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LEARNING OBJECTIVES

After careful stud'g,r of this fhnpter you should be able to do the fullﬂwingt

W e kel b e

=

. Use joint probability mass functions and joint probability density functions to calculate probabilities
. Calculate marginal and conditional probability distributions from joint probability distributions
. Use the multinomial distribution to determine probabilities

. Interpret and calculate covariances and correlations between random variables

. Understand properties of a bivariate normal distribution and be able to draw contour plots for the

probability density function

. Calculate means and variance for linear combinations of random variables and calculate proba-

bilities for linear combinations of normally distributed random variables

. Determine the distribution of a general function of a random variable



5-1 Two Discrete Random Variables

Example 5-1

[n the development of a new receiver for the transmission of digital information, each re-
cetved bit 1s rated as acceptable, suspect, or unacceptable, depending on the quality of the
received signal, with probabilities 0.9, (.08, and 0.02, respectively. Assume that the ratings of
cach bit are independent.

[n the first four bits transmitted, let

X denote the number of acceptable bits

Y denote the number of suspect bits

Then, the distribution of X is bmmomial with n = 4 and p = 0.9, and the distribution of } 1s
binomial with n = 4 and p = 0.08. However, because onlv four bits are being rated, the possible
values of X and } are restricted to the points shown in the graph in Fig. 5-1. Although the possi-
ble values of Xare 0, 1, 2, 3, or 4. if y = 3. x = 0 or 1. By specifying the probability of each of
the points in Fig. 5-1, we specify the joint probability distribution of X and Y. Similarly to an in-
dividual random variable, we define the range of the random variables (X, 1) to be the set of
points (x, 1) in two-dimensional space for which the probability that X' = xand ¥ = v 1s positive.



5-1 Two Discrete Random Variables
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5-1 Two Discrete Random Variables

5-1.1 Joint Probability Distributions

The joint probability mass function of the discrete random variables X and Y,
denoted as fyy(x, y), satisfies

(1) firlx,y)=0
(2) EE (e y) =1

3) fle.y)=P(X=xY=y) (5-1)




5-1 Two Discrete Random Variables

5-1.2 Marginal Probability Distributions

* The individual probability distribution of a random variable is
referred to as its

* In general, the marginal probability distribution of X can be
determined from the joint probability distribution of X and
other random variables. For example, to determine P(X = x),
we sum P(X =X, Y =y) over all points in the range of (X, Y )
for which X = x. Subscripts on the probability mass functions
distinguish between the random variables.



5-1 Two Discrete Random Variables

Example 5-2

The joint probability distribution of X and ¥ in Fig. 5-1 can be used to find the marginal prob-
ability distribution of X, For example,

PX=3)=PX=37Y= n] + P(X=3V=1)
= 0.0583 + 0.2333 = 0.292

As expected. this probability matches thc, result obtained from the binomial probability distribu-
tion for X; that is, P(X = 3) = |1]{} 0%0.1" = 0.292. The marginal probability distribution for ¥
1s found by summing the probabilities in each column, whereas the marginal probability distribu-

tion for ¥ 1s found by summing the probabilities in each row. The results are shown in Fig. 5-2.
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5-1 Two Discrete Random Variables

Definition: Marginal Probability Mass Functions

[f X and ¥ are discrete random variables with joint probability mass function fyy(x. v),
then the marginal probability mass functions of X and } are

frlx) = P(X =x) = E frylx, ) and fy(y) = P(Y = y) = E Fr(x, )
' (5-2)

where the first sum is over all points in the range of (X, V) for which X = x and
the second sum is over all points in the range of (X, ') for which }' = y




If the marginal probability distribution of X has the probability mass
f. (x) function then



In Example 5-1, £(X') can be found as

E(X) = 0] fxy(0,0) + fxy(0, 1) + fx¥(0, 2) + fxv(0,3) + fxy(0,4)]
+ 1 fxy(1, 0) + fir(1, 1) + fxw(1, 2) + fxy(1, 3)]
+ 2[ fxr(2, 0) + fxv(2, 1) + frr(2, 2)]
+ 3[ fxr(3, 0) + fir(3, 1)]
+ 4[ fyy(4.0)]
= 0[0.0001] = 1[0.0036] + 2[0.0486] + 3[0.02916] + 4[0.6561] =36

Alternatively, because the marginal probability distribution of X is binomial,

E(X) = np = 4(0.9) = 3.6



The calculation using the joint probability distribution can be used to determine £(X) even in
cases in which the marginal probability distribution of X is not known. As practice, you can
use the joint probability distribution to verify that £(Y) = 0.32 in Example 5-1.

Also,

V(X) = np(1 — p) = 4(0.9)(1 — 0.9) = 0.36

Verify that the same result can be obtained from the joint probability distribution of X and Y.



5-1 Two Discrete Random Variables

5-1.3 Conditional Probability Distributions

Given discrete random variables X and Ywith joint probability mass function fy(x, ¥)
the conditional probability mass function of ¥ given X = x 1s

] 1r'|xU'} = fyy(x ¥)fylx) for fy(x) = 0 (5-3)




Given discrete random variables X and Ywith joint probability mass function fy(x, ¥)
the conditional probability mass function of ¥ given X = x1s

Fy V) = fyyle p)fx(x)  for fylx) = 0 (3-3)
y A
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4 e
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X =x, fy(y) in 500016 0.008 , 0.040 ,0.200 L0

Example 5-6. 0 1 2 3 4



5-1 Two Discrete Random Variables

5-1.3 Conditional Probability Distributions

Because a conditional probability mass function fy [ v) 1s a probability mass func-
tion for all v in R,, the following properties are satisfied:

() fr») =0
2) Y fr) =1
(3) PY=ylX=x =fyd» (5-4)




5-1 Two Discrete Random Variables

Definition: Conditional Mean and Variance

The conditional mean of ¥ given X' = x, denoted as E{¥|x) or py,. is

E(Y|x) = X vivi(y) (5-5)

-1-.

