Sampling Distributions

and Point Estimation

of Parameters
CHAPTER OUTLINE
7-1 INTRODUCTION 7-3.3 Standard Error: Reporting a
7-2 SAMPLING DISTRIBUTIONS Point Estimate
AND THE CENTRAL LIMIT 7-3.4 Mean Squared Error of an Estimator
THEOREM
7-4 METHODS OF POINT ESTIMATION
7-3 GENERAL CONCEPTS OF POINT -
ESTIMATION 7-4.1 Method of Moments
7.3.1 Unbiased Estimators 7-4.2 Method of Maximum Likelihood
7-3.2 Variance of a Point Estimator 7-4.3 Bayesian Estimation of Parameters
Dr. Saed TARAPIAH Sampling Distributions and Point

Estimation of Parameters



LEARNING OBJECTIVES

Atter careful study of this chapter you should be able to do the following:

1. Explain the general concepts of estimating the parameters of a population or a probability dis-
tribution

2. Explain the important role of the normal distribution as a sampling distribution

3. Understand the central limit theorem

4. Explain important properties of point estimators, including bias, variance, and mean square
error

5. Know how to construct point estimators using the method of moments and the method of maxi-
mum likelihood

6. Know how to compute and explain the precision with which a parameter is estimated

7. Know how to construct a point estimator using the Bayesian approach
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/-1 Introduction

* The field of statistical inference consists of those methods
used to make decisions or to draw conclusions about a
population.

 These methods utilize the information contained in a
from the population in drawing conclusions.

« Statistical inference may be divided into two major areas:
« Parameter estimation

« Hypothesis testing
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/-1 Introduction

Suppose that we want to obtain a point estimate of a population parameter. We know that
betore the data i1s collected, the observations are considered to be random variables, sav
X X5, ... X, Therefore, any function of the observation, or any statistic, is also a random
variable. For example, the sample mean Y and the sample variance S? are statistics and thev
are also random variables.

Since a statistic 1s a random variable, it has a probability distribution. We call the proba-
bility distribution of a statistic a sampling distribution. The notion of' a sampling distribution
1s verv important and will be discussed and illustrated later in the chapter.

Definition

A point estimate of some population parameter f 1s a single numerical value f of a
statistic ®. The statistic ® 1s called the point estimator.
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/-1 Introduction

Estimation problems occur frequently in engineering. We often need to estimate

® The mean p of a single population
. M . . . N
@ The variance o= (or standard deviation o) of a single population
@ The proportion p of items in a population that belong to a class of interest
 The difference in means of two populations, p; — p;

® The difference in two population proportions, p; —
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/-1 Introduction

Reasonable point estimates of these parameters are as follows:

® For ., the estimate 1s L = X, the sample mean.
7 . . ) 1 .

e Foro”, the estimate is ¢~ = 57, the sample variance.

e For p, the estimate is p = x/n. the sample proportion, where x 1s the number of items
in a random sample of size n that belong to the class of interest.

@ For p; — . the estimate 1s L} — Lo = X| — Xy, the difference between the sample
means of two independent random samples.

o For p; — p,.the estimate 1s | — p,. the difference between two sample proportions
computed from two independent random samples.
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7.2 Sampling Distributions and the
Central Limit Theorem

Statistical inference Is concerned with making decisions about a

population based on the information contained in a random
sample from that population.

Definitions:

The random variables X, X, . ..,X, are a random sample of size n if (a) the X, s are in-
dependent random variables, and (b) every X, has the same probability distribution.

A statistic 1s any function of the observations in a random sample.

