling method which uses a hierarchical partitioning of the screen into regions

depending on the attribute values
� The x- and y-dimension of the screen are partitioned alternately according to the

attribute values (classes)

Schneiderman@UMD: Tree-Map of a File System Schneiderman@UMD: Tree-Map to support 
large data sets of a million items 
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InfoCube
� A 3-D visualization technique where hierarchical information is displayed as nested 

semi-transparent cubes 
� The outermost cubes correspond to the top level data, while the subnodes or the lower 

level data are represented as smaller cubes inside the outermost cubes, etc.
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Three-D Cone Trees
� 3D cone tree visualization technique works well for 

up to a thousand nodes or so

� First build a 2D circle tree that arranges its nodes in 
concentric circles centered on the root node

� Cannot avoid overlaps when projected to 2D 

� G. Robertson, J. Mackinlay, S. Card. “Cone Trees: 
Animated 3D Visualizations of Hierarchical 
Information”, ACM SIGCHI'91

� Graph from Nadeau Software Consulting website: 
Visualize a social network data set that models the 
way an infection spreads from one person to the next 
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Visualizing Complex Data and Relations: Tag Cloud

� Tag cloud: Visualizing user-generated 
tags
� The importance of tag is represented 

by font size/color
� Popularly used to visualize 

word/phrase distributions

Newsmap: Google News Stories in 2005KDD 2013 Research Paper Title Tag Cloud



114

Visualizing Complex Data and Relations: Social Networks

� Visualizing non-numerical data: social and information networks

A typical network structure A social network

organizing 
information networks


