

Portfolio Management Process

Summary of Portfolio Construction Process

PORTFOLIO MANAGEMENT TOOLKIT

Introduction

- This Chapter Aims to Show how investors can construct the best possible risky portfolio with the help of efficient diversification through:
 - ≻Measuring the return and risk of a portfolio.
 - >Explaining why the covariance terms dominate portfolio risk.
 - ➢ Discussing the concept of an efficient portfolio.
 - ≻Explaining how the optimal portfolio of risky securities is selected.
 - ≻Clarifying the import of the separation theorem.
 - Showing how the single index model helps in obtaining the inputs required for applying the Markowitz model.

Introduction

 Portfolio theory, originally proposed by Harry Markowitz in the 1950s, was the first formal attempt to quantify the risk of a portfolio and develop a methodology for determining the optimal portfolio.

A good portfolio is more than a long list of good stocks and bonds. It is a balanced whole, providing the investor with protections and opportunities with respect to a wide range of contingencies.

Harry Markowitz —

AZQUOTES

Introduction

• Harry Markowitz was the first person to show quantitatively why

and how diversification reduces risk.

DIVERSIFICATION AND PORTFOLIO RISK

• What do we mean by **diversification**:

Spreading an investment across a **number of assets** will eliminate some, but not all, of the risk.

How diversification influences risk

Example

 Suppose you have \$100,000 to invest and you want to invest it equally in two stocks, A and B. The return on these stocks depends on the state of the economy. Your assessment suggests that the probability distributions of the returns on stocks A and B are as shown below:

State of the Economy	Probability	Return on Stock A	Return on Stock B	Return on Portfolio
1	0.20	15%	-5%	5%
2	0.20	-5%	15	5%
3	0.20	5	25	15%
4	0.20	35	5	20%
5	0.20	25	35	30%

Returns on Individual Stocks and the Portfolio

EXPECTED RETURN OF THE PORTFOLIO

Asset A

• The **expected return** and **standard deviation** of return on stocks A and B and the portfolio consisting of A and B in equal proportions are calculated using:

$$\underbrace{r}_{\text{Weight in}}^{P} = \underbrace{w}_{\text{Weight in Return of}}^{A} \underbrace{r}_{\text{Weight in Return of}}^{A} + \underbrace{w}_{\text{Weight in Return of}}^{B} \underbrace{r}_{\text{Weight in Return of}}^{B}$$

$$\underbrace{w}_{\text{Weight in}}^{A} = \frac{\text{Dollar Value of Asset A in Portfolio}}{\text{Total Dollar Value of Portfolio}}$$

With 2 assets (N=2):

$$Var[r_{p}] = \sigma_{p}^{2} = w_{1}^{2}\sigma_{1}^{2} + w_{2}^{2}\sigma_{2}^{2} + 2w_{1}w_{2}\rho_{12}\sigma_{1}\sigma_{2}$$

With N assets:

$$Var[r_p] = \sigma_p^2 = \sum_{i=1}^N w_i^2 \sigma_i^2 + 2 \sum_{i=1}^N \sum_{j>i}^N w_i w_j \text{COV}(r_i, r_j)$$

COV(r1,r2)

 $\sigma_1 \sigma_2$

An-Najah Nationa University

 $\rho_{1,2} =$

$$\sigma_p = \sqrt{\sigma_p^2}$$

Expected Return							
Stock A	:	0.2(15%) + 0.2(-5%) + 0.2(5%) + 0.2(35%) + 0.2(25%) = 15%					
Stock B	:	0.2(-5%) + 0.2(15%) + 0.2(25%) + 0.2(5%) + 0.2(35%) = 15%					
Portfolio of A and B	:	0.2(5%) + 0.2(5%) + 0.2(15%) + 0.2(20%) + 0.2(30%) = 15%					

Standard Deviation								
Stock A	:	σ^2_A	=	$0.2(15-15)^2 + 0.2(-5-15)^2 + 0.2(5-15)^2 + 0.2(35-15)^2 + 0.20(25-15)^2$				
			=	200				
		σ_{A}	=	$(200)^{1/2} = 14.14\%$				
Stock B	:	σ^2_B	=	$0.2(-5-15)^2 + 0.2(15-15)^2 + 0.2(25-15)^2 + 0.2(5-15)^2 + 0.2(35-15)^2$				
			=	200				
		$\sigma_{\!B}$	=	$(200)^{1/2} = 14.14\%$				
Portfolio	:	$\sigma^{2}_{(A+B)}$	=	$0.2(5-15)^2 + 0.2(5-15)^2 + 0.2(15-15)^2 + 0.2(20-15)^2 + 0.2(30-15)^2$				
			=	90				
		σ_{A+B}	=	$(90)^{1/2} = 9.49\%$				

DIVERSIFICATION REDUCES RISK.

