
If you’re working through this book sequentially (which would be for the best), the

next subject to learn is how to use PHP and MySQL together. However, that process

will undoubtedly generate errors, errors that can be tricky to debug. So before moving

on to new concepts, these next few pages address the bane of the programmer:

errors. As you gain experience, you’ll make fewer errors and pick up your own debug-

ging methods, but there are plenty of tools and techniques the beginner can use to

help ease the learning process.

This chapter has three main threads. One focus is on learning about the various

kinds of errors that can occur when developing dynamic Web sites and what their

likely causes are. Second, a multitude of debugging techniques are taught, in a step-

by-step format. Finally, you’ll see different techniques for handling the errors that

occur in the most graceful manner possible.

Before reading on, a word regarding errors: they happen to the best of us. Even the

author of this here book sees more than enough errors in his Web development

duties (but rest assured that the code in this book should be bug-free). Thinking that

you’ll get to a skill level where errors never occur is a fool’s dream, but there are tech-

niques for minimizing errors, and knowing how to quickly catch, handle, and fix

errors is a major skill in its own right. So try not to become frustrated as you make

errors; instead, bask in the knowledge that you’re becoming a better debugger!

199

Error
Handling
and Debugging

7

E
r

r
o

r
 H

a
n

d
l
i
n

g
 a

n
d

 D
e

b
u

g
g

i
n

g

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

Error Types and Basic
Debugging
When developing Web applications with

PHP and MySQL, you end up with potential

bugs in one of four or more technologies. You

could have HTML issues, PHP problems,

SQL errors, or MySQL mistakes. To be able

to stop the bugs, you must first find the

crack they’re sneaking in through.

HTML problems are often the least disrup-

tive and the easiest to catch. You normally

know there’s a problem when your layout is

all messed up. Some steps for catching and

fixing these, as well as general debugging

hints, are discussed in the next section.

PHP errors are the ones you’ll see most

often, as this language will be at the heart of

your applications. PHP errors fall into three

general areas:

◆ Syntactical

◆ Run time

◆ Logical

Syntactical errors are the most common and

the easiest to fix. You’ll see them if you merely

omit a semicolon. Such errors stop the script

from executing, and if display_errors is on in

your PHP configuration, PHP will show an

error, including the line PHP thinks it’s on

(Figure 7.1). If display_errors is off, you’ll

see a blank page. (You’ll learn more about

display_errors later in this chapter.)

Run-time errors include those things that

don’t stop a PHP script from executing (like

parse errors do) but do stop the script from

doing everything it was supposed to do.

Examples include calling a function using the

wrong number or types of parameters. With

these errors, PHP will normally display a mes-

sage (Figure 7.2) indicating the exact prob-

lem (again, assuming that display_errors is on).

200

Chapter 7

E
r

r
o

r
 T

y
p

e
s

 a
n

d
 B

a
s

i
c

 D
e

b
u

g
g

i
n

g

Figure 7.1 Parse errors—which you’ve probably
seen many times over by now—are the most
common sort of PHP error, particularly for
beginning programmers.

Figure 7.2 Misusing a function (calling it with
improper parameters) will create errors during
the execution of the script.

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

201

Error Handling and Debugging

The final category of error—logical—is

actually the worst, because PHP won’t

necessarily report it to you. These are out-

and-out bugs: problems that aren’t obvious

and don’t stop the execution of a script.

Tricks for solving all of these PHP errors

will be demonstrated in just a few pages.

SQL errors are normally a matter of syntax,

and they’ll be reported when you try to run

the query on MySQL. For example, I’ve done

this many times (Figure 7.3):

DELETE * FROM tablename

The syntax is just wrong, a confusion

with the SELECT syntax (SELECT * FROM
tablename). The right syntax is

DELETE FROM tablename

Again, MySQL will raise a red flag when you

have SQL errors, so these aren’t that difficult

to find and fix. With dynamic Web sites, the

catch is that you don’t always have static

queries, but rather ones dynamically gener-

ated by PHP. In such cases, if there’s a syntax

problem, the issue is probably in your

PHP code.

Besides reporting on SQL errors, MySQL has

its own errors to consider. An inability to

access the database is a common one and a

showstopper at that (Figure 7.4). You’ll also

see errors when you misuse a MySQL func-

tion or ambiguously refer to a column in a

join. Again, MySQL will report any such

error in specific detail. Keep in mind that

when a query doesn’t return the records or

otherwise have the result you expect, that’s

not a MySQL or SQL error, but rather a logi-

cal one. Toward the end of this chapter you’ll

see how to solve SQL and MySQL problems.

But as you have to walk before you can run,

the next section covers the fundamentals of

debugging dynamic Web sites, starting with

the basic checks you should make and how

to fix HTML problems.

Basic debugging steps
This first sequence of steps may seem obvi-

ous, but when it comes to debugging, missing

one of these steps leads to an unproductive

and extremely frustrating debugging experi-

ence. And while I’m at it, I should mention

that the best piece of general debugging

advice is this:

When you get frustrated, step away from the

computer!

I have solved almost all of the most perplex-

ing issues I’ve come across by taking a break,

clearing my head, and coming back to the

E
r

r
o

r
 T

y
p

e
s

 a
n

d
 B

a
s

i
c

 D
e

b
u

g
g

i
n

g

Figure 7.3 MySQL will report any errors found in the syntax of an SQL command.

