
To execute simple queries:

1. Create a new PHP script in your text edi-

tor or IDE (Script 8.3).

<?php # Script 8.3 - register.php

$page_title = 'Register';

include ('includes/header.html');

The fundamentals of this script—using

included files, having the same page both

display and handle a form, and creating

a sticky form—come from Chapter 3. See

that chapter if you’re confused about any

of these concepts.

2. Create the submission conditional and

initialize the $errors array.

if (isset($_POST['submitted'])) {

$errors = array();

This script will both display and handle

the HTML form. This conditional will

check for the presence of a hidden form

element to determine whether or not to

process the form. The $errors variable

will be used to store every error message

(one for each form input not properly

filled out).

231

Using PHP with MySQL

E
x

e
c

u
t

i
n

g
 S

i
m

p
l
e

 Q
u

e
r

i
e

s

continues on next page

1 <?php # Script 8.3 - register.php

2

3 $page_title = ‘Register’;

4 include (‘includes/header.html’);

5

6 // Check if the form has been submitted:

7 if (isset($_POST[‘submitted’])) {

8

9 $errors = array(); // Initialize an
error array.

10

11 // Check for a first name:

12 if (empty($_POST[‘first_name’])) {

13 $errors[] = ‘You forgot to enter your
first name.’;

14 } else {

15 $fn = trim($_POST[‘first_name’]);

16 }

17

18 // Check for a last name:

19 if (empty($_POST[‘last_name’])) {

20 $errors[] = ‘You forgot to enter your
last name.’;

21 } else {

22 $ln = trim($_POST[‘last_name’]);

23 }

24

25 // Check for an email address:

26 if (empty($_POST[‘email’])) {

27 $errors[] = ‘You forgot to enter your
email address.’;

28 } else {

29 $e = trim($_POST[‘email’]);

30 }

31

32 // Check for a password and match
against the confirmed password:

33 if (!empty($_POST[‘pass1’])) {

34 if ($_POST[‘pass1’] !=
$_POST[‘pass2’]) {

Script 8.3 The registration script adds a record to the
database by running an INSERT query.

(script continues on next page)

Abed-Razzaq Natsheh
Highlight

Abed-Razzaq Natsheh
Highlight

Abed-Razzaq Natsheh
Highlight

Abed-Razzaq Natsheh
Highlight

Abed-Razzaq Natsheh
Highlight

Abed-Razzaq Natsheh
Highlight

3. Validate the first name.

if (empty($_POST['first_name'])) {

$errors[] = 'You forgot to enter
➝ your first name.';

} else {

$fn =
➝ trim($_POST['first_name']);

}

As discussed in Chapter 3, the empty()
function provides a minimal way of ensur-

ing that a text field was filled out. If the

first name field was not filled out, an error

message is added to the $errors array.

Otherwise, $fn is set to the submitted value,

after trimming off any extraneous spaces.

By using this new variable—which is obvi-

ously short for first_name—I make it syn-

tactically easier to write the query later.

4. Validate the last name and email address.

if (empty($_POST['last_name'])) {

$errors[] = 'You forgot to enter
➝ your last name.';

} else {

$ln = trim($_POST['last_name']);

}

if (empty($_POST['email'])) {

$errors[] = 'You forgot to enter
➝ your email address.';

} else {

$e = trim($_POST['email']);

}

These lines are syntactically the same as

those validating the first name field. In

both cases a new variable will be created,

assuming that the minimal validation

was passed.

232

Chapter 8

E
x

e
c

u
t

i
n

g
 S

i
m

p
l
e

 Q
u

e
r

i
e

s

35 $errors[] = ‘Your password did not
match the confirmed password.’;

36 } else {

37 $p = trim($_POST[‘pass1’]);

38 }

39 } else {

40 $errors[] = ‘You forgot to enter your
password.’;

41 }

42

43 if (empty($errors)) { // If everything’s
OK.

44

45 // Register the user in the
database...