- In general, if returns on securities do not move in perfect lockstep, diversification reduces risk.
 - In technical terms, diversification reduces risk if returns are not perfectly positively correlated.
- When a portfolio is made up of different stocks, the **variability** of the return will **depend on the correlation** between the various assets.

PORTFOLIO DIVERSIFICATION

Market Risk Versus Unique Risk

• The portfolio risk does not fall below a certain level, irrespective of

how wide the diversification is. Why?

Total risk = Market risk + Unique risk

n-Naiah Nation

Market Risk

- The **market risk** of a stock represents that portion of its risk which is attributable to **economy-wide factors** like the growth rate of GNP, the level of government spending, money supply, interest rate structure, inflation rate, wars and Corona virus,...etc.
 - These factors affect all firms to a greater or lesser degree, investors cannot avoid the risk arising from them, however diversified their portfolios may be.
 - It is also referred to as systematic risk (as it affects all securities) or non-diversifiable risk.

Unique Risk

- The unique risk of a stock represents that portion of its total risk which **stems from firm-specific factors** like the development of a new product, a labor strike, or the emergence of a new competitor.
 - Events of this nature primarily affect the specific firm and not all firms in general.
 - The unique risk of a stock can be eliminated by combining it with other stocks.
 - In a diversified portfolio, unique risks of different stocks tend to cancel each other.
- Unique risk is also referred to as firm specific risk, diversifiable risk, unsystematic risk or idiosyncratic risk.

An-Najah National University

PORTFOLIO RETURN AND RISK

• while individual returns and risks are important, what matters finally

is the return and risk of the portfolio.

$$E(R_p) = \sum_{i=1}^n w_i E(R_i)$$

$$\left(\sum_{i=1}^{n} w_i = 1\right)$$

PORTFOLIO RETURN AND RISK

Just as the risk of an individual security is measured by the variance (or standard deviation) of its return, the risk of a portfolio too is measured by the variance (or standard deviation) of its return.

$$E(R_p) = \sum_{i=1}^n w_i E(R_i)$$
$$\sigma_p^2 \neq \sum w_i^2 \sigma_i^2$$

• Due to this inequality, investors can achieve the benefit of risk reduction through diversification.

MEASUREMENT OF COMOVEMENTS IN SECURITY RETURNS

- Calculating **portfolio risk** requires information on:
- 1) Weighted individual security risks, and
- 2) Weighted comovements between the returns of securities included in the portfolio.
 - Comovements between the returns of securities are **measured by covariance** (an absolute measure) and **coefficient of correlation** (a relative measure).

CALCULATION OF PORTFOLIO RISK

• Portfolio Risk: 2-Security Case

• The risk of a portfolio consisting of two securities is given by the following formula:

$$\sigma_p^2 = w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2 w_1 w_2 \rho_{12} \sigma_1 \sigma_2$$

Coefficient of Correlation

Cor
$$(R_i, R_j)$$
 or $\rho_{ij} = \frac{\text{Cov}(R_i, R_j)}{\sigma_i \cdot \sigma_j}$ or $\frac{\sigma_{ij}}{\sigma_i \cdot \sigma_j}$
 $\sigma_{ij} = \rho_{ij} \cdot \sigma_j \cdot \sigma_j$

- Increasingly positive correlation
 - Strong positive linear relationship (up to 1, which indicates a perfect linear relationship).
- Increasingly negative covariance
 - Strong negative (inverse) linear relationship (down to −1, which indicates a perfect inverse linear relationship).
- Zero correlation
 - No linear relationship.

