
Retrieving Query Results
The preceding section of this chapter demon-

strates how to execute simple queries on a

MySQL database. A simple query, as I’m call-

ing it, could be defined as one that begins

with INSERT, UPDATE, DELETE, or ALTER. What

all four of these have in common is that they

return no data, just an indication of their

success. Conversely, a SELECT query generates

information (i.e., it will return rows of

records) that has to be handled by other

PHP functions.

The primary tool for handling SELECT query

results is mysqli_fetch_array(), which uses

the query result variable (that I’ve been call-

ing $r) and returns one row of data at a time,

in an array format. You’ll want to use this

function within a loop that will continue to

access every returned row as long as there

are more to be read. The basic construction

for reading every record from a query is

while ($row = mysqli_fetch_array($r)) {

// Do something with $row.

}

You will almost always want to use a while loop

to fetch the results from a SELECT query.

The mysqli_fetch_array() function takes

an optional second parameter specifying

what type of array is returned: associative,

indexed, or both. An associative array allows

you to refer to column values by name,

whereas an indexed array requires you to use

only numbers (starting at 0 for the first col-

umn returned). Each parameter is defined by

a constant listed in Table 8.1. The MYSQLI_NUM
setting is marginally faster (and uses less

memory) than the other options. Conversely,

MYSQLI_ASSOC is more overt ($row['column']
rather than $row[3]) and may continue to

work even if the query changes.

An optional step you can take when using

mysqli_fetch_array() would be to free up

the query result resources once you are done

using them:

mysqli_free_result ($r);

This line removes the overhead (memory)

taken by $r. It’s an optional step, since

PHP will automatically free up the resources

at the end of a script, but—like using

mysqli_close()—it does make for good pro-

gramming form.

To demonstrate how to handle results

returned by a query, let’s create a script for

viewing all of the currently registered users.

239

Using PHP with MySQL

R
e

t
r

i
e

v
i
n

g
 Q

u
e

r
y

 R
e

s
u

l
t

s

C o n s t a n t E x a m p l e

MYSQLI_ASSOC $row['column']

MYSQLI_NUM $row[0]

MYSQLI_BOTH $row[0] or $row['column']

mysqli_fetch_array() Constants

Table 8.1 Adding one of these constants as an
optional parameter to the mysqli_fetch_array()
function dictates how you can access the values
returned. The default setting of the function is
MYSQLI_BOTH.

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight



To retrieve query results:

1. Create a new PHP document in your text

editor or IDE (Script 8.4).

<?php # Script 8.4 - view_users.php

$page_title = 'View the Current Users';

include ('includes/header.html');

echo '<h1>Registered Users</h1>';

2. Connect to and query the database.

require_once 
➝ ('../mysqli_connect.php');

$q = "SELECT CONCAT(last_name, ', ', 
➝ first_name) AS name, 
➝ DATE_FORMAT(registration_date, '%M 
➝ %d, %Y') AS dr FROM users ORDER BY 
➝ registration_date ASC";

$r = @mysqli_query ($dbc, $q);

The query here will return two columns

(Figure 8.12): the users’ names (format-

ted as Last Name, First Name) and the

date they registered (formatted as Month

DD, YYYY). Because both columns are

formatted using MySQL functions, aliases

are given to the returned results (name

and dr, accordingly). See Chapter 5 if you

are confused by any of this syntax.

3. Display the query results.

if ($r) {

echo '<table align="center" 
➝ cellspacing="3"
cellpadding="3" 
➝ width="75%">

<tr><td 
➝ align="left"><b>Name</b></td><
td 
➝ align="left"><b>Date 
➝ Registered</b></td></tr>

';

240

Chapter 8

R
e

t
r

i
e

v
i
n

g
 Q

u
e

r
y

 R
e

s
u

l
t

s

1 <?php # Script 8.4 - view_users.php

2 // This script retrieves all the records
from the users table.

3

4 $page_title = 'View the Current Users';

5 include ('includes/header.html');

6

7 // Page header:

8 echo '<h1>Registered Users</h1>';

9

10 require_once ('../mysqli_connect.php'); //
Connect to the db.

11

12 // Make the query:

13 $q = "SELECT CONCAT(last_name, ', ',
first_name) AS name,
DATE_FORMAT(registration_date, '%M %d,
%Y') AS dr FROM users ORDER BY
registration_date ASC";

14 $r = @mysqli_query ($dbc, $q); // Run the
query.

15

16 if ($r) { // If it ran OK, display the
records.

17

18 // Table header.