Figure 7.4 An inability to connect to a MySQL server or a specific
database is a common MySQL error.

continues on next page

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

code with fresh eyes. Readers in the book’s

supporting forum (www.DMCInsights.com/
phorum/) have frequently found this to be true

as well. Trying to forge ahead when you’re

frustrated tends to make things worse.

To begin debugging any problem:

◆ Make sure that you are running the

right page.

It’s altogether too common that you try

to fix a problem and no matter what you

do, it never goes away. The reason: you’ve

actually been editing a different page

than you thought.

◆ Make sure that you have saved your

latest changes.

An unsaved document will continue to

have the same problems it had before

you edited it (because the edits haven’t

been enacted).

◆ Make sure that you run all PHP pages

through the URL.

Because PHP works through a Web serv-

er (Apache, IIS, etc.), running any PHP

code requires that you access the page

through a URL (http://www.example.
com/page.php or http://localhost/
page.php). If you double-click a PHP page

to open it in a browser (or use the brows-

er’s File > Open option), you’ll see the

PHP code, not the executed result. This

also occurs if you load an HTML page

without going through a URL (which will

work on its own) but then submit the

form to a PHP page (Figure 7.5).

◆ Know what versions of PHP and MySQL

you are running.

Some problems are specific to a certain

version of PHP or MySQL. For example,

some functions are added in later versions

of PHP, and MySQL added significant new

features in versions 4, 4.1, and 5. Run a

phpinfo() script (Figure 7.6, see

Appendix A, “Installation,” for a script

example) and open a mysql client session

202

Chapter 7

E
r

r
o

r
 T

y
p

e
s

 a
n

d
 B

a
s

i
c

 D
e

b
u

g
g

i
n

g

Figure 7.5 PHP code will only be executed if run through a URL. This means that forms that
submit to a PHP page must also be loaded through http://.

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

(Figure 7.7) to determine this informa-

tion. phpMyAdmin will often report on

the versions involved as well (but don’t

confuse the version of phpMyAdmin,

which will likely be 2.something with the

versions of PHP or MySQL).

I consider the versions being used to be

such an important, fundamental piece of

information that I won’t normally assist

people looking for help until they provide

this information!

203

Error Handling and Debugging

E
r

r
o

r
 T

y
p

e
s

 a
n

d
 B

a
s

i
c

 D
e

b
u

g
g

i
n

g

Figure 7.6 A phpinfo() script is one of your best tools
for debugging, informing you of the PHP version and
how it’s configured.

Book Errors

If you’ve followed an example in this book and something’s not working right, what should

you do?

1. Double-check your code or steps against those in the book.

2. Use the index at the back of the book to see if I reference a script or function in an earlier

page (you may have missed an important usage rule or tip).

3. View the PHP manual for a specific function to see if it’s available in your version of PHP

and to verify how the function is used.

4. Check out the book’s errata page (through the supporting Web site, www.DMCInsights.com/
phpmysql3/) to see if an error in the code does exist and has been reported. Don’t post

your particular problem there yet, though!

5. Triple-check your code and use all the debugging techniques outlined in this chapter.

6. Search the book’s supporting forum to see if others have had this problem and if a solu-

tion has already been determined.

7. If all else fails, use the book’s supporting forum to ask for assistance. When you do, make

sure you include all the pertinent information (version of PHP, version of MySQL, the

debugging steps you took and what the results were, etc.).

Figure 7.7 When you connect to a MySQL server, it should let you
know the version number.

continues on next page

◆ Know what Web server you are running.

Similarly, some problems and features are

unique to your Web serving application—

Apache, IIS, or Abyss. You should know

which one you are using, and which

version, from when you installed the

application.

◆ Try executing pages in a different Web

browser.

Every Web developer should have and

use at least two Web browsers. If you test

your pages in different ones, you’ll see if

the problem has to do with your script or

a particular browser.

◆ If possible, try executing the page using a

different Web server.

PHP and MySQL errors sometimes stem

from particular configurations and ver-

sions on one server. If something works

on one server but not another, then you’ll

know that the script isn’t inherently at

fault. From there it’s a matter of using

phpinfo() scripts to see what server set-

tings may be different.

✔ Tips

■ If taking a break is one thing you should

do when you become frustrated, here’s

what you shouldn’t do: send off one or

multiple panicky and persnickety emails

to a writer, to a newsgroup or mailing

list, or to anyone else. When it comes to

asking for free help from strangers,

patience and pleasantries garner much

better and faster results.

■ For that matter, I would highly advise

against randomly guessing at solutions.

I’ve seen far too many people only com-

plicate matters further by taking stabs at

solutions, without a full understanding of

what the attempted changes should or

should not do.

■ There’s another different realm of errors

that you could classify as usage errors:

what goes wrong when the site’s user

doesn’t do what you thought they would.

These are very difficult to find on your

own because it’s hard for the program-

mer to use an application in a way other

than she intended. As a golden rule,

write your code so that it doesn’t break

even if the user doesn’t do anything right!

Debugging HTML
Debugging HTML is relatively easy. The

source code is very accessible, most prob-

lems are overt, and attempts at fixing the

HTML don’t normally make things worse (as

can happen with PHP). Still, there are some

basic steps you should follow to find and fix

an HTML problem.

To debug an HTML error:

◆ Check the source code.

If you have an HTML problem, you’ll

almost always need to check the source

code of the page to find it. How you view

the source code depends upon the

browser being used, but normally it’s a

matter of using something like View >

Page Source.

◆ Use a validation tool (Figure 7.8).

Validation tools, like the one at

http://validator.w3.org, are great for

finding mismatched tags, broken tables,

and other problems.