.. . .. . 2 .
and the conditional variance of ¥ given X = x, denoted as F(¥|x) or oy, is

V(¥lx) = 2 (v = mo) fra(0) = 2 ¥fly) — piis

-II ! -1-.




5-1 Two Discrete Random Variables

For the random variables in Example 5-1, the conditional mean of ¥ given X = 2 is obtained
from the conditional distribution in Fig. 5-3:

E(Y]2) = wy = 0(0.040) + 1(0.320) + 2(0.640) = 1.6

The conditional mean is interpreted as the expected number of acceptable bits given that two
of the four bits transmitted are suspect. The conditional variance of Y given X = 2 is

(Y[2) = (0 — pypp)*(0.040) + (1 — pyp)*(0.320) + (2 — py2)*(0.640) = 0.32



5-1 Two Discrete Random Variables

5-1.4 Independence
Example 5-6

[n a plastic molding operation, each part is classified as to whether 1t conforms to color and
length specifications. Define the random variable X and ¥ as

v 1 if the part conforms to color specifications
) otherwise
y— { 1 if the part conforms to length specifications

(0  otherwise

Assume the joint probability distribution of X and Y is defined by fyy(x. v) in Fig. 5-4(a).
The marginal probabilitv distributions of X" and } are also shown in Fig. 5-4(a). Note that
Jyr(x. v) = fy(x) fy(¥). The conditional probability mass function fy () is shown in Fig.
5-4(b). Notice that for any x, fy,(v) = fy( ). That is, knowledge of whether or not the part meets
color specifications does not change the probability that it meets length specifications.



Example 5-8
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Figure 5-4 (a)Joint and marginal probability
distributions of X and Y in Example 5-8. (b) Conditional
probability distribution of Y given X = x in Example 5-8.



5-1 Two Discrete Random Variables

5-1.4 Independence

For discrete random variables X and Y, if any one of the following properties 1s true,
the others are also true, and X and ¥ are independent.

(1) fyyle.v) = filx) fy(y) forall x and y

(2} fyioly)=f¥(y) forall xand y with fy(x) = 0

(3) fy,(x) = fr(x) forallxandywithfy(y) =0

(4) P(X= 4, Y€ B)= P(X € 4)P(Y £ B) for any sets 4 and B in the range
of Xand T, respectively. (3-6)




5-1 Two Discrete Random Variables

5-1.5 Multiple Discrete Random Variables

Definition: Joint Probability Mass Function

The joint probability mass function of X}, X, ..., X, 1s

g xxLx, %) = P =x, X0 =x, ..., X

for all points (x, x5, ..., x,) in the range of X'}, X5, ... &,

A marginal probability distribution 15 a simple extension of the result for two random
variables.



5-1 Two Discrete Random Variables

5-1.5 Multiple Discrete Random Variables

Definition: Marginal Probability Mass Function

If Xj, X5, X5, ..., X, are discrete random variables with joint probability mass func-
tion fyx, . ;;;JI:.TJ,.T;, ... sXp), the marginal probability mass function of any X; is

r-:':.l[.'ll,} = F{T{rl — 'TI'} = E Jr:.-"I|-'r'11 -'r'i-.,:'{-l'l'- XFy vuny -Tp,} {5-3}

where the sum is over the points in the range of (X}, X5, ..., X)) forwhich X, = x,.




5-1 Two Discrete Random Variables

Example 5-8

Points that have positive probability in the joint probability distribution of three random variables

-

X,. X5, X5 are shown in Fig. 5-5. The range is the nonnegative integers with x; + x, + 13 = 3.
The marginal probability distribution of X5 1s found as follows.

P(X; = ”fl :.fi’,.r:_u'ﬂ- 0, ”'j "‘.f."f,.r:_f; L0, 0, 3] +..".i’,.1’_?.r_1': 1. 0. 3] - ..f.i*,.x’_?.r; (2.0, 1]
P(Xy=1) = fran (2. 10) + froax (0. 1.2) + frogx (1. 1. 1)

P(Xy=2)= fxxx(1.2.0) + frpx(0.2.1)

P(X;=3) = fxx,x(0,3.0)

xa

Je Xo
Figure 5-5 Joint 2 s T, e
probability distribution
of X;, X,, and X,.

L] —
—_
;|



5-1 Two Discrete Random Variables

5-1.5 Multiple Discrete Random Variables

Mean and Variance from Joint Probability

EX)= 2 ifyx,.. X, (X1 X2 5 Xp)

and

XY = 206 — we) frx. (0 x2 0 %) (5-9)

where the sum is over all points in the range of X}, X5, ..., X




5-1 Two Discrete Random Variables

5-1.5 Multiple Discrete Random Variables

Distribution of a Subset of Random Variables

13 (P C 0. CT Y, are discrete random variables with joint probability mass function
__J'"lei-:___xlg[rl,rrg,... ,xp). the joint probability mass function of X}, X;, ..., X},
k<p,is

frx, x(xpxa..,x)) = P, = x50 = x... L, X = xg)
= Y PXy=xp . Xy=xp ... Xp=x)  (510)

Ty %y, .. 0y

where the sum is over all points in the range of X, X5, ... .. Y, for which X} = x,
.Yg = X2y vuu gy 1{.& — X




5-1 Two Discrete Random Variables

5-1.5 Multiple Discrete Random Variables
Conditional Probability Distributions

Discrete vanables X3, X5, ..., X, are independent 1f and only if

frx.. xxn x2 %) = fx (x0) fg (x2) . fx (%)

for all xy,x3, ..., x,.

