Electrical lighting design

Chapter 15 in your text book

LIGHTING FIXTURE (Luminaire) DISTRIBUTION

 Uniformity of illumination (intensity at angles above the nadir (0^o from the vertical) be greater than the intensity at 0^o 15.1a.

Therefore, such fixtures can be spaced more widely than the units of Fig. 15.1b

- **High efficiency** (directing the luminaries output to the work plane (i.e., from 0° to 45° from the vertical). Light above 45° is directed to the walls
- **Diffuseness exists** when light reaches the work plane from multiple directions. This requires that light be reflected from walls and ceilings to the work plane, which in turn requires luminaire light output above 45° from the vertical.
- **Direct glare** (above 45° from the vertical) glare from linear fluorescent fixtures can be minimized by placing the long axis parallel to the line of sight

 Shielding is a function of the shape of the fixture housing plus any additional lamp concealment means, such as louvers or baffles. <u>The shielding</u> <u>angle</u> is defined as the angle between a horizontal plane through the louvers or baffles and the inclined plane at which the lamp first becomes visible as one approaches the fixture

LUMINAIRE LIGHT CONTROL

- Lamp Shielding
- Reflectors
- (Reflector Materials)
- Diffusers

Reflectors material

- 1. white gloss paint for portions of fixture body interiors that acted as reflectors,
- 2. and formed anodized aluminum sheet

The reflectance (reflection factors) of both of these materials are approximately the same, varying between 0.84 and 0.88 *when new and clean*

3. silver reflectors is about 95%

- Approximately 40% of a lamp's output in an open luminaire is directed downward and is therefore completely independent of any reflector action.
- The difference in reflectance between a new, clean, painted surface and an old, dirty surface is, *at most, 50%. That means that the maximum* light loss of an open fixture due to poor maintenance is 50% of 60% (the maximum reflected light component), or 30% of the overall light output.
- The maximum reflectance of the best (and most expensive) silver reflectors is about 95%, comprising 93% specular and 2% diffuse.
- Simple cleaning of a very dirty fixture body restores 20% to 25% of the light loss. The remaining loss is due to aging of the paint.

LUMINAIRE DIFFUSERS (page 635-638)

Diffusers are the devices placed between the lamp(s) and the illuminated space, that function to diffuse the light, control fixture brightness, redirect the light, and obscure (hide) and shield the lamps.

- Translucent Diffusers
- Louvers and Baffles
- Prismatic Lens
- Batwing Diffusers

UNIFORMITY OF ILLUMINATION

- it is necessary to establish a fixture spacing that gives acceptable uniformity of illumination.
- A ratio of maximum to minimum illuminance on the working plane of 1:1.3 is readily acceptable because lesser ratios are not easily noticed.
- For general background or circulation lighting, a ratio of up to 1.5 is acceptable

LUMINAIRE MOUNTING HEIGHT (S/MH)

Spacing / mounting height (from luminaries to the working plane)

Illuminance calculations – lumen method

- Once a luminaire has been selected on the basis of the foregoing criteria, it remains only to calculate the number of such fixtures required in each space, for uniform *general illuminance, and to arrange* them properly
- the lumen (lighting flux) method of *average illuminance* calculation is replete with assumptions and estimates. Among these are:
- 1. It is assumed that the space is empty. This is not normally the case.
- 2. It is assumed that all surfaces are perfect diffusers. This is not the case.
- 3. All surfaces reflectance are estimates,
- 4. Maintenance conditions are estimates, at best
- 5. And Users effects

Electric lighting Design Method

Step 1: Illuminance criterion

THEE THE Determination of manimume categories

Orientation and simple visual tasks. Visual performance is largely unimportant. These tasks are found in public spaces where reading and visual inspection are only occasionally performed. Higher levels are recommended for tasks where visual performance is occasionally important. Public spaces 30 lx (3 fc) В Simple orientation for short visits 50 lx (5 fc) Working spaces where simple visual tasks are performed 100 lx (10 fc) C Common visual tasks. Visual performance is important. These tasks are found in commercial, industrial, and residential applications. Recommended illuminance levels differ because of characteristics of the visual task being illuminated. Higher levels are recommended for visual tasks with critical elements of low contrast or small size. Performance of visual tasks of high contrast and large size 300 lx (30 fc) F Performance of visual tasks of high contrast and small 500 lx (50 fc) size, or visual tasks of low contrast and large size Performance of visual tasks of low contrast and small size 1000 lx (100 fc) Special visual tasks. Visual performance is of critical importance. These tasks are very specialized, including those with very small or very low contrast critical elements. Recommended illuminance levels should be achieved with supplementary task lighting. Higher recommended levels are often achieved with supplementary task lighting. Higher recommended levels are often achieved by moving the light source closer to the task. Performance of visual tasks near threshold 3000 to 10,000 lx (300 to 1000 fc) G

