
What Are Dynamic
Web Sites?
Dynamic Web sites are flexible and potent

creatures, more accurately described as

applications than merely sites. Dynamic

Web sites

◆ Respond to different parameters (for

example, the time of day or the version of

the visitor’s Web browser)

◆ Have a “memory,” allowing for user regis-

tration and login, e-commerce, and simi-

lar processes

◆ Almost always have HTML forms, so that

people can perform searches, provide

feedback, and so forth

◆ Often have interfaces where administra-

tors can manage the site’s content

◆ Are easier to maintain, upgrade, and

build upon than statically made sites

There are many technologies available for

creating dynamic Web sites. The most com-

mon are ASP.NET (Active Server Pages, a

Microsoft construct), JSP (Java Server Pages),

ColdFusion, Ruby on Rails, and PHP. Dynamic

Web sites don’t always rely on a database,

but more and more of them do, particularly

as excellent database applications like

MySQL are available at little to no cost.

x

Introduction

W
h

a
t

 A
r

e
 D

y
n

a
m

i
c

 W
e

b
 S

i
t

e
s

?

Figure i.1 The home page for PHP.



What is PHP?
PHP originally stood for “Personal Home

Page” as it was created in 1994 by Rasmus

Lerdorf to track the visitors to his online

résumé. As its usefulness and capabilities

grew (and as it started being used in more

professional situations), it came to mean

“PHP: Hypertext Preprocessor.”

According to the official PHP Web site,

found at www.php.net (Figure i.1), PHP is a

“widely-used general-purpose scripting lan-

guage that is especially suited for Web devel-

opment and can be embedded into HTML.”

It’s a long but descriptive definition, whose

meaning I’ll explain.

Starting at the end of that statement, to say

that PHP can be embedded into HTML means

that you can take a standard HTML page,

drop in some PHP wherever you need it, and

end up with a dynamic result. This attribute

makes PHP very approachable for anyone

that’s done even a little bit of HTML work.

Also, PHP is a scripting language, as

opposed to a programming language: PHP was

designed to write Web scripts, not stand-

alone applications (although, with some extra

effort, you can now create applications in

PHP). PHP scripts run only after an event

occurs—for example, when a user submits

a form or goes to a URL.

I should add to this definition that PHP is

a server-side, cross-platform technology, both

descriptions being important. Server-side

refers to the fact that everything PHP does

occurs on the server. A Web server applica-

tion, like Apache or Microsoft’s IIS (Internet

Information Services), is required and all

PHP scripts must be accessed through a

URL (http://-something). Its cross-platform

nature means that PHP runs on most oper-

ating systems, including Windows, Unix

(and its many variants), and Macintosh.

More important, the PHP scripts written on

one server will normally work on another

with little or no modification.

At the time the book was written, PHP was

at version 5.2.4, with version 4.4.7 still being

maintained. Support for version 4 is being

dropped, though, and it’s recommended that

everyone use at least version 5 of PHP. This

edition of this book actually focuses on ver-

sion 6 of PHP, to be released in late 2007 or

in 2008. If you’re still using version 4, you

really should upgrade. If that’s not in your

plans, then please grab the second edition of

this book instead. If you’re using PHP 5,

either the second or this edition of the book

will work for you. In this edition, I will make

it clear which features and functions are

PHP 6–specific.

xi

Introduction

W
h

a
t

 A
r

e
 D

y
n

a
m

i
c

 W
e

b
 S

i
t

e
s

?



What’s new in PHP 6
Because of the planned extinction of PHP 4,

many users and Web hosting companies will

likely make a quick transition from PHP 4 to

PHP 5 to PHP 6. To discuss what’s new in

PHP 6, I’ll start with the even bigger differ-

ences between PHP 4 and 5.

PHP 5, like PHP 4 before it, is a major new

development of this popular programming

language. The most critical changes in PHP 5

involve object-oriented programming

(OOP).Those changes don’t really impact

this book, as OOP isn’t covered (I do so in

my book PHP 5 Advanced: Visual QuickPro

Guide). With respect to this book, the

biggest change in PHP 5 is the addition of

the Improved MySQL Extension, which is

used to communicate with MySQL. The

Improved MySQL Extension offers many

benefits over the older MySQL extension

and will be used exclusively.

The big change in PHP 6 is support for

Unicode, which is to say that PHP can now

handle characters in every language in the

world. This is huge, and it’s also one of the

reasons it’s taken a while to release PHP 6.

What this means in terms of programming

is covered in Chapter 14, “Making Universal

Sites.” The information in that chapter is

also used in Chapter 15, “Example—Message

Board.” Beyond Unicode support, PHP 6 cleans

up a lot of garbage that was left in PHP 5 even

though the recommendation was not to use

such things. The two biggest removals are the

“Magic Quotes” and “register globals” features.

Why use PHP?
Put simply, when it comes to developing

dynamic Web sites, PHP is better, faster, and

easier to learn than the alternatives. What

you get with PHP is excellent performance,

a tight integration with nearly every database

available, stability, portability, and a nearly

limitless feature set due to its extendibility.

All of this comes at no cost (PHP is open

source) and with a very manageable learning

curve. PHP is one of the best marriages I’ve

ever seen between the ease with which

beginning programmers can start using it

and the ability for more advanced program-

mers to do everything they require.

Finally, the proof is in the pudding: PHP has

seen an exponential growth in use since its

inception, overtaking ASP as the most pop-

ular scripting language being used today. It’s

the most requested module for Apache (the

most-used Web server), and by the time this

book hits the shelves, PHP will be on nearly

25 million domains.

Of course, you might assume that I, as the

author of a book on PHP (several, actually),

have a biased opinion. Although not nearly

to the same extent as PHP, I’ve also devel-

oped sites using Java Server Pages (JSP),

Ruby on Rails (RoR), and ASP.NET. Each has

its pluses and minuses, but PHP is the tech-

nology I always return to. You might hear

that it doesn’t perform or scale as well as

other technologies, but Yahoo! handles over

3.5 billion hits per day using PHP (yes, billion).

You might also wonder how secure PHP is.

But security isn’t in the language; it’s in how

that language is used. Rest assured that

a complete and up-to-date discussion of all

the relevant security concerns is provided

by this book!

xii

Introduction

W
h

a
t

 A
r

e
 D

y
n

a
m

i
c

 W
e

b
 S

i
t

e
s

?



How PHP works
As previously stated, PHP is a server-side

language. This means that the code you write

in PHP sits on a host computer called a server.

The server sends Web pages to the request-

ing visitors (you, the client, with your Web

browser).

When a visitor goes to a Web site written in

PHP, the server reads the PHP code and then

processes it according to its scripted direc-

tions. In the example shown in Figure i.2,

the PHP code tells the server to send the

appropriate data—HTML code—to the Web

browser, which treats the received code as it

would a standard HTML page.

This differs from a static HTML site where,

when a request is made, the server merely

sends the HTML data to the Web browser

and there is no server-side interpretation

occurring (Figure i.3). Because no server-

side action is required, you can run HTML

pages in your Web browser without using a

server at all.

To the end user and their Web browser there

is no perceptible difference between what

home.html and home.php may look like, but

how that page’s content was created will be

significantly different.

xiii

Introduction

W
h

a
t

 A
r

e
 D

y
n

a
m

i
c

 W
e

b
 S

i
t

e
s

?

URL Request

HTML

Client Server

PHP

HTML
Script

Request

Figure i.2 How PHP fits into the client/server model when a user requests
a Web page.

URL Request

HTML

Client Server

Figure i.3 The client/server process when a request for a static HTML page is
made.




