Hydropower UNIT- 33-34

Some components of hydro plants

- **1. <u>SPILLWAYS</u>** release water downstream that is not used to make energy
- **2.** <u>Penstock</u> collects water from a upstream leading it to the turbine
- 3. Draft tube is the passage below turbine
- **4.** <u>Tailrace</u> is the water passage from the draft tube to the river downstream
- **5.** <u>Surge tank</u> is a reservoir that vents sudden pressure built up in turbine.

Components of hydroelectric plants Hydroelectric Dam Draft tube Logo Distrance Bower Lines Tail race

TURBINES CHOICE

(Dynamic machine to extract energy from fluid)

- 1. Reaction (Static pressure changes):
 - Converts both Flow & Kinetic energy
 - 1.1 Axial flow or propeller turbine
 - (Kaplan, Bulb)
 - 1.2 Radial or Mixed flow (Francis turbine)
- 2. Impulse: (Static pressure unchanged)
 - Converts only Kinetic energy
 - 2.1 -Tangential flow on buckets (Pelton)

Hydraulic analysis

$$\frac{P_A}{\rho g} + \frac{V_A^2}{2g} + Z_A = \frac{P_B}{\rho g} + \frac{V_B^2}{2g} + Z_B + H_L + \Delta H_T$$

Power extraction, P = density x flow rate x head difference across turbine $P = (\rho Q) (\Delta H_7 g)$

Specific Speed

 To help selection of a turbine we need a <u>parameter</u> which will include all items except for the <u>size</u>.

Specific speed is such a parameter.

 Dimensionless Sp. speed Q_T for turbine

$$\Omega_T = \frac{C_P^{0.5}}{C_H^{1.25}} = \frac{\omega \sqrt{P}}{\sqrt{\rho} (gH)^{1.2}}$$

Where ω is in rad/s, Q, H, P, ρ are in m³/s, m, watt and kg/m³. where H is height

- Specific speed refers to the best efficiency condition of a particular machine.
- The 'best' efficiency of a family of machines depends on its specific speed
- Specific speed allows one to represent the whole family of machines by a single plot.

Range of dimensionless Specific speeds for turbine Types Application Turbine

Types	Application	Turbine specific speed (Ω_T)
Axial flow	High flow, low head	7.0 – 14.0
Mixed flow		3.5 – 7.0
Centrifugal or Radial flow		1.0 – 3.5
Impulse	High head	0 – 1.0

Specific speed with dimensions

• Specific speed Ω_P is dimensionless, but sometime g or ρ is dropped making Specific speed dimensional N'_{sp} (SI) or N'_{sd} (British):

 $N'_{sd} = \frac{N\sqrt{HP}}{(H)^{1.25}}$ Imperial unit

where N - rpm, HP- horsepower, H -ft

• $N'_{sp} = \frac{N\sqrt{P}}{H^{1.25}} \text{ SI unit}$ where N-rpm, P-kW, H-m

Micro-hydro

- Micro hydro is a term used for hydroelectric power installations that typically produce up to 100 kW of power. It can provide power to an isolated home or small community.
- Micro hydro is frequently accomplished with pelton wheel for high head, low flow.
- There are currently about 2000 MW worth of installed small hydro capacity in Canada.
- Nova Scotia operates about 40 small hydro plants supplying about 11% of provincial capacity