*Expected accuracy in illuminance calculations should be checked with formulas in the *IESNA Lighting Handbook*. To account for both uncertainty in photometric measurements and uncertainty in space reflections, measured illuminances should be within 10% of the recommended value. It should be noted, however, that the final illuminance may deviate from the recommended values due to the other lighting design criteria.

	IL	LUMINANCE ON TASK (LUX)			
			Illumiı	nance Categorie	s
Average of Workers' Ages	Demand for Speed and/or Accuracy ^{1, c}	Task Background ² Reflectance (%)	D	E	F
Under 40	NI	Over 70	300	500	1000
		30-70	300	500	1000
		Under 30	400	750	1500
	I.	Over 70	300	500	1000
		30-70	400	750	1500
		Under 30	400	750	1500
	С	Over 70	400	750	1500
		30-70	400	750	1500
		Under 30	400	750	1500
40-55	NI	Over 70	300	500	1000
		30-70	400	750	1500
		Under 30	400	750	1500
	I. I.	Over 70	400	750	1500
		30-70	400	750	1500
		Under 30	400	750	1500
	C	Over 70	400	750	1500
		30-70	400	750	1500
		Under 30	600	1000	2000
Over 55	NI	Over 70	400	750	1500
		30-70	400	750	1500
		Under 30	400	750	1500
	I. I.	Over 70	400	750	1500
		30-70	400	750	1500
		Under 30	600	1000	2000
	С	Over 70	400	750	1500
		30-70	600	1000	2000
		Under 30	600	1000	2000

Step 2: Luminaire Selection

Example: class room

- 1. Low direct glare because schoolchildren spend a large proportion of their time in a heads-up position.
- 2. Low veiling reflections because much of the seeing task involves high-reflectance materials, occasionally specular.
- 3. High efficiency and low energy use to meet ANSI/ASHRAE/IESNA Standard 90.1 and most governmental requirements.
- 4. Minimum required maintenance in view of the poor cleaning and maintenance situation that exists in many schools.

	Typical Distribution	Post-	+	80			70	-		50		1	ø	
	Lumans	p_{θ} -	⇒50	30	10	50	30	10	50	30	10		۵	1
Typical Lummaire	Maintenance Maximum Category S/MH	RCR	0	Coefficie	ents of	Uhilizati	on for 2	30% ЕН р., 2	lective (10)	Floor G	evity R	allect	ance	
50	mmmm	+	:42	.40	.39	.36	.35	.33	.25	.24	.23	Cov	es an	8
		2	.37	.34	.32	.32	.29	.27	.22	.20	.19	no	t rec	om-
D		3	.32	.29	26	28	.25	.23	.19	.17	.16	m	ende	d-
		4	.29	.25	.22	.25	.22	.19	.17	.15	.13	10	r light	gnit
		5	25	.21	18	22	.19	16	.15	13	.11	a	0.85	
		6	.23	.19	.16	.20	.16	.14	,14	.12	.10	h/	iving	
Single-row fluorescent lan	ip cove without	7	.20	.17	.14	17	.14	,12	.12	.10	.09	la	w roll	ec-
reflector (multiply by 0.9	G for two rows and	8	.18	.15	.12	16	.13	.10	.11	.09	.08	ta	nces	
by 0.85 for three rows)	a an as a constant	9	.17	13	10	.15	-11	.09	10	.08	.07			
												Pes	= 104	No.
												μ _k = 50	30	
	45%									10		47		
Disc trom Decow ~		1.1							.01	.40	.40	32	40	-3
53 Pac from below ~	2										1.000	1.40	- 10	
53 AGC from Delow -	8	5							49	- 20	37	90		- 12
53 Pool from Delow -	3	2 3							.42	.39	.37	.39	38	3
59 Age from below -		2 3 4 5							.42	.39 .35	.37 .33	.39	.38	33.0
59 Acc from Below -		23456							.42 .38 .35	.39 .35 .32	.37 .33 .29	.39 .36 .33	.38 .34 .31 .28	3320
53 Poo from below -	diciency = 50 45°	234567							.42 .38 .35 .32 29	.39 .35 .32 .29	.37 .33 .29 .26 .23	.39 .36 .33 .30 .28	.36 .34 .31 .28 .25	332000
Louvered celling. Celling e	diciency - 50, 45"	2345678							.42 .38 .35 .32 .29 .29	.39 .35 .32 .29 .26 .23	.37 .33 .29 .26 .23 .21	.39 .36 .33 .30 .28 .26	.36 .34 .31 .28 .25 .23	3320000
Louvened ceiling. Ceiling e shielding opaque louver	Hidency - 50, 45° s of 80% reflectance stuctions and painted	23456780							.42 .38 .35 .32 .29 .27 .27 .24	.39 .35 .32 .29 .26 .23 .21	.37 .33 .29 .26 .23 .21 .19	.39 .36 .33 .30 .28 .26 .24	.38 .34 .31 .28 .25 .23 .21	3322221