19 echo '<table align="center"
cellspacing="3" cellpadding="3"
width="75%">

20 <tr><td align="left"><b>Name</b></td><td
align="left"><b>Date
Registered</b></td></tr>

21 ';

22

23 // Fetch and print all the records:

24 while ($row = mysqli_fetch_array($r,
MYSQLI_ASSOC)) {

Script 8.4 The view_users.php script runs a static query
on the database and prints all of the returned rows.

(script continues on next page)

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight



while ($row = 
➝ mysqli_fetch_array($r, 
➝ MYSQLI_ASSOC)) {

echo '<tr><td align="left">' . 
➝ $row['name'] . '</td><td 
➝ align="left">' . $row['dr'] . 
➝ '</td></tr>

';

}

echo '</table>';

To display the results, make a table and

a header row in HTML. Then loop through

the results using mysqli_fetch_array()
and print each fetched row. Finally, close

the table.

Notice that within the while loop, the

code refers to each returned value using

the proper alias: $row['name'] and

$row['dr']. The script could not refer

to $row['first_name'] or $row['date_
registered'] because no such field

name was returned (see Figure 8.12).

241

Using PHP with MySQL

R
e

t
r

i
e

v
i
n

g
 Q

u
e

r
y

 R
e

s
u

l
t

s

25 echo '<tr><td align="left">' .
$row['name'] . '</td><td align="left">'
. $row['dr'] . '</td></tr>

26 ';

27 }

28

29 echo '</table>'; // Close the table.

30

31 mysqli_free_result ($r); // Free up the
resources.

32

33 } else { // If it did not run OK.

34

35 // Public message:

36 echo '<p class="error">The current users
could not be retrieved. We apologize for
any inconvenience.</p>';

37

38 // Debugging message:

39 echo '<p>' . mysqli_error($dbc) . '<br
/><br />Query: ' . $q . '</p>';

40

41 } // End of if ($r) IF.

42

43 mysqli_close($dbc); // Close the database
connection.

44

45 include ('includes/footer.html');

46 ?>

Script 8.4 continued

Figure 8.12 The query results as run
within the mysql client.

continues on next page



4. Free up the query resources.

mysqli_free_result ($r);

Again, this is an optional step but a good

one to take.

5. Complete the main conditional.

} else {

echo '<p class="error">The 
➝ current users could not be 
➝ retrieved. We apologize for
any 
➝ inconvenience.</p>';

echo '<p>' . mysqli_error($dbc)
. 
➝ '<br /><br />Query: ' . $q . 
➝ '</p>';

}

As in the register.php example, there

are two kinds of error messages here. The

first is a generic message, the type you’d

show in a live site. The second is much

more detailed, printing both the MySQL

error and the query, both being critical

for debugging purposes.

6. Close the database connection and finish

the page.

mysqli_close($dbc);

include ('includes/footer.html');

?>

7. Save the file as view_users.php, place it

in your Web directory, and test it in your

browser (Figure 8.13).

✔ Tips

■ The function mysqli_fetch_row()is the

equivalent of mysqli_fetch_array ($r,
MYSQLI_NUM);

■ The function mysqli_fetch_assoc() is

the equivalent of mysqli_fetch_array
($r, MYSQLI_ASSOC);

■ As with any associative array, when you

retrieve records from the database, you

must refer to the columns exactly as they

are defined in the database. This is to say

that the keys are case-sensitive.

■ If you are in a situation where you need

to run a second query inside of your

while loop, be certain to use different

variable names for that query. For exam-

ple, the inner query would use $r2 and

$row2 instead of $r and $row. If you don’t

do this, you’ll encounter logical errors.

■ I frequently see beginning PHP develop-

ers muddle the process of fetching query

results. Remember that you must exe-

cute the query using mysqli_query(),

and then use mysqli_fetch_array() to

retrieve a single row of information. If

you have multiple rows to retrieve, use

a while loop.

242

Chapter 8

R
e

t
r

i
e

v
i
n

g
 Q

u
e

r
y

 R
e

s
u

l
t

s

Figure 8.13 All of the user records are
retrieved from the database and displayed
in the Web browser.

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight



You can accomplish the first objective by

securing the MySQL connection script outside

of the Web directory so that it is never view-

able through a Web browser (see Figure 8.3).

I discuss this in some detail earlier in the

chapter. The second objective is attained by

not letting the user see PHP’s error messages

or your queries (in these scripts, that infor-

mation is printed out for your debugging

purposes; you’d never want to do that on

a live site).

For the third objective, there are numerous

steps you can and should take, all based

upon the premise of never trusting user-

supplied data. First, validate that some value

has been submitted, or that it is of the prop-

er type (number, string, etc.). Second, use

regular expressions to make sure that sub-

mitted data matches what you would expect

it to be (this topic is covered in Chapter 13,

“Perl-Compatible Regular Expressions”).

