5-2 Two Continuous Random Variables

5-2.1 Joint Probability Distribution

Definition

A joint probability density function for the continuous random variables X and Y,
denoted as fyy(x, y), satisfies the following properties:

(1) fyy(x,y) = O0forallx, y

(2) I ' fyy(x,y)dxdy = 1

-0 =0

(3) For any region R of two-dimensional space

P((X,Y) ER) = l_f:n-(.\'. ¥) dx dy (5-14)

R
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5-2 Two Continuous Random Variables

fxy(x, ¥

X
Probability that (X Y) is in the region R is determined

by the volume of fyyfx, ¥ over the region R.

Figure 5-6 Joint probability density function for random
variables X'and Y.
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5-2 Two Continuous Random Variables

Example 5-12

et the random variable X denote the time until a computer server connects to your machine
(in milliseconds). and let Y denote the time until the server authorizes you as a valid user (in
milliseconds). Each of these random variables measures the wait from a common starting time
and X' < Y. Assume that the joint probability density function for X'and Y 1s

fey(x.y) = 6 X 107 %exp(—0.001x — 0.002y) forx < y

Reasonable assumptions can be used to develop such a distribution, but for now, our focus is
onlv on the joint probability density function.
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5-2 Two Continuous Random Variables

Example 5-12

The region with nonzero probability is shaded in Fig. 5-8. The property that this joint
probability density function integrates to | can be verified by the integral of fyy(x, v) over this
region as follows:

‘ l.f.'w-(-\x.")d.l't/.r= ](w X 10760001 =0002 gy, | iy
o \ x
— ]()—(* l l U—()_ml_}_\- ((‘, (,—(),mv[_‘- (/.‘_
%\
x‘ /(,—n_(ln,‘-_\-
= ]()—(‘l — ,—0.001x ..
I 0.002 @
0 \
| ‘ 1
= (0.003 ]c‘“-“"-‘-‘ dy | = 0.003 — =1
] 0.003
0
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5-2 Two Continuous Random Variables

0 X

Figure 5-8 The joint probability density function of X'and Yis
nonzero over the shaded region.
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5-2 Two Continuous Random Variables

Example 5-12

The probability that X' < 1000 and Y << 2000 is determined as the integral over the

darkly shaded region in Fig. 5-9.

P(X = 1000, Y = 2000)

Dr. Saed TARAPIAH

Joint Probability Distributions

1000 2000

Sxy(x, y) dy dx

.l) X

1000 /2000
6 X l”—h l | (,-(}Annj.\-(h_ l,—lu)()]x“,r_,‘.
0\ x
1000
r (,—n_on:.r — 4 l
6% 107° l ) ,~000LE gy
‘ 0.002 ‘
0

1000

0.003 ‘ g~ V00 _ =4 =00z 1y
.U
| — ¢!

[f1-¢e3 =
0.003 ——— e
0.003 0.001

0.003(316.738 — 11.578) = 0.915

)

30



5-2 Two Continuous Random Variables

2000

0
0O 1000 X

Figure 5-9 Region of integration for the probability that X<
1000 and Y < 2000 is darkly shaded.
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5-2 Two Continuous Random Variables

5-2.2 Marginal Probability Distributions

Definition

If the joint probability density function of continuous random variables X and Y is
Jfyr(x, ¥), the marginal probability density functions of X'and Y are

fxlx) = [fyy(x,¥)dy and fy(y) = | fyy(x, y) dx (5-15)

¥ x

where the first integral 1s over all points in the range of (X, }) for which X' = x and
the second integral 1s over all points in the range of (X, }) for which Y =y
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5-2 Two Continuous Random Variables

Example 5-13

For the random variables that denote times in Example 5-12, calculate the probability that ¥ exceeds

2000 milliseconds.

This probability is determined as the integral of fyy(x. v) over the darkly shaded region
in Fig. 5-10. The region is partitioned into two parts and different limits of integration are de-

termined for each part.

2000 %

P( ) e 2()()()) — ’ l 6 X ]”—(»(,—().(NJI.\'—ll_()():_l‘ ({1. dx
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5-2 Two Continuous Random Variables

Figure 5-10 Region of
iIntegration for the

probability that ¥'< 2000 5400
Is darkly shaded and it is
partitioned into two

regions with x< 2000

and and x> 2000.

0 2000
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5-2 Two Continuous Random Variables

Example 5-13

The first integral 1s

2000 2000
) —0.002y | = -6 r
4 : 6 X 10
( X ]”'—(\ - ,—“,l}l)lx / e, ,—..l } ’—()‘llll]_\- /
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6x 107° | —¢™?
-4 =
=——0¢ = 0.0475
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; —0.002y | = - -
6 X 10~° . ! —0.001x 4. _ 6 X 10 ] ,~0.003x 7.
—0.002 |, 0.002 |
2000 ‘ 2000
_OX1070e™ N e
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5-2 Two Continuous Random Variables

Example 5-13
Therefore,
P( Yy > 2()()()) = (0.0475 + 0.0025 = 0.05.