◆ Add borders to your tables.

Frequently layouts are messed up because

tables are incomplete. To confirm this,

add a prominent border to your table to

make it obvious where the different

columns and rows are.

204

Chapter 7

E
r

r
o

r
 T

y
p

e
s

 a
n

d
 B

a
s

i
c

 D
e

b
u

g
g

i
n

g

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

abdel-razzaknatsheh
Highlight

✔ Tip

■ The first step toward fixing any kind of

problem is understanding what’s causing

it. Remember the role each technology—

HTML, PHP, SQL, and MySQL—plays as

you debug. If your page doesn’t look right,

that’s an HTML problem. If your HTML

is dynamically generated by PHP, it’s still

an HTML problem but you’ll need to

work with the PHP code to make it right.

◆ Use Firefox or Opera.

I’m not trying to start a discussion on

which is the best Web browser, and as

Internet Explorer is the most used one,

you’ll need to eventually test using it, but I

personally find that Firefox (available for

free from www.mozilla.com) and Opera

(available for free from www.opera.com)

are the best Web browsers for Web devel-

opers. They offer reliability and debugging

features not available in other browsers.

If you want to stick with IE or Safari for

your day-to-day browsing, that’s up to

you, but when doing Web development,

start with either Firefox or Opera.

◆ Use Firefox’s add-on widgets (Figure 7.9).

Besides being just a great Web browser,

the very popular Firefox browser has a

ton of features that the Web developer

will appreciate. Furthermore, you can

expand Firefox’s functionality by

installing any of the free widgets that are

available. The Web Developer widget in

particular provides quick access to great

tools, such as showing a table’s borders,

revealing the CSS, validating a page, and

more. I also frequently use these add-ons:

DOM Inspector, Firebug, and HTML

Validator, among others.

◆ Test the page in another browser.

PHP code is generally browser-independ-

ent, meaning you’ll get consistent results

regardless of the client. Not so with

HTML. Sometimes a particular browser

has a quirk that affects the rendered

page. Running the same page in another

browser is the easiest way to know if it’s

an HTML problem or a browser quirk.

205

Error Handling and Debugging

E
r

r
o

r
 T

y
p

e
s

 a
n

d
 B

a
s

i
c

 D
e

b
u

g
g

i
n

g

Figure 7.8 Validation tools like the one provided by
the W3C (World Wide Web Consortium) are good for
finding problems and making sure your HTML
conforms to standards.

Figure 7.9 Firefox’s Web Developer widget provides
quick access to lots of useful tools.

Displaying PHP Errors
PHP provides remarkably useful and descrip-

tive error messages when things go awry.

Unfortunately, PHP doesn’t show these errors

when running using its default configuration.

This policy makes sense for live servers, where

you don’t want the end users seeing PHP-

specific error messages, but it also makes

everything that much more confusing for the

beginning PHP developer. To be able to see

PHP’s errors, you must turn on the display_

errors directive, either in an individual script

or for the PHP configuration as a whole.

To turn on display_errors in a script, use the

ini_set() function. As its arguments, this

function takes a directive name and what

setting that directive should have:

ini_set('display_errors', 1);

Including this line in a script will turn on

display_errors for that script. The only

downside is that if your script has a syntax

error that prevents it from running at all,

then you’ll still see a blank page. To have

PHP display errors for the entire server,

you’ll need to edit its configuration, as is

discussed in the “Configuring PHP” section

of Appendix A.

To turn on display_errors:

1. Create a new PHP document in your text

editor or IDE (Script 7.1).

<!DOCTYPE html PUBLIC "-//W3C//DTD
➝ XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/
➝ xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/
➝ xhtml" xml:lang="en" lang="en">

<head>

206

Chapter 7

D
i
s

p
l

a
y

i
n

g
 P

H
P

E
r

r
o

r
s

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type"
content="text/html; charset=
iso-8859-1" />

6 <title>Display Errors</title>

7 </head>

8 <body>

9 <h2>Testing Display Errors</h2>

10 <?php # Script 7.1 - display_errors.php

11

12 // Show errors:

13 ini_set('display_errors', 1);

14

15 // Create errors:

16 foreach ($var as $v) {}

17 $result = 1/0;

18

19 ?>

20 </body>

21 </html>

Script 7.1 The ini_set() function can be used to tell a
PHP script to reveal any errors that might occur.

<meta http-equiv="content-type"
➝ content="text/html; charset=
➝ iso-8859-1" />

<title>Display Errors</title>

</head>

<body>

<?php # Script 7.1 - display_
➝ errors.php

2. After the initial PHP tags, add

ini_set('display_errors', 1);

From this point in this script forward,

any errors that occur will be displayed.

3. Create some errors.

foreach ($var as $v) {}

$result = 1/0;

To test the display_errors setting, the

script needs to have an error. This first

line doesn’t even try to do anything, but

it’s guaranteed to cause an error. There

are actually two issues here: first, there’s a

reference to a variable ($var) that doesn’t

exist; second, a non-array ($var) is being

used as an array in the foreach loop.

The second line is a classic division by

zero, which is not allowed in program-

ming languages or in math.

4. Complete the page.

?>

</body>

</html>

5. Save the file as display_errors.php,

place it in your Web directory, and test it

in your Web browser (Figure 7.10).

6. If you want, change the first line of PHP

code to read

ini_set('display_errors', 0);

and then save and retest the script

(Figure 7.11).

✔ Tips

■ There are limits as to what PHP settings

the ini_set() function can be used to

adjust. See the PHP manual for specifics

as to what can and cannot be changed

using it.