Third, you can typecast some values to

guarantee that they’re numbers (discussed

in Chapter 12, “Security Methods”). A

fourth recommendation is to run user-

submitted data through the mysqli_real_
escape_string() function. This function

cleans data by escaping what could be prob-

lematic characters. It’s used like so:

$clean = mysqli_real_escape_string($dbc, 
➝ data);

For security purposes, mysqli_real_escape_
string() should be used on every text input

in a form. To demonstrate this, let’s revamp

register.php (Script 8.3).

243

Using PHP with MySQL

E
n

s
u

r
i
n

g
 S

e
c

u
r

e
 S

Q
L

Ensuring Secure SQL
Database security with respect to PHP

comes down to three broad issues:

1. Protecting the MySQL access information

2. Not revealing too much about the database

3. Being cautious when running queries,

particularly those involving user-

submitted data

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight



To use mysqli_real_escape_string():

1. Open register.php (Script 8.3) in your

text editor or IDE.

2. Move the inclusion of the mysqli_
connect.php file (line 46 in Script 8.3)

to just after the main conditional

(Script 8.5).

Because the mysqli_real_escape_
string() function requires a database

connection, the mysqli_connect.php
script must be required earlier in the script.

244

Chapter 8

E
n

s
u

r
i
n

g
 S

e
c

u
r

e
 S

Q
L

1 <?php # Script 8.5 - register.php #2

2

3 $page_title = ‘Register’;

4 include (‘includes/header.html’);

5

6 // Check if the form has been submitted:

7 if (isset($_POST[‘submitted’])) {

8

9 require_once (‘../mysqli_connect.php’);

// Connect to the db.

10

11 $errors = array(); // Initialize an
error array.

12

13 // Check for a first name:

14 if (empty($_POST[‘first_name’])) {

15 $errors[] = ‘You forgot to enter your
first name.’;

16 } else {

17 $fn = mysqli_real_escape_string($dbc,

trim($_POST[‘first_name’]));

18 }

19

20 // Check for a last name:

21 if (empty($_POST[‘last_name’])) {

22 $errors[] = ‘You forgot to enter your
last name.’;

23 } else {

24 $ln = mysqli_real_escape_string($dbc,

trim($_POST[‘last_name’]));

25 }

26

27 // Check for an email address:

28 if (empty($_POST[‘email’])) {

29 $errors[] = ‘You forgot to enter your
email address.’;

30 } else {

31 $e = mysqli_real_escape_string($dbc,

trim($_POST[‘email’]));

Script 8.5 The register.php script now uses the
mysqli_real_escape_string() function to clean the
submitted data.

(script continues on next page)

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight



3. Change the validation routines to use the

mysqli_real_escape_string() function,

replacing each occurrence of $var =
trim($_POST['var']) with $var =
mysqli_real_escape_string($dbc,
trim($_POST['var'])).

$fn = mysqli_real_escape_string($dbc, 
➝ trim($_POST['first_name']));

$ln = mysqli_real_escape_string($dbc, 
➝ trim($_POST['last_name']));

$e = mysqli_real_escape_string($dbc, 
➝ trim($_POST['email']));

$p = mysqli_real_escape_string($dbc, 
➝ trim($_POST['pass1']));

Instead of just assigning the submitted

value to each variable ($fn, $ln, etc.),

the values will be run through the

mysqli_real_escape_string() function

first. The trim() function is still used to

get rid of any unnecessary spaces.

245

Using PHP with MySQL

E
n

s
u

r
i
n

g
 S

e
c

u
r

e
 S

Q
L

continues on next page

32 }

33

34 // Check for a password and match
against the confirmed password:

35 if (!empty($_POST[‘pass1’])) {

36 if ($_POST[‘pass1’] !=
$_POST[‘pass2’]) {

37 $errors[] = ‘Your password did not
match the confirmed password.’;

38 } else {

39 $p = mysqli_real_escape_string($dbc,

trim($_POST[‘pass1’]));

40 }

41 } else {

42 $errors[] = ‘You forgot to enter your
password.’;

43 }

44

45 if (empty($errors)) { // If everything’s
OK.

46

47 // Register the user in the
database...

48

49 // Make the query:

50 $q = “INSERT INTO users (first_name,
last_name, email, pass,
registration_date) VALUES (‘$fn’,
‘$ln’, ‘$e’, SHA1(‘$p’), NOW() )”;   

51 $r = @mysqli_query ($dbc, $q); // Run
the query.

52 if ($r) { // If it ran OK.

53

54 // Print a message:

55 echo ‘<h1>Thank you!</h1>

56 <p>You are now registered. In Chapter
11 you will actually be able to log
in!</p><p><br /></p>’;  

57

58 } else { // If it did not run OK.

