Fungal Nutrition

Prepared by Dr. Ghadeer Omar

Experiment to show physiological activities along the hyphal length

Culturing of Asperegillus niger as sandwiched between two perforated polycarbonate membranes placed on starch medium

They used

- 1.N-acetyl (C14) glycosamine
- 2. Sulfate (S35)
- 3. immunogold labeling autoradiography monitoring of
- 1. chitin synthesis site.
- 2. new protein synthesis site
- 3. glucoamylase secretion
- 4. zone of starch-degredation activity by IKI stain

Protein secretion at growing hyphal tip of Asperegillus niger.

Protein secretion has been exploited for production of various enzymes on an industrial scale

- 1. Glucoamylase for glucose syrups
- 2. Xylanase for paper industries..
- 3. Proteases for cheese manufacturing.

Enzymes Secretion

- •The hypha drives a current of protons through itself with an inward flow of protons from the tip and their efflux from the distal region.
- •The spatial separation of H+-pump and nutrient transport suggest that hyphae not only cytological but also physiologically polarized.
- •Hypha secretes a variety of enzymes which break down the polymeric constituents of substratum into simple forms by means of extracellular secreted enzymes.
- •The entry of protons is coupled to the active cotransport (symport) of ions, sugars and amino acid.
- •The rapid internalization of solubilized nutrients is the basis of the absorptive mode of nutrient realization of solubilized nutrients is

Some of the major carbon substrates

- •Fungi exploit a wide range of organic nutrient sources.
- •But in all cases they depend on up taken of simple soluble nutrients which can diffuse through wall and enter fungi via specific transport proteins e.g. Monosaccharides, Amino acids & Small peptides of 2-3 amino acids.
- •Even disaccharides e.g. Sucrose, Cellobiose & Lactose have to be degraded into monosaccharides.
- •Larger molecular size substrates have to be broken down by extracellular enzymes (**Depolymerases**) which are secreted by fungus.

Diauxic growth curve (Biphasic growth curve Growth of *Saccharomyces cerevisiae* on lactose liq

• Virtually all yeasts can synthesize sulfur amino acids from sulphate which is the most oxidized forms of inorganic sulphur

Microelemnts

Trace elemnts required in micromolar range Mn, Ca, Cu, Fe, Zn, Ni, Co & Mo.

Macroelements

required in millimolar concentrations K & Mg

at concentrations greater than $100 \mu M$

Ag, As, Ba, Cs, Cd, Hg, Li & Pb

Conclusions

- Oligotrophic: grow on very limited nutrient supply, even scavenging minute quantities of volatile organic compounds from atmosphere.
- Chemo-organotrophic: need fixed forms of organic compounds for their carbon & energy.
- Non-diazotrophic: can not fix nitrogen, so have to be supplied by nitrogen containing compounds.
- Aerobic and facultative anaerobic.
- Deploymerase enzymes:
 - Wall-bound enzymes.
 - Extracellular enzymes.
- Protein transport carriers:
 - Constitutive transport proteins.
 - Induced transport proteins.

Thanks