Various Types of Correlation Relationships

MEASUREMENT OF COMOVEMENTS IN SECURITY RETURNS

- **Covariance** reflects the degree to which the returns of the two securities vary or change together.
 - A positive covariance means that the returns of the two securities move in the same direction.
 - A negative covariance implies that the returns of the two securities move in **opposite direction.**

MEASUREMENT OF COMOVEMENTS IN SECURITY RETURNS

• The covariance between any two securities S and B is calculated as follows:

$$Cov(r_{S}, r_{B}) = \sum_{i=1}^{S} p(i)[r_{S}(i) - E(r_{S})][r_{B}(i) - E(r_{B})]$$

Covariance can be:

- Positive: indicating a positive relationship,
- Negative: indicating an inverse relationship, or
- Zero: indicating the absence of a relationship between the variables

	A	В	С	D	E	F	
1			Stock	Fund	Bond Fund		
2	Scenario	Probability	Rate of Return	Col B x Col C	Rate of Return	Col B x Col E	
3	Severe recession	.05	-37	-1.9	-9	-0.45	
4	Mild recession	.25	-11	-2.8	15	3.8	
5	Normal growth	.40	14	5.6	8	3.2	
6	Boom	.30	30	9.0	-5	-1.5	
7	Expected or Mean F	leturn:	SUM:	10.0	SUM:	5.0	

	A	В	С	D	E	F	G	Н		J
1				Stoc	k Fund		Bond Fund			
2				Deviation				Deviation	8	
3			Rate	from		Column B	Rate	from		Column B
4			of	Expected	Squared	×	of	Expected	Squared	×
5	Scenario	Prob.	Return	Return	Deviation	Column E	Return	Return	Deviation	Column I
6	Severe recession	.05	-37	-47	2209	110.45	-9	-14	196	9.80
7	Mild recession	.25	-11	-21	441	110.25	15	10	100	25.00
8	Normal growth	.40	14	4	16	6.40	8	3	9	3.60
9	Boom	.30	30	20	400	120.00	-5	-10	100	30.00
10				Variance = SUM		347.10			Variance:	68.40
11		Sta	ndard devi	ation = SQR	F(Variance)	18.63			Std. Dev.:	8.27

$$Var(r) \equiv \sigma^2 = \sum_{s=1}^{S} p(s)[r(s) - E(r)]^2$$

2. 	A	В	С	D	E	F	G	
1			Portfolio inve	Portfolio invested 40% in stock fund and 60% in bond fund				
2			Rate	Column B	Deviation from		Column B	
3			of	×	Expected	Squared	×	
4	Scenario	Probability	Return	Column C	Return	Deviation	Column F	
5	Severe recession	.05	-20.2	-1.01	-27.2	739.84	36.99	
6	Mild recession	.25	4.6	1.15	-2.4	5.76	1.44	
7	Normal growth	.40	10.4	4.16	3.4	11.56	4.62	
8	Boom	.30	9.0	2.70	2.0	4.00	1.20	
9		Expec	ted return:	7.00		Variance:	44.26	
10					Standard deviation:		6.65	

Î	А	В	С	D	E	F			
1			Deviation from	n Mean Return	Covariance				
2	Scenario	Probability	Stock Fund	Bond Fund	Product of Dev	$Col\:B\timesCol\:E$			
3	Severe recession	.05	-47	-14	658	32.9			
4	Mild recession	.25	-21	10	-210	-52.5			
5	Normal growth	.40	4	3	12	4.8			
6	Boom	.30	20	-10	-200	-60.0			
7				Covariance =	SUM:	-74.8			
8	Correlation coefficient = Covariance/(StdDev(stocks)*StdDev(bonds)) = -0.49								

Asset Allocation with Two Risky Assets

- Three Rules
 - RoR: Weighted average of returns on components, with investment proportions as weights
 - EF $r_P = w_B r_B + w_S r_S$ pected returns on components, with portfolio proportions as weights
 - Variance of RoR:

 $E(r_P) = w_B E(r_B) + w_S E(r_S)$ $\sigma_P^2 = (w_B \sigma_B)^2 + (w_S \sigma_S)^2 + 2(w_B \sigma_B)(w_S \sigma_S)\rho_{BS}$

Asset Allocation with Two Risky Assets

- Risk-Return Trade-Off
 - Investment opportunity set
 - Available portfolio risk-return combinations
- Mean-Variance Criterion
 - If $E(r_A) \ge E(r_B)$ and $\sigma_A \le \sigma_B$
 - Portfolio A dominates portfolio B