Alternatively, the probability can be calculated from the marginal probability distribution of Y
as follows. For y > 0
_\" _\"

fy(y)= [6X 109~ 0L =000y gy = 6 K 107 % W9 | g~ 0N gy

0 0

—-0.001x | v —0.00]y
6 X 10760002 L " = § ¥ 10 % WY | —e¢ '
—0.001 |, 0.001

=6 X 107370002 (] — 7000y £y > 0
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5-2 Two Continuous Random Variables

Example 5-13

We have obtained the marginal probability density function of Y. Now,

P(Y > 2000) = 6 X 1077 | 7002 — 7000y gy,

2000
i ’—U,()l)_jl‘ o ,_“_””";‘. on -
| [ ¢ - ¢ ;
i _()()()2 2000 _()()“.’ 2000/ J
-4 0 7
=6X 107" : — = 0.08
0.002 0003
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5-2 Two Continuous Random Variables

5-2.3 Conditional Probability Distributions

Definition

Given continuous random variables X and Y with joint probability density function
fyr(x, y), the conditional probability density function of ¥ given X = x is

Syy(x, )
fy(x)

frix(y) = for  fy(x) >0 (5-16)
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5-2 Two Continuous Random Variables

5-2.3 Conditional Probability Distributions

Because the conditional probability density function fy{ v) is a probability density
function for all y in R,, the following properties are satisfied:

(1) ’}t(‘) =0

(2) | frx(¥)dy =1
R,
(3) P(YEB|X=x)= | fyn(y)dy forany setB in the range of ¥

B

(5-17)
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5-2 Two Continuous Random Variables

Example 5-14

For the random variables that denote times in Example 5-12, determine the conditional probability

density function for ¥ given that X = x.
First the marginal density function of x is determined. For x > 0

, ,—0.002y |’
fr(x) = [6 X 1078700 =00y gy, = 6 x |06~ 0001 (‘— )
% ‘ : —0.002 |,

| ¢ =02y

) s —_nmnte I € s -1 002 -

VR B | B e (—” = )= 0.003¢7%"  for x>0

This is an exponential distribution with A = 0.003. Now, for 0 << x and x < ythe conditional probability
density function is

6 % 108 0.001x—0.002

.f.ﬂ\'(.‘) = f\'lr("‘)/f\(‘) = 0.(H,—l}t’—ﬂ'["]}'t
= 00020 for0<x  and x <y
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5-2 Two Continuous Random Variables

Example 5-14

The conditional probability density function of ¥, given that x = 1500, 1s nonzero on the solid

line in Fig. 5-11.

Figure 5-11 The

conditional probability

density function for Y, given

that x = 1500, is nonzero

over the solid line. 1500

0
0 1500 X
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5-2 Two Continuous Random Variables

Definition: Conditional Mean and Variance

The conditional mean of Y given X = x, denoted as E(Y|x) or py|,, is
E(V1) = [ ofulo) b

.. . . » » 2 .
and the conditional variance of Y given X = x, denoted as V(Y| x) or oy, is

N(Y|x) = J (v = wrf frix () dy = J.vz.f}-lx(.v) dy—pie  G19)

-0
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5-2 Two Continuous Random Variables

5-2.4 Independence

Definition

For continuous random variables X and Y, if any one of the following properties is
true, the others are also true, and X and Y are said to be independent.

(1) fyr(x,y) = f{x) fy(y) forall x andy
(2) fyi(y) =fy(y) forall x and y with fy(x) > 0
(3) fyplx) = frlx) forall xand y with fy{(y) > 0

(4) PIXE A,Y < B) = P(X € A)P(Y € B) for any sets 4 and B in the range
of X and Y, respectively. (5-19)

Dr. Saed TARAPIAH Joint Probability Distributions 43




5-2 Two Continuous Random Variables

Example 5-16

For the joint distribution of times in Example 5-12, the
* Marginal distribution of ¥ was determined in Example 5-13.
* Conditional distribution of ¥ given X' = x was determined in Example 5-14.

Because the marginal and conditional probability densities are not the same for all values of x, property (2) of
Equation 5-18 implies that the random variables are not independent. The fact that these variables are not
independent can be determined quickly by noticing that the range of (X, ¥), shown in Fig. 5-8, is not rectan-
gular. Consequently, knowledge of X changes the interval of values for ¥ that receives nonzero probability.
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5-2 Two Continuous Random Variables

Example 5-18

[et the random variables X and Y denote the lengths of two dimensions of a machined part, re-
spectively. Assume that X and Y are independent random variables, and further assume that the
distribution of X is normal with mean 10.5 millimeters and variance 0.0025 (millimeter)? and
that the distribution of } is normal with mean 3.2 millimeters and variance 0.0036 (millime-
ter)>. Determine the probability that 10.4 < X < 10.6 and 3.15 < Y < 3.25.

