Daylight design

Chapter 14 in your text book

Daylight provides

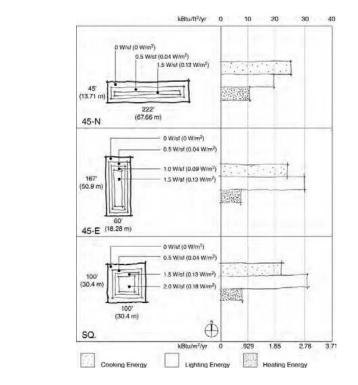
- Visual comfort
- Health, productivity and well-being
- View
- The most preferred views from a window include the sky, the horizon, and the ground
- The functional advantage is that people can look into the distance to reduce eye fatigue after doing close desk tasks.
- Reduce dependency on electric energy (energy efficiency)
- Daylight should provide balance to heat gain and loss. through shading devices, light shelves, glazing, atria, courtyards, and material finishes
- Daylighting is an easily achievable LEED strategy if a building can provide a minimum daylight factor of roughly 2% in 75% of all occupied spaces.

Issues with daylight

potential problems—such as glare or substantial cooling loads—caused by uncontrolled quantities and qualities of light and that can be controlled through:

- Provide exterior fixed shades that exclude sunlight for all sun positions.
- Use systems that diffuse the incident sunlight sufficiently to eliminate glare potential.
- Provide occupant-controlled adjustable shades.
- Lights shelves,
- high-reflectance interior surfaces,
- low-transmittance glazing (though such glazing will reduce light flux through the window).
- Furniture should be oriented to work with side lighting (as opposed to having an occupant face a window)

Daylighting goal

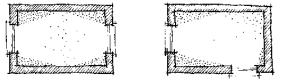

Key goals in daylighting design are to provide

- sufficient illuminance,
- minimize the perception of glare,

provide for overall visual comfort.

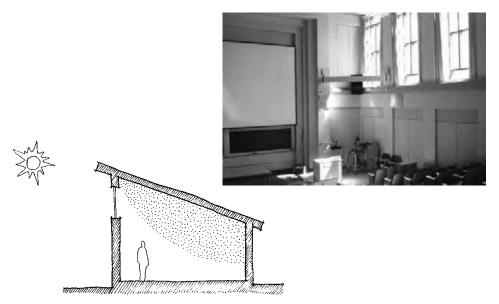
Planning for daylight – site strategies

- Form (The width of the long, narrow plan will determine how much of the floor area will have access to usable daylight. Generally, a (4.5-m) perimeter zone can be completely daylight, a (4.5to 9.0-m) area can be partially daylight, and an electrically light area beyond (9 m) can be used to determine the width of a building)
- Orientation (the north and south façades of the building maximum exposure to more easily controllable daylight)

