4-6 Normal Distribution

Definition

A random variable X with probability density function

—(x—p)?
f@)=——e ¥ —0 < x < (4-8)

is a normal random variable with parameters p, where —% < p, < @, and o > 0.

Also,
EX)=p and V(X)=d (4-9)

and the notation N(j, ) is used to denote the distribution. The mean and variance
of X are shown to equal p and o%, respectively, at the end of this Section 5-6.
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4-6 Normal Distribution

Figure 4-10 Normal probability density functions for
selected values of the parameters p and c2.
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4-6 Normal Distribution

Some useful results concerning the normal distribution

For any normal random variable,

Pl —o< X< p+ o)=0.6827
Plw — 20 < X < p + 20) = 0.9545
Pl — 30 < X < p + 30) = 0.9973
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4-6 Normal Distribution

Definition : Standard Normal

A normal random variable with

?

pw=0 and o =1

1s called a standard normal random variable and 1s denoted as Z.
The cumulative distribution function of a standard normal random varnable 1s
denoted as

®(z) = PZ =z)
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4-6 Normal Distribution

Example 4-11

Assume Z 1s a standard normal random variable. Appendix Table Il provides probabilities of
the form P(Z = z). The use of Table Il to find P(Z = 1.5) is illustrated in Fig. 4-13. Read
down the z column to the row that equals 1.5. The probability is read from the adjacent col-
umn, labeled 0.00, to be 0.93319.

The column headings refer to the hundredth’s digit of the value of z in P(Z = z). For ex-
ample, P(Z = 1.53) is found by reading down the z column to the row 1.5 and then selecting

the probability from the column labeled 0.03 to be 0.93699.

P(Z<15)=®(1.5)

= shaded area 0.00 0.01 0.02 0.03

0 | 0.50000 0.50399 0.50398 0.51197

1.6 | 093319 0.93448 0.93574 0.93699

0 1.5 z
Figure 4-13 Standard normal probability density function.
Dr. Saed TARAPIAH Continous R.V. and Probability 29

Distribution



4-6 Normal Distribution

Standardizing

If X is a normal random variable with E(X) = w and V(X) = o, the random variable

Z=- (4-10)

1s a normal random vanable with £(Z) = 0 and V(Z) = 1. That 1s, Z 1s a standard
normal random variable.
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4-6 Normal Distribution

Example 4-13

Suppose the current measurements in a strip of wire are assumed to follow a normal distribu-
tion with a mean of 10 milliamperes and a variance of 4 (milliamperes)?. What is the proba-
bility that a measurement will exceed 13 milliamperes?

Let X denote the current in milliamperes. The requested probability can be represented as
P(X > 13). Let Z = (X — 10)/2. The relationship between the several values of X and the
transformed values of Z are shown in Fig. 4-15. We note that X' > 13 corresponds to Z > 1.5.
Therefore. from Appendix Table 1.

PX>13)=PZ=>15)=1—-PZ=15)=1—- 093319 = 0.06681
Rather than using Fig. 4-135, the probability can be found from the inequality X' > 13. That is,

- (XY —10) (13 = 10) )
PX>13)=P > = P(Z > 1.5) = 0.0668]

) ¢,
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4-6 Normal Distribution

Distribution of Z = %

015 2

Distribution of X /\
/ 4 7 91011 13 16 X

10 13 X

-3 -15-05005 15 3 z

Figure 4-15 Standardizing a normal random variable.

Dr. Saed TARAPIAH Continous R.V. and Probability 32
Distribution



4-6 Normal Distribution

To Calculate Probability

- . . . -
Suppose X 1s a normal random variable with mean p and variance o~. Then,

| X - -.'—
P(Xs.r)=P( 2 e u)=P(Zs:) (4-11)

o ao

(x — )

where Z 1s a standard normal random variable, and z = is the z-value
obtained by standardizing X.

The probability is obtained by entering Appendix Table Il with z = (x — p)/o.
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4-6 Normal Distribution

Example 4-14

Continuing the previous example, what is the probability that a current measurement is be-
tween Y and 11 milliamperes? From Fig. 4-135, or by proceeding algebraicallv, we have

PO <X<11)=P(9 — 10)/2 < (X — 10)/2 < (11 — 10)/2)
= P(—0.5<7Z<05)=P(Z<05)— P(Z< —0.5)
= 0.69146 — 0.30854 = 0.38292
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4-6 Normal Distribution

Example 4-14 (continued)
Determine the value for which the probability that a current measurement is below
this value 1s 0.98. The requested value 1s shown graphically in Fig. 4-16. We need the value of
x such that P(X < x) = 0.98. By standardizing, this probability expression can be written as