Table: 15.1 page 640

Source: Data extracted from IES Lighting Handbook Reference Volume, (1981): with permission.

Notes: 1. Refer to the manufacturer's catalog data for more precise values when a specific luminaire type is proposed for use. 2. Multiply coefficients by 1.05 for three lamps and by 1,1 for two lamps.

Step 3: Calculation

E = <u>lumens</u> * CU * Light Loss Factor (LLF) / Area

(N) Luminaries lumen = (n) lamps * lamb lumens

If you have two fixtures each one has three lamps each lamp has 2000 lumen

Then the overall lumen in the room is ?

Room cavity ratio

$$RCR = 5h_{RC} \frac{l+w}{l\times w}$$
(15.8)

Ceiling cavity ratio

$$CCR = 5h_{CC} \frac{I+w}{I \times w}$$
(15.9)

Floor cavity ratio

$$FCR = 5h_{FC} \frac{l+w}{l\times w}$$
(15.10)

L : room length

w: Room width

TABLE 15.2 Percent Effective Ceiling or Floor Cavity Reflectance ($ ho_{ccr}$, $ ho_{sc}$) for Various Reflectance	è
Combinations	

Percent Ceiling ρ _c or Floor Reflectance ρ _p : 90		8	10			70			50			:	30			10						
Percent Wal Reflectance	l Pw:	90	70	50	30	80	70	50	30	70	50	30	70	50	30	65	50	30	10	50	30	10
Ceiling or	0	90	90	90	90	80	80	80	80	70	70	70	50	50	50	30	30	30	30	10	10	10
Floor Cavity	0.2	89	88	86	85	79	78	77	76	68	67	66	49	48	47	30	29	29	28	10	10	9
Ratios—CCR	0.4	88	86	83	81	78	76	74	72	67	65	63	48	46	45	30	29	27	26	11	10	9
or FCR	0.6	88	84	80	76	77	75	71	68	65	62	59	47	45	43	29	28	26	25	11	10	9
	0.8	87	82	77	73	75	73	69	65	64	60	56	47	43	41	29	27	25	23	11	10	8
	1.0	86	80	74	69	74	71	66	61	63	58	53	46	42	39	29	27	24	22	11	9	8
	1.2 1.4	86 85	78 77	72 69	65 62	73 72	70 68	64 62	58 55	61 60	56 54	50 48	45 45	41 40	37 35	29 28	26 26	23 22	20 19	12 12	9 9	777
	1.6	85	75	66	59	71	67	60	53	59	52	45	44	39	33	28	25	21	18	12	9	7
	1.8	84	73	64	56	70	65	58	50	57	50	43	43	37	32	28	25	21	17	12	9	6
	2.0	83	72	62	53	69	64	56	48	56	48	41	43	37	30	28	24	20	16	12	9	6
	2.2	83	70	60	51	68	63	54	45	55	46	39	42	36	29	28	24	19	15	13	9	6
	2.4	82	68	58	48	67	61	52	43	54	45	37	42	35	27	28	24	19	14	13	9	6
	2.6	82	67	56	46	66	60	50	41	53	43	35	41	34	26	27	23	18	13	13	9	5
	2.8	81	66	54	44	66	59	48	39	52	42	33	41	33	25	27	23	18	13	13	9	5
	3.0	81	64	52	42	65	58	47	38	51	40	32	40	32	24	27	22	17	12	13	8	5
	3.5 4.0 4.5 5.0	79 78 77 76	61 58 55 53	48 44 41 38	37 33 30 27	63 61 59 57	55 52 50 48	43 40 37 35	33 30 27 25	48 46 45 43	38 35 33 32	29 26 24 22	39 38 37 36	30 29 27 26	22 20 19	26 26 25 25	22 21 20	16 15 14 13	11 9 8 7	13 13 14 14	x x x x	5 4 4