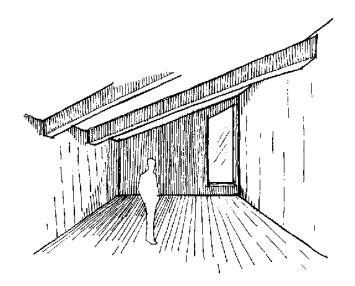

Form

Window and glazing types Aperture strategies – side lighting

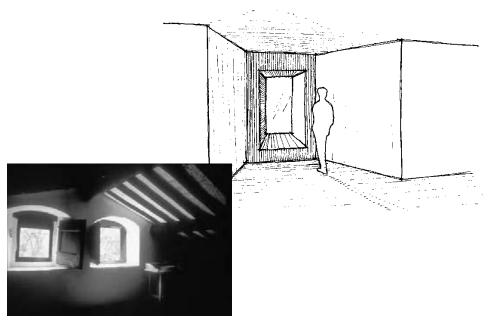
• Design for bilateral lighting



Unilateral lighting

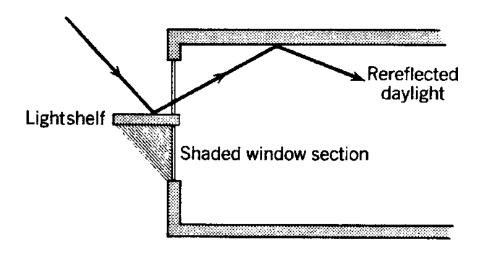


Bilateral lighting

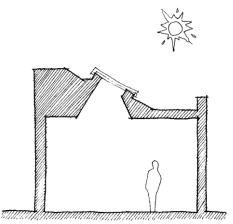

Place windows high on a wall

• Use adjacent walls as reflectors

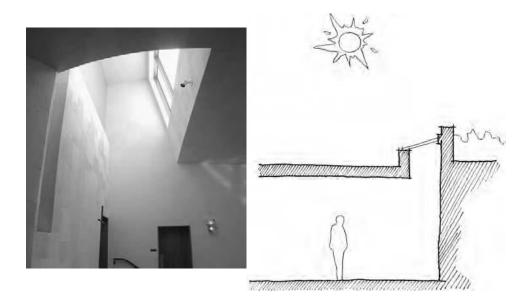
• Splay the walls of an aperture



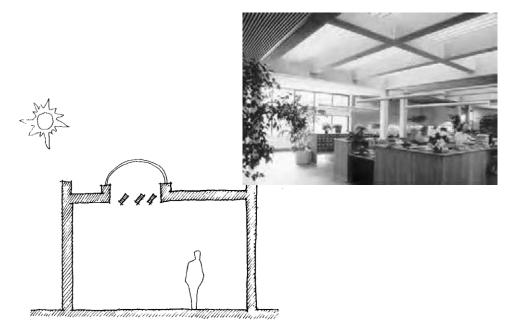
• Provide daylight filters


<image>

Provide lightshelf



Aperture strategies – top lighting


Splay the "walls" of an aperture

Place top lights high in the space

Use interior devices to block, baffle, or diffuse light

Choose the Glazing types

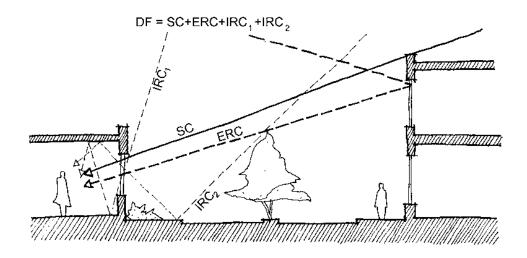
- Clear glazing
- Tinted glazing
- Low E glazing
- Reflective glazing
- Selective glazing

Daylight factor calculation

 $DF = \frac{E_i \text{ indoor illuminance, at a given point}}{E_H \text{ outdoor illuminance}} *100\%$

- Interior illuminance (Ei)
- outdoor horizontal illuminance (Eh)
- * The daylight factor concept is applicable only where the sky illuminance distribution is known or can reasonably be estimated.

Daylight in a building consists of three components


- 1. Sky component (SC)
- 2. Externally reflected component (ERC)
- 3. Internally reflected components (IRC)

Daylight factor = SC + ERC + IRC.

- SC = incident skylight window losses
- ERC = SC \times RD \times RF
- Were sky obstructed (RD) and the *reflectance factor* (*RF*)

Thus, if 25% of the sky is obstructed by a building with a 20% RF, we have

 $ERC = SC \times 0.25 \times 0.20$

Internally reflected component (IRC)

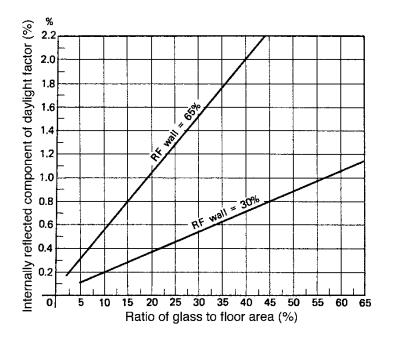


TABLE 14.1 Effect of Wall Reflectance Factor on the Proportion of IRC in the DF

	30% Wall Reflectance		60% Wall Reflectance	
Distance from Window in ft (m)	Total DF	IRC DF	Total DF	IRC DF (%)
0	30	1	31	3.5
5 (1.5)	16	1.9	17	6.5
10 (3.0)	5.5	5.5	6.3	16.9
15 (4.5)	2.1	14.3	2.9	37.9
20 (6.0)	1.3	23	2.1	52.4

