Chapter 3

Use of Multiple Factors

LEARNING OBJECTIVES

- 1. Dealing with shifted series
- 2. Shifted series and single amounts
- 3. Shifted gradients
- 4. Decreasing gradients
- 5. Spreadsheet applications

Sct 3.1 Calculations for Uniform Series that are Shifted

- □ For a *shifted* series the present worth point in time is NOT t = 0.
- It is shifted either to the left of "0" or to the right of "0".
- □ Remember, when dealing with a uniform series:
 - ➤ The PW point is always one period to the left of the first series value, no matter where the series falls on the time line.

Shifted Uniform Series

Consider:

P of this series is at $t = 2 (P_2)$ or F_2

$$P_2 = -500(P/A,i\%,4)$$

or could refer to as F₂

$$P_0 = P_2(P/F,i\%,2)$$

or could be $F_2(P/F,i\%,2)$

Example of Shifted Series P and F

- F for this series is at t = 6; $F_6 = A(F/A,i\%,4)$
- P₀ for this series at t = 0 is

$$P_0 = -500(P/A,i\%,4)(P/F,i\%,2)$$

Using Spreadsheet Functions

■ Net Present Value for a shifted series without a base amount. Excel function is:

=NPV(i%,second_cell:last_cell) + first_cell

■ To determine an equivalent A over all n years for a shifted series, use

=PMT(i%,n,cell_with_P)

Embedding Financial Functions

□ Often, an Excel function can be embedded within another function. In case on previous slide, embed NPV function to find cell_with_P in PMT function.

=PMT(i%,n,NPV(i%,second_cell:last_cell) + first_cell)

■ See Example 3.2.

Sct 3.2 Calculations Involving Uniform-Series and Randomly-Placed Single Amounts

- □ Draw and correctly label the cash flow diagram that defines the problem
- Locate the present and future worth points for each series
- Write the time value of money equivalence relationships
- Substitute the correct factor values and solve

Series with additional single cash flows

It is common to find cash flows that are combinations of series and single, randomly-placed cash flows

For present worth, P

- Solve for the series present worth values then move to t = 0
- Then solve for the P at t = 0 for the single cash flows using the P/F factor for each cash flow
- Add the equivalent P values at t = 0

For future worth, F

- Convert all cash flows to an equivalent F using the F/A and F/P factors in year t = n
- Add the equivalent F values at t = n

Sct 3.3 Calculation for Shifted Gradients

- □ The Present Worth of an arithmetic gradient (linear gradient) is always located:
 - One period to the left of the first cash flow in the series ("0" gradient cash flow) or,
 - Two periods to the left of the "1G" cash flow

Shifted Gradient

- □ A Shifted Gradient
 has its present value
 point removed from
 time t = 0
- ☐ A Conventional
 Gradient has its
 present worth point at
 t = 0

Example of a Conventional Gradient

Consider:

This represents a conventional gradient

The present worth point is t = 0

Example of a Shifted Gradient

This represents a shifted gradient

Shifted Gradient: Numerical Example

Cash flows start at t = 3

\$500/year increasing by \$100/year through year 10; i = 10%; Find P at t = 0

Shifted Gradient: Numerical Example

PW of the base series

$$P_2 = 500(P/A,10\%,8) = 500(5.3349) = $2667.45$$

 $P_0 = 2667.45(P/F,10\%,2) = 2667.45(0.8264)$
 $= 2204.38

Shifted Gradient: Numerical Example

PW for the gradient component

$$P_2 = $100(P/G,10\%,8) = $100(16.0287) = $1,602.87$$
 $P_0 = $1,602.87(P/F,10\%,2) = $1,602.87(0.8264)$
 $= $1,324.61$

Example: Total Present Worth Value

For the base series

$$P_0 = $2204.38$$

For the arithmetic gradient

$$P_0 = $1,324.61$$

Total present worth

To Find A for a Shifted Gradient

- 1) Find the present worth of the gradient at actual time 0
- 2) Then apply the (A/P,i,n) factor to convert the present worth to an equivalent annuity (series)

Shifted Geometric Gradient

Conventional Geometric Gradient

Present worth point is at t = 0 for a conventional geometric gradient

Shifted Geometric Gradient

Shifted Geometric Gradient

Present worth point is at t = 2 for this example

Shifted Geometric Gradient Example

i = 10%/year

Geometric Gradient Example

i = 10%/year

Sct 3.4 Shifted Decreasing Arithmetic Gradients

Given the following shifted, decreasing gradient

PW for Shifted Decreasing Gradient

First, find PW at t = 2

Shifted Decreasing Gradient Example

Second, find the PW at t = 0

Shifted Decreasing Gradient Example

$$F_3 = $1,000; G = -$100$$

i = 10%/year

Base amount = \$1,000

Sct 3.5 Spreadsheet Applications

NPV Function in Excel

- NPV function is a basic financial function
- Requires that <u>all cells</u> in the defined time range have an entry
- The entry can be \$0...but not blank! A "0" value must be entered
- Incorrect results can be generated if one or more cells in the defined range is left blank

Summary

- Chapter summarizes cash flow patterns that are shifted away from time t = 0
- Illustrations of using multiple factors to perform PW or FW analysis for shifted cash flows
- Illustrations of shifted arithmetic and geometric gradients
- Illustrations of the power of Excel financial functions

CHAPTER 3

End of Slide Set