P(X < x) = P((X — 10)/2 < (x — 10)/2)
P(Z < (x — 10)/2)
(.98

Appendix Table II 1s used to find the z-value such that P(Z < z) = 0.98. The nearest proba-
bility from Table Il results in

P(Z < 2.05) = 0.97982

Therefore, (x — 10)/2 = 2.05, and the standardizing transformation is used in reverse to solve
for x. The result i1s

x = 2(2.05) + 10 = 14.1 milliamperes
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4-6 Normal Distribution

Example 4-14 (continued)

/

10 X
Figure 4-16 Determining the value of xto meet a
specified probability.
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4-7 Normal Approximation to the
Binomial and Poisson Distributions

« Under certain conditions, the normal
distribution can be used to approximate the
binomial distribution and the Poisson
distribution.
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4-7 Normal Approximation to the
Binomial and Poisson Distributions

0.25
i / \ n:}@c
Figure 4-19 Normal i .
approximation to the -
binomial.
0.15
h 0.10 / \
. O ../. 0\
0 1 2 3 4 6 8 9 10
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4-7 Normal Approximation to the
Binomial and Poisson Distributions

Example 4-17

[n a digital communication channel, assume that the number of bits received in error can be
modeled by a binomial random variable, and assume that the probability that a bit 1s received
in error is 1 X 1072, If 16 million bits are transmitted, what is the probability that more than
150 errors occur?

Let the random variable X denote the number of errors. Then X is a binomial random vari-
able and

150
16.000.000
PX>150)=1—-Px=150)=1 — 2( ?

x=0

)(]l)_i)-"(l — 1073)16.000.000—

X
Clearly, the probability in Example 4-17 1s difficult to compute. Fortunately, the normal
distribution can be used to provide an excellent approximation in this example.
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4-7 Normal Approximation to the
Binomial and Poisson Distributions

Normal Approximation to the Binomial Distribution

If X is a binomial random variable, with parameters » and p

X — ng
7= L (4-12)
Vap(l — p)

is approximately a standard normal random variable. To approximate a binomial
probability with a normal distribution a continuity correction is applied as follows

x+05—m
P(.\’ - _\') - P(_\-S x + OS) = P(Z < X H[))

Vap(l — p)

and

_ _ ) x—05—np
Px=X)=Px—-05=X)= P( _ = Z)
\Vap(l — p)

The approximation is good for np > 5 and n(1 — p) > 5.
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4-7 Normal Approximation to the
Binomial and Poisson Distributions

Example 4-18

The digital communication problem in the previous example is solved as follows:

: X — 160 150 — 160
P(X > 150)= P S —_—

V160(1 — 1073 V160(1 — 1079)
= P(Z > —0.79) = P(Z < 0.79) = 0.785

Because np = (16 X 10°)(1 X IU_'{) = 160 and n(1 — p) 1s much larger, the approximation

1s expected to work well in this case.
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4-7 Normal Approximation to the
Binomial and Poisson Distributions

hypergometric ~z binomial ~ normal
distribution " distribution np = 3 distribution

Figure 4-21 Conditions for approximating hypergeometric
and binomial probabilities.
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4-7 Normal Approximation to the
Binomial and Poisson Distributions

Normal Approximation to the Poisson Distribution

If X 1s a Poisson random variable with £(X) = A and V(X) = A,

- -

X
7="1- (4-13)
VA

1s approximately a standard normal random variable. The approximation 1s good for

A>S
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4-7 Normal Approximation to the
Binomial and Poisson Distributions

Example 4-20

Assume that the number of asbestos particles in a squared meter of dust on a surface follows
a Poisson distribution with a mean of 1000. If a squared meter of dust i1s analyzed, what is the

probability that less than 950 particles are found?
This probability can be expressed exactly as

050 _—1000_1000
¢ A

P(X = 950) =

x=10

x!

The computational difficulty is clear. The probability can be approximated as

, | 950 = 1000 _ o _
PX=x) = P(/. < )z P(Z = —1.38) = 0.057

V1000
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4-8 Exponential Distribution

Definition

The random variable X that equals the distance between successive events of a
Poisson process with mean A > 0 1s an exponential random variable with parame-
ter A. The probability density function of X 1s

flx)=Ae™ for 0=x<w (4-14)
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4-8 Exponential Distribution

Mean and Variance

If the random variable X has an exponential distribution with parameter A,

4

” 1 " ’ - d -
— )=l SR = 5 3-15
p=EX) =1 and o’ =1X) =5 (4-15)

[t is important to use consistent units in the calculation of probabilities, means, and variances
involving exponential random variables. The following example illustrates unit conversions.
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4-8 Exponential Distribution

Example 4-21

In a large corporate computer network, user log-ons to the system can be modeled as a Pois-
son process with a mean of 25 log-ons per hour. What is the probability that there are no log-
ons in an interval of 6 minutes?

