
Basic Syntax
As stated in the book’s introduction, PHP is

an HTML-embedded scripting language.

This means that you can intermingle PHP

and HTML code within the same file. So

to begin programming with PHP, start with

a simple Web page. Script 1.1 gives an

example of a no-frills, no-content XHTML

Transitional document, which will be used

as the foundation for every Web page in the

book (this book does not formally discuss

[X]HTML; see a resource dedicated to the

topic for more information).

To add PHP code to a page, place it within

PHP tags:

<?php

?>

Anything placed within these tags will be

treated by the Web server as PHP (meaning

the PHP interpreter will process the code).

Any text outside of the PHP tags is immedi-

ately sent to the Web browser as regular

HTML.

Along with placing PHP code within PHP

tags, your PHP files must have a proper

extension. The extension tells the server to

treat the script in a special way, namely, as a

PHP page. Most Web servers will use .html
or .htm for standard HTML pages, and nor-

mally, .php is preferred for your PHP files.

To make a basic PHP script:

1. Create a new document in your text

editor or Integrated Development

Environment (Script 1.2).

It generally does not matter what appli-

cation you use, be it Dreamweaver (a

fancy IDE), BBEdit (a great and popular

Macintosh plain-text editor), or vi (a plain-

text Unix editor, lacking a graphical

interface). Still, some text editors and

2

Chapter 1

B
a

s
i
c

 S
y

n
t
a

x

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML
1.0 Transitional//EN” “http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd”>

2 <html xmlns=”http://www.w3.org/1999/
xhtml” xml:lang=”en” lang=”en”>

3 <head>

4 <meta http-equiv=”content-type” content=
”text/html; charset=iso-8859-1” />

5 <title>Page Title</title>

6 </head>

7 <body>

8 </body>

9 </html>

Script 1.1 A basic XHTML 1.0 Transitional Web page.

IDEs make typing and debugging HTML

and PHP easier (conversely, Notepad on

Windows does some things that makes

coding harder). If you don’t already have

an application you’re attached to, search

the Web or use the book’s corresponding

forum (www.DMCInsights.com/phorum/) to

find one.

2. Start a basic HTML document.

<!DOCTYPE html PUBLIC “-//W3C//
➝ DTD XHTML 1.0 Transitional//EN”“
➝ http://www.w3.org/TR/xhtml1/DTD/
➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/
➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”
➝ content=”text/html; charset=
➝ iso-8859-1” />

<title>Basic PHP Page</title>

</head>

<body>

<p>This is standard HTML.</p>

</body>

</html>

Although this is the syntax being used

throughout the book, you can change

the HTML to match whichever standard

you intend to use (e.g., HTML 4.0 Strict).

Again, see a dedicated (X)HTML

resource if you’re unfamiliar with this

HTML code (see the first tip).

3

Introduction to PHP

B
a

s
i
c

 S
y

n
t
a

x

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML
1.0 Transitional//EN” “http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd”>

2 <html xmlns=”http://www.w3.org/1999/xhtml”
xml:lang=”en” lang=”en”>

3 <head>

4 <meta http-equiv=”content-type” content=
”text/html; charset=iso-8859-1” />

5 <title>Basic PHP Page</title>

6 </head>

7 <body>

8 <p>This is standard HTML.</p>

9 <?php

10 ?>

11 </body>

12 </html>

continues on next page

Script 1.2 This first PHP script doesn’t do anything,
per se, but does demonstrate how a PHP script is
written. It’ll also be used as a test, prior to getting
into elaborate PHP code.

3. Before the closing body tag, insert your

PHP tags.

<?php

?>

These are the formal PHP tags, also

known as XML-style tags. Although PHP

supports other tag types (see the second

tip), I recommend that you use the for-

mal type, and I will do so throughout

this book.

4. Save the file as first.php.

Remember that if you don’t save the file

using an appropriate PHP extension, the

script will not execute properly.

5. Place the file in the proper directory of

your Web server.

If you are running PHP on your own

computer (presumably after following

the installation directions in Appendix

A, “Installation”), you just need to move,

copy, or save the file to a specific folder

on your computer. Check the documen-

tation for your particular Web server to

identify the correct directory, if you don’t

already know what it is.

If you are running PHP on a hosted server

(i.e., on a remote computer), you’ll need

to use an FTP application to upload the

file to the proper directory. Your hosting

company will provide you with access

and the other necessary information.

6. Run first.php in your Web browser

(Figure 1.1).

Because PHP scripts need to be parsed

by the server, you absolutely must access

them via the URL. You cannot simply

open them in your Web browser as you

would a file in other applications.

If you are running PHP on your own

computer, you’ll need to go to something

like http://localhost/first.php,

http://127.0.0.1/first.php, or

4

Chapter 1

B
a

s
i
c

 S
y

n
t
a

x

Figure 1.1 While it seems like any other
(simple) HTML page, this is in fact a PHP
script and the basis for the rest of the
examples in the book.

http://localhost/~<user>/first.php
(on Mac OS X, using your actual user-

name for <user>). If you are using a

Web host, you’ll need to use http://
your-domain-name/first.php (e. g.,

http://www.example.com/first.php).

7. If you don’t see results like those in

Figure 1.1, start debugging.

Part of learning any programming lan-

guage is mastering debugging. It’s a

sometimes-painful but absolutely neces-

sary process. With this first example, if

you don’t see a simple, but perfectly

valid, Web page, follow these steps:

1. Confirm that you have a working

PHP installation (see Appendix A

for testing instructions).

2. Make sure that you are running the

script through a URL. The address

in the Web browser must begin with

http://. If it starts with file://,

that’s the problem (Figure 1.2).

3. If you get a file not found (or simi-

lar) error, you’ve likely put the file in

the wrong directory or mistyped

the file’s name (either when saving

it or in your Web browser).

If you’ve gone through all this and are

still having problems, turn to the book’s

corresponding forum (www.DMCInsights.
com/phorum/list.php?20).

5

Introduction to PHP

B
a

s
i
c

 S
y

n
t
a

x

Figure 1.2 If you see the actual PHP code (in this case, the tags) in the Web browser, this
means that the PHP Web server is not running the code for one reason or another.

✔ Tips

■ To find more information about HTML

and XHTML, check out Elizabeth

Castro’s excellent book HTML, XHTML,

and CSS, Sixth Edition: Visual QuickStart

Guide, (Peachpit Press, 2006) or search

the Web.