The probability distribution of a statistic is called a sampling distribution.
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7.2 Sampling Distributions and the
Central Limit Theorem

If we are sampling from a population that has an unknown probability distribution, the
sampling distribution of the sample mean will still be approximatelv normal with mean p. and
variance o-/n, if the sample size n 15 large. This 15 one of the most useful theorems in statis-
tics, called the central limit theorem. The statement 1s as follows:

If X, A, ..., X, 15 a random sample of size n taken from a population (either finite
or infinite) with mean p and finite variance o, and if X is the sample mean, the

limiting form of the distribution of

X—p
L= = (7-1)
o/ \Vn
as n — oo, 15 the standard normal distribution.
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7.2 Sampling Distributions and the
Central Limit Theorem
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7.2 Sampling Distributions and the
Central Limit Theorem

Example 7-1

An electronics company manufactures resistors that have a mean resistance of 100 ohms and a standard
deviation of 10 ohms. The distribution of resistance is normal. Find the probability that a random sam-
ple of n = 25 resistors will have an average resistance less than 95 ohms.

Note that the sampling distribution of X is normal. with mean pg = 100 chms and a standard
deviation of

-
]
[ -

Therefore, the desired probability corresponds to the shaded area in Fig. 7-1. Standardizing the point

X =05 'm'c find that

05 — 100 _
2

-
=

and therefore,

P(X < 95) = P[7 = —2.5)
= (0.0062
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7.2 Sampling Distributions and the
Central Limit Theorem

95 100

=]

Figure 7-2 Probability for Example 7-1
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7.2 Sampling Distributions and the
Central Limit Theorem

Approximate Sampling Distribution of a
Difference in Sample Means

If we have two independent populations with means ., and p, and variances oy and
a5 and 1f X, and X, are the sample means of two independent random samples of
sizes n; and n, from these populations, then the sampling distribution of

X - X — (b1 — o)

3 3 1:?—4}
Voopin + o3fn;

£

1s approximately standard normal, if the conditions of the central limit theorem
applv. If the two populations are normal, the sampling distribution of £ is exactly

standard normal.
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/-3 General Concepts of Point Estimation

7-3.1 Unbiased Estimators

Definition

The point estimator © is an unbiased estimator for the parameter § 1f

E(®) =9 (7-3)
[f the estimator 15 not unbiased, then the difference

E(®) — f (7-6)

is called the bias of the estimator ®.
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/-3 General Concepts of Point Estimation

Example 7-1
Suppose that X is a random variable with mean p and variance 0. Let X|. X5, .... X, be a
random sample of size n from the population represented by Y. Show that the sample mean X
and sample variance S7 are unbiased estimators of  and o=, respectivelv.
First consider the sample mean. In Equation 5.40a in Chapter 3, we showed that E[_?] = M.
Therefore, the sample mean X is an unbiased estimator of the population mean .
Now consider the sample variance. We have

n

S (- T)?

_ | =l TV
E(S*)=E — J_lggllx X
] . -2 T2 T v 1 :
= ES (X7 +X%2-2YX,) = E( 1,——;31)
n—1 =~ n— 1 ~
= CE(XF) — nE(X?)
i i=1 |
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/-3 General Concepts of Point Estimation

Example 7-1 (continued)

2
i

The last equality follows from Equation 5-37 in Chapter 5. However, since E(X7) = p~ + o~
and E(X*) = w~ + o/n, we have

—_ ] ”. 7 e i T
E(5) = —1 E (- + o) — - + o/nj
; N — ; ;

i=| |

]

n— |

(np” + no” — np” — o)

— ¥

Therefore, the sample variance 5= is an unbiased estimator of the population variance o=,
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/-3 General Concepts of Point Estimation

7-3.2 Variance of a Point Estimator

Definition

[t we consider all unbiased estimators of 8, the one with the smallest variance 1s
called the minimum variance unbiased estimator (MVUE).