(3-11)




5-1 Two Discrete Random Variables

5-1.6 Multinomial Probability Distribution

Suppose a random experiment consists of a series of n trials. Assume that

(1) The result of each trial 1s classified into one of k classes.

(2) The probability of a trial generating a result in class 1, class 2, ..., class k
15 constant over the trials and equal to p, pa. ..., ps. respectively.

(3) The trials are independent.

The random varnables X, X, ... . X} that denote the number of trials that result in
class 1, class 2, ..., class k, respectively, have a multinomial distribution and the
joint probability mass function is

n'

P{.Tl =_JL'],.T3 ZIE,...,.TI:_.Z_II}}Z o |Ff1ﬁ’§:=“};’i§i (5-12)
X147, Xk~

forxy +x +--+xp=nandpy +p + -+ p= 1.




5-1 Two Discrete Random Variables

5-1.6 Multinomial Probability Distribution

Each trial in a multinomial random experiment can be regarded as either generating or not
generating a result in class 7, foreach i = 1., 2,. .., k. Because the random variable X is the
number of trials that result in class i, X, has a binomial distribution.

It X, A, ... . A have a multinomial distribution, the marginal probability distribu-
tion of X, 1s binomial with

E(X;)= np; and V(X)) = np;(l — p;) (5-13)




Example

Show that the following function satisfies the properties of a
joint probability mass function.

X ¥ Frr (%, )
] 1/4
2 1/8
5 3 1/4
4 1/4
5 1/8




Example. cont

. Itis clear that fx (X ¥)=0 for all R, which represent the set of
all possible values of (X,Y).

Now, determine the following:
()P(X <25 <3)
By looking to the table:

P(X <25Y <3)=f,,(1.52)+ f,, (11)

1

1,13
8 4 8

30



Example. cont

(b) P(X <25)
By looking to the table:
P(X <2.5)= f,,(1.5,2)+

1 1
=—+—+
8 4

,(L.5,

fy
P
48

(©) P(Y <3)
By looking to the table:

—h

P(Y <3)= f,,(1.52)+

1
==+
8

N

3)+ f

« (1)

0o | W

XY (1’1)

31



Example. cont

(d)P(X >1.8)Y >4.7)
By looking to the table:

P(X >1.8,Y >4.7)= f,(35) =%

(e) Find E(X),E(Y),V(X)and V(Y)
remember:

E(X): Hyx = ZXfx (X)

32



Example. cont

E(X): Hy = ZX:Xfx (X)

= 1><1 +11.5x% E+E + 2.5><1 + 3><E =1.8125
4 8 4 4 8



Example. cont

= 12><1 +11.5% % E+1 + 2.52><E + 32><E —1.8125°% =0.4961
4 8 4 4 8
2 2 2
Y Y
Y
= 12><1 + ZZXE + 32><E + 42><E + 52><l —2.875% =1.8594
4 8 4 4 8



Example. cont
Marginal probability distribution of the random variable X.

A
1

1/4
1.5 1/8+1/4= 3/8
2.5 1/4

3 1/8

35



Example. cont
(f) Conditional probability distribution of Y given that X=1.5.

fous(Y)= fr (15 y),where fo (1.5):2, then

f. (15)

S ey
2 (1/8) / (3/8) = (1/3)
3 (1/4) / (3/8) = (2/3)

(h) Conditional probability distribution of X given that Y=2.

fyp(X)= f (x.2) ,where f,(2)= % , then

f, (2)
| s

1.5 (1/8) / (1/8) = 1

36



Example. cont
(i) FincE(Y | X =1.5)

E(Y | X ﬂE)Z(”%}@X%}

(j) Are X and Y independent?

Since f,,5(y)= f,(y)

Then, X and Y are not independent.

37



Example
Determine the value of ¢ that makes the function

fxv (X’ y) = C(X + y)
A joint probability mass function over the nine points with
x=123 and y=12,3

38



Fyy (X’ y) = C(X + y)

Solution: From the joint probability mass function properties.

XZ fxv(x’ Y)zl

then
Z fxv (X’ y) = fxv (171)"' fxv (1’2)"' fxv (1’3)
X,y

+ o (20)+ £, (2,2)+ ., (2,3)
+ o (31)+ 1, (3,2)+ T, (3,3)
=c(2+3+4+3+4+5+4+5+6)=1
=36C =1,

then, c = i
36

39



Example cont.
Now, determine the followings:

(a) P(X =1Y <4)

solution,
P(X =1Y <4)= f,,@11)+ f,, (1,2)+ f,,(13)
= i(2 +3+ 4) = 1
36 4
(b) P(X =1)
solution,

the same result as in part (a),
becasue all possible values of Y (1,2,3) are included in part(a)
when X =1

40



Example cont.

(c) determine, the marginal probability distribution of the
random variable X.

fy (X) =Ty (X’l)"' Fyv (X'Z)"' Fy (X’3)

marginal probability

distribution
1 1/4
2 1/3

3 5/12

41



Go to covariance and
correlation.....

Correlation determines the degree of similarity between two
signals. If the signals are identical, then the correlation
coefficient is 1; if they are totally different, the correlation
coefficient is 0, and if they are identical except that the phase is
shifted by (i.e. mirrored), then the correlation coefficient is -1.

When two independent signals are compared, the procedure is
known as cross-correlation, and when the same signal is
compared to phase shifted copies of itself, the procedureis  ,,
known asautocorrelation.