■ There are actually three different pairs

of PHP tags. Besides the formal

(<?php and ?>), there are the short tags

(<? and ?>), and the script style (<script
language=”php”> and </script>). This

last style is rarely used, and the formal

style is recommended.

■ Because I am running PHP on my own

computer, you will sometimes see URLs

like http://127.0.0.1:8000/first.php in

this book’s figures. The important thing

is that I’m running these scripts via

http://; don’t let the rest of the URL

confuse you.

■ You can embed multiple sections of PHP

code within a single HTML document

(i.e., you can go in and out of the two

languages). You’ll see examples of this

throughout the book.

Sending Data to the
Web Browser
To create dynamic Web sites with PHP, you

must know how to send data to the Web

browser. PHP has a number of built-in func-

tions for this purpose, the most common

being echo() and print(). I personally tend

to favor echo():

echo ‘Hello, world!’;

echo “What’s new?”;

You could use print() instead, if you prefer:

print “Hello, world!”;

print “What’s new?”;

As you can see from these examples, you

can use either single or double quotation

marks (but there is a distinction between

the two types of quotation marks, which

will be made clear by the chapter’s end).

The first quotation mark after the function

name indicates the start of the message to

be printed. The next matching quotation

mark (i.e., the next quotation mark of the

same kind as the opening mark) indicates

the end of the message to be printed.

Along with learning how to send data to the

Web browser, you should also notice that in

PHP all statements (a line of executed code,

in layman’s terms) must end with a semi-

colon. Also, PHP is case-insensitive when

it comes to function names, so ECHO(),

echo(), eCHo(), and so forth will all work.

The all-lowercase version is easiest to type,

of course.

6

Chapter 1

S
e

n
d

i
n

g
 D

a
t
a

 t
o

 t
h

e
 W

e
b

 B
r

o
w

s
e

r

Needing an Escape

As you might discover, one of the compli-

cations with sending data to the Web

involves printing single and double quo-

tation marks. Either of the following will

cause errors:

echo “She said, “How are you?””;

echo ‘I’m just ducky.’;

There are two solutions to this problem.

First, use single quotation marks when

printing a double quotation mark and

vice versa:

echo ‘She said, “How are you?”’;

echo “I’m just ducky.”;

Or, you can escape the problematic char-

acter by preceding it with a backslash:

echo “She said, \”How are you?\””;

print ‘I\’m just ducky.’;

As escaped quotation mark will merely

be printed like any other character.

Understanding how to use the backslash

to escape a character is an important

concept, and one that will be covered in

more depth at the end of the chapter.

Script 1.3 Using print() or echo(), PHP can send data
to the Web browser (see Figure 1.3).

To send data to the Web browser:

1. Open first.php (refer to Script 1.2) in

your text editor or IDE.

2. Between the PHP tags (lines 9 and 10),

add a simple message (Script 1.3).

echo ‘This was generated using
➝ PHP!’;

It truly doesn’t matter what message

you type here, which function you use

(echo() or print()), or which quotation

marks, for that matter—just be careful

if you are printing a single or double

quotation mark as part of your message

(see the sidebar “Needing an Escape”).

3. If you want, change the page title to bet-

ter describe this page (line 5).

<title>Using Echo()</title>

This change only affects the browser

window’s title bar.

4. Save the file as second.php, place it in

your Web directory, and test it in your

Web browser (Figure 1.3).

5. If necessary, debug the script.

If you see a parse error instead of your

message (see Figure 1.4), check that you

have both opened and closed your quota-

tion marks and escaped any problematic

characters (see the sidebar). Also be cer-

tain to conclude each statement with a

semicolon.

7

Introduction to PHP

S
e

n
d

i
n

g
 D

a
t
a

 t
o

 t
h

e
 W

e
b

 B
r

o
w

s
e

r

Figure 1.3 The results still aren’t
glamorous, but this page was in
part dynamically generated by PHP.

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML
1.0 Transitional//EN” “http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd”>

2 <html xmlns=”http://www.w3.org/1999/xhtml”
xml:lang=”en” lang=”en”>

3 <head>

4 <meta http-equiv=”content-type” content=
”text/html; charset=iso-8859-1” />

5 <title>Using Echo()</title>

6 </head>

7 <body>

8 <p>This is standard HTML.</p>

9 <?php

10 echo ‘This was generated using PHP!’;

11 ?>

12 </body>

13 </html>

Figure 1.4 This may be the first of many
parse errors you see as a PHP programmer
(this one is caused by an un-escaped
quotation mark).

continues on next page

If you see an entirely blank page, this is

probably for one of two reasons:

▲ There is a problem with your HTML.

Test this by viewing the source of

your page and looking for HTML

problems there (Figure 1.5).

▲ An error occurred, but display_errors

is turned off in your PHP configura-

tion, so nothing is shown. In this case,

see the section in Appendix A on how

to configure PHP so that you can turn

display_errors back on.

✔ Tips

■ Technically, echo() and print() are lan-

guage constructs, not functions. That

being said, don’t be flummoxed as I con-

tinue to call them “functions” for con-

venience. Also, I include the parentheses

when referring to functions—say echo(),

not just echo—to help distinguish them

from variables and other parts of PHP.

This is just my own little convention.

■ You can, and often will, use echo() and

print() to send HTML code to the Web

browser, like so (Figure 1.6):

echo ‘<p>Hello, world!</p>’;

■ Echo() and print() can both be used to

print text over multiple lines:

echo ‘This sentence is

printed over two lines.’;

What happens in this case is that the

return (created by pressing Enter or

Return) becomes part of the printed

message, which isn’t terminated until

the closing single quotation mark.

The net result will be the “printing” of

the return in the HTML source code

(Figure 1.7). This will not have an effect

on the generated page (Figure 1.8).

For more on this, see the sidebar

“Understanding White Space.”

8

Chapter 1

S
e

n
d

i
n

g
 D

a
t
a

 t
o

 t
h

e
 W

e
b

 B
r

o
w

s
e

r

Figure 1.5 One possible cause of a blank PHP
page is a simple HTML error, like the closing title
tag here (it’s missing the slash).

Figure 1.6 PHP can send HTML code (like
the formatting here) as well as simple text
(see Figure 1.3) to the Web browser.

9

Introduction to PHP

S
e

n
d

i
n

g
 D

a
t
a

 t
o

 t
h

e
 W

e
b

 B
r

o
w

s
e

r

Figure 1.7 Printing text and HTML over multiple PHP
lines will generate HTML source code that also
extends over multiple lines. Note that extraneous
white spacing in the HTML source will not affect the
look of a page (see Figure 1.8) but can make the
source easier to review.

