

Chapter 1

Programmable Logic Controller (Overview)

Chapter Objectives

✓ After completing this chapter, you will be able to:

- Define what a programmable logic controller (PLC) is and list its advantages over relay systems
- ➢ Identify the main parts of a PLC and describe their functions
- Outline the basic sequence of operation for a PLC
- Identify the general classifications of PLCs

Programmable Logic Controllers

➢ Programmable logic controllers (Figure 1-1) are now the most widely used industrial process control technology.

➢A programmable logic controller (PLC) is an industrial grade computer that is capable of being programmed to perform control functions.

➢The programmable controller has eliminated much of the hardwiring associated with conventional relay control circuits.

Programmable Logic Controllers

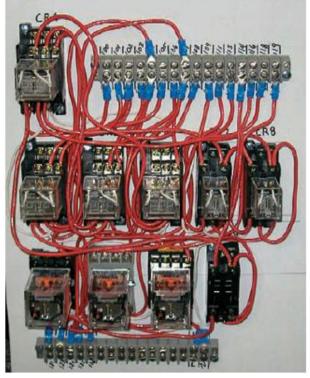
➢ In the 1960s, electromechanical relays, timers, counters, and sequencers were the standard.

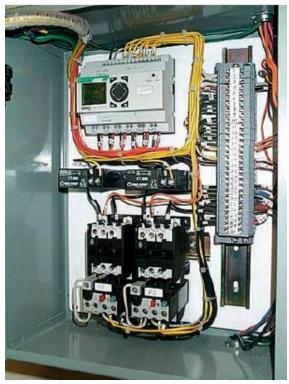
➢Many control panels contained hundreds of these devices and a mile or more of wire.

➢ Reliability was low and maintenance costs were high.

≻Cost was high to modify or upgrade control panels.

➢ In 1968 the General Motors Hydramatic division specified a device that would become what we know today as the programmable logic controller.



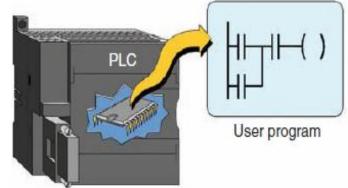

Programmable Logic Controllers

Programmable controllers offer several advantages over a conventional relay type of control

1. Easily changeable

Relay based control panel

PLC based control panel



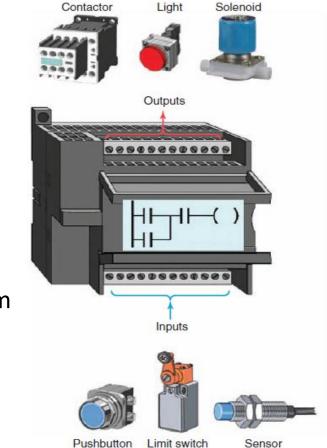
Chapter Objectives
 Programmable Logic Controllers

Programmable controllers offer several advantages over a conventional relay type of control

- 2. Increased Reliability
- Once a program has been written and tested, it can be easily downloaded to other PLCs.
- Since all the logic is contained in the PLC's memory, there is no chance of making a logic wiring error (Figure 1-3).
- The program takes the place of much of the external wiring that would normally be required for control of a process.

Hardwiring, though still required to connect field devices, is less intensive. PLCs also offer the reliability associated with solid-state components.

✓ Programmable Logic Controllers


Programmable controllers offer several advantages over a conventional relay type of control

3. More Flexibility.

It is easier to create and change a program in a PLC than to wire and rewire a circuit.

➢ With a PLC the relationships between the inputs and outputs are determined by the user program instead of the manner in which they are interconnected.

➢ Original equipment manufacturers can provide system updates by simply sending out a new program. End users can modify the program in the field, or if desired, security can be provided by hardware features such as key locks and by software passwords.

✓ Programmable Logic Controllers

Programmable controllers offer several advantages over a conventional relay type of control 4. Lower Cost

> PLCs were originally designed to replace relay control logic, and the cost savings have been so significant that relay control is becoming obsolete except for power applications.

➢ Generally, if an application has more than about a half-dozen control relays, it will probably be less expensive to install a PLC.

