
Validating Form Data
A critical concept related to handling HTML

forms is that of validating form data. In terms

of both error management and security, you

should absolutely never trust the data being

entered in an HTML form. Whether erro-

neous data is purposefully malicious or just

unintentionally inappropriate, it’s up to

you—the Web architect—to test it against

expectations.

Validating form data requires the use of

conditionals and any number of functions,

operators, and expressions. One standard

function to be used is isset(), which tests

if a variable has a value (including 0, FALSE,

or an empty string, but not NULL). You saw

an example of this in the preceding script.

One issue with the isset() function is that

an empty string tests as TRUE, meaning that

isset() is not an effective way to validate

text inputs and text boxes from an HTML

form. To check that a user typed something

into textual elements, you can use the

empty() function. It checks if a variable has

an empty value: an empty string, 0, NULL,

or FALSE.

The first aim of form validation is seeing if

something was entered or selected in form

elements. The second goal is to ensure that

submitted data is of the right type (numeric,

string, etc.), of the right format (like an email

address), or a specific acceptable value (like

$gender being equal to either M or F). As

handling forms is a main use of PHP,

validating form data is a point that will be

re-emphasized time and again in subse-

quent chapters. But first, let’s create a new

handle_form.php to make sure variables have

values before they’re referenced (there will

be enough changes in this version that sim-

ply updating Script 2.3 doesn’t make sense).

46

Chapter 2

V
a

l
i
d

a
t

i
n

g
 F

o
r

m
 D

a
t
a

To validate your forms:

1. Begin a new PHP script in your text

editor or IDE (Script 2.4).

<!DOCTYPE html PUBLIC “-//W3C//DTD
➝ XHTML 1.0 Transitional//EN” “http:
➝ //www.w3.org/TR/xhtml1/DTD/
➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/
➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”
➝ content=”text/html; charset=
➝ iso-8859-1” />

<title>Form Feedback</title>

</head>

<body>

<?php # Script 2.4 - handle_
➝ form.php #3

2. Within the HTML head, add some CSS

(Cascading Style Sheets) code.

<style type=”text/css” title=”text/
➝ css” media=”all”>

.error {

font-weight: bold;

color: #C00

}

</style>

CSS is the preferred way to handle many

formatting and layout issues in an HTML

page. You’ll see a little bit of CSS here

and there in this book; if you’re not

familiar with the subject, check out a

dedicated CSS reference.

continues on page 49

47

Programming with PHP

V
a

l
i
d

a
t

i
n

g
 F

o
r

m
 D

a
t
a

(script continues on next page)

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN” “http://www.w3.org/TR/xhtml1/DTD/
➝ xhtml1-transitional.dtd”>

2 <html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>

3 <head>

4 <meta http-equiv=”content-type” content=”text/html; charset=iso-8859-1” />

5 <title>Form Feedback</title>

6 <style type=”text/css” title=”text/css” media=”all”>

7 .error {

8 font-weight: bold;

9 color: #C00

10 }

11 </style>

12 </head>

13 <body>

14 <?php # Script 2.4 - handle_form.php #3

15

16 // Validate the name:

17 if (!empty($_REQUEST[‘name’])) {

18 $name = $_REQUEST[‘name’];

19 } else {

20 $name = NULL;

21 echo ‘<p class=”error”>You forgot to enter your name!</p>’;

22 }

23

24 // Validate the email:

25 if (!empty($_REQUEST[‘email’])) {

26 $email = $_REQUEST[‘email’];

27 } else {

28 $email = NULL;

29 echo ‘<p class=”error”>You forgot to enter your email address!</p>’;

30 }

31

32 // Validate the comments:

33 if (!empty($_REQUEST[‘comments’])) {

34 $comments = $_REQUEST[‘comments’];

35 } else {

36 $comments = NULL;

Script 2.4 Validating HTML form data before you use it is critical to Web security and achieving professional results.
Here, conditionals check that every referenced form element has a value.

48

Chapter 2

V
a

l
i
d

a
t

i
n

g
 F

o
r

m
 D

a
t
a

37 echo ‘<p class=”error”>You forgot to enter your comments!</p>’;

38 }

39

40 // Validate the gender:

41 if (isset($_REQUEST[‘gender’])) {

42

43 $gender = $_REQUEST[‘gender’];

44

45 if ($gender == ‘M’) {

46 echo ‘<p>Good day, Sir!</p>’;

47 } elseif ($gender == ‘F’) {

48 echo ‘<p>Good day, Madam!</p>’;

49 } else { // Unacceptable value.

50 $gender = NULL;

51 echo ‘<p class=”error”>Gender should be either “M” or “F”!</p>’;

52 }

53

54 } else { // $_REQUEST[‘gender’] is not set.

55 $gender = NULL;

56 echo ‘<p class=”error”>You forgot to select your gender!</p>’;

57 }

58

59 // If everything is OK, print the message:

60 if ($name && $email && $gender && $comments) {

61

62 echo “<p>Thank you, $name, for the following comments:

63 <tt>$comments</tt></p>

64 <p>We will reply to you at <i>$email</i>.</p>\n”;

65

66 } else { // Missing form value.

67 echo ‘<p class=”error”>Please go back and fill out the form again.</p>’;

68 }

69

70 ?>

71 </body>

72 </html>

Script 2.4 continued

echo ‘<p class=”error”>You forgot
➝ to enter your comments!</p>’;

}

Both variables receive the same treat-

ment as $_REQUEST[‘name’] in Step 3.