5-2 Two Continuous Random Variables

5-2.1 Joint Probability Distribution

Definition

A joint probability density function for the continuous random variables X and ¥,
denoted as fyy(x, v). satisfies the following properties:

(1) fyplr.y) = Oforallx, y

L«

(2) [

fry(x.y) dedy = 1

[

— o0 —on

(3) For anv region R of two-dimensional space

P((X, Y) E R) = J J Fier(,5) de dy (5-14)

R




5-2 Two Continuous Random Variables

Fxyix

X

Frobability that ¢ ) is in the region R 1= determined
by the volume of fyyix, w0 over the region K.

Figure 5-6 Joint probability density function for random
variables X and Y.



5-2 Two Continuous Random Variables

Example 5-12

et the random variable X denote the time until a computer server connects to your machine
(in milliseconds), and let ¥ denote the time until the server authorizes vou as a valid user (in
milliseconds). Each of these random variables measures the wait from a common starting time
and X << Y. Assume that the joint probabilitv density function for X and ¥ 1s

fyy(x,v) = 6 X 107" exp( —0.001x — 0.002y) forx <y

Reasonable assumptions can be used to develop such a distribution, but for now, our focus is
onlv on the joint probabilitv density function.



5-2 Two Continuous Random Variables

The region with nonzero probability is shaded in Fig. 5-8. The property that this joint
probability density function integrates to 1 can be verified by the integral of fy(x. v) over this
region as follows:

J_;‘_f}-li.u_rj] dy dx = J J 6 X 10700000002 s ) gy
e 0\
=6 x 107" " J o002y gy | @000
AR
_ —6 ([ e —0.001x ..
=60 o0z )¢ “
fl

1
= (.003 T gy | = 0,003 —
& J i @ . (u.mu) :



5-2 Two Continuous Random Variables

i X

Figure 5-8 The joint probability density function of X and Y is
nonzero over the shaded region.



5-2 Two Continuous Random Variables

Example 5-12

The probability that X << 1000 and Y << 2000 is determined as the integral over the
darkly shaded region in Fig. 3-9.

14 ||:‘||:| jl:n;:u:l
P(X = 1000, Y = 2000) = Fry(x, v) dv dx
0 x
|00 2000
=6 X ]”—':'I ( E,';.”:l'”u.l.) l:_;_”.':'l'::'l.'t'“l-,ll.
0 ¥
| CHH
[ {P—ll.'ii'lli'lr _ {P—-l 01
=6x107° UL gy
" | ( 0.002 )': 1
il
IDI‘IO
= 0.003 | 700 — omd 70000 gy

L|_'|

= 0.003 (1 - {*_'1)_ —4(1 - {*_')
U 0.003 * 0.001 /|

= 0.003(316.738 — 11.578) = 0.915




5-2 Two Continuous Random Variables

2000

0
Q1000 X

Figure 5-9 Region of integration for the probability that X <
1000 and Y < 2000 is darkly shaded.



5-2 Two Continuous Random Variables

5-2.2 Marginal Probability Distributions

Definition

It the joint probability density function of continuous random variables X and 1 1s
fyyl(x, ¥), the marginal probability density functions of X and ¥ are

frlx) = | f(x.p)dy and  fy(y) = | fir(x ») dx (5-15)

where the first integral is over all points in the range of (X, ) for which X' = x and
the second integral 15 over all points in the range of (X, 1) for which ¥ = y




5-2 Two Continuous Random Variables

Example 5-13

For the random variables that denote times in Example 3-12, calculate the probability that I exceeds
2000 milliseconds.

This probability is determined as the integral of fyy(x, v) over the darkly shaded region
in Fig. 5-10. The region is partitioned into two parts and different limits of integration are de-
termined for each part.

2000 o

P[ }: ~ 2{.}{}{.}) — {r_‘ ><- ]{']—f]f-,—[],[]fl|_\'—||.[.]|:]2_1' {I'I:'I-L “h.

0\ 2000

e e

—i = — ..
6 X 1070 ™000L=0002 g, | gy

2000 N x

_|_




5-2 Two Continuous Random Variables

Figure 5-10 Region of
Integration for the

probability that Y <2000 5
Is darkly shaded and it is
partitioned into two

regions with x < 2000

and and x > 2000.

0 2000



5-2 Two Continuous Random Variables

Example 5-13

The first integral 1s

20D 2000
r —( 002 | = —b )
6 x 107° 0000 gy = 4 ,~0.001x g7y
! —0.002 | | { 0.002 -
{1 B i}
6% 107° | — e
— — o4 = (.0475
().002 0.001
The second integral 1s
I — 0002y | == —f J
. g e . 6o 10 -
6 % ]”_,_.l J J—[_|_|||||_|,- |. R J ,— OS5 I. .
: I 1 =0.002]. T 0002 ) “
2000 ' 2000

6 X107/ e™® ) 0.0005
= = 25
0.002  \0.003 |



5-2 Two Continuous Random Variables

Example 5-13
Therefore,
PlY = EU{H}:] = (.0475 4+ 0.0025 = 0.05,

Alternatively. the probability can be calculated from the marginal probability distribution of ¥
as follows. For y = 0
¥ ¥

— VAW g
& l'l'fe'.".'

fr(p) = |6 X 1070 00=0002y gy = 6 5 (7000002
ll_'l LC'

_I—I_|_|_I|_j|_||- AN ]_ . 'L}_[|_|:||.,|_1.\

1 — 6 % {]_{1LF_—|I_IZZIIZ'_7'_L'
) 6 X 1 ( 0.001

— ﬁ. 3 ]“—_1 ':J—r_]_nn_".'_-,.lz1 . ':J_r_|_|]|j||_1.:| ﬁ_‘r]‘_'L' - ”