Investment Opportunity Set

	A	В	С	D	E	
1			Input Data			
2	$E(r_S)$	$E(r_B)$	σ_{S}	σ_{B}	PBS	
3	10	5	19 8		0.2	
4	Portfolio	Weights	Expected	Return, E(r _p)	Std Dev	
5	$W_S = 1 - W_B$	WB	Col A*A3	+ Col B*B3	(Equation 6.6)	
6	-0.2	1.2	4.0		9.59	
7	-0.1	1.1	4.5		8.62	
8	0.0	1.0	5.0		8.00	
9	0.0932	0.9068	5.5		7.804	
10	0.1	0.9	5.5		7.81	
11	0.2	0.8	6.0		8.07	
12	0.3	0.7	6.5		8.75	
13	0.4	0.6	7.0		9.77	
14	0.5	0.5	7.5		11.02	
15	0.6	0.4	8.0		12.44	
16	0.7	0.3	8.5		13.98	
17	0.8	0.2	9.0		15.60	
18	0.9	0.1	9.5		17.28	
19	1.0	0.0	10.0		19.00	
20	1.1	-0.1	10.5		20.75	
21	1.2	-0.2	11.0		22.53	
22	Notes:					
23	1. Negative weights ind	1. Negative weights indicate short positions.				
24	2. The weights of the minimum-variance portfolio are computed using the formula in Footnote 1.					

Efficient Portfolio

- A **portfolio is efficient** if (and only if) there is **no alternative** with
 - (i) the same $E(R_p)$ and a lower σ_p ,
 - (ii) the same σ_p and a higher $E(R_p)$, or
 - (iii) a higher $E(R_p)$ and a lower $E(R_p)$.

Investment Opportunity Set

Opportunity Set -Various Correlation Coefficients

	A	В	С	D	E	F	G
1		Input Data					~
2	$E(r_S)$	$E(r_B)$	σ_S	σ _B			
3	10	5	19	8			
4							
5	Weights in Stocks	Portfolio Expected Return	Portfolio Standard		Deviation ¹ for Given Correlation, ρ		
6	W _S	$E(r_P) = \text{Col } A^*A3 + (1 - \text{Col } A)^*B3$	-1	0	0.2	0.5	1
7	-0.1	4.5	10.70	9.00	8.62	8.02	6.90
8	0.0	5.0	8.00	8.00	8.00	8.00	8.00
9	0.1	5.5	5.30	7.45	7.81	8.31	9.10
10	0.2	6.0	2.60	7.44	8.07	8.93	10.20
11	0.3	6.5	0.10	7.99	8.75	9.79	11.30
12	0.4	7.0	2.80	8.99	9.77	10.83	12.40
13	0.6	8.0	8.20	11.84	12.44	13.29	14.60
14	0.8	9.0	13.60	15.28	15.60	16.06	16.80
15	1.0	10.0	19.00	19.00	19.00	19.00	19.00
16	1.1	10.5	21.70	20.92	20.75	20.51	20.10
17				Minimur	n-Variance Portfo	olio ^{2,3,4,5}	
18	$w_S(\min) = (\sigma_B)$	$2 - \sigma_B \sigma_S \rho) / (\sigma_S^2 + \sigma_B^2 - 2^* \sigma_B \sigma_S \rho) =$	0.2963	0.1506	0.0923	-0.0440	-0.7273
19	E	$(r_P) = w_S (\min)^*A3 + (1 - w_S (\min))^*B3 =$	6. <mark>4</mark> 8	5.75	5.46	4.78	1.36
20		σ _P =	0.00	7.37	7.80	7.97	0.00

Opportunity Sets: Various Correlation Coefficients

Standard Deviation of Various Correlations

In case 1, $\rho_{ab} = 1$. So $\sigma_p = [w_a^2 \sigma_a^2 + w_b^2 \sigma_b^2 + 2 w_a w_b \sigma_a \sigma_b]^{1/2}$ $= [w_a \sigma_a + w_b \sigma_b]$ In case 2, $\rho_{ab} < 1$. So $\sigma_p = [w_a^2 \sigma_a^2 + w_b^2 \sigma_b^2 + 2 w_a w_b \rho_{ab} \sigma_a \sigma_b]^{1/2}$

Since $\rho_{ab} < 1$, σ_{v} will be less than $[w_a \sigma_a + w_b \sigma_b]$

- In a **2-security case**, a curved line delineates all possible portfolios.
- In a **multi-security case**, the collection of all the possible portfolios is represented by the a cloud region, referred to as the feasible region.