Figure 7-5 The sampling
distributions of two
unblased estimators

®, and 6

Distribution of 8,

Distribution of @,

Dr. Saed TARAPIAH Sampling Distributions and Point 16
Estimation of Parameters



/-3 General Concepts of Point Estimation

7-3.2 Variance of a Point Estimator

If X, X, ..., 15arandom sample of size » from a normal distribution with mean
|» 22 " p
w and variance o, the sample mean X is the MVUE for p.
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/-3 General Concepts of Point Estimation

7-3.3 Standard Error: Reporting a Point Estimate

Definition

The standard error of an estimator ® is its standard deviation, given by

—

adg = V V(@) If the standard error involves unknown parameters that can be esti-

mated, substitution of those values into oy produces an estimated standard error,

denoted by o .
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/-3 General Concepts of Point Estimation

7-3.3 Standard Error: Reporting a Point Estimate

Suppose we are sampling from a normal distribution with mean  and variance o=. Now

the distribution ot X" 1s normal with mean w and variance o/n, so the standard error of X 1s

J
JFw — —
X =

[t we did not know o but substituted the sample standard deviation S into the above equation,
the estimated standard error of X would be
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/-3 General Concepts of Point Estimation

Example 7-5

An article in the Journal of Heat Transfer (Trans. ASME, Sec. C, 96, 1974, p. 539) described
a new method of measuring the thermal conductivity of Armco iron. Using a temperature of
100°F and a power input of 550 watts, the following 10 measurements of thermal conductiv-
ity (in Btu/hr-ft-°F) were obtained:

41.60,41.48,42.34,41.95, 41.86,
42.18,41.72,42.26,41.81,42.04

A point estimate of the mean thermal conductivity at 100°F and 550 watts is the sample mean or

v = 41.924 Btu/hr-fi-°F
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/-3 General Concepts of Point Estimation

Example 7-5 (continued)

The standard error of the sample mean is o7 = o/ Vn, and since o is unknown, we may replace

r

it by the sample standard deviation s = (0.284 to obtain the estimated standard error of X as

R 5 0.284
o7 = —= = —== = (.O8YS
‘ Vi V10

Notice that the standard error is about (.2 percent of the sample mean. implying that we have ob-
tained a relatively precise point estimate of thermal conductivitv, If we can assume that thermal
conductivity is normally distributed, 2 times the standard error is 26§ = 2{0.0898) = 0.1796,
and we are highly confident that the true mean thermal conductivity 1s with the interval
41.924 = 0.1756, or between 41.744 and 42.104.

Dr. Saed TARAPIAH Sampling Distributions and Point 21
Estimation of Parameters



/-3 General Concepts of Point Estimation

7-3.4 Mean Square Error of an Estimator

Definition

The mean squared error of an estimator ® of the parameter 8 1s defined as

MSE(®) = E(® — )’ (7-7)
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/-3 General Concepts of Point Estimation

7-3.4 Mean Square Error of an Estimator

The mean squared error 1s an important criterion for c.‘mﬂ]:ﬂrmg two estimators. Let '["""l
and ©, be two estimators of the parameter 8, and let MSE {E]'J} and MSE (®,) be the mean
squared errors of 'E]'J and @;. Then the relative efficiency of &, to @J 15 defined as

MSE(®,)
MSE(®,)

(7-8)

It this relative efficiency 1s less than 1, we would conclude that | 1s a more efficient estima-
tor of  than ®,, in the sense that it has a smaller mean square error.
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/-3 General Concepts of Point Estimation

7-3.4 Mean Square Error of an Estimator

Cistribution of 12-1

Listribution of Eﬁz

8 E(B)
Figure 7-6 A biased estimator é)lthat has smaller variance

than the unbiased estimator ©,.
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/-4 Methods of Point Estimation

Definition

Let X, X5, ..., X, be a random sample from the probability distribution f(x), where

f(x) can be a discrete probability mass function or a continuous probability density
function. The kth population moment (or distribution moment) is E(X*), k =

[, 2,....The corresponding kth sample moment is (1 /n) ELL.‘{'f", k=1,2.....