— ﬁ % ]”—[1':.'—[].”“3..'.(l:
—0.001




5-2 Two Continuous Random Variables

Example 5-13

We have obtained the marginal probability density function of Y. Now,

P(Y = 2000) = 6 x 107 | 702 (] — o700y gy
2000
—(L002y | = —L003y | = T
[t R W i
| —{}””;} 2000 _{}”{}3 20004 2
=6 x 1073 e " | _ 0.05
— 0.002 0003




5-2 Two Continuous Random Variables

5-2.3 Conditional Probability Distributions

Definition

Given continuous random variables X and 1 with joint probability density function
fyv(x, v), the conditional probability density function of ¥ given X = x is

Frie() =&£{;;} for  fy(x) >0 (5-16)




5-2 Two Continuous Random Variables

5-2.3 Conditional Probability Distributions

Because the conditional probability density function fy,{ »} i1s a probability density
function for all v in R, the following properties are satisfied:

(1) frdy) =0

—

(2) | Fri(y) dy

L

(3) P(YEB|X=x)= |_f}- A ¥)dy forany set B in the range of ¥
B

(5-17)




5-2 Two Continuous Random Variables

Example 5-14

For the random variables that denote times in Example 5-12, determine the conditional probability
density function for ¥ given that ¥ = x.
First the marginal density function of x is determined. For x = (0

o

-

0,002
frlx) = |6 x 10707 0Wr =000y gy, = 6 x l|}—E-I:,—EI.IIIIIII.r('L

—0.002

)

_ s —6_ —0.001x e _ — 0003 . i
6 107" 0,003 (0.003¢ fon x =1

of
X

This is an exponential distribution with A = 0.003. Now, for 0 << x and x < ythe conditional probability
dens=ity function is
. . B G l[J—E-L,—III.IIIIIII.'-L'—III.IIIIIIE_'.
Sru(y) = frle y)hlx) = 00030000

= 000287 Y ford<x  and x <y



5-2 Two Continuous Random Variables

Example 5-14

The conditional probability densitv function of ¥, given that x = 1300, is nonzero on the solid

line in Fig. 5-11.

Figure 5-11 The

conditional probability

density function for Y, given

that x = 1500, Is nonzero

over the solid line. 1500

0 1500 X



5-2 Two Continuous Random Variables

Definition: Conditional Mean and Variance

The conditional mean of ¥ given X = x, denoted as E(¥|x) or py|,, is

E(Y[x) = | yfyly) dv

[t

and the conditional variance of ¥ given X = x, denoted as V(Y| x) or cr%h, 15

Vi) dy —phe  (-13)

NY|x) = | (v — oyl frie(0) dy =

—




5-2 Two Continuous Random Variables

5-2.4 Independence

Definition

For continuous random variables X and Y, if anv one of the following properties is
true, the others are also true, and X and Y are said to be independent.

(1) fyylx,¥) = flx) fy(y) forall x and v
(2} fruly) =frly) forall x and ywith fi{x) = 0
(3)  fyplx) = fxlx) forall x and y with fy(y) = 0

(4) PIXE A4, YEB)=PX € A)P(Y € B) for any sets 4 and F in the range
of X and Y, respectively. (5-19)

b




5-2 Two Continuous Random Variables

Example 5-16

For the joint distribution of times in Example 5-12, the

*  Marginal distribution of ¥ was determined in Example 5-13.

* (onditional distribution of ¥ given X' = x was determined in Example 5-14.

Because the marginal and conditional probability densities are not the same for all values of x, property (2) of
Equation 3-18 implies that the random variables are not independent. The fact that these variables are not
independent can be determined quickly by noticing that the range of (X, ¥), shown in Fig. 3-8, is not rectan-
gular. Consequently, knowledge of X changes the interval of values for ¥ that receives nonzero probability.



5-2 Two Continuous Random Variables

Example 5-18

[Let the random variables X and Y denote the lengths of two dimensions of a machined part, re-
spectively. Assume that X and } are independent random variables, and further assume that the
. . “ oy . T . . oz 1 2

distribution of X is normal with mean 10.5 millimeters and variance 0.0025 (millimeter)” and
that the distribution of ¥ is normal with mean 3.2 millimeters and variance 0.0036 (millime-

7 . .y - v 1 - v -1 nAc
ter)”. Determine the probability that 10.4 << X < 10.6 and 3.15 < Y << 3.25.

Because X and Y are independent,

" N

P(104 < X < 106,315 < V<< 3.25) = P(104 < X < 10.6)P(3.15 < ¥ < 3.25)

10.4 — 10.5 10.6 — 10.5 315 — 3.2 325 — 320
P — < Z< - P <7<
( 0.05 0.05 ( 0.06 0.06 J

= P(—2<Z<2)P(—0.833 < Z<0.833) =0.566

B

where Z denotes a standard normal random variable.



5-2 Two Continuous Random Variables

Example 5-20

[n an electronic assembly, let the random variables X, X5, X3, X; denote the lifetimes of four
components in hours. Suppose that the joint probability density function of these variables is
SR v SN = —2 =000, — 0,002, — 0,001 55, — 0,003k,

jlpi;.\;.hlull‘ X7, X3, ."._1_] ) 107 ¢

Y

TL"*['.T| = (). X7 = \J, X3 = (). Xy =1

What 1s the probability that the device operates for more than 1000 hours without any failures?

The requested probability 1s P(X; = 1000, X; = 1000, X; = 1000, X, = 1000), which
equals the multiple integral of fy y, x, x, (1. X2. X3, xy) over the region x; = 1000, x, > 1000,
xy = 1000, xy = 1000. The joint probability density function can be written as a product of
exponential functions, and each integral 1s the simple integral of an exponential function.

Therefore.