Figure 1.8 The return in the HTML source
(Figure 1.7) has no effect on the rendered
result. The only way to alter the spacing of a
displayed Web page is to use HTML tags (like

 and <p></p>).

Understanding White Space

With PHP you send data (like HTML tags

and text) to the Web browser, which will,

in turn, render that data as the Web page

the end user sees. Thus, what you are

doing with PHP is creating the HTML

source of a Web page. With this in mind,

there are three areas of notable white

space (extra spaces, tabs, and blank

lines): in your PHP scripts, in your HTML

source, and in the rendered Web page.

PHP is generally white space insensitive,

meaning that you can space out your

code however you want to make your

scripts more legible. HTML is also gener-

ally white space insensitive. Specifically,

the only white space in HTML that

affects the rendered page is a single space

(multiple spaces still get rendered as

one). If your HTML source has text on

multiple lines, that doesn’t mean it’ll

appear on multiple lines in the rendered

page (see Figures 1.7 and 1.8).

To alter the spacing in a rendered Web

page, use the HTML tags
 (line

break,
 in older HTML standards)

and <p></p> (paragraph). To alter the

spacing of the HTML source created with

PHP, you can

◆ Use echo() or print() over the course

of several lines.

or

◆ Print the newline character (\n) with-

in double quotation marks.

Writing Comments
Creating executable PHP code is only a part

of the programming process (admittedly, it’s

the most important part). A secondary but

still crucial aspect to any programming

endeavor involves documenting your code.

In HTML you can add comments using

special tags:

<!-- Comment goes here. -->

HTML comments are viewable in the source

(Figure 1.9) but do not appear in the ren-

dered page.

PHP comments are different in that they

aren’t sent to the Web browser at all, mean-

ing they won’t be viewable to the end user,

even when looking at the HTML source.

10

Chapter 1

W
r

i
t

i
n

g
 C

o
m

m
e

n
t

s

Figure 1.9 HTML comments appear in the browser’s source code but
not in the rendered Web page.

PHP supports three comment types. The

first uses the pound or number symbol (#):

This is a comment.

The second uses two slashes:

// This is also a comment.

Both of these cause PHP to ignore every-

thing that follows until the end of the line

(when you press Return or Enter). Thus,

these two comments are for single lines only.

They are also often used to place a comment

on the same line as some PHP code:

print ‘Hello!’; // Say hello.

A third style allows comments to run over

multiple lines:

/* This is a longer comment

that spans two lines. */

Script 1.4 These basic comments demonstrate the
three syntaxes you can use in PHP.

To comment your scripts:

1. Begin a new PHP document in your text

editor or IDE, starting with the initial

HTML (Script 1.4).

<!DOCTYPE html PUBLIC “-//W3C//
➝ DTD XHTML 1.0 Transitional//EN”
➝ “http://www.w3.org/TR/xhtml1/DTD/
➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/
➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”
content=”text/html; charset=iso-
8859-1” />

<title>Comments</title>

</head>

<body>

2. Add the initial PHP tag and write your

first comments.

<?php

Created August 26, 2007

Created by Larry E. Ullman

This script does nothing much.

One of the first comments each script

should contain is an introductory block

that lists creation date, modification

date, creator, creator’s contact informa-

tion, purpose of the script, and so on.

Some people suggest that the shell-style

comments (#) stand out more in a script

and are therefore best for this kind of

notation.

3. Send some HTML to the Web browser.

echo ‘<p>This is a line of text.
➝
This is another line of
➝ text.</p>’;

11

Introduction to PHP

W
r

i
t

i
n

g
 C

o
m

m
e

n
t

s

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML
1.0 Transitional//EN” “http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd”>

2 <html xmlns=”http://www.w3.org/1999/
xhtml” xml:lang=”en” lang=”en”>

3 <head>

4 <meta http-equiv=”content-type” content=
”text/html; charset=iso-8859-1” />

5 <title>Comments</title>

6 </head>

7 <body>

8 <?php

9

10 # Created August 27, 2007

11 # Created by Larry E. Ullman

12 # This script does nothing much.

13

14 echo ‘<p>This is a line of text.
This
is another line of text.</p>’;

15

16 /*

17 echo ‘This line will not be executed.’;

18 */

19

20 echo “<p>Now I’m done.</p>”; // End of PHP

code.

21

22 ?>

23 </body>

24 </html>

continues on next page

Figure 1.10 The PHP comments in Script
1.4 don’t appear in the Web page or the
HTML source (Figure 1.11).

It doesn’t matter what you do here, just

so the Web browser has something to

display. For the sake of variety, I’ll have

the echo() statement print some HTML

tags, including a line break (
) to

add some spacing to the generated

HTML page.

4. Use the multiline comments to comment

out a second echo() statement.

/*

echo ‘This line will not be
➝ executed.’;

*/

By surrounding any block of PHP code

with /* and */, you can render that code

inert without having to delete it from

your script. By later removing the com-

ment tags, you can reactivate that sec-

tion of PHP code.

5. Add a final comment after a third echo()
statement.

echo “<p>Now I’m done.</p>”; // End
➝ of PHP code.

This last (superfluous) comment shows

how to place one at the end of a line, a

common practice. Note that I used dou-

ble quotation marks to surround the

message, as single quotation marks

would conflict with the apostrophe (see

the “Needing an Escape” sidebar, earlier

in the chapter).

6. Close the PHP section and complete the

HTML page.

?>

</body>

</html>

7. Save the file as comments.php, place it in

your Web directory, and test it in your

Web browser (Figure 1.10).

12

Chapter 1

W
r

i
t

i
n

g
 C

o
m

m
e

n
t

s

■ It’s nearly impossible to over-comment

your scripts. Always err on the side of

writing too many comments as you code.

That being said, in the interest of saving

space, the scripts in this book will not be

as well documented as I would suggest

they should be.

■ It’s also important that as you change a

script you keep the comments up-to-

date and accurate. There’s nothing more

confusing than a comment that says one

thing when the code really does some-

thing else.

13

Introduction to PHP

W
r

i
t

i
n

g
 C

o
m

m
e

n
t

s

Figure 1.11 The PHP comments from Script 1.4 are nowhere to be seen in the client’s browser.

8. If you’re the curious type, check the

source code in your Web browser to

confirm that the PHP comments do

not appear there (Figure 1.11).

✔ Tips

■ You shouldn’t nest (place one inside

another) multiline comments (/* */).

Doing so will cause problems.