Efficient Portfolios

- **AFX are efficient**. AFX represents the efficient frontier.
 - All other portfolios are inefficient.
- A portfolio like **Z** is inefficient because portfolios like B and D, among others, dominate it.
- The efficient frontier is the same for all investors because portfolio theory is based on the assumption that investors have homogeneous expectations.

Summary of Portfolio Construction Process

Optimal Portfolio

- Once the efficient frontier is delineated, the next question is: What is the <u>optimal portfolio</u> for the investor?
- To determine the optimal portfolio on the efficient frontier, the investor's risk-return tradeoff must be known.

Optimal Portfolio

- Indifference curves which reflect risk- return tradeoff functions.
 - All points lying on an indifference curve provide the same level of satisfaction.

Optimal Portfolio

- Q wants a higher expected return for bearing a given amount of risk as compared to P.
- In general, the steeper the slope of the indifference curve, the greater the degree of risk aversion.

RISKLESS LENDING AND BORROWING

- Let us introduce yet another opportunity.
 Suppose that investors can also lend and borrow money at a risk-free rate of R_f.
- Since Rf is a risk-free asset it has a zero correlation with all the points in the feasible region of risky portfolios.
 - So a combination of Rf and any point in the feasible region of risky securities will be represented by a straight line.

RISKLESS LENDING AND BORROWING

- With the opportunity of lending and borrowing, the efficient frontier changes.
- It is no longer AFX. Rather, it is Rf SG because Rf SG dominates AFX.
- For every point on AFX (excepting S) there is at least one point on Rf SG which is superior to the point on AFX.
- Since R_fSG dominates AFX, every investor would do well to choose some combination of R_f and S

Optimal Risky Portfolio

$$S_P = \frac{E(r_P) - r_f}{\sigma_P}$$

$$w_{B} = \frac{[E(r_{B}) - r_{f}]\sigma_{S}^{2} - [E(r_{s}) - r_{f}]\sigma_{B}\sigma_{S}\rho_{BS}}{[E(r_{B}) - r_{f}]\sigma_{S}^{2} + [E(r_{s}) - r_{f}]\sigma_{B}^{2} - [E(r_{B}) - r_{f} + E(r_{s}) - r_{f}]\sigma_{B}\sigma_{S}\rho_{BS}}$$

$$w_S = 1 - w_B$$

Optimal Complete Portfolio

- Each person has a map of indifference curves.
- All the points lying on a given indifference curve offer the same level of satisfaction.
- The level of **satisfaction increases** as one moves leftward.

Optimal Complete Portfolio

 Given the efficient frontier and the risk-return indifference curves, the optimal portfolio is found at the point of tangency between the efficient frontier and a utility indifference curve.

Standard deviation, σ_p

Optimal Complete Portfolio

$$y = \frac{E(r_P) - r_f}{A\sigma_P^2}$$

Capital Allocation and the Separation Property

• The separation property tells us that the portfolio choice problem may be separated into two independent tasks:

1 Determination of <u>the optimal risky portfolio (P°)</u> is purely technical.

(2) Allocation of the complete portfolio to T-bills versus the risky portfolio depends on personal preference.

Summary of Portfolio Construction Process

Example 3: p.164

6.4

CONCEPT

check

A universe of securities includes a risky stock (X), a stock-index fund (M), and T-bills. The data for the universe are:

Expected Return		Standard Deviation	
Х	15%	50%	
М	10	20	
T-bills	5	0	

The correlation coefficient between X and M is -.2.

- a. Draw the opportunity set of securities X and M.
- b. Find the optimal risky portfolio (O), its expected return, standard deviation, and Sharpe ratio. Compare with the Sharpe ratio of X and M.
- c. Find the slope of the CAL generated by T-bills and portfolio O.
- *d*. Suppose an investor places 2/9 (i.e., 22.22%) of the complete portfolio in the risky portfolio *O* and the remainder in T-bills. Calculate the composition of the complete portfolio, its expected return, SD, and Sharpe ratio.