P(X, = 1000, X, = 1000, X; = 1000, X; = 1000) = ¢~17271°7% = 0.00055



5-2 Two Continuous Random Variables

Definition: Marginal Probability Density Function

[f the joint probability density function of continuous random vanables X}, X5, ..., X
1S _&-Il;___l;[.rl,.rg, ..+ s Xp), the marginal probability density function of X; is

E] -

Jx(xi) = J

J f:t']l':__.l}[.lj,lg, ,.IP} rf.‘-r[ {i.'l;g firj—ld-le t'-IF.‘«C'].;I (5-21)

R,

where the integral 1s over all points in the range of X}, X5, ..., X}, for which X; = x;.




5-2 Two Continuous Random Variables

Mean and Variance from Joint Distribution

and

oo oo o]

E(X) =

J J ']'“.f-f:ﬂ-e’f;---e’i:p{'xlﬁ'xzﬁ "‘]'“.P} {f..'l,'] tl‘r.Tg tl‘r.TP

—g — — G

(5-22)

r o1} r
it it

LTT,} — J J ca e J [.1:]' — I-Ll}}zft'].f:....k:n[rlﬁ-rzﬁ ,.TP} tl‘r.‘«t'l {f.ll,'g ca e t'JF.‘{'P

— —m —m




5-2 Two Continuous Random Variables

Distribution of a Subset of Random Variables

[f the joint probability density function of continuous random variables X, X5, ..., &
I8 -f:t',,i::...;l:;, (1. %2, ..., x;), the probability density function of X}, X5, ... . Xp k< p,is

frx,. x (X% 5 %)

"

J [fk}l}....{,{lhxﬂh ,.llip} tf.‘{'j.-_H tl‘r.T;_..|_3 ﬂF.TP 15-23}
1 .IEII.I._ 1

TS .. . TF

where the integral is over all points in the range of X, X5, ..., A for which
.jf] :.‘{'l,.jirg :.Tg,...,fk:l;_-.




5-2 Two Continuous Random Variables

Conditional Probability Distribution

Definition

Continuous random variables X, X5, ..., X, are independent if and only if

f:g]g:___%{xj, X2 .o Xp) = fiy(x1 )y, (x2) ..._ﬂ;{xp} for all xy, x5, ... ,x,

(5-24)




5-2 Two Continuous Random Variables

Example 5-23

Suppose X1, X5 and X5 represent the thickness in micrometers of a substrate, an active layer, and a
coating layer of a chemical product. Assume that X, X5, and A5 are independent and normally
distributed with p, = 10000, pz = 1000, p; = 80, oy = 250, a2 = 20, and o3 = 4, respectively.
The specifications for the thickness of the substrate, active layer, and coating layer are
Q200 << xp = 10R00, 950 << vy << 1050, and 75 << xy << 85, respectively. What proportion of chemical
products meets all thickness specifications? Which one of the three thicknesses has the least probabil-
ity of meeting specifications?

The requested probability 1s P{9200 < X} < 10800, 930 < X5 < 1030, 75 < X; < 85, Because
the random variables are independent,

P(9200 < X, < 10800, 950 < X, < 1050, 75 < X; < 85)
= P(0200 < X, < 10800)P(050 < X, < 1050)P(75 < X; < 85)



5-2 Two Continuous Random Variables

Example 5-23

After standardizing, the above equals
P(—=32<Z<32)P(-25<7Z<235P(—1.25<7<1.25)

where Z 1s a standard normal random variable. From the table of the standard normal distri-
bution, the above equals

(0.99862)(0.98758)(0.78870) = 0.7778

The thickness of the coating layver has the least probability of meeting specifications.
Consequently, a priority should be to reduce variability in this part of the process.



5-3 Covariance and Correlation

Definition: Expected Value of a Function of Two
Random Variables

E[h(X, T)]

;

EE hx, ¥) fiy(x,y) X, Ydiscrete

. (5-25)
[ hix, v) fiyl(x, videdy X, Y continuous
R




5-3 Covariance and Correlation

Example 5-24

For the joint probability distribution of the two random wvariables in Fig. 5-12, calculate
EL(X = (Y — )]

The result i1s obtained by multiplying x — pytimes v — Wy times fyp(x, v) for each point
in the range of (X, V). First, .y and wy are determined from Equation 5-3 as

Ly =1XxX03+3x07=24

and

Ly =1X03+2xX04+3x0.

et
|
-
S
—

Therefore.

E[(X — p)(Y — py)] = (1 —24)1 = 2.0) x 0.1
+ (1 —24)2—-20)x02+(3
+ (3 —24)2—-2.0)x 02+ (3

=

2.4)(1 = 2.0) X 0.2
— 2.4)(3

43 -20)x03=02



5-3 Covariance and Correlation

Example 5-24

Figure 5-12 Joint
distribution of X and
Y for Example 5-24.

L

e (.2

e 0.1

s (.2

e (.2



5-3 Covariance and Correlation

Definition

The covariance between the random varniables X and ¥, denoted as cov(X, 1) or oyy. 1s

oyxy = E[(X — wx)(Y — py)] = E(XY) — pyny (5-26)

Covariance 1s a measure of linear relationship between the random variables. If the re-
lationship between the random variables is nonlinear, the covariance might not be sensitive to
the relationship. This is illustrated in Fig. 5-13(d). The only points with nonzero probability
are the points on the circle. There 1s an identifiable relationship between the variables. Still,

the covariance 1s zero.




5-3 Covariance and Correlation

o) Positive covariance | f.-" (R Zaro covariancs

&l points are of
equal probakbility

Figure 5-13 Joint

N
probability o / —
distributions and the '

sign of covariance
between X and Y.

(o) Magative covariancs ) Zarg covariancs



5-3 Covariance and Correlation

Definition

The correlation between random variables X and ¥, denoted as pyy, 1s

_cov(XY) oy

(5-27)

For any two random variables X'and ¥




5-3 Covariance and Correlation

Example 5-26

For the discrete random variables X and [ with the joint distribution shown in Fig. 5-14,
determine oy and pyy.