■ Any of the PHP comments can be used

at the end of a line (say, after a function

call):

echo ‘Howdy’; /* Say ‘Howdy’ */

Although this is allowed, it’s far less

common.

What Are Variables?
Variables are containers used to temporarily

store values. These values can be numbers,

text, or much more complex data. PHP has

eight types of variables. These include four

scalar (single-valued) types—Boolean (TRUE
or FALSE), integer, floating point (decimals),

and strings (characters); two nonscalar (mul-

tivalued)—arrays and objects; plus resources

(which you’ll see when interacting with

databases) and NULL (which is a special

type that has no value).

Regardless of what type you are creating, all

variables in PHP follow certain syntactical

rules:

◆ A variable’s name—also called its

identifier—must start with a dollar

sign ($), for example, $name.

◆ The variable’s name can contain a combi-

nation of strings, numbers, and the

underscore, for example, $my_report1.

◆ The first character after the dollar sign

must be either a letter or an underscore

(it cannot be a number).

◆ Variable names in PHP are case-sensitive.

This is a very important rule. It means

that $name and $Name are entirely differ-

ent variables.

To begin working with variables, let’s make

use of several predefined variables whose

values are automatically established when a

PHP script is run. Before getting into this

script, there are two more things you should

know. First, variables can be assigned values

using the equals sign (=), also called the

assignment operator. Second, variables can

be printed without quotation marks:

print $some_var;

14

Chapter 1

W
h

a
t

 A
r

e
 V

a
r

i
a

b
l
e

s
?

Script 1.5 This script prints three of PHP’s many
predefined variables.

Or variables can be printed within double

quotation marks:

print “Hello, $name”;

You cannot print variables within single

quotation marks:

print ‘Hello, $name’; // Won’t work!

To use variables:

1. Begin a new PHP document in your text

editor or IDE, starting with the initial

HTML (Script 1.5).

<!DOCTYPE html PUBLIC “-//W3C//

DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”
➝ content=”text/html; charset=
➝ iso-8859-1” />

<title>Predefined Variables</
➝ title>

</head>

<body>

2. Add your opening PHP tag and your first

comment.

<?php # Script 1.5 - predefined.php

From here on out, my scripts will no

longer comment on the creator, creation

date, and so forth, although you should

continue to document your scripts thor-

oughly. I will, however, make a comment

listing the script number and filename

for ease of cross-referencing (both in

15

Introduction to PHP

W
h

a
t

 A
r

e
 V

a
r

i
a

b
l
e

s
?

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML
1.0 Transitional//EN” “http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd”>

2 <html xmlns=”http://www.w3.org/1999/xhtml”
xml:lang=”en” lang=”en”>

3 <head>

4 <meta http-equiv=”content-type” content=
”text/html; charset=iso-8859-1” />

5 <title>Predefined Variables</title>

6 </head>

7 <body>

8 <?php # Script 1.5 - predefined.php

9

10 // Create a shorthand version of the
variable names:

11 $file = $_SERVER[‘SCRIPT_FILENAME’];

12 $user = $_SERVER[‘HTTP_USER_AGENT’];

13 $server = $_SERVER[‘SERVER_

SOFTWARE’];

14

15 // Print the name of this script:

16 echo “<p>You are running the file:
$file.</p>\n”;

17

18 // Print the user’s information:

19 echo “<p>You are viewing this page using:

$user</p>\n”;

20

21 // Print the server’s information:

22 echo “<p>This server is running:

$server.</p>\n”;

23

24 ?>

25 </body>

26 </html>
continues on next page

the book and when you download them

from the book’s supporting Web site,

www.DMCInsights.com/phpmysql3/).

3. Create a shorthand version of the first

variable to be used in this script.

$file = $_SERVER[‘SCRIPT_FILENAME’];

This script will use three variables, each

of which comes from the larger and pre-

defined $_SERVER variable. $_SERVER
refers to a mass of server-related infor-

mation. The first variable the script uses

is $_SERVER[‘SCRIPT_FILENAME’]. This

variable stores the full path and name

of the script being run (for example,

C:\Program Files\Apache\htdocs\
predefined.php).

The value stored in $_SERVER[‘SCRIPT_
FILENAME’] will be assigned to the new

variable $file. Creating new variables

with shorter names and then assigning

them values from $_SERVER will make it

easier to refer to the variables when

printing them. (It also gets around some

other issues you’ll learn about in due

time.)

4. Create a shorthand version of the other

two variables.

$user = $_SERVER[‘HTTP_USER_AGENT’];

$server = $_SERVER[‘SERVER_
➝ SOFTWARE’];

$_SERVER[‘HTTP_USER_AGENT’] represents

the Web browser and operating system

of the user accessing the script. This

value is assigned to $user.

$_SERVER[‘SERVER_SOFTWARE’] represents

the Web application on the server that’s

16

Chapter 1

W
h

a
t

 A
r

e
 V

a
r

i
a

b
l
e

s
?

running PHP (e.g., Apache, Abyss, Xitami,

IIS). This is the program that must be

installed (see Appendix A) in order to

run PHP scripts on that computer.

5. Print out the name of the script being

run.

echo “<p>You are running the file:
➝
$file.</p>\n”;

The first variable to be printed is $file.

Notice that this variable must be printed

out within double quotation marks

and that I also make use of the PHP

newline (\n), which will add a line break

in the generated HTML source. Some

basic HTML tags—paragraph and bold—

are added to give the generated page

some flair.

6. Print out the information of the user

accessing the script.

echo “<p>You are viewing this page
➝ using:
$user</p>\n”;

This line prints the second variable,

$user. To repeat what’s said in the fourth

step, $user correlates to $_SERVER[‘HTTP_
USER_AGENT’] and refers to the operating

system, browser type, and browser ver-

sion being used to access the Web page.

7. Print out the server information.

echo “<p>This server is running:<br
➝ />$server.</p>\n”;

8. Complete the HTML and PHP code.

?>

</body>

</html>

9. Save your file as predefined.php, place it

in your Web directory, and test it in your

Web browser (Figure 1.12).

✔ Tips

■ If you have problems with this, or any

other script, turn to the book’s corre-

sponding Web forum (www.DMCInsights.
com/phorum/) for assistance.

■ If possible, run this script using a differ-

ent Web browser and/or on another

server (Figure 1.13).

■ The most important consideration when

creating variables is to use a consistent

naming scheme. In this book you’ll

see that I use all-lowercase letters for

my variable names, with underscores

separating words ($first_name). Some

programmers prefer to use capitalization

instead: $FirstName.