■ As a reminder, changing the display_

errors setting in a script only works so

long as that script runs (i.e., it cannot

have any parse errors). To be able to

always see any errors that occur, you’ll

need to enable display_errors in PHP’s

configuration file (again, see the appendix).

207

Error Handling and Debugging

D
i
s

p
l

a
y

i
n

g
 P

H
P

E
r

r
o

r
s

Figure 7.10 With display_errors turned on (for
this script), the page reports the errors when
they occur.

Figure 7.11 With display_errors
turned off (for this page), the same
errors (Script 7.1 and Figure 7.10)
are no longer reported.
Unfortunately, they still exist.

Adjusting Error Reporting
in PHP
Once you have PHP set to display the errors

that occur, you might want to adjust the

level of error reporting. Your PHP installa-

tion as a whole, or individual scripts, can be

set to report or ignore different types of

errors. Table 7.1 lists most of the levels, but

they can generally be one of these three

kinds:

◆ Notices, which do not stop the execution

of a script and may not necessarily be a

problem.

◆ Warnings, which indicate a problem but

don’t stop a script’s execution.

◆ Errors, which stop a script from continu-

ing (including the ever-common parse

error, which prevent scripts from running

at all).

As a rule of thumb, you’ll want PHP to report

on any kind of error while you’re developing

a site but report no specific errors once the

site goes live. For security and aesthetic

purposes, it’s generally unwise for a public

user to see PHP’s detailed error messages.

Frequently, error messages—particularly

those dealing with the database—will reveal

208

Chapter 7

A
d

j
u

s
t

i
n

g
 E

r
r

o
r

 R
e

p
o

r
t

i
n

g
 i

n
 P

H
P

N u m b e r C o n s t a n t R e p o r t O n

1 E_ERROR Fatal run-time errors (that stop execution of the script)
2 E_WARNING Run-time warnings (non-fatal errors)
4 E_PARSE Parse errors
8 E_NOTICE Notices (things that could or could not be a problem)
256 E_USER_ERROR User-generated error messages, generated by the trigger_error() function
512 E_USER_WARNING User-generated warnings, generated by the trigger_error() function
1024 E_USER_NOTICE User-generated notices, generated by the trigger_error() function
2048 E_STRICT Recommendations for compatibility and interoperability
8191 E_ALL All errors, warnings, and recommendations

Error-Reporting Levels

Table 7.1 PHP’s error-reporting settings, to be used with the error_reporting() function or in the php.ini file. Note
that E_ALL’s number value was different in earlier versions of PHP and did not include E_STRICT (it does in PHP 6).

Suppressing Errors with @

Individual errors can be suppressed in

PHP using the @ operator. For example,

if you don’t want PHP to report if it

couldn’t include a file, you would code

@include ('config.inc.php');

Or if you don’t want to see a “division by

zero” error:

$x = 8;

$y = 0;

$num = @($x/$y);

The @ symbol will work only on expres-

sions, like function calls or mathematical

operations. You cannot use @ before con-

ditionals, loops, function definitions, and

so forth.

As a rule of thumb, I recommend that @
be used on functions whose execution,

should they fail, will not affect the func-

tionality of the script as a whole. Or you

can suppress PHP’s errors when you will

handle them more gracefully yourself (a

topic discussed later in this chapter).

certain behind-the-scenes aspects of your

Web application that are best not shown.

While you hope all of these will be worked

out during the development stages, that may

not be the case.

You can universally adjust the level of error

reporting following the instructions in

Appendix A. Or you can adjust this behavior

on a script-by-script basis using the

error_reporting() function. This function

is used to establish what type of errors PHP

should report on within a specific page. The

function takes either a number or a con-

stant, using the values in Table 7.1 (the PHP

manual lists a few others, related to the core

of PHP itself).

error_reporting(0); // Show no errors.

A setting of 0 turns error reporting off

entirely (errors will still occur; you just won’t

see them anymore). Conversely,

error_reporting (E_ALL) will tell PHP to

report on every error that occurs. The num-

bers can be added up to customize the level

of error reporting, or you could use the bit-

wise operators—| (or), ~ (not), & (and)—with

the constants. With this following setting

any non-notice error will be shown:

error_reporting (E_ALL & ~E_NOTICE);

To adjust error reporting:

1. Open display_errors.php (Script 7.1) in

your text editor or IDE.

To play around with error reporting levels,

use display_errors.php as an example.

2. After adjust the display_errors setting,

add (Script 7.2)

error_reporting (E_ALL);

For development purposes, have PHP

notify you of all errors, notices, warnings,

and recommendations. This line will

209

Error Handling and Debugging

A
d

j
u

s
t

i
n

g
 E

r
r

o
r

 R
e

p
o

r
t

i
n

g
 i

n
 P

H
P

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content=
"text/html; charset=iso-8859-1" />

6 <title>Report Errors</title>

7 </head>

8 <body>

9 <h2>Testing Error Reporting</h2>

10 <?php # Script 7.2 - report_errors.php

11

12 // Show errors:

13 ini_set('display_errors', 1);

14

15 // Adjust error reporting:

16 error_reporting(E_ALL);

17

18 // Create errors:

19 foreach ($var as $v) {}

20 $result = 1/0;

21

22 ?>

23 </body>

24 </html>

Script 7.2 This script will demonstrate how error
reporting can be manipulated in PHP.

continues on next page

accomplish that. In short, PHP will let

you know about anything that is, or may

be, a problem.