Definition

Let X, A5, .... A, be a random sample from either a probability mass function
or probability density function with m unknown parameters 6, 8,.....80,. The
moment estimators &, ®,, ..., ®_ are found by equating the first m population

moments to the first m sample moments and solving the resulting equations for the
unknown parameters.
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/-4 Methods of Point Estimation

Example 7-7

Suppose that X, X5, ..., X, 15 a random sample from a nurmnl Ll[‘it]'[hl.ltiﬂl'l with parameters |
. . - . f,._ PR

and o=, FL‘rl' '[hL nm‘mu] distribution £(X) = p and E(X?) = p? + . Equating E(Y) to X and

EX*tos 30, X7 gives

=1

=

=X

-

o] :
bt =g 3

Solving these equations gives the moment estimators

Notice that the moment estimator of ¢ 1s not an unbiased estimator.
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/-4 Methods of Point Estimation

7-4.2 Method of Maximum Likelihood

Definition

Suppose that X 1s a random variable with probability distribution fix; 8), where § 1s
a single unknown parameter. Let x, x,, ..., x, be the observed values in a random
sample of size n. Then the likelihood function of the sample 1s

L(B) = flx: 0) - flao; B) = - = fx,2 0) (7-9)

Note that the likelihood function 1s now a function of only the unknown parameter 6.
The maximum likelihood estimator (MLE) of 0 1s the value of 0 that maximizes

the likelihood function L(8).
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/-4 Methods of Point Estimation

Example 7-9

Let X be a Bernoulli random variable. The probabilitv mass function 1s

P prl = ;le_". r=0,1
Jp)= { :

). otherwise

where p 1s the parameter to be estimated. The likelihood function of a random sample of size
nis

| — x5 —Xp

L{p) = ;J"" (1 — ;le_"";}"‘fl'l — ;J] (]l — ;}]
= 11 - p)= = 2 —ﬁil"_le""

i=]
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/-4 Methods of Point Estimation

Example 7-9 (continued)

We observe that if p maximizes L( p), p also maximizes In L( p). Therefore,

InL{p) = ( 2 .‘n',-J Inp + (n — 2 _1',-) In(1 — p)

i=| i=

Now

dIn L{p) Z A (H - 2 'T“-)

i

dp P [ —p

. . . . . o~ Fqog M - .
Equating this to zero and solving for p vields p = (1/n) 2~ x;. Therefore, the maximum
likelihood estimator of p 1s

. 'l n )
I —
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/-4 Methods of Point Estimation
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Figure 7-7 Log likelinood for the exponential distribution, using

the failure time data. (a) Log likelihood with 7= 8 (original data).
(b) Log likelihood if 7= 8, 20, and 40.
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/-4 Methods of Point Estimation
Example 7-12

Let X be normallv distributed with mean W and variance o=, where both w and o~ are
unknown. The likelthood function for a random sample of size n 1s

i

", ]. . L i P 1 ~ 2 .‘:il, 2
LI: . U_] — - — "'_I"""I_l-L':I_ﬁ':_.U\'I p— ", = *"_I'-ll'lr‘.':r ];: |:"' _|-'L}
o= Hm 2may7 |
and
1 )
In L{, r_‘r]———]nlﬂm]——r 2"‘ )’

i=
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/-4 Methods of Point Estimation

Example 7-12 (continued)
Now

d In L{ o, trzj | &

™ g
d In L{ L. U}] iy ] i .
ST = 5 T (=) =0
d{o”) 200 20° ,; iR

The solutions to the above equation vield the maximum likelihood estimators

- ) 1 n —

I:i" j— 11 [:H f— H . I: -"J: _ _T .]_'

Once again, the maximum likelithood estimators are equal to the moment estimators.
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/-4 Methods of Point Estimation

Properties of the Maximum Likelihood Estimator

Under verv general and not restrictive conditions, when the sample size » 15 large and
if ® 15 the maximum likelihood estimator of the parameter 8,
(1) ®isan approximatelv unbiased estimator for 6 [E[El} = 6],

(2) the variance of ® is nearly as small as the variance that could be obtained
with anv other estimator, and

(3) ® has an approximate normal distribution.
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/-4 Methods of Point Estimation