Room data:

Room 24 \times 28 ft (7.3 \times 8.5 m) 70% ceiling reflectance Window on 28-ft wall—one side only; 20% floor reflectance

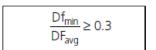
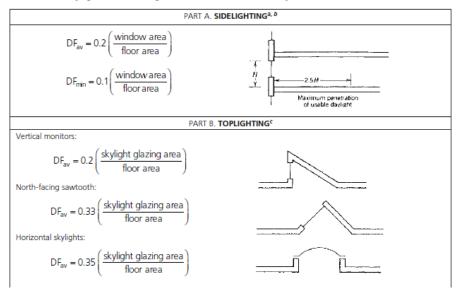
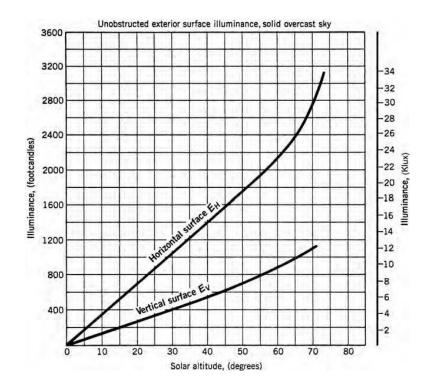

Window area = 20% of floor area

TABLE 14.2 Recommended Daylight Factors

Task	DF ^a
Ordinary seeing tasks, such as reading, filing, and easy office work	1.5-2.5%
Moderately difficult tasks, such as prolonged reading, stenographic work, normal machine tool work	2.5-4.0%
Difficult, prolonged tasks, such as drafting, proofreading poor copy, fine machine work, and fine inspection	4.0-8.0%


Source: Millet and Bedrick (1980).

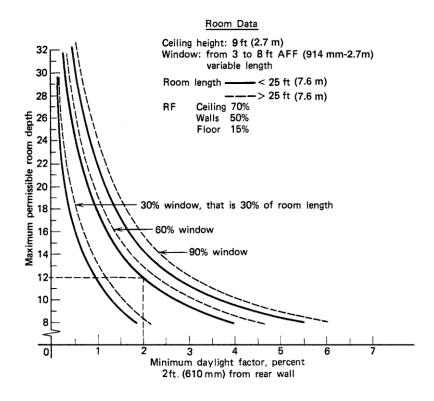
^aUse the smaller DF values for southern latitudes with plentiful winter daylight.


Daylight calculation

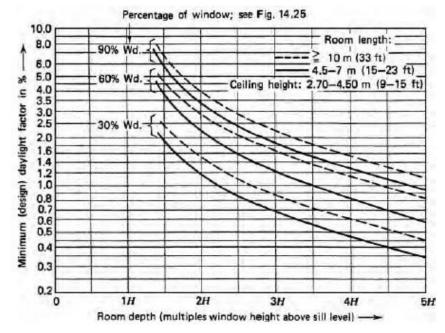
1st method The 2.5H Guideline

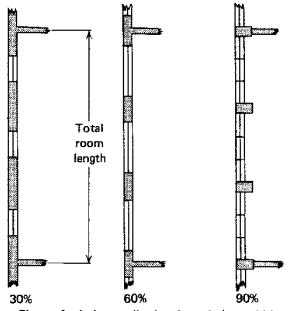
TABLE 14.4 Daylight Factor Design Estimates for Overcast Sky Conditions

2.5 times the head height of the window above the work plane—assuming clear glazing, overcast skies, no major obstructions, and a total window width that is approximately half that of the exterior perimeter wall