Because E_ALL is a constant, it is not

enclosed in quotation marks.

3. Save the file as report_errors.php, place

it in your Web directory, and run it in

your Web browser (Figure 7.12).

I also altered the page’s title and the

heading, but both are immaterial to the

point of this exercise.

4. Change the level of error reporting to

something different and retest (Figures

7.13 and 7.14).

✔ Tips

■ Because you’ll often want to adjust the

display_errors and error_reporting for

every page in a Web site, you might want

to place those lines of code in a separate

PHP file that can then be included by

other PHP scripts.

■ In case you are curious, the scripts in

this book were all written with PHP’s

error reporting on the highest level (with

the intention of catching every possible

problem).

210

Chapter 7

A
d

j
u

s
t

i
n

g
 E

r
r

o
r

 R
e

p
o

r
t

i
n

g
 i

n
 P

H
P

Figure 7.12 On the highest level of error reporting,
PHP has two warnings and one notice for this page
(Script 7.2).

Figure 7.13 The same page (Script 7.2) after disabling
the reporting of notices.

Figure 7.14 The same page again
(Script 7.2) with error reporting
turned off (set to 0). The result is
the same as if display_errors was
disabled. Of course, the errors still
occur; they’re just not being
reported.

Creating Custom Error
Handlers
Another option for error management with

your sites is to alter how PHP handles errors.

By default, if display_errors is enabled and

an error is caught (that falls under the level

of error reporting), PHP will print the error,

in a somewhat simplistic form, within some

minimal HTML tags (Figure 7.15).

You can override how errors are handled by

creating your own function that will be

called when errors occur. For example,

function report_errors (arguments) {

// Do whatever here.

}

set_error_handler ('report_errors');

The set_error_handler() function is used

to name the function to be called when an

error occurs. The handling function (report_

errors, in this case) will, at that time, receive

several values that can be used in any possi-

ble manner.

This function can be written to take up to

five arguments. In order, these arguments

are: an error number (corresponding to

Table 7.1), a textual error message, the name

of the file where the error was found, the

specific line number on which it occurred,

and the variables that existed at the time of

the error. Defining a function that accepts

all these arguments might look like

function report_errors ($num, $msg,
$file, $line, $vars) {…

To make use of this concept, the report_
errors.php file (Script 7.2) will be rewritten

one last time.

211

Error Handling and Debugging

C
r

e
a

t
i
n

g
 C

u
s

t
o

m
 E

r
r

o
r

 H
a

n
d

l
e

r
s

Figure 7.15 The HTML source code for the errors shown in Figure 7.12.

To create your own error handler:

1. Open report_errors.php (Script 7.2) in

your text editor or IDE.

2. Remove the ini_set() and error_
reporting() lines (Script 7.3).

When you establish your own error han-

dling function, the error reporting levels

no longer have any meaning, so that line

can be removed. Adjusting the display_

errors setting is also meaningless, as the

error handling function will control

whether errors are displayed or not.

3. Before the script creates the errors, add

define ('LIVE', FALSE);

This constant will be a flag used to indi-

cate whether or not the site is currently

live. It’s an important distinction, as how

you handle errors and what you reveal in

the browser should differ greatly when

you’re developing a site and when a site

is live.

This constant is being set outside of the

function for two reasons. First, I want to

treat the function as a black box that does

what I need it to do without having to go

in and tinker with it. Second, in many

sites, there might be other settings (like

the database connectivity information)

that are also live versus development-

specific. Conditionals could, therefore,

also refer to this constant to adjust those

settings.

4. Begin defining the error handling function.

function my_error_handler ($e_number,
➝ $e_message, $e_file, $e_line,
➝ $e_vars) {

The my_error_handler() function is set

to receive the full five arguments that a

custom error handler can.

212

Chapter 7

C
r

e
a

t
i
n

g
 C

u
s

t
o

m
 E

r
r

o
r

 H
a

n
d

l
e

r
s

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content=
"text/html; charset=iso-8859-1" />

6 <title>Handling Errors</title>

7 </head>

8 <body>

9 <h2>Testing Error Handling</h2>

10 <?php # Script 7.3 - handle_errors.php

11

12 // Flag variable for site status:

13 define('LIVE', FALSE);

14

15 // Create the error handler:

16 function my_error_handler ($e_number,
$e_message, $e_file, $e_line, $e_vars) {

17

18 // Build the error message:

19 $message = "An error occurred in script
'$e_file' on line $e_line: $e_message\
n";

20

21 // Append $e_vars to $message:

22 $message .= print_r ($e_vars, 1);

23

24 if (!LIVE) { // Development (print the
error).

25 echo '<pre>' . $message . "\n";

26 debug_print_backtrace();

27 echo '</pre>
';

28 } else { // Don't show the error.

Script 7.3 By defining your own error handling
function, you can customize how errors are treated
in your PHP scripts.

(script continues on next page)

5. Create the error message using the

received values.

$message = "An error occurred in
➝ script '$e_file' on line $e_line:
➝ $e_message\n";

The error message will begin by referenc-

ing the filename and number where the

error occurred. Added to this is the actu-

al error message. All of these values are

passed to the function when it is called

(when an error occurs).

6. Add any existing variables to the error

message.

$message .= print_r ($e_vars, 1);

The $e_vars variable will receive all of

the variables that exist, and their values,

when the error happens. Because this

might contain useful debugging informa-

tion, it’s added to the message.

The print_r() function is normally used

to print out a variable’s structure and

value; it is particularly useful with arrays.