✓ Programmable Logic Controllers

Programmable controllers offer several advantages over a conventional relay type of control

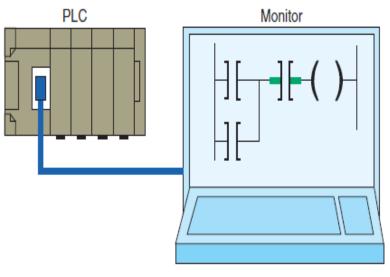
5. Communications Capability

A PLC can communicate with other controllers or computer equipment to perform such functions as supervisory control, data gathering, monitoring devices and process parameters, and download and upload of programs.

✓ Programmable Logic Controllers

Programmable controllers offer several advantages over a conventional relay type of control

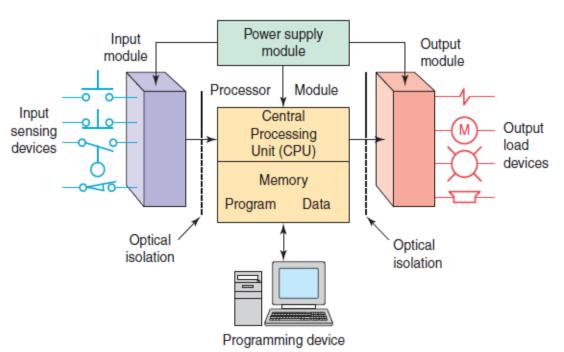
- 6. Faster Response Time.
- PLCs are designed for highspeed and real-time Applications .
- The programmable controller operates in real time, which means that an event taking place in the field will result in the execution of an operation or output.
- Machines that process thousands of items per second and objects that spend only a fraction of a second in front of a sensor require the PLC's quick-response capability.



✓ Programmable Logic Controllers

Programmable controllers offer several advantages over a conventional relay type of control

- 7. Easier to Troubleshoot.
- PLCs have resident diagnostics and override functions that allow users to easily trace and correct software and hardware problems.
- ➢ To find and fix problems, users can display the control program on a monitor and watch it in real time as it executes



Parts of a PLC

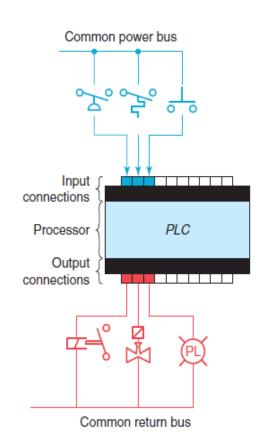
- \checkmark typical PLC can be divided into parts
- ➤ the central processing unit (CPU)
- ➤ the input/output (I/O) section
- ➤ the power supply
- The programming device

Parts of a PLC

- \checkmark There are two ways in which I/Os (Inputs/Outputs) are incorporated into the PLC
- ➢ Fixed I/O
- ➢ Modular I/O

□ Parts of a PLC ✓ Fixed I/O

> Fixed I/O is typical of small PLCs that come in one package with no separate, removable units.


➤ The processor and I/O are packaged together, and the I/O terminals will have a fixed number of connections built in for inputs and outputs

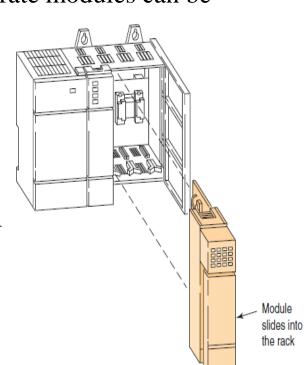
> The main advantage of this type of packaging is lower cost.

➤ The number of available I/O points varies and usually can be expanded by buying additional units of fixed I/O

➤ One disadvantage of fixed I/O is its lack of flexibility; you are limited in what you can get in the quantities and types dictated by the packaging

> Also, for some models, if any part in the unit fails, the whole unit has to be replaced

Parts of a PLC

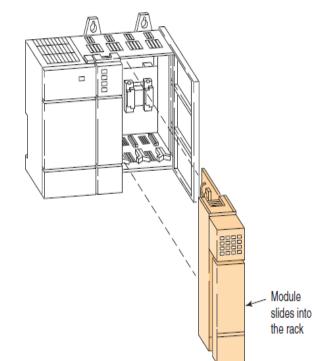

✓ Modular I/O

Modular I/O is divided by compartments into which separate modules can be plugged.