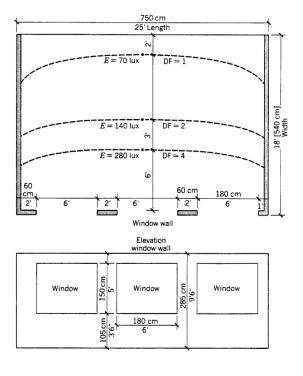


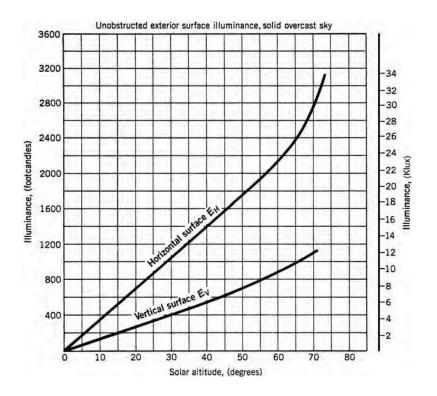
Location	10 ам Solar Altitude ^a	Available Daylight, E _H fc (lux) ^b	DF Recommendation (%) ^c	Illuminance fc (lux) Calculation from DF	llluminance fc (lux) ^ø Recommendation
Columbus 40° N latitude	June 21 60°	2100 (22,500)	1.5–2.5 2.5–4 4–8	31–52 (338–563) 52–84 (563–900) 84–167 (900–1800)	28–47 (300–500) 47–70 (500–750) 70–93 (750–1000)
	Mar./Sept. 21 41°	1400 (15,500)	1.5-2.5 2.5-4 4-8	21–35 (225–375) 35–56 (375–600) 56–112 (600–1200)	28–47 (300–500) 47–70 (500–750) 70–93 (750–1000)
	Dec. 21 21°	700 (7500)	1.5-2.5 2.5-4 4-8	11–18 (113–188) 18–28 (188–300) 28–56 (300–600)	28–47 (300–500) 47–70 (500–750) 70–93 (750–1000)
Seattle 48° N latitude	June 21 56°	1950 (21,000)	1.5–2.5 2.5–4 4–8	29–49 (315–525) 49–78 (525–840) 78–156 (840–1680)	28–47 (300–500) 47–70 (500–750) 70–93 (750–1000)
	Mar./Sept. 21 36°	1220 (13,000)	1.5-2.5 2.5-4 4-8	18–30 (195–325) 30–48 (325–520) 48–97 (520–1040)	28–47 (300–500) 47–70 (500–750) 70–93 (750–1000)
	Dec. 21 14°	500 (5400)	1.5-2.5 2.5-4 4-8	8–13 (81–135) 13–20 (135–216) 20–49 (216–532)	28–47 (300–500) 47–70 (500–750) 70–93 (750–1000)


TABLE 14.3 Horizontal Illuminances (E_{μ}) from Overcast Sky, at Selected Times, in Columbus, Ohio, and Seattle, Washington, Corresponding to the Recommended DF


Daylight calculation

2nd method (CIE)


CIE method



Plane of window walls showing window width expressed as a percentage of total room length.

(b)

Advantages of the system are:

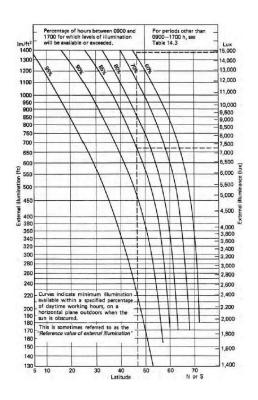
1. Consideration of obstructions, exterior reflections, and interior reflections.

2. Applicability to a very wide range of side and top fenestration designs.

Limitations of the system are:

- 1. Inapplicable to clear sky and direct sun conditions.
- 2. Inapplicable to other than rectangular rooms.
- 3. Unusable with sun shading devices or high reflectance ground.

4. Results give points of minimum, twice minimum, and four times minimum daylight only. Other points must be interpolated or extrapolated.