■ PHP is very casual in how it treats vari-

ables, meaning that you don’t need to

initialize them (set an immediate value)

or declare them (set a specific type), and

you can convert a variable among the

many types without problem.

17

Introduction to PHP

W
h

a
t

 A
r

e
 V

a
r

i
a

b
l
e

s
?

Figure 1.12 The predefined.php script reports back
to the viewer information about the script, the Web
browser being used to view it, and the server itself.

Figure 1.13 This is the book’s first truly dynamic
script, in that the Web page changes depending
upon the server running it and the Web browser
viewing it (compare with Figure 1.12).

Introducing Strings
The first variable type to delve into is strings.

A string is merely a quoted chunk of charac-

ters: letters, numbers, spaces, punctuation,

and so forth. These are all strings:

◆ ‘Tobias’

◆ “In watermelon sugar”

◆ ‘100’

◆ ‘August 2, 2006’

To make a string variable, assign a string

value to a valid variable name:

$first_name = ‘Tobias’;

$today = ‘August 2, 2006’;

When creating strings, you can use either

single or double quotation marks to encap-

sulate the characters, just as you would

when printing text. Likewise, you must use

the same type of quotation mark for the

beginning and the end of the string. If that

same mark appears within the string, it

must be escaped:

$var = “Define \”platitude\”, please.”;

To print out the value of a string, use either

echo() or print():

echo $first_name;

To print the value of string within a context,

use double quotation marks:

echo “Hello, $first_name”;

You’ve already worked with strings once—

when using the predefined variables in the

preceding section. In this next example,

you’ll create and use new strings.

18

Chapter 1

I
n

t
r

o
d

u
c

i
n

g
 S

t
r

i
n

g
s

Script 1.6 String variables are created and their values
sent to the Web browser in this introductory script.

To use strings:

1. Begin a new PHP document in your text

editor or IDE, starting with the initial

HTML and including the opening PHP

tag (Script 1.6).

<!DOCTYPE html PUBLIC “-//W3C//

➝ DTD XHTML 1.0 Transitional//EN”

➝ “http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”
➝ content=”text/html; charset=
➝ iso-8859-1” />

<title>Strings</title>

</head>

<body>

<?php # Script 1.6 - strings.php

2. Within the PHP tags, create three vari-

ables.

$first_name = ‘Haruki’;

$last_name = ‘Murakami’;

$book = ‘Kafka on the Shore’;

This rudimentary example creates

$first_name, $last_name, and $book
variables that will then be printed

out in a message.

3. Add an echo() statement.

echo “<p>The book $book
➝ was written by $first_name
➝ $last_name.</p>”;

19

Introduction to PHP

I
n

t
r

o
d

u
c

i
n

g
 S

t
r

i
n

g
s

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML
1.0 Transitional//EN” “http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd”>

2 <html xmlns=”http://www.w3.org/1999/
xhtml” xml:lang=”en” lang=”en”>

3 <head>

4 <meta http-equiv=”content-type” content=
”text/html; charset=iso-8859-1” />

5 <title>Strings</title>

6 </head>

7 <body>

8 <?php # Script 1.6 - strings.php

9

10 // Create the variables:

11 $first_name = ‘Haruki’;

12 $last_name = ‘Murakami’;

13 $book = ‘Kafka on the Shore’;

14

15 //Print the values:

16 echo “<p>The book $book was

written by $first_name $last_name.</p>”;

17

18 ?>

19 </body>

20 </html>

continues on next page

All this script does is print a statement

of authorship based upon three estab-

lished variables. A little HTML format-

ting (the emphasis on the book’s title) is

thrown in to make it more attractive.

Remember to use double quotation

marks here for the variable values to be

printed out appropriately (more on the

importance of double quotation marks

at the chapter’s end).

4. Complete the HTML and PHP code.

?>

</body>

</html>

5. Save the file as strings.php, place it in

your Web directory, and test it in your

Web browser (Figure 1.14).

6. If desired, change the values of the three

variables, save the file, and run the script

again (Figure 1.15).

✔ Tips

■ If you assign another value to an existing

variable (say $book), the new value will

overwrite the old one. For example:

$book = ‘High Fidelity’;

$book = ‘The Corrections’;

/* $book now has a value of

‘The Corrections’. */

■ PHP has no set limits on how big a string

can be. It’s theoretically possible that

you’ll be limited by the resources of the

server, but it’s doubtful that you’ll ever

encounter such a problem.

20

Chapter 1

I
n

t
r

o
d

u
c

i
n

g
 S

t
r

i
n

g
s

Figure 1.14 The resulting Web page is based upon
printing out the values of three variables.

Figure 1.15 The output of the script is changed by
altering the variables in it.

Concatenating Strings
Concatenation is like addition for strings,

whereby characters are added to the

end of the string. It’s performed using the

concatenation operator, which is the

period (.):

$city= ‘Seattle’;

$state = ‘Washington’;

$address = $city . $state;

The $address variable now has the value

SeattleWashington, which almost achieves

the desired result (Seattle, Washington). To

improve upon this, you could write

$address = $city . ‘, ‘ . $state;

so that a comma and a space are added to

the mix.

Concatenation works with strings or num-

bers. Either of these statements will produce

the same result (Seattle, Washington 98101):

$address = $city . ‘, ‘ . $state .

‘ 98101’;

$address = $city . ‘, ‘ . $state .

‘ ‘ . 98101;

Let’s modify strings.php to use this new

operator.

To use concatenation:

1. Open strings.php (refer to Script 1.6) in

your text editor or IDE.

2. After you’ve established the $first_name
and $last_name variables (lines 11 and

12), add this line (Script 1.7):

$author = $first_name . ‘ ‘ .

$last_name;

21

Introduction to PHP

C
o

n
c

a
t

e
n

a
t

i
n

g
 S

t
r

i
n

g
s

continues on next page

Script 1.7 Concatenation gives you the ability to easily
manipulate strings, like creating an author’s name
from the combination of their first and last names.

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML
1.0 Transitional//EN” “http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd”>

2 <html
xmlns=”http://www.w3.org/1999/xhtml”
xml:lang=”en” lang=”en”>

3 <head>

4 <meta http-equiv=”content-type” content=
”text/html; charset=iso-8859-1” />

5 <title>Concatenation</title>

6 </head>

7 <body>

8 <?php # Script 1.7 - concat.php

9

10 // Create the variables:

11 $first_name = ‘Melissa’;

12 $last_name = ‘Bank’;

13 $author = $first_name . ‘ ‘ . $last_name;

14

15 $book = ‘The Girls\’ Guide to Hunting and
Fishing’;

16

17 //Print the values:

18 echo “<p>The book $book was

written by $author.</p>”;

19

20 ?>

21 </body>

22 </html>

As a demonstration of concatenation, a

new variable—$author—will be created

as the concatenation of two existing

strings and a space in between.