Step1: Determine the MVF

Step2: Determine the ORP

$$w_{M} = \frac{[E(r_{M}) - r_{f}]\sigma_{X}^{2} - [E(r_{X}) - r_{f}]\sigma_{M}\sigma_{X}\rho_{MX}}{[E(r_{M}) - r_{f}]\sigma_{X}^{2} + [E(r_{X}) - r_{f}]\sigma_{M}^{2} - [E(r_{M}) - r_{f} + E(r_{X}) - r_{f}]\sigma_{M}\sigma_{X}\rho_{MX}}$$

 $w_X = 1 - w_M$

$$W_M = \frac{[0.10 - 0.05] \times 0.50^2 - [0.15 - .05] \times (-0.02)}{[0.10 - 0.05] \times 0.50^2 + [0.15 - 0.05] \times 0.20^2 - [(0.10 - .05) + (0.15 - .05) \times (-0.02)]}$$

$$\sigma_{P^o} = \sqrt{\sigma_{P^o}^2}$$

 $\sigma_{P^o}^2 = 0.2564^2 \times 0.5^2 + 0.7436^2 \times 0.20^2 + 2 \times 0.2564 \times 0.7436 \times (-0.02) = 0.0309$ $\sigma_{P^o} = 17.59\%$

$$SR_{P^o} = \frac{E(R_{P^o}) - R_f}{\sigma_{P^o}} = \frac{0.113 - .05}{0.1759} = 0.3572$$

$$E(R_{P^o}) = 11.3\%$$

 $\sigma_{P^o} = 17.59\%$
 $SR_{P^o} = 0.3572$

Example 3: p.164

A universe of securities includes a risky stock (X), a stock-index fund (M), and T-bills. The data for the universe are:

	Expected Return	Standard Deviation
X	15%	50%
М	10	20
T-bills	5	0

The correlation coefficient between X and M is -.2.

- a. Draw the opportunity set of securities X and M.
- b. Find the optimal risky portfolio (O), its expected return, standard deviation, and Sharpe
 - ratio. Compare with the Sharpe ratio of X and M.
- c. Find the slope of the CAL generated by T-bills and portfolio O.
- *d*. Suppose an investor places 2/9 (i.e., 22.22%) of the complete portfolio in the risky portfolio *O* and the remainder in T-bills. Calculate the composition of the complete portfolio, its expected return, SD, and Sharpe ratio.

The composition of the complete portfolio is

0.2222*0.2564 =5.70% in X 0.2222*0.7436 =16.52% in M

77.77% in the Risk Free Asset

$$E(R_c) = 6.40\%$$

 $\sigma_c = 3.91\%$
 $SR_c = 0.3572$

Slide 72

RJ1 Dr. Ra'fat Jallad, 7/11/2020

Single Index Model (SIM)

1. With *n* risky assets, we need $2n + (n^2 - n)/2$ parameters:

п	expected returns $E[r_i]$						
п	return standard deviations σ_i						
<i>n</i> (<i>n</i> -1)/2	correlations (or cova	rian	ces	s)			
Example							
n=2	number of parameters = $2 + $	2	+	1	\equiv	5	
n = 8	number of parameters = $8 + $	8	+	28	=	44	
n = 100	number of parameters = $100 +$	100	+	4950		5150	
n = 1000	number of parameters = $1000+$	100	0 +	49950)0=	501500	

With large *n*:

Large estimation error,

Large data requirements (for monthly estimates, with n=1000, need at least 1000 months, i.e., more than 83 years of data)

SIM: Model's Components

• <u>**1. The Basic Idea:</u>** Stocks tend to move together, driven by the same economic forces.</u>

$$R_{i} = \alpha_{i} + \beta_{i}R_{M} + e_{i}$$

$$R_{i} : stock 's \operatorname{Re} turn$$

$$E[e_{i}] = 0, \operatorname{Cov}[e_{i,R_{m}}] = 0.$$

 α_i : stock' s expected excess return if market factor is neutral, i.e. market - index excess return is zero β_i : security' s responsive ness to market $\beta_i = \text{Cov}[R_{i,R_m}]/\text{Var}[R_m]$ $\beta_i R_M$: return from movements in overall market e_i : firm - specific risk