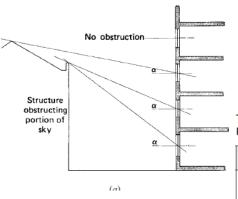

5. Window proportions and position in a wall are fixed.

Daylight calculation

Maintain exterior lighting conditions

CIE continue

Maintained daylight percentage for the working hours


Daylight calculation

4th method (equation method)

Equations

 $DF = Sf * TL * \alpha / St * (1 - R^2)$

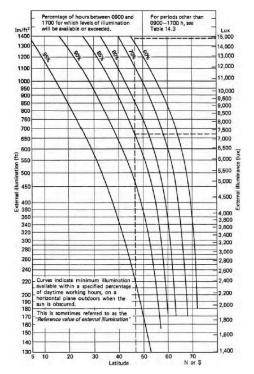

- Sf : glass surface area (10% for frame)
- TL : light transmittance
- α : visible sky angle (90° no obstacle, 60° if the buildings creating shadow about 30° up the ground
- St: total area of internal surfaces + area of glasses
- R: average reflection factor of internal surfaces

TABLE 14.7 Transmittance Data of Glass and Plastic Materials

Material	Approximate Transmittance (%)
Polished plate/float glass	80-90
Sheet glass	85–91
Heat-absorbing plate glass	70-80
Heat-absorbing sheet glass	70-85
Tinted polished plate	40-50
Figure glass	70–90
Corrugated glass	80-85
Glass block	60-80
Clear plastic sheet	80–92
Tinted plastic sheet	9–42
Colorless patterned plastic	80–90
White translucent plastic	10-80
Glass-fiber-reinforced plastic	5-80
Double glazed—two lights clear glass	77
Tinted plus clear	37–45
Reflective glass ^a	5–60

 Maintained daylight percentage for the working hours

Daylight calculation

Design corrections

TABLE 14.5 Correction Factors to Be Used in CIE Daylight Calculations

A. CORRECTIO	ON FACTOR TO A	CCOUNT FO	R GLASS TRANS	MITTANCE		
Diffuse Transmittance of Glass (%)			Correction Fa	ctor		
80	0.95					
70			0.80			
60			0.70			
50			0.60			
40			0.45			
30			0.35			
B. CORRECTION FA	ACTORS TO ACCO	OUNT FOR DI	RT ACCUMULA	TION ON GLAS	5	
			(M	Angle of easured to the		al)
Locality	Class of In	dustry	90-75°	60-45		30–0°
Country or outer-suburban area	Clear	n	0.9	0.85		0.8
	Dirty		0.7	0.6		0.55
Built-up residential area	Clear	1 IIII	0.8	0.75		0.7
	Dirty		0.6	0.5		0.4
Built-up industrial area	Clear	า	0.7	0.6		0.55
	Dirty		0.5	0.35		0.25
C. PERCENTAGES TO USE WHEN FIGU	JRE 14.27 CURVE	S ARE APPLIE	ED TO PERIODS	OTHER THAN 0	9.00–17.00	HOURS
Curve in Figure 14.27	95%	90%	85%	80%	70%	60%
Alternative period		Per	rcentage of alte	rnative period		
07.00-15.00	95	90	8 5	80	70	60
08.00-16.00	100	100	95	85	70	60
07.00-17.00	95	85	75	65	55	45
06.00-18.00	75	70	65	60	50	40

Source: Daylight, International Recommendations for the Calculation of Natural Daylight (1970).

Material	Reflectance (%)
Aluminum	85
Asphalt (free from dirt)	7
Bluestone, sandstone	18
Brick	
Light buff	48
Dark buff	40
Dark red glazed	30
Red	15
Yellow ochre	25
White	75
Cement	27
Chromium	65
Concrete	55
Copper	40
Earth (moist cultivated)	7
Granolite pavement	17
Glass	
Clear	7
Reflective	20-30
Tinted	7
Grass (dark green)	6
Gravel	13
Granite	40
Marble (white)	45
Macadam	18
Marble	45
Paint (white)	45
New	75
Old	55
Plaster	
Smooth	80
Rough	40
Stippled	40
Slate (dark clay)	
Snow	0
New	74
Old	64
Vegetation (mean)	25

TABLE 14.9 Reflectances of Building Materials and Outside Surfaces

TABLE 14.8 Typical Light Loss Factors for Daylighting Design

	Light Loss Factor Glazing Position			
Location	Vertical	Sloped	Horizontal	
Clean areas	0.9	0.8	0.7	
Industrial areas	0.8	0.7	0.6	
Very dirty areas	0.7	0.6	0.5	