3. Change the echo() statement to use this

new variable.

echo “<p>The book $book was
➝ written by $author.</p>”;

Since the two variables have been turned

into one, the echo() statement should be

altered accordingly.

4. If desired, change the HTML page title

and the values of the first name, last

name, and book variables.

5. Save the file as concat.php, place it in

your Web directory, and test it in your

Web browser (Figure 1.16).

✔ Tips

■ PHP has a slew of useful string-specific

functions, which you’ll see over the

course of this book. For example, to cal-

culate how long a string is (how many

characters it contains), use strlen():

$num = strlen(‘some string’);

■ You can have PHP convert the case of

strings with: strtolower(), which makes

it entirely lowercase; strtoupper(), which

makes it entirely uppercase; ucfirst(),

which capitalizes the first character; and

ucwords(), which capitalizes the first

character of every word.

22

Chapter 1

C
o

n
c

a
t

e
n

a
t

i
n

g
 S

t
r

i
n

g
s

Figure 1.16 In this revised script, the end result of
concatenation is not apparent to the user (compare
with Figures 1.14 and 1.15).

■ If you are merely concatenating one

value to another, you can use the con-

catenation assignment operator (.=).

The following are equivalent:

$title = $title . $subtitle;

$title .= $subtitle;

■ The initial example in this section could

be rewritten using either

$address = “$city, $state”;

or

$address = $city;

$address .= ‘, ‘;

$address .= $state;

Introducing Numbers
In introducing variables, I was explicit in

stating that PHP has both integer and float-

ing-point (decimal) number types. In my

experience, though, these two types can be

classified under the generic title numbers

without losing any valuable distinction (for

the most part). Valid number-type variables

in PHP can be anything like

◆ 8

◆ 3.14

◆ 10980843985

◆ -4.2398508

◆ 4.4e2

Notice that these values are never quoted—

in which case they’d be strings with numeric

values—nor do they include commas to

indicate thousands. Also, a number is

assumed to be positive unless it is preceded

by the minus sign (-).

Along with the standard arithmetic opera-

tors you can use on numbers (Table 1.1),

there are dozens of functions. Two common

ones are round() and number_format().

23

Introduction to PHP

I
n

t
r

o
d

u
c

i
n

g
 N

u
m

b
e

r
s

O p e r a t o r M e a n i n g

+ Addition
- Subtraction
* Multiplication
/ Division
% Modulus
++ Increment
-- Decrement

Arithmetic Operators

Table 1.1 The standard mathematical operators.

The former rounds a decimal to the nearest

integer:

$n = 3.14;

$n = round ($n); // 3

It can also round to a specified number of

decimal places:

$n = 3.142857;

$n = round ($n, 3); // 3.143

The number_format() function turns a num-

ber into the more commonly written version,

grouped into thousands using commas:

$n = 20943;

$n = number_format ($n); // 20,943

This function can also set a specified num-

ber of decimal points:

$n = 20943;

$n = number_format ($n, 2); // 20,943.00

To practice with numbers, let’s write a mock-

up script that performs the calculations one

might use in an e-commerce shopping cart.

To use numbers:

1. Begin a new PHP document in your text

editor or IDE (Script 1.8).

<!DOCTYPE html PUBLIC “-//W3C//

DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”
➝ content=”text/html; charset=
➝ iso-8859-1” />

<title>Numbers</title>

</head>

<body>

<?php # Script 1.8 - numbers.php

2. Establish the requisite variables.

$quantity = 30;

$price = 119.95;

$taxrate = .05;

This script will use three hard-coded

variables upon which calculations will be

made. Later in the book, you’ll see how

these values can be dynamically deter-

mined (i.e., by user interaction with an

HTML form).

3. Perform the calculations.

$total = $quantity * $price;

$total = $total + ($total * $taxrate);

The first line establishes the order total

as the number of widgets purchased

multiplied by the price of each widget.

24

Chapter 1

I
n

t
r

o
d

u
c

i
n

g
 N

u
m

b
e

r
s

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML
1.0 Transitional//EN” “http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd”>

2 <html xmlns=”http://www.w3.org/1999/xhtml”
xml:lang=”en” lang=”en”>

3 <head>

4 <meta http-equiv=”content-type” content=
”text/html; charset=iso-8859-1” />

5 <title>Numbers</title>

6 </head>

7 <body>

8 <?php # Script 1.8 - numbers.php

9

10 // Set the variables:

11 $quantity = 30; // Buying 30 widgets.

12 $price = 119.95;

13 $taxrate = .05; // 5% sales tax.

14

15 // Calculate the total:

16 $total = $quantity * $price;

17 $total = $total + ($total * $taxrate); //
Calculate and add the tax.

18

19 // Format the total:

20 $total = number_format ($total, 2);

21

22 // Print the results:

23 echo ‘<p>You are purchasing ’ .
$quantity . ‘ widget(s) at a cost
of $’ . $price . ‘ each. With
tax, the total comes to $’ . $total .
‘.</p>’;

24

25 ?>

26 </body>

27 </html>

Script 1.8 The numbers.php script demonstrates
basic mathematical calculations, like those used in an
e-commerce application.

25

Introduction to PHP

I
n

t
r

o
d

u
c

i
n

g
 N

u
m

b
e

r
s

Figure 1.17 The numbers PHP page (Script 1.8)
performs calculations based upon set values.

Figure 1.18 To change the generated Web page,
alter any or all of the three variables (compare with
Figure 1.17).

The second line then adds the amount

of tax to the total (calculated by multi-

plying the tax rate by the total).

4. Format the total.

$total = number_format ($total, 2);

The number_format() function will group

the total into thousands and round it to

two decimal places. This will make the

display more appropriate to the end user.

5. Print the results.

echo ‘<p>You are purchasing ’ .
➝$quantity . ‘ widget(s) at a cost
➝of $’ . $price . ‘ each. With
➝ tax, the total comes to $’ .
➝ $total . ‘.</p>’;

The last step in the script is to print out

the results. To use a combination of

HTML, printed dollar signs, and variables,

the echo() statement uses both single-

quoted text and concatenated variables.