Source: Extracted from the IESNA Lighting Handbook (1993); reprinted with permission. For more complete data, see the current IESN/ Lighting Handbook.

TABLE 15.3 CU Factors for Effective Floor Cavity Reflectances Other Than 20% (Any Wall Reflectance)³

For 30% effective floor cavity reflectance, *multiply* standard C U value by the appropriate factor from the following table. For 10% effective floor cavity reflectance, divide standard CU value by the appropriate factor from the following table.

	Percent	Reflectar	Ceiling (Cavity
Room Cavity Ratio	80	70	50	10
1	1.08	1.06	1.04	1.01
2	1.06	1.05	1.03	1.01
3	1.04	1.04	1.03	1.01
4	1.03	1.03	1.02	1.01
5	1.03	1.02	1.02	1.01
6	1.02	1.02	1.02	1.01
7	1.02	1.02	1.01	1.01
8	1.02	1.02	1.01	1.01
9	1.01	1.01	1.01	1.01
10	1.01	1.01	1.01	1.01

Source: Extracted from the IESNA Lighting Handbook (1993); reprinted with permission.

*For more precise data, for varying p_w, see the current IESNA Lighting Handbook.

Percent Ceili or Floor Reflectance	ng ρ _c ρ _F :		9	10			8	10			70		50					30	2		10	
Percent Wall Reflectance	p _w :	90	70	50	30	80	70	50	30	70	50	30	70	50	30	65	50	30	10	50	30	10
Ceiling or Floor Cavity Ratios—CCR	0 0.2 0.4	90 89 88	90 88 86	90 86 83	90 85 81	80 79 78	80 78 76	80 77 74	80 76 72	70 68 67	70 67 65	70 66 63	50 49 48	50 48 46	50 47 45	30 30 30	30 29	30 29 27	30 28 26	10 10 11	10 10 10	10 9 9
or FCR	0.6 0.8 1.0	88 87 86	84 82 80	80 77 74	76 73 69	77 75 74	75 73 71	71 69 66	68 65 61	65 64 63	62 60 58	59 56 53	47 47 46	45 43 42	43 41 39	29 29 29	28 27 27	26 25 24	25 23 22	11 11 11	10 10 9	988
	1.2 1.4	86 85	78 77	72 69	65 62	73 72	70 68	64 62	58 55	61 60	56 54	50 48	45 45	41 40	37 35	29 28	26 26	23 22	20 19	12 12	9	7 7
	1.6 1.8 2.0	85 84 83	75 73 72	66 64 62	59 56 53	71 70 69	67 65 64	60 58 56	53 50 48	59 57 56	52 50 48	45 43 41	44 43 43	39 37 37	33 32 30	28 28 28	25 25 24	21 21 20	18 17 16	12 12 12	9 9 9	7 6 6
	2.2 2.4	83 82	70 68	60 58	51 48	68 67	63 61	54 52	45 43	55 54	46 45	39 37	42 42	36 35	29 27	28 28	24 24	19 19	15 14	13 13	9 9	6 6
	2.6 2.8 3.0	82 81 81	67 66 64	56 54 52	46 44 42	66 66 65	60 59 58	50 48 47	41 39 38	53 52 51	43 42 40	35 33 32	41 41 40	34 33 32	26 25 24	27 27 27	23 23 22	18 18 17	13 13 12	13 13 13	998	5 5 5
	3.5 4.0 4.5 5.0	79 78 77 76	61 58 55 53	48 44 41 38	37 33 30 27	63 61 59 57	55 52 50 48	43 40 37 35	33 30 27 25	48 46 45 43	38 35 33 32	29 26 24 22	39 38 37 36	30 29 27 26	22 20 19 17	26 26 25 25	22 21 20 19	16 15 14 13	11 9 8 7	13 13 14 14	8 8 8 8	5 4 4 4

