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5-1.1 Joint Probability Distributions 
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5-1.2 Marginal Probability Distributions 

• The individual probability distribution of a random variable is 

referred to as its marginal probability distribution. 

• In general, the marginal probability distribution of X can be 

determined from the joint probability distribution of X and 

other random variables. For example, to determine P(X = x), 

we sum P(X = x, Y = y) over all points in the range of (X, Y ) 

for which X = x. Subscripts on the probability mass functions 

distinguish between the random variables. 
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Definition: Marginal Probability Mass Functions 



 

 

If the marginal probability distribution of X has the probability mass    

             function then  xf X
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5-1.3 Conditional Probability Distributions 
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5-1.3 Conditional Probability Distributions 
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Definition: Conditional Mean and Variance 
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5-1.4 Independence 

Example 5-6 



 

 

Example 5-8 

Figure 5-4 (a)Joint and marginal probability 

distributions of X and Y in Example 5-8.  (b) Conditional 

probability distribution of Y given X = x in Example 5-8. 
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5-1.4 Independence 
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5-1.5 Multiple Discrete Random Variables 

Definition: Joint Probability Mass Function  

 



5-1 Two Discrete Random Variables  

 

 

 

5-1.5 Multiple Discrete Random Variables 

Definition: Marginal Probability Mass Function 



 

 

Example 5-8 

5-1 Two Discrete Random Variables  

 

Figure 5-5 Joint 

probability distribution 

of X1, X2, and X3. 
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5-1.5 Multiple Discrete Random Variables 

Mean and Variance from Joint Probability 
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5-1.5 Multiple Discrete Random Variables 

Distribution of a Subset of Random Variables 
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5-1.5 Multiple Discrete Random Variables 

Conditional Probability Distributions 
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5-1.6 Multinomial Probability Distribution 
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5-1.6 Multinomial Probability Distribution 



Example 
Show that the following function satisfies the properties of a 

joint probability mass function. 
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Example. cont 
• It is clear that                     for all R, which represent the set of 

all possible values of (X,Y). 

 

• Then, 

 

-------------------------------------------------------- 

Now, determine the following: 

(a)                           

      By looking to the table: 
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(b)                           

      By looking to the table: 

 

 

 

 

(c)  

    By looking to the table: 
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(d)                           

      By looking to the table: 

 

 

 

 

(e) Find  

remember: 
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Example. cont 
 Marginal probability distribution of the random variable X. 

35 

x 

1 1/4 

1.5 1/8+1/4= 3/8 

2.5 1/4 

3 1/8 

 xf X



Example. cont 
(f) Conditional probability distribution of Y given that X=1.5. 

 

 

 

 

 

 

 

(h) Conditional probability distribution of X given that Y=2. 
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y 

2 (1/8) / (3/8) = (1/3) 

3 (1/4) / (3/8) = (2/3) 
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Example. cont 
(i) Find  

 

 

 

 

 

(j) Are X and Y independent? 

 

 

 

Then, X and Y are not independent. 
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Example 
Determine the value of c that makes the function   

 

 

A joint probability mass function over the nine points with  

 

38 

   yxcyxf XY ,

3,2,13,2,1  yandx



 

Solution: From the joint probability mass function properties. 
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Example cont. 
Now, determine the followings: 
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Example cont. 
(c) determine, the marginal probability distribution of the 

random variable X. 
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       3,2,1, xfxfxfxf XYXYXYX 

x marginal probability 

distribution  

1 1/4 

2 1/3 

3 5/12 



 

Go to covariance and 

correlation….. 
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Correlation determines the degree of similarity between two 

signals. If the signals are identical, then the correlation 

coefficient is 1; if they are totally different, the correlation 

coefficient is 0, and if they are identical except that the phase is 

shifted by (i.e. mirrored), then the correlation coefficient is -1. 