59

60 // Public message:

(script continues on next page)

Script 8.5 continued



4. Add a second call to mysqli_close()
before the end of the main conditional.

mysqli_close($dbc);

To be consistent, since the database con-

nection is opened as the first step of the

main conditional, it should be closed as

the last step of this same conditional. It

still needs to be closed before including

the footer and terminating the script

(lines 72 and 73), though.

246

Chapter 8

E
n

s
u

r
i
n

g
 S

e
c

u
r

e
 S

Q
L

61 echo ‘<h1>System Error</h1>

62 <p class=”error”>You could not be
registered due to a system error.
We apologize for any
inconvenience.</p>’; 

63

64 // Debugging message:

65 echo ‘<p>’ . mysqli_error($dbc) .
‘<br /><br />Query: ‘ . $q .
‘</p>’;

66

67 } // End of if ($r) IF.

68

69 mysqli_close($dbc); // Close the
database connection.

70

71 // Include the footer and quit the
script:

72 include (‘includes/footer.html’); 

73 exit();

74

75 } else { // Report the errors.

76

77 echo ‘<h1>Error!</h1>

78 <p class=”error”>The following
error(s) occurred:<br />’;

79 foreach ($errors as $msg) { // Print
each error.

80 echo “ - $msg<br />\n”;

81 }

82 echo ‘</p><p>Please try
again.</p><p><br /></p>’;

83

84 } // End of if (empty($errors)) IF.

85

86 mysqli_close($dbc); // Close the

database connection.

87

88 } // End of the main Submit conditional.

89 ?>

(script continues on next page)

Script 8.5 continued



247

Using PHP with MySQL

E
n

s
u

r
i
n

g
 S

e
c

u
r

e
 S

Q
L

5. Save the file as register.php, place it in

your Web directory, and test it in your

Web browser (Figures 8.14 and 8.15).

continues on next page

90 <h1>Register</h1>

91 <form action=”register.php” method=”post”>

92 <p>First Name: <input type=”text”
name=”first_name” size=”15”
maxlength=”20” value=”<?php if
(isset($_POST[‘first_name’])) echo
$_POST[‘first_name’]; ?>” /></p>

93 <p>Last Name: <input type=”text”
name=”last_name” size=”15”
maxlength=”40” value=”<?php if
(isset($_POST[‘last_name’])) echo
$_POST[‘last_name’]; ?>” /></p>

94 <p>Email Address: <input type=”text”
name=”email” size=”20” maxlength=”80”
value=”<?php if (isset($_POST[‘email’]))
echo $_POST[‘email’]; ?>”  /> </p>

95 <p>Password: <input type=”password”
name=”pass1” size=”10” maxlength=”20”
/></p>

96 <p>Confirm Password: <input
type=”password” name=”pass2” size=”10”
maxlength=”20” /></p>

97 <p><input type=”submit” name=”submit”
value=”Register” /></p>

98 <input type=”hidden” name=”submitted”
value=”TRUE” />

99 </form>

100 <?php

101 include (‘includes/footer.html’);

102 ?>

Script 8.5 continued

Figure 8.14 Values
with apostrophes in
them, like a person’s
last name, will no
longer break the
INSERT query,
thanks to the
mysqli_real_
escape_string()
function.

Figure 8.15 Now the registration process will handle
problematic characters and be more secure.



✔ Tips

■ The mysqli_real_escape_string() func-

tion escapes a string in accordance with

the language being used, which is an added

advantage over alternative solutions.

■ If you see results like those in Figure 8.16,

it means that the mysqli_real_escape_
string() function cannot access the

database (because it has no connection,

like $dbc).

248

Chapter 8

E
n

s
u

r
i
n

g
 S

e
c

u
r

e
 S

Q
L

Figure 8.16 Since the mysqli_real_escape_string() requires a database connection, using
it without that connection (e.g., before including the connection script) can lead to other errors.

Modifying register.php

The mysqli_num_rows() function could be applied to register.php to prevent someone from

registering with the same email address multiple times. Although the UNIQUE index on that

column in the database will prevent that from happening, such attempts will create a MySQL

error. To prevent this using PHP, run a SELECT query to confirm that the email address isn’t

currently registered. That query would be simply

SELECT user_id FROM users WHERE email='$e'

You would run this query (using the mysqli_query() function) and then call mysqli_num_rows().

If mysqli_num_rows() returns 0, you know that the email address hasn’t already been regis-

tered and it’s safe to run the INSERT.