If you call the function with a second

argument (1 or TRUE), the result is

returned instead of printed. So this line

adds all of the variable information to

$message.

7. Print a message that will vary, depending

upon whether or not the site is live.

if (!LIVE) {

echo '<pre>' . $message . "\n";

debug_print_backtrace();

echo '</pre>
';

} else {

echo '<div class="error">A
➝ system error occurred. We
➝ apologize for the
➝ inconvenience.</div>
';

}

213

Error Handling and Debugging

C
r

e
a

t
i
n

g
 C

u
s

t
o

m
 E

r
r

o
r

 H
a

n
d

l
e

r
s

29 echo '<div class="error">A system
error occurred. We apologize for
the inconvenience.</div>
';

30 }

31

32 } // End of my_error_handler() definition.

33

34 // Use my error handler:

35 set_error_handler ('my_error_handler');

36

37 // Create errors:

38 foreach ($var as $v) {}

39 $result = 1/0;

40

41 ?>

42 </body>

43 </html>

Script 7.3 continued

continues on next page

If the site is not live (if LIVE is false),

which would be the case while the site is

being developed, a detailed error message

should be printed (Figure 7.16). For ease

of viewing, the error message is printed

within HTML PRE tags (which aren’t

XHMTL valid but are very helpful here).

Furthermore, a useful debugging func-

tion, debug_print_backtrace(), is also

called. This function returns a slew of

information about what functions have

been called, what files have been includ-

ed, and so forth.

If the site is live, a simple mea culpa will

be printed, letting the user know that an

error occurred but not what the specific

problem is (Figure 7.17). Under this

situation, you could also use the error_
log() function (see the sidebar) to have

the detailed error message emailed or

written to a log.

8. Complete the function and tell PHP to

use it.

}

set_error_handler('my_error_handler'
➝);

This second line is the important one,

telling PHP to use the custom error

handler instead of PHP’s default handler.

9. Save the file as handle_errors.php,

place it in your Web directory, and test

it in your Web browser (Figure 7.16).

10. Change the value of LIVE to TRUE, save,

and retest the script (Figure 7.17).

To see how the error handler behaves

with a live site, just change this one

value.

214

Chapter 7

C
r

e
a

t
i
n

g
 C

u
s

t
o

m
 E

r
r

o
r

 H
a

n
d

l
e

r
s

Figure 7.16 During the development phase, detailed error messages are printed in the Web browser.
(In a more real-world script, with more code, the messages would be more useful.)

✔ Tips

■ If your PHP page uses special HTML for-

matting—like CSS tags to affect the lay-

out and font treatment—add this infor-

mation to your error reporting function.

■ Obviously in a live site you’ll probably

need to do more than apologize for the

inconvenience (particularly if the error

significantly affects the page’s functional-

ity). Still, this example demonstrates how

you can easily adjust error handling to

suit the situation.

■ If you don’t want the error handling

function to report on every notice, error,

or warning, you could check the error

number value (the first argument sent to

the function). For example, to ignore

notices when the site is live, you would

change the main conditional to

if (!LIVE) {

echo '<pre>' . $message . "\n";

debug_print_backtrace();

echo '</pre>
';

} elseif ($e_number != E_NOTICE) {

echo '<div class="error">A
➝ system error occurred. We
➝ apologize for the
➝ inconvenience.</div>
';

}

■ You can invoke your error handling func-

tion using trigger_error().

215

Error Handling and Debugging

C
r

e
a

t
i
n

g
 C

u
s

t
o

m
 E

r
r

o
r

 H
a

n
d

l
e

r
s

Figure 7.17 Once a site has gone live, more user-
friendly (and less revealing) errors are printed.
Here, one message is printed for each of the three
errors in the script.

Logging PHP Errors

In Script 7.3, errors are handled by simply

printing them out in detail or not.

Another option is to log the errors: make

a permanent note of them somehow. For

this purpose, the error_log() function

instructs PHP how to file an error. It’s

syntax is

error_log (message, type,
➝ destination,

extra headers);

The message value should be the text of

the logged error (i.e., $message in Script

7.3). The type dictates how the error is

logged. The options are the numbers 0

through 3: use the computer’s default log-

ging method (0), send it in an email (1),

send to a remote debugger (2), or write it

to a text file (3).

The destination parameter can be either

the name of a file (for log type 3) or an

email address (for log type 1). The extra

headers argument is used only when

sending emails (log type 1). Both the des-

tination and extra headers are optional.

PHP Debugging
Techniques
When it comes to debugging, what you’ll

best learn from experience are the causes of

certain types of errors. Understanding the

common causes will shorten the time it

takes to fix errors. To expedite the learning

process, Table 7.2 lists the likely reasons for

the most common PHP errors.

The first, and most common, type of error

that you’ll run across is syntactical and will

prevent your scripts from executing. An

error like this will result in messages like the

one in Figure 7.18, which every PHP devel-

oper has seen too many times. To avoid

making this sort of mistake when you pro-

gram, be sure to:

◆ End every statement (but not language

constructs like loops and conditionals)

with a semicolon.

◆ Balance all quotation marks, parenthe-

ses, curly braces, and square brackets

(each opening character must be closed).

◆ Be consistent with your quotation marks

(single quotes can be closed only with

single quotes and double quotes with

double quotes).

◆ Escape, using the backslash, all single-

and double-quotation marks within

strings, as appropriate.