The basic modular controller consists of a rack, power supply, processor module (CPU), input/output (I/O) modules), and an operator interface for programming and monitoring

 \succ The modules plug into a rack.

≻When a module is slid into The rack, it makes an electrical contacts



Parts of a PLC

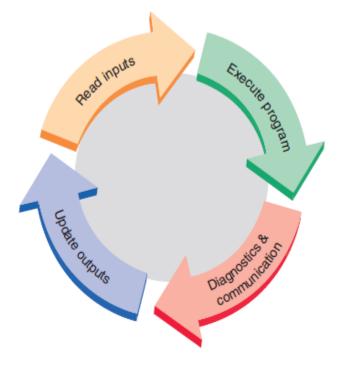
- \checkmark There are two ways in which I/Os (Inputs/Outputs) are incorporated into the PLC
- ➤ The power supply supplies DC power to other modules that plug into the rack
- ➢ For large PLC systems, this power supply does not normally supply power to the field devices.
- ➢ With larger systems, power to field devices is provided by external alternating current (AC) or direct current (DC) supplies.
- ➢ For some small micro PLC systems, the power supply may be used to power field devices.

Parts of a PLC

- ✓ The *processor* (CPU)
- The processor (CPU) is the "brain" of the PLC

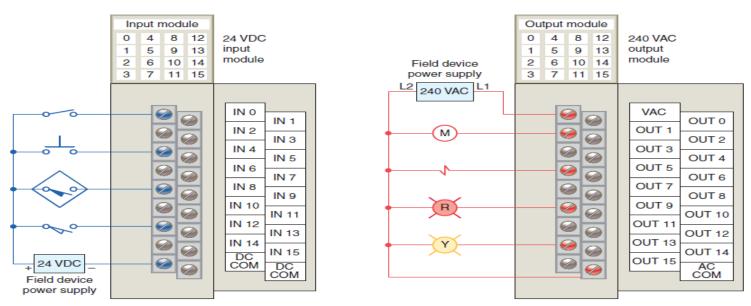
> Typical processor usually consists of a microprocessor for implementing the logic and controlling the communications among the modules.

> The processor requires memory for storing the results of the logical operations performed by the microprocessor and storing the program.


➤ The CPU controls all PLC activity and is designed so that the user can enter the desired program in relay ladder logic.

Parts of a PLC

- ✓ The *processor* (CPU)
- ➢ The PLC program is executed as part of a repetitive process referred to as a scan.
- ➤ A typical PLC scan starts with the CPU reading the status of inputs.
- Then, the application program is executed.
- Once the program execution is completed, the CPU performs internal diagnostic and communication tasks.
- Next, the status of all outputs is updated.
- ➤ This process is repeated continuously as long as the PLC is in the run mode.


Parts of a PLC

 \succ the *I/O system forms the interface by which field devices* are connected to the controller.

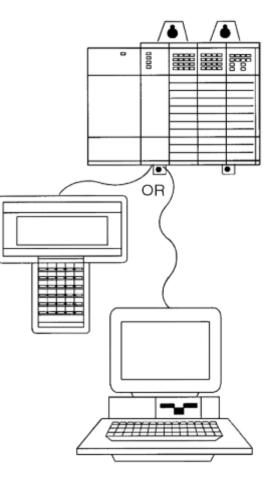
 \succ The purpose of this interface is to condition the various signals received from or sent to external field devices

 \succ Input devices such as pushbuttons, limit switches, and sensors are hardwired to the input terminals.

> Output devices such as small motors, motor starters, solenoid valves, and indicator lights are hardwired to the output terminals.