.I|'I
3 « 0.4
Figure 5-14 Joint distribution PoLoend
for Example 5-26.
1 * 0.1 =01
0.2
[l



5-3 Covariance and Correlation

Example 5-26 (continued)

The calculations for E(XY), E(X), and V(X') are as follows.

FXY)=0x0x02+1X1xX01+1x2x01+2x1x0.1
+2X2X014+3xXx3x04=45
EX)=0XxX024+1X02+2X02+3xX04=18
MX)=(0— 1.8 x 02 +(1 — 1.8 X024 (2 — 1.8 x 0.2
+ (3 — 1.8)" X 04 = 1.36

Because the marginal probability distribution of } i1s the same as for X, E(Y) = 1.8 and
(Y) = 1.36. Consequently.

oxy = E(XY) — E(X)E(Y) = 4.5 — (1.8)(1.8) = 1.26
Furthermore,

Oxy 1.26
vy — — ! BT y A
PXY = 5 oy (V' 1.36)(V'1.36)

= 0.926




5-3 Covariance and Correlation

If Xand ¥ are independent random variables,

: Tyy = pyy = 0 _ (5-29)
But if, cov(X,Y)=0, then we can not say they are independent.

Example 5-28

For the two random variables in Fig. 5-16, show that oy = 0.

Figure 5-16 Random variables |
with zero covariance from Fry () =752
Example 5-28.

s



5-3 Covariance and Correlation

Example 5-28 (continued)

The two random variables in this example are continuous random variables. In this case
E(XY) 1s defined as the double integral over the range of (X, ¥). That is.

42 4T 2 4
| . Ll 25 , I
iyylx, v)dydy = — xvdy |dy = —
I ’ 6. 16
0 0 il ] i

E(XY) =

20 3,
Vol a/s

= %[{14;3] = 32/9

_1‘3 [8/3]dy = 3 _1"1;.53




5-3 Covariance and Correlation

Example 5-28 (continued)

Also,
- :-. -I.-. :-. 41 .
g i L I 1 T | ] 3 J oy -
= Xfyyl(x, v)dedy = — Xdax |dvy = — X/ 3
T ST
0 0 o0 Lo 0

e

16

]
LW] = L1e2) = 47

42 4 2 4 i
- | . ; l | i) | ] | ) ) -
E(Y)= | Viyy(x.v)dedy = ﬁ Ve [ J ‘m‘l dy = oY [1:2 |

{
T 1
Iw.lllr? . — o [ﬁ4 I..".r _-;] — H I..".r _-;




5-3 Covariance and Correlation

Example 5-28 (continued)
Thus.

E(XY) — E(X)E(Y) = 32/9 — (4/3)(8/3) = 0

[t can be shown that these two random variables are independent. You can check that
Tyylx, v) = fy(x) fy(v) forall x and y.

However, if the correlation between two random variables is zero, we cannot immediatelv
conclude that the random variables are independent. Figure 3-13(d) provides an example.




5-4 Bivariate Normal Distribution

Definition

The probability density function of a hivariate normal distribution is

ey, v; oy, oy, py: )= 1 ex O
JyriG Y Oy, Oy, Ly Ly P EW__]:'l:rj""-l . pg P 2[1 _ I:"E} {ri

~ . ) . i . rE
B 2plx — px )y — py) + (v f"j} ]} (5-30)

for —= << x < wand —% < y < o, with parameters oy > 0, oy > 0, —0 < 1, < 0,
—w< py<o,and —1 < p < 1.




5-4 Bivariate Normal Distribution

Figure 5-17. Examples of bivariate normal
distributions.

fxyix ¥

wy by

%gﬁ
\— 2
x Ky

5y 0 =

fxy(x ¥ . ///f:ﬁ\\

rX



5-4 Bivariate Normal Distribution

Example 5-30

1
V2w
normal distribution with oy = [, oy = 1, wy = 0, iy = 0. and p = (). This probability density
function is illustrated in Fig. 5-18. Notice that the contour plot consists of concentric circles about
the origin.

. o S el
The joint probability density function fyy(x, y) = o~ 0305 +)

lis a special case of a bivariate

Figure 5-18




5-4 Bivariate Normal Distribution

Marginal Distributions of Bivariate Normal Random
Variables

If X'and ¥ have a bivariate normal distribution with joint probability density fiy(x, v;
Ty, Ty Ly Wy p), the marginal probability distributions of X and 1" are normal
with means .y and pyand standard deviations oy and oy, respectively. (3-31)




5-4 Bivariate Normal Distribution

Figure 3-19 illustrates that the marginal probability distributions of X and ) are normal.
Furthermore, as the notation suggests, p represents the correlation between X and V. The

following result is left as an exercise.

Figure 5-19 Marginal
probability density
functions of a
bivariate normal
distributions.



5-4 Bivariate Normal Distribution

I[f X'and I have a bivariate normal distribution with joint probability density function
Forlx, 12 @ Oy s oy P)s the correlation between X and ¥ 1s p. (5-32)

[t X and } have a bivariate normal distribution with p = 0, X and }" are independent.
(5-33)




5-4 Bivariate Normal Distribution

Example 5-31

Suppose that the X and Y dimensions of an injection-molded part have a bivarnate normal
distribution with oy = 0.04, oy = 0.08. py = 3.00. pwy = 7.70, and p = 0.8, Then, the prob-
ability that a part satisfies both specifications 1s

P(2.95 < X < 3.05,7.60 < Y < 7.80)

This probability can be obtained by integrating fyy(x, v 0y, Oy Py Wy, p) over the region
295 < x << 3.05and 7.60 << v << 7T.80, as shown in Fig. 3-7. Unfortunately, there is often no
closed-form solution to probabilities involving bivariate normal distributions. In this case, the
integration must be done numerically.