■ If Magic Quotes is enabled on your server

(which means you’re using a version of

PHP prior to 6), you’ll need to remove

any slashes added by Magic Quotes, prior

to using the mysqli_real_escape_string()
function. The code (cumbersome as it is)

would look like:

$fn = mysqli_real_escape_string 
➝ ($dbc, trim (stripslashes 
➝ ($_POST['first_name'])));

If you don’t use stripslashes() and

Magic Quotes is enabled, the form values

will be doubly escaped.

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight



Counting Returned Records
The next logical function to discuss is

mysqli_num_rows(). This function returns

the number of rows retrieved by a SELECT
query. It takes one argument, the query

result variable:

$num = mysqli_num_rows($r);

Although simple in purpose, this function is

very useful. It’s necessary if you want to pag-

inate your query results (an example of this

can be found in the next chapter). It’s also a

good idea to use this function before you

attempt to fetch any results using a while
loop (because there’s no need to fetch the

results if there aren’t any, and attempting to

do so may cause errors). In this next sequence

of steps, let’s modify view_users.php to list

the total number of registered users. For

another example of how you might use

mysqli_num_rows(), see the sidebar.

To modify view_users.php:

1. Open view_users.php (refer to Script 8.4)

in your text editor or IDE.

2. Before the if ($r) conditional, add this

line (Script 8.6)

$num = mysqli_num_rows ($r);

This line will assign the number of rows

returned by the query to the $num variable.

3. Change the original $r conditional to

if ($num > 0) {

The conditional as it was written before

was based upon whether the query did or

did not successfully run, not whether or

not any records were returned. Now it

will be more accurate.

249

Using PHP with MySQL

C
o

u
n

t
i
n

g
 R

e
t

u
r

n
e

d
 R

e
c

o
r

d
s

1 <?php # Script 8.6 - view_users.php #2

2 // This script retrieves all the records
from the users table.

3

4 $page_title = 'View the Current Users';

5 include ('includes/header.html');

6

7 // Page header:

8 echo '<h1>Registered Users</h1>';

9

10 require_once ('../mysqli_connect.php'); //
Connect to the db.

11

12 // Make the query:

13 $q = "SELECT CONCAT(last_name, ', ',
first_name) AS name,
DATE_FORMAT(registration_date, '%M %d,
%Y') AS dr FROM users ORDER BY
registration_date ASC";

14 $r = @mysqli_query ($dbc, $q); // Run the
query.

15

16 // Count the number of returned rows:

17 $num = mysqli_num_rows($r);

18

19 if ($num > 0) { // If it ran OK, display

the records.

20

21 // Print how many users there are:

22 echo "<p>There are currently $num

registered users.</p>\n";

23

24 // Table header.

25 echo '<table align="center"
cellspacing="3" cellpadding="3"
width="75%">

Script 8.6 Now the view_users.php script will display
the total number of registered users, thanks to the
mysqli_num_rows() function.

(script continues on next page)

continues on next page

abdel-razzaknatsheh
Highlight



4. Before creating the HTML table, print

the number of registered users.

echo "<p>There are currently $num 
➝ registered users.</p>\n";

5. Change the else part of the main condi-

tional to read

echo '<p class="error">There are 
➝ currently no registered users.</p>';

The original conditional was based upon

whether or not the query worked.

Hopefully you’ve successfully debugged

the query so that it is working and the

original error messages are no longer

needed. Now the error message just indi-

cates if no records were returned.

6. Save the file as view_users.php, place it

in your Web directory, and test it in your

Web browser (Figure 8.17).

250

Chapter 8

C
o

u
n

t
i
n

g
 R

e
t

u
r

n
e

d
 R

e
c

o
r

d
s

26 <tr><td align="left"><b>Name</b></td><td
align="left"><b>Date
Registered</b></td></tr>

27 ';

28

29 // Fetch and print all the records:

30 while ($row = mysqli_fetch_array($r,
MYSQLI_ASSOC)) {

31 echo '<tr><td align="left">' .
$row['name'] . '</td><td align="left">' .
$row['dr'] . '</td></tr>

32 ';

33 }

34

35 echo '</table>'; // Close the table.

36

37 mysqli_free_result ($r); // Free up the
resources.

38

39 } else { // If no records were returned.

40

41 echo '<p class="error">There are

currently no registered users.</p>';

42

43 }

44

45 mysqli_close($dbc); // Close the database
connection.

46

47 include ('includes/footer.html');

48 ?>

Script 8.6 continued

Figure 8.17 The number of registered users is now
displayed at the top of the page.



Updating Records with PHP
The last technique in this chapter shows how

to update database records through a PHP

script. Doing so requires an UPDATE query, and

its successful execution can be verified with

PHP’s mysqli_affected_rows() function.