The Invariance Property

Let &, ®,, ..., ®: be the maximum likelihood estimators of the parameters 8,
B. ..., B Then the maximum likelihood estimator of any function (8, 8;, ..., B
of these parameters is the same function A{@), ®,, ..., ®;) of the estimators

8,0, .6,
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/-4 Methods of Point Estimation

Example 7-13

. . . . . . . - L - r

In the normal distribution case, the maximum likelithood estimators of w and o” were L = X
- H ;o Ly . . . . . - - .

and - = X;-(X; — X' )7/n. To obtain the maximum likelihood estimator of the function

hip, 0°) = Vo° = o, substitute the estimators p and ¢ into the function /i, which yields

_. | o e
ad = Ng = W 2 |k_]'1|; — X _]_

i=] J

Thus, the maximum likelthood estimator of the standard deviation ¢ 1s not the sample
standard deviation §.
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/-4 Methods of Point Estimation

Complications in Using Maximum Likelihood Estimation

* |t is not always easy to maximize the likelihood
function because the equation(s) obtained from
al_(0)/a® = 0 may be difficult to solve.

* |t may not always be possible to use calculus
methods directly to determine the maximum of L(0).
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/-4 Methods of Point Estimation

Example 7-14
Let X'be uniformly distributed on the interval 0 to a. Since the density function is f(x) = 1/a
for 0 = x = a and zero otherwise, the likelihood function of a random sample of size n 1s

i
1 1
Lia) = — = —
|[ ) i=| a f..lr'rI|
Hfl0=x,=a.0=x,=a....,0 = x, = a. Note that the slope of this function 1s not zero

anywhere. That 1s, as ]DHE as max(x;) = a, the likelithood 1s 1/a", which 1s positive, but when
a << max(x;). the likelihood goes to zero, as illustrated in Fig. 7-4. Therefore, calculus meth-
ods cannot be used directly because the maximum value of the likelihood function occurs at
a point of discontinuity. However, since d/da{a™") = —n/a" ! is less than zero for all val-
ues of @ = 0, a " is a decreasing function of @. This implies that the maximum of the likeli-
hood function L(a) occurs at the lower boundary point. The figure clearly shows that we
could maximize L{u ) by setting @ equal to the smallest value that it could logically take on,
which 1s max(x,). Clearly, @ cannot be smaller than the largest sample observation. so setting

a equal to the ]mgut sample value is reasonable.
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/-4 Methods of Point Estimation

Lial

0 Max (x; ) a

Figure 7-8 The likelihood function for the uniform
distribution in Example 7-13.
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/-4 Methods of Point Estimation

7-4.3 Bayesian Estimation of Parameters

Suppose that we have some additional information about 8 and that we can summarize that
information in the form of a probability distribution for 8, say, f(8). This probability distribution
15 often called the prior distribution for 8, and suppose that the mean of the prior 1s . and the
variance is . This is a very novel concept insofar as the rest of this book is concerned because
we are now viewing the parameter 8 as a random variable. The probabilities associated with the
prior distribution are often called subjective probabilities, in that they usually reflect the ana-
lysts degree of belief regarding the true value of . The Bayesian approach to estimation uses the
prior distribution for #, f(8), and the joint probabilitv distribution of the sample, say
Fey. 20, ... x, | B), to find a posterior distribution for 8, say, /10 |x, x5, ..., x,). This poste-
rior distribution contains information both from the sample and the prior distribution for 6. In a
sense, 1t expresses our degree of belief regarding the true value of 8 after observing the sample
data. It 1s easy conceptually to find the posterior distribution. The joint probability distribution of

the sample X, X,. ..., X, and the parameter 8 (remember that 8 is a random variable) is

o xo, ooax B) = flap, o, oo x, | 8)F(8)
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/-4 Methods of Point Estimation

7-4.3 Bayesian Estimation of Parameters

and the marginal distribution of X}, X, ..., X, 1s

i

E Sl xa, o xp. 8), B discrete

_.i"ll.l'l...l'g.. Xl = 4 _Hw

| X x. o x, 8)d6, 6 continuous

S —on

Therefore, the desired distribution 15

Fflrpxo, .., x,.0)

f{ﬂ | BT T “1'_,?]. =

Flrpx. oo ax,)