Parts of a PLC

- ✓ How can PLC be programmed?
- ≻Hand-held Terminal (HHT)

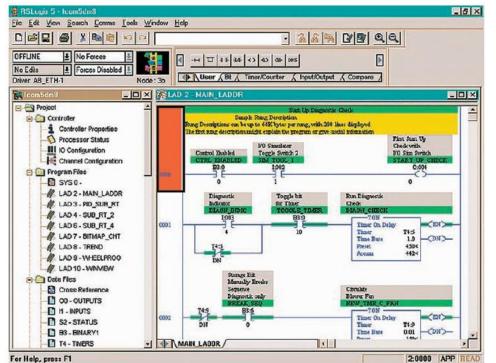

≻ PC s

✓ PLC programming

➢ A program is a user-developed series of instructions that directs the PLC to execute actions.

A programming language provides rules for combining the instructions so that they produce the desired actions.

➢ Relay ladder logic (RLL) is the standard programming language used with PLCs.

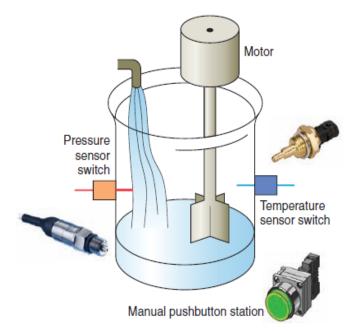


Parts of a PLC

≻Its origin is based on electromechanical relay control.

➢The relay ladder logic program graphically represents rungs of contacts, coils, and special instruction blocks.

➢RLL was originally designed for easy use and understanding for its users and has been modified to keep up with the increasing demands of industry's control needs.

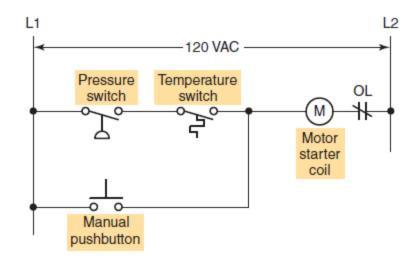

Principles of Operation

➢ To get an idea of how a PLC operates, consider the simple process control problem illustrated in Figure

 \succ Here a mixer motor is to be used to automatically stir the liquid in a vat when the temperature and pressure reach preset values.

➢In addition, direct manual operation of the motor is provided by means of a separate pushbutton station

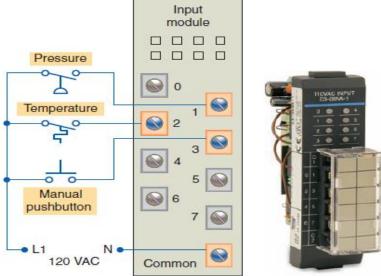
➤ The process is monitored with temperature and pressure sensor switches that close their respective contacts when conditions reach their preset values.



Principles of Operation

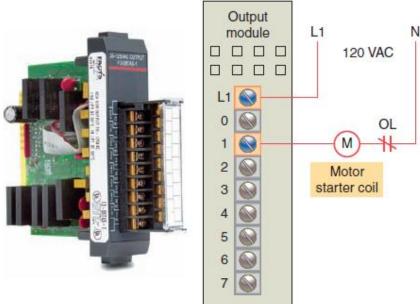
 \succ This control problem can be solved using the relay method for motor control shown in the relay ladder diagram of Figure .

➤The motor starter coil (M) is energized when both the pressure and temperature switches are closed or when the manual pushbutton is pressed.



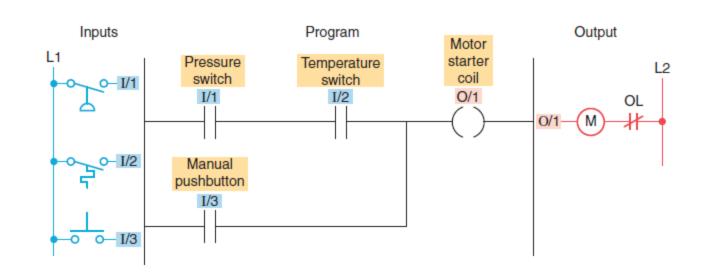
Principles of Operation

- > Now let's look at how a programmable logic controller might be used for this application.
- ➤The same input field devices (pressure switch, temperature switch, and pushbutton) are used.
- ≻These devices would be hardwired to an appropriate input module according to the manufacturer's addressing location scheme.
- ➢ Typical wiring connections for a 120 VAC modular configured input module is shown in Figure



Principles of Operation

- > The same output field device (motor starter coil) would also be used.
- ≻This device would be hardwired to an appropriate output module according to the manufacturer's addressing location scheme.
- ➤Typical wiring connections for a 120 VAC modular configured output module is shown in Figure.