		R		2,)								
		· ·m		1,600 _			$\int \cdot \langle \cdot \rangle$	\cap				
						<u>N</u>	ν γ	$\backslash \land$	^		\sim	
			General	1,400 _	1	$\sim \sim$	$\sqrt{\sqrt{1}}$	V .		\sim	, <u> </u>	\sim
	Date	S&P 500	Electric		\sim	\mathcal{N}	· Y		$^{\vee}$	\sim		\sim
1	Date		GE	1,200 _	/	\sim	\backslash	$ \land $			\sim	/ _
2	1-Aug-97	-5.92%	-0.1137716		\sim			$\backslash \cap$	∧	\sim	/ *	
3	2-Sep-97	5.18%	0.0881428	1,000 _				V		7		
4	1-Oct-97	-3.51%	-0.0521761		\sim '				40 (
5	3-Nov-97	4.36%	0.1336738	800 _					$\vee \vee$			
6	1-Dec-97	1.56%	-0.0024956	19	97 1998	1999	2000 2	2001	2002 20	003 2004	2005	2006 20
7	2-Jan-98	1.01%	0.0549348			[S&P	500 -	Genera	al Electric	GE	
8	2-Feb-98	6.81%	0.0033058						21.101			
9	2-Mar-98	4.87%	0.1067739									
10	1-Apr-98	0.90%	-0.0115066		1				0.2			
11	1-May-98	-1.90%	-0.0216646							•		
12	1-Jun-98	3.87%	0.0859888						0.15			
13	1-Jul-98	-1.17%	-0.0125381						0.1			
14	3-Aug-98	-15.76%	-0.1113932						0.1		•	
15	1-Sep-98	6.05%	-0.0018215						0.05		•	
16	1-Oct-98	7.72%	0.0951444								•	
17	2-Nov-98	5.74%	0.0322148		20.000	15 000/	10 001/	200		E 000	10.00	15 00%
18	1-Dec-98	5.48%	0.1243603	1	-20.00%	-15.00%	-10.00%	-5.00	0.05	3.000 %	10.00	76 15.00%
19	4-Jan-99	4.02%	0.0279543					••		•		
20	1-Feb-99	-3.28%	-0.0447494			•			-0.1			
21	1-Mar-99	3.81%	0.1016781						0.15			
22	1-Apr-99	3.72%	-0.0486925					•	-0.15			
23	3-May-99	-2.53%	-0.035482				•		-0.2			
24	1-Jun-99	5.30%	0.1054313									
25	1-Jul-99	-3.26%	-0.0330448						-0.25			
26	2-Aug-99	-0.63%	0.029853	1		31	1	1				1
27	1-Sep-99	-2.90%	0.0571584									
28	1-Oct-99	6.07%	0.1334937									

Single Index Model (SIM)

- An Index Model is a <u>statistical model</u> of security returns (as opposed to an economic, equilibrium-based model).
- A Single Index Model (SIM) specifies <u>two sources of</u> <u>uncertainty</u> for a security's return:
 - 1. Systematic (macroeconomic) uncertainty (which is assumed to be well represented by a single index of stock returns).
 - 2. Unique (microeconomic) uncertainty (which is represented by a security-specific random component)

Expressing the expected return, variance and covariance

Cont'd

- 2. Assuming the SIM is correctly specified, we only need the following parameters:
 - n α_i parametersn β_i parametersn $\sigma^2[e_i]$ parameters1E[Rm]1 $\sigma^2[Rm]$

These 3n+2 parameters generate all the $E[r_i]$, σ_j , and σ_{ji} . We get the parameters by estimating the index model for each of the *n* securities.

Example

With 100 stocks need 302 parameters. With 1000 need 3002.

