Chapter 19

Formalized Sensitivity Analysis and Expected Value Decisions

LEARNING OBJECTIVES

- 1. Sensitivity to variation
- 2. Three estimates
- 3. Expected value
- 4. Expected value of cash flows
- 5. Decision trees

Sct 18.1 Determining Sensitivity to Parameter Variation

- A parameter is a variable or factor for which an estimate or stated value is required to conduct the analysis at hand.
- **Examples**:
 - **>** P, F, A;

 - Future costs, salvages, etc.
- Sensitivity analysis
 - Seeks to determine what parameters matter most in an economic analysis

Sensitivity

- Sensitivity is concerned with variability
- Variance associated with input parameters impact the output variable the most
- The MARR as a parameter
 - Interest rates and other interest factors tend to be more stable from project to project
 - ➤ The analyst can limit the range over which these type of parameters vary

Visualizing the Impact of Parameters

- □ Plot the PW, AW, or ROR vs. input parameters
- Steps
 - Pre-select the desired input parameters
 - Select the probable range and increment of variation for each parameter
 - > Select the measure of worth
 - Compute the results for each parameter
 - ➤ Graphically display the results by plotting the parameter vs. the measure of worth

Example

Assume a parameter of interest (show on the X-axis). Vary that parameter from some low value to an assumed high value. Plot the resultant values on the Y-axis.

Sensitivity of PW: Example 18.1

Year	Cflow		
0	* 00.000		
0	-\$80,000		
1	\$25,000		
2	\$23,000		
3	\$21,000		
4	\$19,000		
5	\$17,000		
6	\$15,000		
7	\$13,000		
8	\$11,000		
9	\$9,000		
10	\$7,000		

10	Ψ1,000		
MARR	PW(i%)		
10%	\$27,831.49		
15%	\$11,510.26		
20%	-\$962.36		
25%	-\$10,711.51		

One can better visualize the relationship on PW vs. a selected range of discount rates. As the discount rate increases from 10% to 25% the resultant PW is substantially lowered at a rather accelerated rate.

Sensitivity of Several Parameters

- For several parameters with one alternative
 - ➤ Graph the percentage change for each parameter vs. the measure of worth
 - ➤ One will plot the percent deviation from the most likely estimate on the x-axis
- This type of plot results in what is termed a spider plot

Spider Plot: Figure 18-3

Sct 18.2 Formalized Sensitivity Analysis Using Three Estimates

- Given an input parameter of interest
 - ➤ Provide three estimates for that parameter
 - A pessimistic estimate, P
 - A most likely estimate, ML
 - An optimistic estimate, O
- Note: This approach comes from PERT/CPM analysis and is based upon the beta distribution

Three Estimates: Example 18.3

- ☐ Three alternatives (A, B, C) with 4 Parameters
 - > First cost, salvage value, AOC, and life
 - > For each parameter we formulate

Parameter

P pessimistic estimate

ML most likely estimate

O optimistic estimate

■ See Table 18.2 and observe the dominance by alternative B (cost problem so lower cost is preferred)

Example 18.3 -- Setup

Strategy	First Cost	SV	AOC	Life
Strategy	That Cost	31	AUC	LIIE
Alt A.				
Р	-20,000	0	-11,000	3
ML	-20,000	0	-9,000	5
0	-20,000	0	-5,000	8
Alt. B				
Р	-15,000	500	-4,000	2
ML	-15,000	1,000	-3,500	4
0	-15,000	2,000	-2,000	7
Alt. C				
Р	-30,000	3,000	-8,000	3
ML	-30,000	3,000	-7,000	7
0	-30,000	3,000	-3,500	9

Plot for Example 18.3

Observe the dominance by alternative B over A and C. A plot like this clearly shows the relationships.

Sct 18.3 Economic Variability and The Expected Value

- Expected Value
 - Long-run average based upon occurrence and probability of occurrence
- Definition of Expected Value

$$E(X) = \sum_{i=1}^{m} X_i P(X_i)$$

 X_i = value of the variable X for i from 1 to m different values

 $P(X_i)$ = probability that a specific value of X will occur

Subject to:

$$\sum_{i=1}^{m} P(X_i) = 1.0$$

See Example 18.4

Sct 18.4 Expected Value Computations for Alternatives

- Two applications for use of Expected Value (EV)
 - 1. Prepare information for a more complete analysis of an economic analysis
 - 2. To evaluate expected utility of a fully formulated alternative
- Examples 18.5 and 18.6 illustrate this concept

Sect 18.5 Staged Evaluation of Alternatives Using Decision Trees

- Some problems involve staged decisions that occur in sequence
- Define the staged decisions and assign the respective probabilities to the various defined outcomes
- Useful tool for modeling such a process involves Decision Trees
- ☐ The objective: Make Risk More Explicit

Decision Tree Attributes

- More than one stage of alternative selection
- Selection of an alternative at one stage that leads to another stage
- Expected results from a decision at each stage
- Probability estimates for each outcome
- Estimates of economic value (cost or revenue) for each outcome
- Measure of worth as the selection criterion, e.g. E(PW)

Solving Decision Trees

- Once designed, Decision Tree is solved by folding back the tree
- □ First, define all of the decision and the decision points
- Define the various outcomes given the decision
- Assign the probabilities to the mutually exclusive outcomes emanating from each decision node
- See Example 18-8 for a comprehensive analysis illustrating the decision tree approach

Important Points for Decision Trees

- Estimate the probabilities associated with each outcome
- □ These probabilities must sum to 1 for each set of outcomes (branches) that are possible from a given decision
- □ Required economic information for each decision alternative are investments and estimated cash flows

Starting Out

- Assuming the tree logic has been defined...
- Start at the top right of the tree
 - Determine the PW for each outcome branch applying the time value of money
 - Calculate the expected value for each decision alternative as:

$$E(decision) = \sum (outcome \text{ estimate})P(outcome)$$

- ➤ At each decision node, select the best *E*(decision) value
- Continue moving to the left of the tree back to the root in order to select the best alternative
- > Trace the best decision path back through the tree

Example 18.8

Chapter Summary

- ☐ The emphasis is on sensitivity to variation in one or more parameters using a specific measure of worth.
- When two alternatives are compared compute and graph the measure of worth for different values of the parameter to determine when each alternative is better.
- When several parameters are expected to vary over a predictable range, the measure of worth is plotted and calculated using three estimates for a parameter:
 - > Most likely
 - > Pessimistic
 - > Optimistic

Summary - continued

□ The combination of parameter and probability estimates results in the expected value relations

$$E(X) = \sum (X)P(X)$$

- □ This expression is also used to calculate E(revenue), E(cost), E(cash flow) E(PW), and E(i) for the entire cash flow sequence of an alternative.
- E9X0 is a measure of central tendency

Summary - continued

- Decision trees are used to make a series of alternative selections.
- ☐ This is a way to explicitly take risk into account.
- It is necessary to make several types of estimates for a decision tree:
 - Outcomes for each possible decision, cash flows, and probabilities.
 - Expected value computations are coupled with those for the measure of worth to "solve" the tree structure.
 - Assist is identifying the best alternative stage-by-stage.

Chapter 18 End of Set