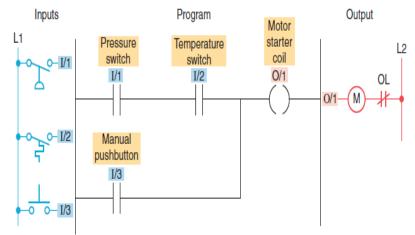

Principles of Operation

➢ Next, the PLC ladder logic program would be constructed and entered into the memory of the CPU.

≻A typical ladder logic program for this process is shown in Figure .

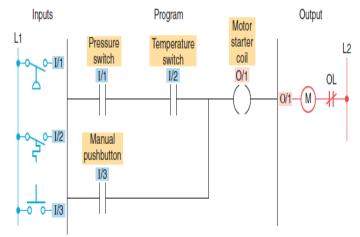
>The format used is similar to the layout of the hardwired relay ladder circuit.

➤The individual symbols represent instructions, whereas the numbers represent the instruction location addresses.



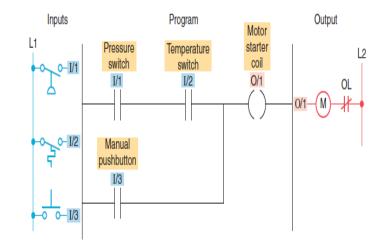
Principles of Operation

- > To program the controller, you enter these instructions one by one into the processor memory from the programming device.
- ➢ Each input and output device is given an address, which lets the PLC know where it is physically connected.
- ≻Note that the I/O address format will differ, depending on the PLC model and manufacturer.
- ≻Instructions are stored in the user program portion of the processor memory.
- During the program scan the controller monitors the inputs, executes the control program, and changes the output accordingly.



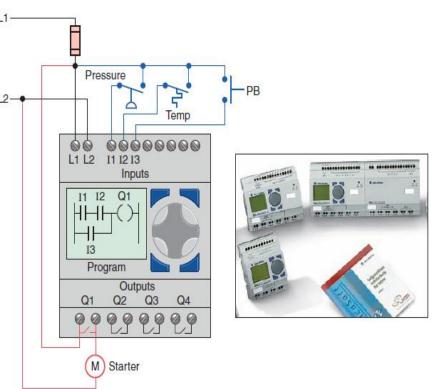
Principles of Operation

- ➢ For the program to operate, the controller is placed in the RUN mode, or operating cycle.
- >During each operating cycle, the controller examines the status of input devices,
- executes the user program, and changes outputs accordingly.
- ➤Each symbol IF can be thought of as a set of normally open contacts.
- ➤The symbol () is considered to represent a coil that, when energized, will close a set of contacts.
- ➢In the ladder logic program of Figure ,the coil O/1 is energized when contacts I/1 and I/2 are closed or when contact I/3 is closed.
- Either of these conditions provides a continuous logic path



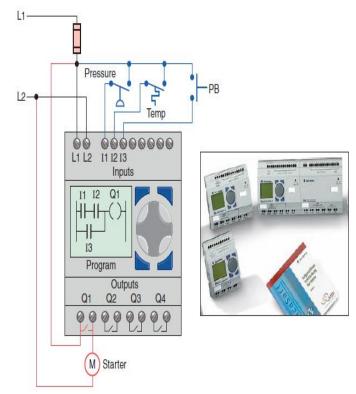
Principles of Operation

- > A programmable logic controller operates in real time in that an event taking place in the field will result in an operation or output taking place.
- ➤The RUN operation for the process control scheme can be described by the following sequence of events:
- First, the pressure switch, temperature switch, and pushbutton inputs are examined and their status is recorded in the controller's memory.
- A closed contact is recorded in memory as logic 1 and an open contact as logic 0.
- Next the ladder diagram is evaluated, with each internal contact given an OPEN or CLOSED status according to its recorded 1 or 0 state.
- When the states of the input contacts provide Logic continuity from left to right across the rung, the output coil memory location is given a logic 1 Value and the output module interface contacts will close.