The second second second	Typical Distribution	per:-	*	80			70			50		0	
	Lumens	P=	+50	30	10	50	30	10	50	30	10	0	
Typical Luminaire	Maintenance Maximum Category S/MH	RCR		Coeffici	ents of	Ullikzati	ion for :	20% El (prc = 1	fective / 20)	Floor C	avity Re	flectance	1
1	V 1.5	0	.87	.87	87	81	.81	81	.69	.69	69	.44	1
-		1	.71	.87	.63	.66	.62	.59	.56	.53	.50	.31	
T		2	.61	.54	.49	.56	.50	.46	.47	.43	.39	.23	
	55	3	.52	.45	.39	.48	.42	.37	:41	.36	.31	,18	
	1 1	4	.46	.38	.33	.42	.36	.30	.36	.30	.26	.15	
		5	.40	.33	27	.37	.30	.25	32	26	22	.12	
\bigcirc		6	.36	.28	23	.33	.26	21	.28	.23	.19	.10	
	45%	7	32	25	20	29	23	.18	25	20	16	.09	
Pendant diffusing sohere with		8	29	22	.17	27	.20	.16	23	17	.14	.07	
incandescent lämp	F	9	26	19	15	.24	.18	14	20	15	12	.06	
3	IV 1.3	0	.99	.09	.99	.97	.97	.97	92	.93	.93	.83	1
A	10%	1	.88	.85	.82	.86	.83	.81	.83	.80	.78	.72	
6		2	.78	.73	.68	.76	.72	.67	.73	.69	.66	.61	
A		3	.69	.62	.57	.67	.61	.57	.65	60	.56	.52	
		4	61	.54	.49	60.	.53	48	.58	52	48	.45	
603		5	.54	.47	.41	.53	.46	.41	.51	.45	.41	.38	
	85%	6	48	41	.35	47	40	.35	46	.39	35	.32	
Porcelain-enameled		7	.43	.35	.30	.42	.35	.30	.41	34	30	.28	
ventilated standard dome		8	.38	31	26	.38	.31	.26	37	30	26	.24	
with incandescent lamp		9	.35	.28	23	.34	.27	.23	.33	27	.23	21	
7	IV 0.7	0	.52	.52	.52	.51	.51	.51	48	.48	.48	.44	T
CRI CR	01.4	1	.49	.48	,48	.48	.48	.47	.47	.46	.46	.42	
A		2	.47	,46	,45	,46	,45	,44	.45	.44	,43	.41	
		3	.45	.44	.43	.45	.43	.42	.44	.42	.42	.40	
		4	.43	,42	.41	,43	.41	.40	.42	.41	.40	.38	
EAR-38 lamp above \$1-mm	4312.0	5	.42	.40	.39	.41	.40	.38	.41	.39	.35	.37	
(2 in.)-diameter aporture		6	40	.39	37	.40	.38	.37	39	.38	.37	.36	
(increase efficiency to		7	.39	.37	.36	,39	37	.36	38	37	35	.35	
54\6% for 76-mm (3 in.)-		8	37	.36	.34	.37	35	34	.37	.35	34	.33	
diameter aperture)	P -	9	.36	.34	.33	.36	.34	.33	.35	34	.33	.32	
18	III 1.5	0	.93	.93	.93	.91	.91	.91	.87	.87	.87	.78	
6	12.4	1	.85	.62	.60	.83	.61	.79	.79	.78	.76	.70	
100		2	.77	.73	.70	.76	.72	.69	.73	.70	.67	,63	
11/1		3	.70	.65	,61	.68	.64	,60	.66	.62	.59	.56	
11-11	771:0	4	63	.58	.53	.62	.57	.53	.60	.56	.52	,49	
E J		5	.57	.51	.47	.56	.51	.47	.55	.50	.46	.44	
the second s		6	51	.45	.41	.51	,45	.41	.49	.44	.40	.38	
"High-bay" wide distribution		1	.46	.40	.35	.45	.39	.35	.44	.39	.35	.33	
ventilated reflector with		8	.41	,35	.31	.41	.35	.31	40	.34	.31	29	
clear HID tamp	the second se	9	.37	.31	.27	37	.31	27	.36	.30	.27	.25	