You could also put this all within a

double-quoted string (as in previous

examples), but when PHP encounters,

for example, at a cost of $$price in

the echo() statement, the double dollar

sign would cause problems. You’ll see

an alternative solution in the last exam-

ple of this chapter.

6. Complete the PHP code and the HTML

page.

?>

</body>

</html>

7. Save the file as numbers.php, place it in

your Web directory, and test it in your

Web browser (Figure 1.17).

8. If desired, change the initial three vari-

ables and rerun the script (Figure 1.18).

continues on next page

✔ Tips

■ PHP supports a maximum integer of

around two billion on most platforms.

With numbers larger than that, PHP will

automatically use a floating-point type.

■ When dealing with arithmetic, the issue

of precedence arises (the order in which

complex calculations are made). While

the PHP manual and other sources tend

to list out the hierarchy of precedence, I

find programming to be safer and more

legible when I group clauses in parenthe-

ses to force the execution order (see line

17 of Script 1.8).

■ Computers are notoriously poor at deal-

ing with decimals. For example, the num-

ber 2.0 may actually be stored as 1.99999.

Most of the time this won’t be a problem,

but in cases where mathematical preci-

sion is paramount, rely on integers, not

decimals. The PHP manual has informa-

tion on this subject, as well as alternative

functions for improving computational

accuracy.

■ Many of the mathematical operators also

have a corresponding assignment opera-

tor, letting you create a shorthand for

assigning values. This line,

$total = $total + ($total *
$taxrate);

could be rewritten as

$total += ($total * $taxrate);

■ If you set a $price value without using

two decimals (e.g., 119.9 or 34), you

would want to apply number_format()
to $price before printing it.

26

Chapter 1

I
n

t
r

o
d

u
c

i
n

g
 N

u
m

b
e

r
s

Introducing Constants
Constants, like variables, are used to tem-

porarily store a value, but otherwise, con-

stants and variables differ in many ways. For

starters, to create a constant, you use the

define() function instead of the assignment

operator (=):

define (‘NAME’, ‘value’);

Notice that, as a rule of thumb, constants

are named using all capitals, although this is

not required. Most importantly, constants

do not use the initial dollar sign as variables

do (because constants are not variables).

A constant can only be assigned a scalar

value, like a string or a number. And unlike

variables, a constant’s value cannot be

changed.

To access a constant’s value, like when you

want to print it, you cannot put the con-

stant within quotation marks:

echo “Hello, USERNAME”; // Won’t work!

With that code, PHP would literally print

Hello, USERNAME and not the value of the

USERNAME constant (because there’s no indi-

cation that USERNAME is anything other than

literal text). Instead, either print the con-

stant by itself:

echo ‘Hello, ‘;

echo USERNAME;

or use the concatenation operator:

echo ‘Hello, ‘ . USERNAME;

PHP runs with several predefined constants,

much like the predefined variables used earlier

in the chapter. These include PHP_VERSION
(the version of PHP running) and PHP_OS
(the operating system of the server).

27

Introduction to PHP

I
n

t
r

o
d

u
c

i
n

g
 C

o
n

s
t
a

n
t

s

To use constants:

1. Begin a new PHP document in your text

editor or IDE (Script 1.9).

<!DOCTYPE html PUBLIC “-//W3C//DTD
➝ XHTML 1.0 Transitional//EN”
➝ “http://www.w3.org/TR/xhtml1/
➝ DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/
➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”
➝ content=”text/html; charset=
➝ iso-8859-1” />

<title>Constants</title>

</head>

<body>

<?php # Script 1.9 - constants.php

2. Create a new date constant.

define (‘TODAY’, August 28, 2007’);

An admittedly trivial use of constants,

but this example will illustrate the point.

In Chapter 8, “Using PHP with MySQL,”

you’ll see how to use constants to store

your database access information.

3. Print out the date, the PHP version, and

operating system information.

echo ‘<p>Today is ‘ . TODAY . ‘.<br
➝ />This server is running version
➝ ’ . PHP_VERSION . ‘ of PHP
➝ on the ’ . PHP_OS . ‘
➝ operating system.</p>’;

Since constants cannot be printed within

quotation marks, use the concatenation

operator to create the echo() statement.

28

Chapter 1

I
n

t
r

o
d

u
c

i
n

g
 C

o
n

s
t
a

n
t

s

Script 1.9 Constants are another temporary storage
tool you can use in PHP, distinct from variables.

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML
1.0 Transitional//EN” “http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd”>

2 <html xmlns=”http://www.w3.org/1999/xhtml”
xml:lang=”en” lang=”en”>

3 <head>

4 <meta http-equiv=”content-type” content=
”text/html; charset=iso-8859-1” />

5 <title>Constants</title>

6 </head>

7 <body>

8 <?php # Script 1.9 - constants.php

9

10 // Set today’s date as a constant:

11 define (‘TODAY’, ‘August 28, 2007’);

12

13 // Print a message, using predefined
constants and the TODAY constant:

14 echo ‘<p>Today is ‘ . TODAY . ‘.
This
server is running version ’ . PHP_
VERSION . ‘ of PHP on the ’ . PHP_
OS . ‘ operating system.</p>’;

15

16 ?>

17 </body>

18 </html>

29

Introduction to PHP

I
n

t
r

o
d

u
c

i
n

g
 C

o
n

s
t
a

n
t

s

4. Complete the PHP code and the HTML

page.

?>

</body>

</html>

5. Save the file as constants.php, place it in

your Web directory, and test it in your

Web browser (Figure 1.19).

✔ Tips

■ If possible, run this script on another

PHP-enabled server (Figure 1.20).

■ In Chapter 11, “Cookies and Sessions,”

you’ll learn about another constant, SID
(which stands for session ID).

Figure 1.19 By making use of PHP’s constants, you
can learn more about your PHP setup.

Figure 1.20 Running the same script (refer to Script
1.9) on different servers garners different results.

Single vs. Double
Quotation Marks
In PHP it’s important to understand how

single quotation marks differ from double

quotation marks. With echo() and print(),

or when assigning values to strings, you can

use either, as in the examples uses so far. But

there is a key difference between the two

types of quotation marks and when you

should use which. I’ve introduced this differ-

ence already, but it’s an important enough

concept to merit more discussion.

