
Arrays & Loops
PHP Arrays
An array can store one or more values in a single variable name.

When working with PHP, sooner or later, you might want to create many similar
variables.

Instead of having many similar variables, you can store the data as elements in an
array.

Each element in the array has its own ID so that it can be easily accessed.

There are three different kind of arrays:

 Numeric array - An array with a numeric ID key
 Associative array - An array where each ID key is associated with a value
 Multidimensional array - An array containing one or more arrays

A numeric array stores each element with a numeric ID key.

There are different ways to create a numeric array.

In this example the ID key is automatically assigned:

Numeric Arrays

$names = array("Peter","Quagmire","Joe");

In this example we assign the ID key manually:

$names[0] = "Peter";
$names[1] = "Quagmire";
$names[2] = "Joe";

Arrays & Loops

The ID keys can be used in a script:

Numeric Arrays

<?php

$names[0] = "Peter";
$names[1] = "Quagmire";
$names[2] = "Joe";

echo $names[1] . " and " . $names[2] .
" are ". $names[0] . "'s neighbours";

?>

The code above will output:

Quagmire and Joe are Peter's neighbours

Arrays & Loops

An associative array, each ID key is associated with a value.

When storing data about specific named values, a numerical array is not always the
best way to do it.

With associative arrays we can use the values as keys and assign values to them.

In this example we use an array to assign ages to the different persons:

Associative Arrays

$ages = array("Peter"=>32, "Quagmire"=>30, "Joe"=>34);

Arrays & Loops

This example is the same as example 1, but shows a different way of creating the
array:

Associative Arrays

$ages['Peter'] = "32";
$ages['Quagmire'] = "30";
$ages['Joe'] = "34";

Arrays & Loops

The ID keys can be used in a script:

Associative Arrays

<?php

$ages['Peter'] = "32";
$ages['Quagmire'] = "30";
$ages['Joe'] = "34";

echo "Peter is " . $ages['Peter'] . " years old.";
?>

The code above will output:

Peter is 32 years old.

Arrays & Loops

In a multidimensional array, each element in the main array can also be an array. And
each element in the sub-array can be an array, and so on.

In the next example we create a multidimensional array, with automatically assigned
ID keys:

Multidimensional Arrays

Arrays & Loops

Multidimensional Arrays
$families = array
(
 "Griffin"=>array
 (
 "Peter",
 "Lois",
 "Megan"
),
 "Quagmire"=>array
 (
 "Glenn"
),
 "Brown"=>array
 (
 "Cleveland",
 "Loretta",
 "Junior"
)
);

Arrays & Loops

Multidimensional Arrays
Array
(
[Griffin] => Array
 (
 [0] => Peter
 [1] => Lois
 [2] => Megan
)
[Quagmire] => Array
 (
 [0] => Glenn
)
[Brown] => Array
 (
 [0] => Cleveland
 [1] => Loretta
 [2] => Junior
)
)

The array above would look like this if written to the output:

Arrays & Loops

Multidimensional Arrays

echo "Is " . $families['Griffin'][2] .
" a part of the Griffin family?";

Lets try displaying a single value from the array above:

Is Megan a part of the Griffin family?

The code above will output:

Arrays & Loops

PHP Looping
Looping statements in PHP are used to execute the same block of code a
specified number of times.

Very often when you write code, you want the same block of code to run a number of
times. You can use looping statements in your code to perform this.

In PHP we have the following looping statements:

 while - loops through a block of code if and as long as a specified condition is true

 do...while - loops through a block of code once, and then repeats the loop as long
as a special condition is true

 for - loops through a block of code a specified number of times

 foreach - loops through a block of code for each element in an array

Arrays & Loops

The while Statement - Syntax

while (condition)
code to be executed;

The while statement will execute a block of code if and as long as a condition is true.

Arrays & Loops

The while Statement - Example

<html>
<body>

<?php
$i=1;
while($i<=5)
 {
 echo "The number is " . $i . "
";
 $i++;
 }
?>

</body>
</html>

The following example demonstrates a loop that will continue to run as long as the
variable i is less than, or equal to 5. i will increase by 1 each time the loop runs:

Arrays & Loops

The do...while Statement - Syntax

do
{
code to be executed;
}
while (condition);

The do...while statement will execute a block of code at least once - it then will
repeat the loop as long as a condition is true.

Arrays & Loops

The do...while Statement - Example

<html>
<body>

<?php
$i=0;
do
 {
 $i++;
 echo "The number is " . $i . "
";
 }
while ($i<5);
?>

</body>
</html>

The following example will increment the value of i at least once, and it will continue
incrementing the variable i as long as it has a value of less than 5:

Arrays & Loops

The for Statement - Syntax

for (initialization; condition; increment)
{
 code to be executed;
}

The for statement is used when you know how many times you want to execute a
statement or a list of statements.

Arrays & Loops

The for Statement - Example

<html>
<body>

<?php
for ($i=1; $i<=5; $i++)
{
 echo "Hello World!
";
}
?>

</body>
</html>

The following example prints the text "Hello World!" five times:

Arrays & Loops

The foreach Statement - Syntax

foreach (array as value)
{
 code to be executed;
}

The foreach statement is used to loop through arrays.

For every loop, the value of the current array element is assigned to $value (and the
array pointer is moved by one) - so on the next loop, you'll be looking at the next
element.

Arrays & Loops

The foreach Statement - Example

<html>
<body>

<?php
$arr=array("one", "two", "three");

foreach ($arr as $value)
{
 echo "Value: " . $value . "
";
}
?>

</body>
</html>

The following example demonstrates a loop that will print the values of the given
array:

Arrays & Loops