Because X and Y are independent.

P(104 < X <106,3.15<Y<325)=P104 <X <106)P3.15< Y <

_p 104 — 10.5 7 < 10.6 — 10.5 p 3.15 - 3.2 7 < 3.25 - 3.2
B 0.05 0.05 0.06 - 0.06

= P(-2 < Z<2)P(—0.833 < Z<0.833) = 0.566

!_’J

25)

where Z denotes a standard normal random variable.
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5-2 Two Continuous Random Variables

Example 5-20

[n an electronic assembly, let the random variables X, X5. X3, X denote the lifetimes of four
components in hours. Suppose that the joint probability density function of these variables 1s

f.\’ XXX (\.l X, Xa \.4) =0 ¥ ]“—3(,—().()“1.\‘, —0.002x, = 0.0015x; — 0.003x,4
¥ l. 2- :' 4 - 4 » _-\ - 3 L
forxy =0.x,=0,x;=0,x,=0

l 2 . 4

What is the probability that the device operates for more than 1000 hours without any failures?

The requested probability 1s P(X, = 1000, X, > 1000, X5 > 1000, X; > 1000), which
equals the multiple integral of fy, v, x, x,(¥1. X2. X3, x4) over the region x; > 1000, x, > 1000,
xy = 1000, x4 = 1000. The joint probability density function can be written as a product of
exponential functions, and each integral is the simple integral of an exponential function.

Therefore,

P(X, = 1000, X; > 1000, X; > 1000, X, > 1000) = ¢~'727197% = (.00055
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5-2 Two Continuous Random Variables

Definition: Marginal Probability Density Function

If the joint probability density function of continuous random variables X}, X3, ..., X},
IS _[yr\;,,_,\;(x[.-\'z. ...y Xp), the marginal probability density function of X; is

fx(x) = [ J [j:yr\':.m\; (X1, X0, ..oy Xp) dxy dxy .. dxi_y dxyyy ...dx,  (5-21)

J k.

where the integral is over all points in the range of X'}, X5, ... , X, for which X; = x;.
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5-2 Two Continuous Random Variables

Mean and Variance from Joint Distribution

E(X}) = I ’ l"'i-/.i'n-i'z---.i} (X1, X2y ..., Xp) dxy dx;y ... dx,
and (5-22)
X)) = [ ] ] (xi — oy )2_/_".-'3.-: X, (X1, X2, ... , Xp) dx) dx; ... dx,
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5-2 Two Continuous Random Variables

Distribution of a Subset of Random Variables

[f the joint probability density function of continuous random variables X}, X5, ..., X,
is fy, X,..X, (x1, X2, ..., x,), the probability density function of X}, X;, ... X k<p,is

fox,. x, (%15 %2 - s Xp)

l [./:Y,l":....\}(-\'l~ X2y con s .l'p) d.\'k.,. | d.\'k.,.g ces de (5-23)

Resi..m

where the integral is over all points in the range of X, X,, ..., X} for which
Xi=x, 5 =x.... 8 = xi

Dr. Saed TARAPIAH Joint Probability Distributions 49



5-2 Two Continuous Random Variables

Conditional Probability Distribution

Definition

Continuous random variables X, X5, ..., X, are independent if and only if

_/:1'| X;....l:,(-\'h XD eeeya \ 'p) = fl,(‘ll/\;(‘.?) .o /\P(\p) for all Xy X2y «vv s Xp (5-24)
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5-2 Two Continuous Random Variables

Example 5-23

Suppose X}, X3, and A; represent the thickness in micrometers of a substrate, an active layer, and a
coating layer of a chemical product. Assume that X, X5, and X3 are independent and normally
distributed with w; = 10000, py = 1000, p; = 80, oy = 250, 0, = 20, and o3 = 4, respectively.
The specifications for the thickness of the substrate, active layer, and coating layer are
9200 < x; < 10800, 950 < x, < 1050, and 75 < x; < 85, respectively. What proportion of chemical
products meets all thickness specifications? Which one of the three thicknesses has the least probabil-
ity of meeting specifications?

The requested probability is P(9200 < X, < 10800, 950 < X, < 1050, 75 < X; < 85. Because
the random variables are independent,

P(9200 < X, < 10800, 950 < X, < 1050, 75 < X; < 85)
= P(9200 < X, < 10800)P(950 < X, < 1050)P(75 < X; < 85)
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5-2 Two Continuous Random Variables

Example 5-23

After standardizing, the above equals

e
|
(9%
[
N
N
A
(%)
o
s
|
(]
N

< Z<25)P(—125 < Z<1.25)

where Z i1s a standard normal random variable. From the table of the standard normal distri-
bution, the above equals

(0.99862)(0.98758)(0.78870) = 0.7778
The thickness of the coating layer has the least probability of meeting specifications.

Consequently, a priority should be to reduce variability in this part of the process.
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