Department of Civil and Architectural Engineering			
Course Name	Transportation Systems II (10601461)		
Total Credits: 2	Contact Credits: 2 Theoretical Hours per Week		
Type of Course: Major compulsory	Categorization of Credit: Engineering Topic		
Prerequisites	Transportation Systems I (10601360)		

Course Contents

Traffic engineering studies, fundamentals of traffic flow, intersection design, capacity and level of service analyses for highway facilities, highway operation systems, traffic control devices, traffic signal design, and principles of planning for transportation systems.

	Course Learning Outcomes (CLO's)	Student Outcomes (SO's)	Performance Indicators (PI's)	Contribution
i	Analyze and interpret traffic engineering studies data (speed, volume, travel time, and parking studies), and use engineering judgment to draw conclusions.	6	6.2	20%
ii	Identify traffic engineering problems (traffic flow, intersection control, capacity, and level of service) and use applicable theories and concepts.	1	1.1	15%
ii	i Apply principles of engineering, science, and math to solve and evaluate traffic engineering problems (such as intersection controls, capacity, and level of service)		1.3	25%
iv	Identify traffic engineering design concepts and requirements related to intersections and traffic control.	2	2.1	10%
V	Produce traffic designs of intersections and traffic control considering societal and economic factors.	2	2.2	30%

Textbook and/or References

1. Traffic and Highway Engineering, 5th edition. By: N. Garber, CI-Engineering Publisher, 2019.

- 2. Principles of Highway Engineering and Traffic Analysis. 6th edition. By: F. Mannering and S. Washburn, 2017.
- 3. Traffic Engineering. 5th edition. By: R. Roess, E. Prassas, and W. McShane. 2018.
- 4. Highway Capacity Manual. Transportation Research Board, 2014.
- 5. Manual of Transportation Engineering Studies. By: Institute of Transportation Engineers, 1994.

Assessment Criteria	Percent (%)
Mid-Term Exams	20 %
Quizzes/Assignments/Forum	20 %
Project	20 %
Final Exam	40 %

Course Plan	
Week	Торіс
1	1.1 Introduction to Traffic Engineering and systems
2	2.1 Spot Speed Studies2.2 Volume Studies

3	2.3 Travel Time and Delay Studies
	2.4 Parking Studies
	2.5 Inventory Studies
4	3.1 Traffic Flow Elements
	3.2 Flow-Density Relationships
5	4.1 Types and Design of At Grade Intersections
6	4.2 Geometric Design Principles of At-Grade Intersections
7	5.1 Concepts of Traffic Control
	5.2 Conflict Points at Intersections
8	5.3 Types of Intersection Control
9	5.4 Signal Timing (1)
10	5.4 Signal Timing (2)
11	6.1 Capacity and Level of Service Analysis of Multi-Lane Highways
	6.2 Computer Applications
12	7.1 Capacity at Signalized Intersections
13	7.2 Level of Service at Signalized Intersections (1)
14	7.3 Level of Service at Signalized Intersections (2)
15	8.1 Basic Elements of Transportation Planning
	8.2 Urban Transportation Planning
	8.3 Forecasting Travel (Trip Generation, Trip Distribution, Mode Choice, and Traffic
	Assignment)
16	Final Exam