In PHP, values enclosed within single quota-

tion marks will be treated literally, whereas

those within double quotation marks will be

interpreted. In other words, placing variables

and special characters (Table 1.2) within

double quotes will result in their represented

values printed, not their literal values. For

example, assume that you have

$var = ‘test’;

The code echo “var is equal to $var”; will

print out var is equal to test, whereas the

code echo ‘var is equal to $var’; will print

out var is equal to $var. Using an escaped

dollar sign, the code echo “\$var is equal to
$var”; will print out $var is equal to test,

whereas the code echo ‘\$var is equal to
$var’; will print out \$var is equal to $var.

As these examples should illustrate, double

quotation marks will replace a variable’s

name ($var) with its value (test) and a

special character’s code (\$) with its repre-

sented value ($). Single quotes will always

display exactly what you type, except for the

escaped single quote (\’) and the escaped

backslash (\\), which are printed as a single

quotation mark and a single backslash,

respectively.

As another example of how the two

quotation marks differ, let’s modify the

numbers.php script as an experiment.

30

Chapter 1

S
i
n

g
l
e

 v
s

.
D

o
u

b
l
e

 Q
u

o
t
a

t
i
o

n
 M

a
r

k
s

C o d e M e a n i n g

\” Double quotation mark
\’ Single quotation mark
\\ Backslash
\n Newline
\r Carriage return
\t Tab
\$ Dollar sign

Escape Sequences

Table 1.2 These characters have special meanings
when used within double quotation marks.

To use single and double quotation
marks:

1. Open numbers.php (refer to Script 1.8)

in your text editor or IDE.

2. Delete the existing echo() statement

(Script 1.10).

3. Print a caption and then rewrite the

original echo() statement using double

quotation marks.

echo ‘<h3>Using double quotation
➝ marks:</h3>’;

echo “<p>You are purchasing $
➝ quantity widget(s) at a cost
➝ of \$$price each. With tax,
➝ the total comes to \$$total</
➝ b>.</p>\n”;

In the original script, the results were

printed using single quotation marks and

concatenation. The same result can be

achieved using double quotation marks.

When using double quotation marks, the

variables can be placed within the string.

There is one catch, though: trying to

print a dollar amount as $12.34 (where

12.34 comes from a variable) would sug-

gest that you would code $$var. That will

not work; instead, escape the initial dol-

lar sign, resulting in \$$var, as you see

31

Introduction to PHP

S
i
n

g
l
e

 v
s

. D
o

u
b

l
e

 Q
u

o
t
a

t
i
o

n
 M

a
r

k
s

continues on next page

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML
1.0 Transitional//EN” “http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd”>

2 <html xmlns=”http://www.w3.org/1999/xhtml”
xml:lang=”en” lang=”en”>

3 <head>

4 <meta http-equiv=”content-type” content=
”text/html; charset=iso-8859-1” />

5 <title>Quotation Marks</title>

6 </head>

7 <body>

8 <?php # Script 1.10 - quotes.php

9

10 // Set the variables:

11 $quantity = 30; // Buying 30 widgets.

12 $price = 119.95;

13 $taxrate = .05; // 5% sales tax.

14

15 // Calculate the total.

16 $total = $quantity * $price;

17 $total = $total + ($total * $taxrate); //
Calculate and add the tax.

18

19 // Format the total:

20 $total = number_format ($total, 2);

21

22 // Print the results using double quotation
marks:

23 echo ‘<h3>Using double quotation
marks:</h3>’;

24 echo “<p>You are purchasing $quantity
 widget(s) at a cost of \$$price
each. With tax, the total comes to \
$$total.</p>\n”;

25

26 // Print the results using single quotation
marks:

27 echo ‘<h3>Using single quotation
marks:</h3>’;

Script 1.10 This, the final script in the chapter,
demonstrates the differences between using
single and double quotation marks.

(script continues)

28 echo ‘<p>You are purchasing $quantity
 widget(s) at a cost of \$$price
each. With tax, the total comes to
\$$total.</p>\n’;

29

30 ?>

31 </body>

32 </html>

Script 1.10 continued

twice in this code. The first dollar sign

will be printed, and the second becomes

the start of the variable name.

4. Repeat the echo() statements, this time

using single quotation marks.

echo ‘<h3>Using single quotation
marks:</h3>’;

echo ‘<p>You are purchasing $
➝ quantity widget(s) at a cost
➝ of \$$price each. With tax,
➝ the total comes to \$$total
➝ .</p>\n’;

This echo() statement is used to high-

light the difference between using single

or double quotation marks. It will not

work as desired, and the resulting page

will show you exactly what does happen

instead.

5. If you want, change the page’s title.

6. Save the file as quotes.php, place it in

your Web directory, and test it in your

Web browser (Figure 1.21).

7. View the source of the Web page to see

how using the newline character (\n)

within each quotation mark type also

differs.

You should see that when you place the

newline character within double quota-

tion marks it creates a newline in the

HTML source. When placed within

single quotation marks, the literal

characters \ and n are printed instead.

32

Chapter 1

S
i
n

g
l
e

 v
s

.
D

o
u

b
l
e

 Q
u

o
t
a

t
i
o

n
 M

a
r

k
s

Figure 1.21 These results demonstrate when and
how you’d use one type of quotation mark as
opposed to the other. If you’re still unclear as to the
difference between the types, use double quotation
marks and you’re less likely to have problems.

✔ Tips

■ Because PHP will attempt to find vari-

ables within double quotation marks,

using single quotation marks is theoreti-

cally faster. If you need to print the value

of a variable, though, you must use dou-

ble quotation marks.

■ As valid HTML often includes a lot of

double-quoted attributes, it’s often easi-

est to use single quotation marks when

printing HTML with PHP:

echo ‘<table width=”80%” border=”0”
➝ cellspacing=”2” cellpadding=”3”
➝ align=”center”>’;

If you were to print out this HTML using

double quotation marks, you would have

to escape all of the double quotation

marks in the string:

echo “<table width=\”80%\” border=\
➝ ”0\” cellspacing=\”2\” cellpadding
➝ =\”3\” align=\”center\”>”;

Now that you have the fundamentals of the PHP scripting language down, it’s time

to build on those basics and start truly programming. In this chapter you’ll begin

creating more elaborate scripts while still learning some of the standard constructs,

functions, and syntax of the language.

You’ll begin by creating an HTML form, then learning how you can use PHP to handle

the submitted values. From there, the chapter covers conditionals and the remaining

operators (Chapter 1, “Introduction to PHP,” presented the assignment, concatenation,

and mathematical operators), arrays (another variable type), and one last language

construct, loops.

33

Programming
with PHP

2

P
r

o
g

r
a

m
m

i
n

g
 w

i
t

h
 P

H
P