46

47 require_once
(‘../mysqli_connect.php’); // Connect
to the db.

48

49 // Make the query:

50 $q = “INSERT INTO users (first_name,
last_name, email, pass,
registration_date) VALUES (‘$fn’,
‘$ln’, ‘$e’, SHA1(‘$p’), NOW())”;

51 $r = @mysqli_query ($dbc, $q); // Run
the query.

52 if ($r) { // If it ran OK.

53

54 // Print a message:

55 echo ‘<h1>Thank you!</h1>

56 <p>You are now registered. In Chapter
11 you will actually be able to log
in!</p><p>
</p>’;

57

58 } else { // If it did not run OK.

59

60 // Public message:

61 echo ‘<h1>System Error</h1>

62 <p class=”error”>You could not be
registered due to a system error.
We apologize for any
inconvenience.</p>’;

63

Script 8.3 continued

(script continues on next page)

Abed-Razzaq Natsheh
Highlight

Abed-Razzaq Natsheh
Highlight

Abed-Razzaq Natsheh
Highlight

Abed-Razzaq Natsheh
Highlight

5. Validate the password.

if (!empty($_POST['pass1'])) {

if ($_POST['pass1'] !=
➝ $_POST['pass2']) {

$errors[] = 'Your password
➝ did not match the
➝ confirmed password.';

} else {

$p = trim($_POST['pass1']);

}

} else {

$errors[] = 'You forgot to enter
➝ your password.';

}

To validate the password, the script needs

to check the pass1 input for a value and

then confirm that the pass1 value matches

the pass2 value (so the password and

confirmed password are the same).

6. Check if it’s OK to register the user.

if (empty($errors)) {

If the submitted data passed all of the

conditions, the $errors array will have

no values in it (it will be empty), so this

condition will be TRUE and it’s safe to add

the record to the database. If the $errors
array is not empty, then the appropriate

error messages should be printed (see

Step 10) and the user given another

opportunity to register.

233

Using PHP with MySQL

E
x

e
c

u
t

i
n

g
 S

i
m

p
l
e

 Q
u

e
r

i
e

s

64 // Debugging message:

65 echo ‘<p>’ . mysqli_error($dbc) .
‘

Query: ‘ . $q .
‘</p>’;

66

67 } // End of if ($r) IF.

68

69 mysqli_close($dbc); // Close the
database connection.

70

71 // Include the footer and quit the
script:

72 include (‘includes/footer.html’);

73 exit();

74

75 } else { // Report the errors.

76

77 echo ‘<h1>Error!</h1>

78 <p class=”error”>The following
error(s) occurred:
’;

79 foreach ($errors as $msg) { // Print
each error.

80 echo “ - $msg
\n”;

81 }

82 echo ‘</p><p>Please try
again.</p><p>
</p>’;

83

84 } // End of if (empty($errors)) IF.

85

86 } // End of the main Submit conditional.

87 ?>

88 <h1>Register</h1>

89 <form action=”register.php” method=”post”>

90 <p>First Name: <input type=”text”
name=”first_name” size=”15”
maxlength=”20” value=”<?php if
(isset($_POST[‘first_name’])) echo
$_POST[‘first_name’]; ?>” /></p>

91 <p>Last Name: <input type=”text”
name=”last_name” size=”15”
maxlength=”40” value=”<?php if
(isset($_POST[‘last_name’])) echo
$_POST[‘last_name’]; ?>” /></p>

Script 8.3 continued

(script continues on next page)

continues on next page

7. Add the user to the database.

require_once
➝ ('../mysqli_connect.php');

$q = "INSERT INTO users (first_name,
➝ last_name, email, pass,
➝ registration_date) VALUES ('$fn',
➝ '$ln', '$e', SHA1('$p'), NOW())";

$r = @mysqli_query ($dbc, $q);

The first line of code will insert the con-

tents of the mysqli_connect.php file into

this script, thereby creating a connection

to MySQL and selecting the database.