One thing you should also understand about

syntactical errors is that just because the

PHP error message says the error is occur-

ring on line 12, that doesn’t mean that the

mistake is actually on that line. At the very

least, it is not uncommon for there to be

216

Chapter 7

P
H

P
D

e
b

u
g

g
i
n

g
 T

e
c

h
n

i
q

u
e

s

E r r o r L i k e ly C a u s e

Blank Page HTML problem, or PHP error and display_errors or error_reporting is off.

Parse error Missing semicolon; unbalanced curly braces, parentheses, or quotation marks; or use of an
unescaped quotation mark in a string.

Empty variable value Forgot the initial $, misspelled or miscapitalized the variable name, or inappropriate variable
scope (with functions).

Undefined variable Reference made to a variable before it is given a value or an empty variable value (see those
potential causes).

Call to undefined function Misspelled function name, PHP is not configured to use that function (like a MySQL function),
or document that contains the function definition was not included.

Cannot redeclare function Two definitions of your own function exist; check within included files.

Headers already sent White space exists in the script before the PHP tags, data has already been printed, or a file
has been included.

Common PHP Errors

Table 7.2 These are some of the most common errors you’ll see in PHP, along with their most probable causes.

Figure 7.18 The parse error prevents a script from
running because of invalid PHP syntax. This one
was caused by failing to enclose $array['key']
within curly braces when printing its value.

a difference between what PHP thinks is

line 12 and what your text editor indicates

is line 12. So while PHP’s direction is useful

in tracking down a problem, treat the line

number referenced as more of a starting

point than an absolute.

If PHP reports an error on the last line of

your document, this is almost always

because a mismatched parenthesis, curly

brace, or quotation mark was not caught

until that moment.

The second type of error you’ll encounter

results from misusing a function. This error

occurs, for example, when a function is

called without the proper arguments. This

error is discovered by PHP when attempting

to execute the code. In later chapters you’ll

probably see such errors when using the

header() function, cookies, or sessions.

To fix errors, you’ll need to do a little detec-

tive work to see what mistakes were made

and where. For starters, though, always thor-

oughly read and trust the error message

PHP offers. Although the referenced line

number may not always be correct, a PHP

error is very descriptive, normally helpful,

and almost always 100 percent correct.

To debug your scripts:

◆ Turn on display_errors.

Use the earlier steps to enable display_

errors for a script, or, if possible, the

entire server, as you develop your

applications.

◆ Use comments.

Just as you can use comments to docu-

ment your scripts, you can also use them

to rule out problematic lines. If PHP is

giving you an error on line 12, then com-

menting out that line should get rid of

the error. If not, then you know the error

is elsewhere. Just be careful that you

don’t introduce more errors by improper-

ly commenting out only a portion of a

code block: the syntax of your scripts

must be maintained.

◆ Use the print() and echo() functions.

In more complicated scripts, I frequently

use echo() statements to leave me notes

as to what is happening as the script is

executed (Figure 7.19). When a script

has several steps, it may not be easy to

know if the problem is occurring in step 2

or step 5. By using an echo() statement,

you can narrow the problem down to the

specific juncture.

217

Error Handling and Debugging

P
H

P
D

e
b

u
g

g
i
n

g
 T

e
c

h
n

i
q

u
e

s

Figure 7.19 More complex debugging can be accomplished by leaving
yourself notes as to what the script is doing.

continues on next page

◆ Check what quotation marks are being

used for printing variables.

It’s not uncommon for programmers to

mistakenly use single quotation marks

and then wonder why their variables are

not printed properly. Remember that sin-

gle quotation marks treat text literally

and that you must use double quotation

marks to print out the values of variables.

◆ Track variables (Figure 7.20).

It is pretty easy for a script not to work

because you referred to the wrong vari-

able or the right variable by the wrong

name or because the variable does not

have the value you would expect. To

check for these possibilities, use the

print() or echo() statements to print

out the values of variables at important

points in your scripts. This is simply a

matter of

echo "<p>\$var = $var</p>\n";

The first dollar sign is escaped so that

the variable’s name is printed. The sec-

ond reference of the variable will print

its value.

◆ Print array values.

For more complicated variable types

(arrays and objects), the print_r() and

var_dump() functions will print out their

values without the need for loops. Both

functions accomplish the same task,

although var_dump() is more detailed in

its reporting than print_r().

218

Chapter 7

P
H

P
D

e
b

u
g

g
i
n

g
 T

e
c

h
n

i
q

u
e

s

Figure 7.20 Printing the names and values of
variables is the easiest way to track them over the
course of a script.

✔ Tips

■ Many text editors include utilities to

check for balanced parentheses, brackets,

and quotation marks.

■ If you cannot find the parse error in a

complex script, begin by using the /* */
comments to render the entire PHP code

inert. Then continue to uncomment sec-

tions at a time (by moving the opening

or closing comment characters) and

rerun the script until you deduce what

lines are causing the error. Watch how

you comment out control structures,

though, as the curly braces must contin-

ue to be matched in order to avoid parse

errors. For example:

if (condition) {

/* Start comment.

Inert code.

End comment. */

}

■ To make the results of print_r() more

readable in the Web browser, wrap it

within HTML <pre> (preformatted) tags.

This one line is my absolute favorite

debugging tool:

echo '<pre>' . print_r ($var, 1) .
➝ '</pre>';

219

Error Handling and Debugging

P
H

P
D

e
b

u
g

g
i
n

g
 T

e
c

h
n

i
q

u
e

s

Using die() and exit()

Two functions that are often used with

error management are die() and exit(),

(they’re technically language constructs,

not functions, but who cares?). When a

die() or exit() is called in your script,

the entire script is terminated. Both are

useful for stopping a script from continu-

ing should something important—like

establishing a database connection—

fail to happen. You can also pass die()
and exit() a string that will be printed

out in the browser.