	Typical Distribution	pe:-	,	80			70	
	Lumens	P=	+ 50	30	10	50	30	10
	Maintenance Maximum Category S/MH	RCR	(Coefficie	ents of	Ulilizati	on for 2 (0% Εί ρπ: = :
47	V 1.7	0	.71	.71	.71	.69	.69	.69
10000	349 1 344	1	.62	.80	.58	:61	.59	.57
		2	.55	.51	.47	53	.50	.47
	0.4	3	.48	.43	.39	.47	,43	.39
		4	.42	.37	.33	.41	.37	.33
Padial habiles distribution	and the second s	5	.37	.32	.27	.36	.31	.27
faus lamp 610 mm (2.6)	391 +	6	.33	.27	23	32	.27	23
note there could will will		7	.29	.24	.20	.29	.24	.20
Ret estenatio lans		8	.26	.21	.17	,25	.20	.17
see note 2	-	9	.23	.18	.14	23	.18	.14

Coef	ficient	s of Uti	lization -	— Zonal	Cavity	Method	I												
						E	Effecti	ve flo	or cav	/ity re	flecta	ance:	20%						
RC	С%		8	0			7	0			50			30			10		0
RW	%	70	50	30	0	70	50	30	0	50	30	20	50	30	20	50	30	20	0
	0	.95	.95	.95	.95	.93	.93	.93	.80	.89	.89	.89	.85	.85	.85	.82	.82	.82	.80
	1	.88	.84	.81	.78	.85	.82	.79	.69	.79	.76	.74	.76	.74	.72	.73	.71	.70	.68
	2	.80	.74	.69	.64	.78	.72	.68	.59	.70	.66	.62	.67	.64	.61	.65	.62	.59	.58
	3	.74	.66	.59	.54	.72	.64	.58	.51	.62	.57	.53	.60	.56	.52	.58	.54	.51	.49
	4	.68	.58	.52	.47	.66	.57	.51	.44	.55	.50	.46	.54	.49	.45	.52	.48	.44	.43
SCR	5	.62	.52	.45	.40	.61	.52	.45	.39	.50	.44	.40	.48	.43	.39	.47	.42	.39	.37
-	6	.58	.47	.40	.35	.56	.47	.40	.34	.45	.39	.35	.44	.39	.35	.43	.38	.34	.33
	7	.54	.43	.36	.31	.52	.42	.36	.31	.41	.35	.31	.40	.35	.31	.39	.34	.31	.29
	8	.50	.39	.33	.28	.49	.39	.32	.27	.38	.32	.28	.37	.31	.28	.36	.31	.28	.26
	9	.47	.36	.30	.25	.45	.36	.29	.25	.35	.29	.25	.34	.29	.25	.33	.28	.25	.23
	10	.44	.33	.27	.23	.43	.33	.27	.23	.32	.27	.23	.31	.26	.23	.31	.26	.23	.21

~		9/	6 Effe	Coeff ctive	icient: ceilin	s of u g cav	tilizat vity re	tion eflecta	ance	
			80			50			10	
0.79				%	Wall	reflec	tanc	e		
	-	50	30	10	50	30	10	50	30	10
	1	0.79	0.78	0.76	0.75	0.74	0.72	0.70	0.69	0.68
	2	0.74	0.71	0.69	0.70	0.68	0.66	0.66	0.65	0.64
	3	0.69	0.65	0.62	0.66	0.63	0.61	0.63	0.61	0.59
	4	0.64	0.60	0.57	0.62	0.58	0.56	0.59	0.56	0.55
	5	0.59	0.55	0.52	0.57	0.54	0.51	0.55	0.52	0.50
The second state of the second state of the	6	0.55	0.51	0.47	0.53	0.50	0.47	0.51	0.48	0.46
	7	0.51	0.46	0.43	0.49	0.45	0.42	0.48	0.44	0.42
	8	0.47	0.42	0.39	0.45	0.41	0.38	0.44	0.41	0.38
	9	0.43	0.38	0.35	0.42	0.37	0.35	0.40	0.37	0.34
Open reflector	10	0.39	0.34	0.31	0.38	0.34	0.31	0.37	0.33	0.31
bi-tube ruminaire —			Spa	icing ra	tio 1.5		Effic	iency	72 %	