You may need to change the reference to

the location of the file as it is on your

server (as written, this line assumes that

mysqli_connect.php is in the parent fold-

er of the current folder).

The query itself is similar to those demon-

strated in Chapter 5. The SHA1() function

is used to encrypt the password, and

NOW() is used to set the registration date

as this moment.

After assigning the query to a variable, it is

run through the mysqli_query() function,

which sends the SQL command to the

MySQL database. As in the mysqli_
connect.php script, the mysqli_query()
call is preceded by @ in order to suppress

any ugly errors. If a problem occurs, the

error will be handled more directly in the

next step.

234

Chapter 8

E
x

e
c

u
t

i
n

g
 S

i
m

p
l
e

 Q
u

e
r

i
e

s

92 <p>Email Address: <input type=”text”
name=”email” size=”20” maxlength=”80”
value=”<?php if (isset($_POST[‘email’]))
echo $_POST[‘email’]; ?>” /> </p>

93 <p>Password: <input type=”password”
name=”pass1” size=”10” maxlength=”20”
/></p>

94 <p>Confirm Password: <input
type=”password” name=”pass2” size=”10”
maxlength=”20” /></p>

95 <p><input type=”submit” name=”submit”
value=”Register” /></p>

96 <input type=”hidden” name=”submitted”
value=”TRUE” />

97 </form>

98 <?php

99 include (‘includes/footer.html’);

100 ?>

Script 8.3 continued

The $r variable, which is assigned the

value returned by mysqli_query(), can be

used in a conditional to indicate the suc-

cessful operation of the query.

If $r is TRUE, then a Thank you! message

is displayed (Figure 8.8). If $r is FALSE,

error messages are printed. For debug-

ging purposes, the error messages will

include both the error spit out by MySQL

(thanks to the mysqli_error() function)

and the query that was run (Figure 8.9).

This information is critical to debugging

the problem.

235

Using PHP with MySQL

E
x

e
c

u
t

i
n

g
 S

i
m

p
l
e

 Q
u

e
r

i
e

s

continues on next page

8. Report on the success of the registration.

if ($r) {

echo '<h1>Thank you!</h1>

<p>You are now registered. In
➝ Chapter 11 you will actually be
➝ able to log in!</p><p><br
➝ /></p>';

} else {

echo '<h1>System Error</h1>

<p class="error">You could not be
➝ registered due to a system
➝ error. We apologize for any
➝ inconvenience.</p>';

echo '<p>' . mysqli_error($dbc) .
➝ '

Query: ' . $q .
➝ '</p>';

}

Figure 8.9 Any MySQL errors
caused by the query will be
printed, as will the query that
was being run.

Figure 8.8 If the user could be
registered in the database, this
message is displayed.

9. Close the database connection and

complete the HTML template.

mysqli_close();

include ('includes/footer.html');

exit();

Closing the connection isn’t required

but is a good policy. Then the footer is

included and the script terminated

(thanks to the exit() function). If those

two lines weren’t here, then the registra-

tion form would be displayed again

(which isn’t necessary after a successful

registration).

10. Print out any error messages and close

the submit conditional.

} else {

echo '<h1>Error!</h1>

<p class="error">The
➝ following ››error(s)
➝ occurred:
';

foreach ($errors as
$msg) {

echo " - $msg
\n";

}

echo '</p><p>Please try
➝ ›again.</p><p>
</p>';

}

}

The else clause is invoked if there were

any errors. In that case, all of the errors

are displayed using a foreach loop

(Figure 8.10).

The final closing curly brace closes the

main submit conditional. The main con-

ditional is a simple IF, not an if-else, so

that the form can be made sticky (again,

see Chapter 3).

236

Chapter 8

E
x

e
c

u
t

i
n

g
 S

i
m

p
l
e

 Q
u

e
r

i
e

s

Figure 8.10 Each form validation error is reported to
the user so that they may try registering again.

abdel-razzaknatsheh
Highlight

11. Close the PHP section and begin the

HTML form.