You’ll commonly see die() or exit()
used in an OR conditional. For example:

include('config.inc.php') OR die
➝ ('Could not open the file. ');

With a line like that, if PHP could not

include the configuration file, the die()

statement will be executed and the

“Could not open the file.” message will be

printed. You’ll see variations on this

throughout this book and in the PHP

manual, as it’s a quick (but potentially

excessive) way to handle errors without

using a custom error handler.

SQL and MySQL
Debugging Techniques
The most common SQL errors are caused by

the following issues:

◆ Unbalanced use of quotation marks or

parentheses

◆ Unescaped apostrophes in column values

◆ Misspelling a column name, table name,

or function

◆ Ambiguously referring to a column in a

join

◆ Placing a query’s clauses (WHERE, GROUP
BY, ORDER BY, LIMIT) in the wrong order

Furthermore, when using MySQL you can

also run across the following:

◆ Unpredictable or inappropriate query

results

◆ Inability to access the database

Since you’ll be running the queries for your

dynamic Web sites from PHP, you need a

methodology for debugging SQL and MySQL

errors within that context (PHP will not

report a problem with your SQL).

Debugging SQL problems
To decide if you are experiencing a MySQL

(or SQL) problem rather than a PHP one,

you need a system for finding and fixing the

issue. Fortunately, the steps you should take

to debug MySQL and SQL problems are easy

to define and should be followed without

thinking. If you ever have any MySQL or

SQL errors to debug, just abide by this

sequence of steps.

To hammer the point home, this next sequence

of steps is probably the most useful debugging

technique in this chapter and the entire book.

You’ll likely need to follow these steps in any

PHP-MySQL Web application when you’re not

getting the results you expected.

To debug your SQL queries:

1. Print out any applicable queries in your

PHP script (Figure 7.21).

As you’ll see in the next chapter, SQL

queries will often be assigned to a vari-

able, particularly when you use PHP to

dynamically write them. Using the code

echo $query (or whatever the query vari-

able is called) in your PHP scripts, you

can send to the browser the exact query

being run. Sometimes this step alone will

help you see what the real problem is.

220

Chapter 7

S
Q

L
a

n
d

 M
y

S
Q

L
D

e
b

u
g

g
i
n

g
 T

e
c

h
n

i
q

u
e

s

Figure 7.21 Knowing exactly what query a PHP script
is attempting to execute is the most useful first step
for solving SQL and MySQL problems.

2. Run the query in the mysql client or

other tool (Figure 7.22).

The most foolproof method of debugging

an SQL or MySQL problem is to run the

query used in your PHP scripts through

an independent application: the mysql

client, phpMyAdmin, or the like. Doing

so will give you the same result as the

original PHP script receives but without

the overhead and hassle.

If the independent application returns

the expected result but you are still not

getting the proper behavior in your PHP

script, then you will know that the prob-

lem lies within the script itself, not your

SQL or MySQL database.

3. If the problem still isn’t evident, rewrite

the query in its most basic form, and

then keep adding dimensions back in

until you discover which clause is caus-

ing the problem.

Sometimes it’s difficult to debug a query

because there’s too much going on. Like

commenting out most of a PHP script,

taking a query down to its bare mini-

mum structure and slowly building it

back up can be the easiest way to debug

complex SQL commands.

✔ Tips

■ Another common MySQL problem is try-

ing to run queries or connect using the

mysql client when the MySQL server isn’t

even running. Be sure that MySQL is

available for querying!

■ As an alternative to printing out the

query to the browser, you could print it

out as an HTML comment (viewable

only in the HTML source), using

echo "<!-- $query -->";

221

Error Handling and Debugging

S
Q

L
a

n
d

 M
y

S
Q

L
D

e
b

u
g

g
i
n

g
 T

e
c

h
n

i
q

u
e

s

Figure 7.22 To understand what result a PHP script is receiving, run the same
query through a separate interface. In this case the problem is the reference
to the password column, when the table’s column is actually called just pass.

Debugging access problems
Access denied error messages are the most

common problem beginning developers

encounter when using PHP to interact with

MySQL. These are among the common

solutions:

◆ Reload MySQL after altering the privi-

leges so that the changes take effect.

Either use the mysqladmin tool or run

FLUSH PRIVILEGES in the mysql client.

You must be logged in as a user with

the appropriate permissions to do this

(see Appendix A for more).

◆ Double-check the password used. The

error message Access denied for user:

‘user@localhost’ (Using password: YES)

frequently indicates that the password is

wrong or mistyped. (This is not always

the cause but is the first thing to check.)

◆ The error message Can’t connect to…

(error number 2002) indicates that

MySQL either is not running or is not

running on the socket or TCP/IP port

tried by the client.

✔ Tips

■ MySQL keeps its own error logs, which

are very useful in solving MySQL prob-

lems (like why MySQL won’t even start).

MySQL’s error log will be located in the

data directory and titled hostname.err.

■ The MySQL manual is very detailed,

containing SQL examples, function

references, and the meanings of error

codes. Make the manual your friend and

turn to it when confusing errors pop up.

222

Chapter 7

S
Q

L
a

n
d

 M
y

S
Q

L
D

e
b

u
g

g
i
n

g
 T

e
c

h
n

i
q

u
e

s