 

When two independent signals are compared, the procedure is 

known as cross-correlation, and when the same signal is 

compared to phase shifted copies of itself, the procedure is 

known asautocorrelation. 
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5-2.1 Joint Probability Distribution 

Definition 
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Figure 5-6 Joint probability density function for random 

variables X and Y. 
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Example 5-12 
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Example 5-12 
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Figure 5-8 The joint probability density function of X and Y is 

nonzero over the shaded region. 
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Example 5-12 



5-2 Two Continuous Random Variables 

 

 

 

Figure 5-9 Region of integration for the probability that X < 

1000 and Y < 2000 is darkly shaded. 
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5-2.2 Marginal Probability Distributions 

Definition 
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Example 5-13 



5-2 Two Continuous Random Variables 

 

 

 
Figure 5-10 Region of 

integration for the 

probability that Y < 2000 

is darkly shaded and it is 

partitioned into two 

regions with x < 2000 

and and x > 2000. 
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5-2.3 Conditional Probability Distributions 

Definition 
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5-2.3 Conditional Probability Distributions 
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Example 5-14 



5-2 Two Continuous Random Variables 

 

 

 

Example 5-14 

Figure 5-11 The 

conditional probability 

density function for Y, given 

that x = 1500, is nonzero 

over the solid line. 
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Definition: Conditional Mean and Variance 



5-2 Two Continuous Random Variables 

 

 

 

5-2.4 Independence 

Definition 
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5-2 Two Continuous Random Variables 

 

 

 

Example 5-18 



5-2 Two Continuous Random Variables  
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Definition: Marginal Probability Density Function 

5-2 Two Continuous Random Variables 



 

 

Mean and Variance from Joint Distribution 

5-2 Two Continuous Random Variables 



 

 

Distribution of a Subset of Random Variables 

5-2 Two Continuous Random Variables 
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Conditional Probability Distribution 

Definition 
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5-3 Covariance and Correlation 

 

 

 

Definition: Expected Value of a Function of Two    

          Random Variables 



5-3 Covariance and Correlation 
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5-3 Covariance and Correlation 

 

 

 

Example 5-24 

Figure 5-12 Joint 

distribution of X and 

Y for Example 5-24. 



5-3 Covariance and Correlation 

 

 

 

Definition 



5-3 Covariance and Correlation 

 

 

 

Figure 5-13 Joint 

probability 

distributions and the 

sign of covariance 

between X and Y. 
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Definition 



5-3 Covariance and Correlation 

 

 

 

Example 5-26 

Figure 5-14 Joint distribution 

for Example 5-26. 
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Example 5-26 (continued) 



5-3 Covariance and Correlation 

 

 

 

Example 5-28 

Figure 5-16 Random variables 

with zero covariance from 

Example 5-28. 

But if, cov(X,Y)=0, then we can not say they are independent. 
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Example 5-28 (continued) 



5-3 Covariance and Correlation 

 

 

 

Example 5-28 (continued) 



5-3 Covariance and Correlation 

 

 

 

Example 5-28 (continued) 



5-4 Bivariate Normal Distribution 

 

 

 

Definition 



5-4 Bivariate Normal Distribution 

 

 

 

Figure 5-17. Examples of bivariate normal 

distributions. 
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Example 5-30 

Figure 5-18 



5-4 Bivariate Normal Distribution 

 

 

 

Marginal Distributions of Bivariate Normal Random 

Variables 
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Figure 5-19 Marginal 

probability density 

functions of a 

bivariate normal 

distributions. 
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5-4 Bivariate Normal Distribution 
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5-5 Linear Combinations of Random 

Variables (Important) 

 
 

 

Definition 

Mean of a Linear Combination 



5-5 Linear Combinations of Random 

Variables (Important) 

 
 

 

Variance of a Linear Combination 



5-5 Linear Combinations of Random 

Variables 
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5-5 Linear Combinations of Random 

Variables 

 
 

 

Mean and Variance of an Average 



5-5 Linear Combinations of Random 

Variables 

 
 

 

Reproductive Property of the Normal Distribution 



5-5 Linear Combinations of Random 

Variables 
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5-6 General Functions of Random 

Variables 

A Discrete Random Variable 
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Variables 

Example 5-36 



5-6 General Functions of Random 

Variables 

A Continuous Random Variable 



5-6 General Functions of Random 

Variables 

Example 5-37 



 

 