?>

<h1>Register</h1>

<form action="register.php"
➝ method="post">

<p>First Name: <input
➝ type="text" name="first_name"
➝ size="15" maxlength="20"
➝ value="<?php if
➝ (isset($_POST['first_name']))
➝ echo $_POST['first_name']; ?>"
➝ /></p>

<p>Last Name: <input type="text"
➝ name="last_name" size="15"
➝ maxlength="40" value="<?php if
➝ (isset($_POST['last_name']))
➝ echo $_POST['last_name']; ?>"
➝ /></p>

The form is really simple, with one text

input for each field in the users table

(except for the user_id column, which

will automatically be populated). Each

input is made sticky, using the code

value="<?php if
➝ (isset($_POST['first_name']))
echo
➝ $_POST['first_name']; ?>"

Also, I would strongly recommend that

you use the same name for your form

inputs as the corresponding column in

the database where that value will be

stored. Further, you should set the max-

imum input length in the form equal to

the maximum column length in the

database. Both of these habits help to

minimize errors.

12. Complete the HTML form.

<p>Email Address: <input
➝ type="text" name="email"
➝ size="20" maxlength="80"
➝ value="<?php if
➝ (isset($_POST['email'])) echo
➝ $_POST['email']; ?>" /> </p>

<p>Password: <input
➝ type="password" name="pass1"
➝ size="10" maxlength="20" /></p>

<p>Confirm Password: <input
➝ type="password" name="pass2"
➝ size="10" maxlength="20" /></p>

<p><input type="submit"
➝ name="submit" value="Register"
➝ /></p>

<input type="hidden"
➝ name="submitted" value="TRUE"
/>

</form>

This is all much like that in Step 11. A

submit button and a hidden input are

in the form as well. The hidden input

trick is discussed in (you guessed

it…Chapter 3).

As a side note, I don’t need to follow my

maxlength recommendation (from Step 11)

with the password inputs, because they

will be encrypted with SHA1(), which

always creates a string 40 characters

long. And since there are two of them,

they can’t both use the same name as

the column in the database.

13. Complete the template.

<?php

include ('includes/footer.html');

?>

237

Using PHP with MySQL

E
x

e
c

u
t

i
n

g
 S

i
m

p
l
e

 Q
u

e
r

i
e

s

continues on next page

14. Save the file as register.php, place it in

your Web directory, and test it in your

Web browser.

Note that if you use an apostrophe in

one of the form values, it will likely break

the query (Figure 8.11). The section

“Ensuring Secure SQL” later in this

chapter will show how to protect

against this.

✔ Tips

■ After running the script, you can always

ensure that it worked by using the mysql

client or phpMyAdmin to view the values

in the users table.

■ You should not end your queries with a

semicolon in PHP, as you did when using

the mysql client. When working with

MySQL, this is a common, albeit harm-

less, mistake to make. When working

with other database applications (Oracle,

for one), doing so will make your queries

unusable.

■ As a reminder, the mysqli_query() func-

tion returns TRUE if the query could be

executed on the database without error.

This does not necessarily mean that the

result of the query is what you were

expecting. Later scripts will demonstrate

how to more accurately gauge the suc-

cess of a query.

■ You are not obligated to create a $q variable

as I tend to do (you could directly insert

your query text into mysqli_query()).

However, as the construction of your

queries becomes more complex, using

a variable will be the only option.

■ Practically any query you would run in

the mysql client can also be executed

using mysqli_query().

■ Another benefit of the Improved MySQL

Extension over the standard extension is

that the mysqli_multi_query() function

lets you execute multiple queries at one

time. The syntax for doing so, particularly

if the queries return results, is a bit more

complicated, so see the PHP manual if

you have this need.

238

Chapter 8

E
x

e
c

u
t

i
n

g
 S

i
m

p
l
e

 Q
u

e
r

i
e

s

Figure 8.11 Apostrophes in form values (like the last name here) will conflict with the apostrophes used to
delineate values in the query.