5-5 Linear Combinations of Random
Variables (Important)

Definition

Given random variables X}, X;, ..., X, and constants ¢}, ¢, ..., ¢

P!l
Y= i+ X5 4+ + EP‘TP (5-34)
15 a linear combination of X}, X5, ..., X,
Mean of a Linear Combination
IfYy= L"l.-:fl + L"E.TE + o+ EPEP’
E(Y)=cE(X)) + c:E(X;) + - + EPE[.‘('P} (5-35)




5-5 Linear Combinations of Random
Variables (Important)

Variance of a Linear Combination

If X}, X;. ... X, are random variables, and ¥ = ¢ X} + ;X5 + - + ¢, X, then in
general

NY) = clVX) + al(Xa) + - + V) + 2> D) cigycov(X, X)) (5-36)

i<y
[f X, X5, ..., A are independent,

MY) = V(X)) + a3H(Xa) + - + g HX,) (5-37)




5-5 Linear Combinations of Random
Variables

Example 5-33

An important use of equation 5-37 is in error propagation that is presented in the following example.

A semiconductor product consists of three layers. If the variances in thickness of the first, second. and
third layers are 235, 40, and 30 nanometers squared. what 1s the variance of the thickness of the final

product.

Let X, X, X5, and X be random variables that denote the thickness of the respective layers, and the final
product. Then

X=X + X+ X
The variance of X is obtained from equaion 5-39
XY = VX)) + V) + VG =25 + 40 + 30 = 95 nm?

Consequently, the standard deviation of thickness of the final product is 952 = 9.75 nm and this shows
how the variation in each layer is propagated to the final product.



5-5 Linear Combinations of Random
Variables

Mean and Variance of an Average

X=X+ + - +X)/pwithEX)=pfori=1,2,....p

E(X)

IL (5-38a)

if Xy, Ao, ..., A are also independent with F(Y) = ofori=1,2,....p.
9

o

2

MX) = (5-38b)




5-5 Linear Combinations of Random
Variables

Reproductive Property of the Normal Distribution

If X, X5, ..., X, are independent, normal random vanables with E(X) = p, and
VX)) = ot fori =1,2,...,p,

X

F=cXi+ 5+ +¢ .

P
15 a normal random varable with

E(Y)=cip) + capr + - + o,
and

YY) = cfo] + dos + - + clo; (5-39)




5-5 Linear Combinations of Random
Variables

Example 5-34

Let the random variables X, and X, denote the length and width, respectively. of a manufactured part.
Assume that X, is normal with E(X,) = 2 centimeters and standard deviation 0.1 centimeter and that
X, 15 normal with E(X;) = 5 centimeters and standard deviation 0.2 centimeter. Also, assume that X,
and X, are independent. Determine the probability that the perimeter exceeds 4.5 centimeters.

Then, ¥=2X, + 2X, is a normal random variable that represents the perimeter of the part. We
obtain, £(Y) = 14 centimeters and the variance of Yis

M) =4x01"+4x02" =102
MNow,

P(Y = 14.5) = P[(Y — pploy = (145 — 14)/V0Z]
= P(Z > 1.12) = 0.1



5-6 General Functions of Random
Variables

A Discrete Random Variable

Suppose that X 1s a discrete random variable with probability distribution fi(x). Let
Y = h(X) define a one-to-one transformation between the values of X and ¥ so that

the equation y = h(x) can be solved uniquely for x in terms of y. Let this solution be
x = ul y). Then the probability mass function of the random variable ¥ is

() = fxlu(y)] (5-40)




5-6 General Functions of Random
Variables

Example 5-36

Let X be a geometric random variable with probability distribution
file) =p(1—pF~',  x=12..
Find the probability distribution of ¥ = X2,

Since X = 0, the transformation is one to one; that is, y = »* and x = V/y. Therefore, Equation 5-40
indicates that the distribution of the random variable ¥ is

flv) = vy =pll - ;;I:I"-T'_I. v=1,4916,...



5-6 General Functions of Random
Variables

A Continuous Random Variable

Suppose that X 15 a continuous random variable with probability distribution f(x).
The function ¥ = h(X") 1s a one-to-one transformation between the values of ¥V and X

s0 that the equation v = h(x) can be uniquely solved for x in terms of y. Let this
solution be x = w( y). The probability distribution of ¥ 1s

fr(y) = filu(y)]]J] (5-41)

where J = u'( ) is called the Jacobian of the transformation and the absolute value

of J 15 used.




5-6 General Functions of Random
Variables

Example 5-37

Let X' be a continuous random variable with probability distribution

Filx) = % 0=x<4

Find the probability distribution of ¥ = A(X) = 2X + 4.

MNote that v = hix) = 2Zr + 4 15 an increasing function of x. The inverse solution is x = u y) =
(v —4)/2, and from this we find the Jacobian to be J = «'( v) = dx/dv = 1/2. Therefore, from §3-3 the
probability distribution of ¥ is

- 4)/2 -4
..i's{.v}l=—|:'l / (l); . d=y=12

B 2



IMPORTANT TERMS AND CONCEPTS

Bivariate distribution

Bivariate normal
distribution

Conditional mean

Conditional probability

density function

Conditional probability

Mizss I[ll nction

Conditional variance

Contour [‘Jlﬂti‘s

Correlation

Covariance

Error propagation

General functions of
random variables

Independence

Joint probability density
function

Joint probability mass
function

Linear functions of
random variables

Marginal probability
distribution

Multinomial
distribution

Rep roductive property
of the normal
distribution