While the mysqli_num_rows() function will

return the number of rows generated by a

SELECT query, mysqli_affected_rows() returns

the number of rows affected by an INSERT,

UPDATE, or DELETE query. It’s used like so:

$num = mysqli_affected_rows($dbc);

Unlike mysqli_num_rows(), the one argument

the function takes is the database connection

($dbc), not the results of the previous

query ($r).

The following example will be a script that

allows registered users to change their pass-

word. It demonstrates two important ideas:

◆ Checking a submitted username and

password against registered values (the

key to a login system as well)

◆ Updating database records using the pri-

mary key as a reference

As with the registration example, this one PHP

script will both display the form (Figure 8.18)

and handle it.

251

Using PHP with MySQL

U
p

d
a

t
i
n

g
 R

e
c

o
r

d
s

 w
i
t

h
 P

H
P

Figure 8.18 The form for changing a user’s password.

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight



To update records with PHP:

1. Create a new PHP script in your text edi-

tor or IDE (Script 8.7).

<?php # Script 8.7 - password.php

$page_title = 'Change Your Password';

include ('includes/header.html');

2. Start the main conditional.

if (isset($_POST['submitted'])) {

Since this page both displays and

handles the form, it’ll use the standard

conditional.

3. Include the database connection and

create an array for storing errors.

require_once ('../mysqli_connect.php');

$errors = array();

The initial part of this script mimics the

registration form.

252

Chapter 8

U
p

d
a

t
i
n

g
 R

e
c

o
r

d
s

 w
i
t

h
 P

H
P

1 <?php # Script 8.7 - password.php

2 // This page lets a user change their
password.

3

4 $page_title = ‘Change Your Password’;

5 include (‘includes/header.html’);

6

7 // Check if the form has been submitted:

8 if (isset($_POST[‘submitted’])) {

9

10 require_once (‘../mysqli_connect.php’);
// Connect to the db.

11

12 $errors = array(); // Initialize an
error array.

13

14 // Check for an email address:

15 if (empty($_POST[‘email’])) {

16 $errors[] = ‘You forgot to enter your
email address.’;

17 } else {

18 = mysqli_real_escape_string($dbc,
trim($_POST[‘email’]));

19 }

20

21 // Check for the current password:

22 if (empty($_POST[‘pass’])) {

23 $errors[] = ‘You forgot to enter your
current password.’;

24 } else {

25 $p = mysqli_real_escape_string($dbc,
trim($_POST[‘pass’]));

26 }

27

28 // Check for a new password and match 

29 // against the confirmed password:

Script 8.7 The password.php script runs an UPDATE query
on the database and uses the mysqli_affected_rows()
function to confirm the change.

(script continues on next page)



4. Validate the email address and current

password fields.

if (empty($_POST['email'])) {

$errors[] = 'You forgot to enter 
➝ your email address.';

} else {

$e = 
➝ mysqli_real_escape_string($dbc
, 
➝ trim($_POST['email']));

}

if (empty($_POST['pass'])) {

$errors[] = 'You forgot to enter 
➝ your current password.';

} else {

$p = 
➝ mysqli_real_escape_string($dbc
, 
➝ trim($_POST['pass']));

}

The form (Figure 8.18) has four inputs:

the email address, the current password,

and two for the new password. The process

for validating each of these is the same as

it is in register.php. Any data that passes

the validation test will be trimmed and

run through the mysqli_real_escape_
string() function, so that it is safe to use

in a query.

253

Using PHP with MySQL

U
p

d
a

t
i
n

g
 R

e
c

o
r

d
s

 w
i
t

h
 P

H
P

30 if (!empty($_POST[‘pass1’])) {

31 if ($_POST[‘pass1’] !=
$_POST[‘pass2’]) {

32 $errors[] = ‘Your new password did
not match the confirmed password.’;

33 } else {

34 $np =
mysqli_real_escape_string($dbc,
trim($_POST[‘pass1’]));

35 }

36 } else {

37 $errors[] = ‘You forgot to enter your
new password.’;

38 }

39

40 if (empty($errors)) { // If everything’s
OK.

41

42 // Check that they’ve entered the
right email address/password
combination:

43 $q = “SELECT user_id FROM users WHERE
(email=’$e’ AND pass=SHA1(‘$p’) )”;

44 $r = @mysqli_query($dbc, $q);

45 $num = @mysqli_num_rows($r);

46 if ($num == 1) { // Match was made.

47

48 // Get the user_id:

49 $row = mysqli_fetch_array($r,
MYSQLI_NUM);

50

51 // Make the UPDATE query:

52 $q = “UPDATE users SET
pass=SHA1(‘$np’) WHERE
user_id=$row[0]”;   

53 $r = @mysqli_query($dbc, $q);

54

55 if (mysqli_affected_rows($dbc) ==
1) { // If it ran OK.