We define the Bayes estimator of @ as the value § that corresponds to the mean of the poste-
rior distribution (0] xp. xa. ..., x,).
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/-4 Methods of Point Estimation

Example 7-16

Let X,. X, .....X, be a random sample from the normal distribution with mean . and variance o, where
w is unknown and o is known. Assume that the prior distribution for . is normal with mean p, and vari-
ance oy that is

Ilrl:ll-ll-:l — ] .L’_[I'L I'LCI]J.' ""%:I — %

o~ = g+ g 2er)
2 ¥ E'T'I'ﬂ'ﬁ

The joint probability distribution of the sample is

] = "'"E' . ¥4
o ) _ —(1/208) % [x;—
__i"l:.'.|.-'.:. '--"'r.'l L = Wr_’-’ (120 :E-I["' L
= —] i _[In"-:"" ::I[E"';: _EI.LE'I.|+ r,'l_l_::|
[3 2 :|'l:l'ﬂ
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/-4 Methods of Point Estimation

Example 7-16 (Continued)

Thus, the joint probability distribution of the sample and p 15

l r 5 - - -
- ! — —(L2)[[ 1 afi+afo™)f — 2pedot+ 2 Zx /ot + Zadfot + i fo
0133 ) = T e NI /s B b

(1 *]If + ?Ju’ I:%’f - j ]
—(12 - T” 2 2
— o o .I!i'||:-.|........1.'_.,.. o, P T

Upon completing the square in the exponent

3, : a1
B . il Gt [T 0y "'|‘|
oi+atie  af+oti o

Mo, v, oo ) = A X, ool Xe O g, T0)

where hi(x,. ....x,. o po. o) is a function of the observed values, o, pq, and of.
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/-4 Methods of Point Estimation

Example 7-16 (Continued)

MNow, because fix,. ... x,) does not depend on .
. " oy + aix
—{(1/2 |l = [ |,_ ik - i ]
_ Ty /n . ar +aiin i i 2 .
Aw|xg, ....x) = e Ho T haxy, .., xg, O, Wi, 07

This 1s recognized as a normal probability density function with posterior mean

(o%/n)po + onx
u‘% + n:r:,-'rn

and posterior variance

( N )_I o3 (0/n)
b} + . = b} -
o5 o /n o5 + o /n
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/-4 Methods of Point Estimation

Example 7-16 (Continued)

Consequently, the Bayes estimate of w is a weighted average of w, and x. For purposes of comparison,
note that the maximum likelihood estimate of pis i = =

To illustrate, suppose that we have a sample of size » = 10 from a normal distribution with un-
known mean p and variance o = 4. Assume that the prior distribution for w is normal with mean
w, = 0 and variance o, = 1. If the sample mean is 0.75, the Bayes estimate of . is

(471000 + 1{0.75) 0,75

: = = (L5336
I + (4/10) 1.4
Mote that the maximum likelihood estimate of w15 x = (L73,
Dr. Saed TARAPIAH Sampling Distributions and Point 44

Estimation of Parameters



IMPORTANT TERMS AND CONCEPTS

Baves estimator

Bias in parameter
estimation

Central limit theorem

Estimator versus
estimate

Likelihood function

Maximum likelihood

estimator

Dr. Saed TARAPIAH

Mean square error of an
estimator
Minimum variance
unbiased estimator
Moment estimator
Normal distribution
as the sampling
distribution of a
sample mean

MNormal distribution as
the sampling distribu-
tion of the difference
in two sample means

Parameter estimation

Point estimator

Population or distribu-
tion moments

Posterior distribution

Sampling Distributions and Point
Estimation of Parameters

Prior distribution
Sample moments
Sampling distribution
Standard error and
estimated standard
error of an estimator
Statistic
Statistical inference
Unbiased estimator
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