•

Principles of Operation

- When there is no logic continuity of the program rung, the output coil memory location is set to logic 0 and the output module interface contacts will be open.
- The completion of one cycle of this sequence by the controller is called a *scan. The scan time, the time* required for one full cycle, provides a measure of the speed of response of the PLC.
- Generally, the output memory location is updated during the scan but the actual output is not updated until the end of the program scan during the I/O scan.
- •Figure shows the typical wiring required to implement the process control scheme using a fixed PLC.



Principles of Operation

➢ In this example the Allen-Bradley Pico controller equipped with 8 inputs and 4 outputs is used to control and monitor the process. Installation can be summarized as follows:

- Fused power lines, of the specified voltage type and level, are connected to the controller's L1 and L2 terminals.
- The pressure switch, temperature switch, and pushbutton field input devices are hardwired
 Between L1 and controller input terminals I1, I2, and I3, respectively.
- The motor starter coil connects directly to L2 and inseries with Q1 relay output contacts to L1.
- The ladder logic program is entered using the front keypad and LCD display.

PLC Size and Application

> The criteria used in categorizing PLCs include functionality, number of inputs and outputs, cost, and physical size . the *I/O count is the most important* factor.

➢ In general, the nano is the smallest size with less than 15 I/O points, This is followed by micro types (15 to 128 I/O points), medium types (128 to 512 I/O points), and large types (over 512 I/O points).

➢ Matching the PLC with the application is a key factor in the selection process. In general it is not advisable to buy a PLC system that is larger than current needs dictate.

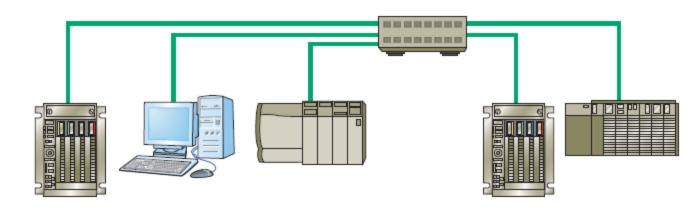
➢ However, future conditions should be anticipated to ensure that the system is the proper size to fill the current and possibly future requirements of an application.

PLC Size and Application

- > There are three major types of PLC application: singleended, multitask, and control management.
- ➢A singleended or stand-alone PLC application involves one PLC controlling one process Figure.
- ➤This would be a stand-alone unit and would not be used for communicating with other computers or PLCs.
- ➤The size and sophistication of the process being controlled are obvious factors in determining which PLC to select.
- ➤The applications could dictate a large processor, but usually this category requires a small PLC.

PLC Size and Application

- > A multitask PLC application involves one PLC controlling several processes.
- Adequate I/O capacity is a significant factor in this type of installation.
- ➢In addition, if the PLC would be a subsystem of a larger process and would have to communicate with a central PLC or computer, provisions for a data communications network are also required.


PLC Size and Application

A control management PLC application involves one PLC controlling several others (Figure).

➢This kind of application requires a large PLC processor designed to communicate with other PLCs and possibly with a computer.

≻The control management PLC supervises several PLCs by downloading programs that tell the other PLCs what has to be done.

➢It must be capable of connection to all the PLCs so that by proper addressing it can communicate with any one it wishes to.

PLC Size and Application

Memory is the part of a PLC that stores data, instructions, and the control program.
 Memory size is usually expressed in K values: 1 K word, 6 Kword, 12 Kword, and so on .

➢ word can be 8,16,32,64 bits

➤The amount of memory required depends on the application.

➤Factors affecting the memory size needed for a particular PLC installation include:

- Number of I/O points used
- Size of control program
- Data-collecting requirements
- Supervisory functions required
- Future expansion