Expressing the expected return, variance and covariance

Formalizing the Basic Idea

- 1. Expected Return, $E[r_i] = \alpha_i + \beta_i E[R_m]$, has 2 parts
 - a. Unique (asset specific): α_i b. Systematic (index driven): $\beta_i E[R_m]$
- 2. Variance, $\sigma_i^2 = \beta_i^2 \sigma_m^2 + \sigma^2[e_i]$, has similarly 2 parts:

a. Unique risk (asset specific): $\sigma^2[e_i]$ b. Systematic risk (index driven): $\beta_i^2 \sigma_m^2$

3. Covariance between securities' returns is due to only the systematic source of risk:

 $\operatorname{Cov}[r_j, r_i] = \beta_j \beta_i \sigma_m^2$

Example-GE

Example-GE

• You choose the S&P500 as your market proxy. You analyze the stock of General Electric (GE), and find (see later in the notes) that, using weekly returns, a $\alpha_j = -0.07\%$, $\beta_j = 1.44$

If you expect the S&P500 to increase to 5% next week, then according to the SIM, you expect the return on GE next week to be:

$$E[r_{GE}] = \alpha_{GE} + \beta_{GE} E[r_M] = -0.07\% + 1.44 \times 5\% = 7.13\%$$

Example-GE

The variance of GE is $\sigma_{GE}^2 = \beta_{GE}^2 \sigma_M^2 + \sigma^2 [e_{GE}]$

Where $\sigma[e_{GE}]$ is the "Std. Dev. Of Error."

Over the sample, $\sigma_M = 1.28\%$ (from other data):

$$\sigma_{GE}^{2} = \beta_{GE}^{2} \sigma_{M}^{2} + \sigma^{2}[e_{GE}]$$

 $=(1.44)^{2}(1.28)^{2}+(2.08)^{2}=3.40+4.33=7.73$

Summary

Example-MSFT

MSFT Equity BETA

DG21 Equity BETA

HISTORICAL BETA

+ (0.33) ● 1.U Bloceberg-all rights reserved. Frankfur(:69-920410 Hong Kong:2-521-3000 London:171-330-7500 New York:212-318-2000 Princeton:609-279-3000 Singapore:226-3000 Sydney:2-777-8600 Tokyo:3-3201-8900 Hashington DC:202-434-1800 C177-151-0 14-Feb-96 12:05:38

Example-MSFT

Over the sample, $\sigma_M = 1.28\%$ (from other data) $\sigma_{MSFT}^2 = \beta_{MSFT}^2 \sigma_M^2 + \sigma^2 (e_{MSFT})$ $= (0.88)^2 (1.28)^2 + (3.81)^2$ = 1.27 + 14.52 = 15.79

SIM and the Covariance between GE& MSFT

The only common influence driving GE and MSFT is the market return r_M .

Example

$$Cov(r_{GE}, r_{MSFT}) = \beta_{GE} \beta_{MSFT} \sigma_M^2 = (.88)(1.44)(1.28)^2 = 2.08$$
$$Corr(r_{GE}, r_{MSFT}) = 2.08 / \sqrt{7.33 \times 15.79} = 0.19$$

Portfolio Risk & Return using SIM

 $E(R_{p}) = \alpha_{p} + \beta_{p}E(R_{m})$ $\alpha_{p} = \sum_{i=1}^{N} w_{i}\alpha_{i}$ $\beta_{p} = \sum_{i=1}^{N} w_{i}\beta_{i}$

 w_i : The value of weight of security i in the portfolio

 α_{p} : The alpha of a portfolio of securities

 β_{p} : The beta of a portfolio of securities

N: The number of observations in the portfolio

Portfolio Risk & Return using SIM

systematic risk Total Risk of the Portfolio: Market Risk + Specific Portfolio Risk $\sigma_p^2 = \beta_p^2 \overline{\sigma_m^2} + \sum_{i=1}^N w_i^2 \sigma_e^2$ unsystematic risk σ_p^2 : Variance of the portfolio β_p^2 : The square of the portfolio beta σ_m^2 : Variance of the market w_i^2 : Square of the weight of security i σ_{ei}^2 : Variance of the error of security i

Example

• Assume we formed a portfolio of GE and MSFT with 30%, 70%

respectively, What is the expected return and the standard deviation

of this portfolic	Security	Weight	Alpha	Beta
	GE	0.30	-0.07	1.44
	MSFT	0.70	0.68	0.88
	Portfolio		0.455	1.048

Portfolio Standard Deviation

$$\sigma_p^2 = \beta_p^2 \sigma_m^2 + \sum_{i=1}^N w_i^2 \sigma_e^2$$

 $=(1.048^2*1.28^2+11.46)=13.26$

Security	Weight	Variance of the Error
GE	0.30	2.08 ²
MSFT	0.70	3.81 ²
Portfolio		11.46