RCC RW	70	80 50) 30	10	70	70 50) 30	10	50	50 30	10	50	30 30	10	50	10 30	10	0 0
BCB		Page a								SH4 provin				1.000				
0	.86	.86	.86	.86	.73	.73	.73	.73	.50	.50	.50	.29	.29	.29	.09	.09	.09	.00
1	.78	.74	.71	.68	.66	.63	.61	.58	.43	.42	.40	.25	.24	.24	.08	.08	.08	.00
2	.71	.64	.59	.55	.60	.55	.51	.48	.38	.35	.33	.22	.21	.19	.07	.07	.06	.00
3	.64	.57	.51	.46	.55	.49	.44	.40	.33	.30	.28	.19	.18	.17	.06	.06	.05	.00
4	.59	.50	.43	.39	.50	.43	.38	.33	.29	.26	.24	.17	.15	.14	.05	.05	.05	.00
5	.54	.43	.38	.33	.46	.38	.33	.28	.26	.23	.20	.15	.13	.12	.05	.04	.04	.00
6	.49	.39	.33	.28	.42	.34	.28	.24	.23	.20	.17	.14	.12	.10	.04	.04	.03	.00
7	.45	.35	.29	.24	.38	.30	.25	.21	.21	.17	.15	.12	.10	.09	.04	.03	.03	.00
8	.42	.32	.25	.21	.35	.27	.22	.18	.19	.15	.13	.11	.09	.08	.04	.03	.03	.00
9	.39	.28	.22	.18	.33	.25	.19	.16	.17	.14	.11	.10	.08	.07	.03	.03	.02	.00
10	.36	.26	.20	.16	.31	.22	.17	.14	.16	.12	.10	.09	.07	.06	.03	.02	.02	.00
	Floor Cavity Reflectance .20																	

E = lumens * CU * Light Loss Factor (LLF) / Area

- A. Luminaire Ambient Temperature (1)
- B. Voltage (1)
- **C.** Luminaire Surface Depreciation (LSD) This factor is proportional to age and depends upon the type of surface involved
- **D. Components** Losses due to components include ballast factor, ballast-lamp photometric factor, equipment operating factor, and lamp position (tilt) factor
- E. Room Surface Dirt (RSD)

Direct lighting: $0.92 \pm 5\%$

Semi-direct lighting: $0.87 \pm 8\%$

Direct-indirect lighting: $0.82 \pm 10\%$

Semi-indirect lighting: $0.77 \pm 12\%$

Indirect lighting: $0.72 \pm 17\%$

F. Lamp Lumen Depreciation (LLD)

	Group Replacement	Replacement on Burnout
Incandescent	0.94	0.88
Tungsten-halogen	0.98	0.94
Fluorescent	0.90	0.85
Mercury-vapor	0.82	0.74
Metal-halide	0.87	0.80
High-pressure	0.94	0.88
sodium		

G. Burnouts

Group replacement procedures: 1.0 Individual replacement on burnout: 0.95

H. Luminaire Dirt Depreciation (LDD)

depends upon luminaire design, atmosphere conditions in the space, and maintenance schedule. The luminaire maintenance category is obtained from the manufacturer's data

- Very clean = 0.95
- Clean = 0.85
- Dirty = 0.75
- Very dirty = 0.5

$LLF = A^*B^*C^*D^*E^*F^*G^*H$

LLF = LSD * RSD * LLD * LDD

Example Calculations.

- hCC = 1.0 m
- hRC = 1.95 m
- hFC = 0.75 m
- I = 8 m
- w = 6 m
- ρC = 80%
- ρw = 50%
- ρF = 20%

Page 666