56

(script continues on next page)

Script 8.7 continued

continues on next page



5. Validate the new password.

if (!empty($_POST['pass1'])) {

if ($_POST['pass1'] != 
➝ $_POST['pass2']) {

$errors[] = 'Your new password 
➝ did not match the confirmed 
➝ password.';

} else {

$np = 
➝ mysqli_real_escape_string($
➝ dbc, trim($_POST['pass1']));

}

} else {

$errors[] = 'You forgot to enter 
➝ your new password.';

}

This code is also exactly like that in the

registration script, except that a valid

new password is assigned to a variable

called $np (because $p represents the

current password).

254

Chapter 8

U
p

d
a

t
i
n

g
 R

e
c

o
r

d
s

 w
i
t

h
 P

H
P

57 // Print a message.

58 echo ‘<h1>Thank you!</h1>

59 <p>Your password has been
updated. In Chapter 11 you
will actually be able to log
in!</p><p><br /></p>’;  

60

61 } else { // If it did not run OK.

62

63 // Public message:

64 echo ‘<h1>System Error</h1>

65 <p class=”error”>Your
password could not be
changed due to a system
error. We apologize for any
inconvenience.</p>’; 

66

67 // Debugging message:

68 echo ‘<p>’ .
mysqli_error($dbc) . ‘<br
/><br />Query: ‘ . $q .
‘</p>’;

69

70 }

71

72 // Include the footer and quit the
script (to not show the form).

73 include (‘includes/footer.html’); 

74 exit();

75

76 } else { // Invalid email
address/password combination.

77 echo ‘<h1>Error!</h1>

78 <p class=”error”>The email address
and password do not match those on
file.</p>’;

79 }

80

81 } else { // Report the errors.

(script continues on next page)

Script 8.7 continued



6. If all the tests are passed, retrieve the

user’s ID.

if (empty($errors)) {

$q = "SELECT user_id FROM users 
➝ WHERE (email='$e' AND 
➝ pass=SHA1('$p') )";

$r = @mysqli_query($dbc, $q);

$num = @mysqli_num_rows($r);

if ($num = = 1) {

$row = mysqli_fetch_array($r, 
➝ MYSQLI_NUM);

This first query will return just the

user_id field for the record that matches

the submitted email address and pass-

word (Figure 8.19). To compare the sub-

mitted password against the stored one,

encrypt it again with the SHA1() function.

If the user is registered and has correctly

entered both the email address and pass-

word, exactly one row will be selected

(since the email value must be unique

across all rows). Finally, this one record is

assigned as an array (of one element) to

the $row variable.

255

Using PHP with MySQL

U
p

d
a

t
i
n

g
 R

e
c

o
r

d
s

 w
i
t

h
 P

H
P

82

83 echo ‘<h1>Error!</h1>

84 <p class=”error”>The following
error(s) occurred:<br />’;

85 foreach ($errors as $msg) { // Print
each error.

86 echo “ - $msg<br />\n”;

87 }

88 echo ‘</p><p>Please try
again.</p><p><br /></p>’;

89

90 } // End of if (empty($errors)) IF.

91

92 mysqli_close($dbc); // Close the
database connection.

93

94 } // End of the main Submit conditional.

95 ?>

96 <h1>Change Your Password</h1>

97 <form action=”password.php” method=”post”>

98 <p>Email Address: <input type=”text”
name=”email” size=”20” maxlength=”80”
value=”<?php if (isset($_POST[‘email’]))
echo $_POST[‘email’]; ?>”  /> </p>

99 <p>Current Password: <input
type=”password” name=”pass” size=”10”
maxlength=”20” /></p>

100 <p>New Password: <input type=”password”
name=”pass1” size=”10” maxlength=”20”
/></p>

101 <p>Confirm New Password: <input
type=”password” name=”pass2” size=”10”
maxlength=”20” /></p>

102 <p><input type=”submit” name=”submit”
value=”Change Password” /></p>

103 <input type=”hidden” name=”submitted”
value=”TRUE” />

104 </form>

105 <?php

106 include (‘includes/footer.html’);

107 ?>

Script 8.7 continued

Figure 8.19 The result when running
the SELECT query from the script (the
first of two queries it has) within the
mysql client.

continues on next page



If this part of the script doesn’t work for

you, apply the standard debugging meth-

ods: remove the error suppression opera-

tors (@) so that you can see what errors, if

any, occur; use the mysqli_error() func-

tion to report any MySQL errors; and

print, then run the query using another

interface (as in Figure 8.19).