5. Begin validating the gender variable.

if (isset($_REQUEST[‘gender’])) {

$gender = $_REQUEST[‘gender’];

The validation of the gender is a two-step

process. First, check if it has a value or

not, using isset(). This starts the main

if-else conditional, which otherwise

behaves like those for the name, email

address, and comments.

6. Check $gender against specific values.

if ($gender == ‘M’) {

echo ‘<p>Good day, Sir!
➝ </p>’;

} elseif ($gender == ‘F’) {

echo ‘<p>Good day, Madam!
➝ </p>’;

} else {

$gender = NULL;

echo ‘<p class=”error”>Gender
➝ should be either “M” or “F”!
➝ </p>’;

}

Within the gender if clause is a nested

if-elseif-else conditional that tests the

variable’s value against what’s acceptable.

This is the second part of the two-step

gender validation.

49

Programming with PHP

V
a

l
i
d

a
t

i
n

g
 F

o
r

m
 D

a
t
a

In this script I’m defining one CSS class,

called error. Any HTML element that has

this class name will be formatted in a

bold, red color (which will be more

apparent in your Web browser than

in this black-and-white book).

3. Check if the name was entered.

if (!empty($_REQUEST[‘name’])) {

$name = $_REQUEST[‘name’];

} else {

$name = NULL;

echo ‘<p class=”error”>You forgot
➝ to enter your name!</p>’;

}

A simple way to check that a form text

input was filled out is to use the empty()
function. If $_REQUEST[‘name’] has a

value other than an empty string, 0, NULL,

or FALSE, assume that their name was

entered and a shorthand variable is

assigned that value. If $_REQUEST[‘name’]
is empty, the $name variable is set to NULL
and an error message printed. This error

message uses the CSS class.

4. Repeat the same process for the email

address and comments.

if (!empty($_REQUEST[‘email’])) {

$email = $_REQUEST[‘email’];

} else {

$email = NULL;

echo ‘<p class=”error”>You forgot
to enter your email address!</p>’;

}

if (!empty($_REQUEST[‘comments’])) {

$comments = $_REQUEST[‘comments’];

} else {

$comments = NULL;

continues on next page

The conditions themselves are the same

as those in the last script. If gender does

not end up being equal to either M or F,

a problem occurred and an error mes-

sage is printed. The $gender variable is

also set to NULL in such cases, because it

has an unacceptable value.

If $gender does have a valid value, a

gender-specific message is printed.

7. Complete the main gender if-else
conditional.

} else {

$gender = NULL;

echo ‘<p class=”error”>You forgot
➝ to select your gender!</p>’;

}

This else clause applies if $_REQUEST
[‘gender’] is not set. The complete,

nested conditionals (see lines 41–57

of Script 2.4) successfully check every

possibility:

▲ $_REQUEST[‘gender’] is not set

▲ $_REQUEST[‘gender’] has a value

of M

▲ $_REQUEST[‘gender’] has a value

of F

▲ $_REQUEST[‘gender’] has some

other value

You may wonder how this last case may

be possible, considering the values are

established in the HTML form. If a mali-

cious user creates their own form that

gets submitted to your handle_form.php
script (which is very easy to do), they

could give $_REQUEST[‘gender’] any

value they want.

50

Chapter 2

V
a

l
i
d

a
t

i
n

g
 F

o
r

m
 D

a
t
a

8. Print the message if all of the tests have

been passed.

if ($name && $email && $gender &&
➝ $comments) {

echo “<p>Thank you, $name,
➝ for the following comments:
➝

<tt>$comments</tt></p>

<p>We will reply to you at <i>$
➝ email</i>.</p>\n”;

} else { // Missing form value.

echo ‘<p class=”error”>Please go
➝ back and fill out the form
➝ again.</p>’;

}

This main condition is true if every listed

variable has a true value. Each variable

will have a value if it passed its test but

have a value of NULL if it didn’t. If every

variable has a value, the form was com-

pleted, so the Thank you message will

be printed. If any of the variables are

NULL, the second message will be print-

ed (Figures 2.13 and 2.14).

9. Close the PHP section and complete

the HTML code.

?>

</body>

</html>

10. Save the file as handle_form.php,

place it in the same Web directory

as form.html, and test it in your Web

browser (Figures 2.13 and 2.14).

Fill out the form to different levels of

completeness to test the new script

(Figure 2.15).

✔ Tips

■ To test if a submitted value is a number,

use the is_numeric() function.

■ In Chapter 13, “Perl-Compatible Regular

Expressions,” you’ll see how to validate

form data using regular expressions.

■ The $age variable is still not used or

validated for the sake of saving book

space. To validate it, repeat the $gender
validation routine, referring to

$_REQUEST[‘age’] instead. To test

$age’s specific value, use an

if-elseif-elseif-else, checking

against the corresponding pull-down

options (0-29, 30-60, 60+).

■ It’s considered good form (pun intended)

to let a user know which fields are

required when they’re filling out the form,

and where applicable, the format of that

field (like a date or a phone number).

51

Programming with PHP

V
a

l
i
d

a
t

i
n

g
 F

o
r

m
 D

a
t
a

Figure 2.13 The script now checks
that every form element was filled out
(except the age) and reports on those
that weren’t.

Figure 2.14 If even one or two fields
were skipped, the Thank you message
is not printed…

Figure 2.15 …but if everything was entered
properly, the script behaves as it previously had
(although the gender-specific message now
appears at the top of the results).