7. Update the database.

$q = "UPDATE users SET 
➝ pass=SHA1('$np') WHERE 
➝ user_id=$row[0]";

$r = @mysqli_query($dbc, $q);

This query will change the password—

using the new submitted value—where

the user_id column is equal to the num-

ber retrieved from the previous query.

8. Check the results of the query.

if (mysqli_affected_rows($dbc) = = 1) {

echo '<h1>Thank you!</h1>

<p>Your password has been 
➝ updated. In Chapter 11 you
will 
➝ actually be able to log 
➝ in!</p><p><br /></p>';

} else {

echo '<h1>System Error</h1>

<p class="error">Your password 
➝ could not be changed due to a 
➝ system error. We apologize for 
➝ any inconvenience.</p>';

echo '<p>' . mysqli_error($dbc)
. 
➝ '<br /><br />Query: ' . $q . 
➝ '</p>';

}

This part of the script again works simi-

lar to register.php. In this case, if

mysqli_affected_rows() returns the

number 1, the record has been updated,

and a success message will be printed.

If not, both a public, generic message

and a more useful debugging message

will be printed.

9. Include the footer and terminate the

script.

include ('includes/footer.html');

exit();

At this point in the script, the UPDATE
query has been run. It either worked or

it did not (because of a system error). In

both cases, there’s no need to show the

form again, so the footer is included (to

complete the page) and the script is ter-

minated, using the exit() function.

10. Complete the if ($num = = 1) conditional.

} else {

echo '<h1>Error!</h1>

<p class="error">The email 
➝ address and password do not 
➝ match those on file.</p>';

}

If mysqli_num_rows() does not return a

value of 1, then the submitted email

address and password do not match

those on file and this error is printed.

In this case, the form will be displayed

again so that the user can enter the

correct information.

256

Chapter 8

U
p

d
a

t
i
n

g
 R

e
c

o
r

d
s

 w
i
t

h
 P

H
P

abdel-razzaknatsheh
Highlight



11. Print any validation error messages.

} else {

echo '<h1>Error!</h1>

<p class="error">The following 
➝ error(s) occurred:<br />';

foreach ($errors as $msg) {

echo " - $msg<br />\n";

}

echo '</p><p>Please try 
➝ again.</p><p><br /></p>';

}

This else clause applies if the $errors
array is not empty (which means that

the form data did not pass all the vali-

dation tests). As in the registration

page, the errors will be printed.

12. Close the database connection and

complete the PHP code.

mysqli_close($dbc);

}

?>

13. Display the form.

<h1>Change Your Password</h1>

<form action="password.php" 
➝ method="post">

<p>Email Address: <input 
➝ type="text" name="email" 
➝ size="20" maxlength="80" 
➝ value="<?php if 
➝ (isset($_POST['email'])) echo 
➝ $_POST['email']; ?>" /> </p>

<p>Current Password: <input 
➝ type="password" name="pass" 
➝ size="10" maxlength="20" /></p>

<p>New Password: <input 
➝ type="password" name="pass1" 
➝ size="10" maxlength="20" /></p>

<p>Confirm New Password: <input 
➝ type="password" name="pass2" 
➝ size="10" maxlength="20" /></p>

<p><input type="submit" 
➝ name="submit" value="Change 
➝ Password" /></p>

<input type="hidden" 
➝ name="submitted" value="TRUE" 
➝ />

</form>

The form takes three different inputs of

type password—the current password, the

new one, and a confirmation of the new

password—and one text input for the

email address. The email address input

is sticky (password inputs cannot be).

257

Using PHP with MySQL

U
p

d
a

t
i
n

g
 R

e
c

o
r

d
s

 w
i
t

h
 P

H
P

continues on next page



14. Include the footer file.

<?php

include ('includes/footer.html');

?>

15. Save the file as password.php, place it in

your Web directory, and test it in your

Web browser (Figures 8.20 and 8.21).

✔ Tips

■ If you delete every record from a table

using the command TRUNCATE tablename,

mysqli_affected_rows() will return 0, even

if the query was successful and every row

was removed. This is just a quirk.

■ If an UPDATE query runs but does not actu-

ally change the value of any column (for

example, a password is replaced with the

same password), mysqli_affected_rows()
will return 0.

■ The mysqli_affected_rows() conditional

used here could (and maybe should) also

be applied to the register.php script to

confirm that one record was added. That

would be a more exacting condition to

check than if ($r).

258

Chapter 8

U
p

d
a

t
i
n

g
 R

e
c

o
r

d
s

 w
i
t

h
 P

H
P

Figure 8.20 The password was changed in the database.

Figure 8.21 If the entered email address and
password don’t match those on file, the
password will not be updated.