Let X denote the time in hours from the start of the interval until the first log-on. Then, X
has an exponential distribution with A = 235 log-ons per hour. We are interested in the proba-
bility that X exceeds 6 minutes. Because A is given in log-ons per hour, we express all time
units in hours. That is, 6 minutes = 0.1 hour. The probability requested is shown as the shaded
area under the probability density function in Fig. 4-23. Therefore,

oo

PX>01)= | 25" %= ¢ = 0,082

0.1
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4-8 Exponential Distribution

£ o
jlx)

0.1 X

Figure 4-23 Probability for the exponential distribution in
Example 4-21.
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4-8 Exponential Distribution

Example 4-21 (continued)

Also. the cumulative distribution function can be used to obtain the same result as follows:
b gl — 7 S
P(X>0.1) =1 — F0.1) = ¢ 20D

An identical answer is obtained by expressing the mean number of log-ons as 0.417 log-
ons per minute and computing the probability that the time until the next log-on exceeds 6
minutes. Try it.

What is the probability that the time until the next log-on is between 2 and 3 minutes?
Upon converting all units to hours,

0.05
" 0.05

P(0.033 < X < 0.05) = | 25¢ ¥ dy = —e™ 2™ = 0.152

: 0.033
0.033

Dr. Saed TARAPIAH Continous R.V. and Probability 49
Distribution



4-8 Exponential Distribution

Example 4-21 (continued)

An alternative solution 1s
P(0.033 < X < 0.05) = F(0.05) — F(0.033) = 0.152

Determine the interval of time such that the probability that no log-on occurs in the i
val is 0.90. The question asks for the length of time x such that P(X > x) = 0.90. Now,

P(X > x) = e " = 0.90
Take the (natural) log of both sides to obtain —25x = In(0.90) = —0.1054. Therefore,

x = 0.00421 hour = 0.25 minute

Dr. Saed TARAPIAH Continous R.V. and Probability 50
Distribution



4-8 Exponential Distribution

Example 4-21 (continued)

Furthermore, the mean time until the next log-on is
w = 1/25 = 0.04 hour = 2.4 minutes
The standard deviation of the time until the next log-on is

o = 1/25 hours = 2.4 minutes
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4-8 Exponential Distribution

Our starting point for observing the system does not matter.

*An even more interesting property of an exponential random
variable is the lack of memory property.

In Example 4-21, suppose that there are no log-ons
from 12:00 to 12:15; the probability that there are no
log-ons from 12:15 to 12:21 is still 0.082. Because we
have already been waiting for 15 minutes, we feel that
we are “due.” That is, the probability of a log-on in the
next 6 minutes should be greater than 0.082. However,
for an exponential distribution this is nof true.
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4-8 Exponential Distribution

Example 4-22

Let X denote the time between detections of a particle with a geiger counter and assume that
X has an exponential distribution with A = 1.4 minutes. The probability that we detect a par-
ticle within 30 seconds of starting the counter is

P(X < 0.5 minute) = F(0.5) = 1 — ¢ /14 = 0.30

In this calculation, all units are converted to minutes. Now, suppose we turn on the geiger
counter and wait 3 minutes without detecting a particle. What is the probability that a particle
i1s detected in the next 30 seconds?
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4-8 Exponential Distribution

Example 4-22 (continued)

Because we have alreadv been waiting for 3 minutes, we feel that we are “due.”’
1S, the probability of a detection in the next 30 seconds should be greater than 0.3. Howe
for an exponential distribution, this is not true. The requested probability can be expre
as the conditional probability that P(X < 3.5|.X > 3). From the definition of conditi
probability,

P(X <35|X>3)=P3 <X<35)/PX=>3)

where

P3<X<35)=F3.5) —F3)=[1—- e —[1 — ¥4 = 0.0035
and

-
Y

PX>3)=1-F3)=e"=0.117
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4-8 Exponential Distribution

Example 4-22 (continued)

Therefore,

P(X < 3.5

X >3)=0.035/0.117 = 0.30

After waiting for 3 minutes without a detection, the probability of a detection in the next 30
seconds 1s the same as the probability of a detection in the 30 seconds immediately after start-
ing the counter. The fact that you have waited 3 minutes without a detection does not change
the probability of a detection in the next 30 seconds.
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4-8 Exponential Distribution

Example 4-22 illustrates the lack of memory property of an exponential random vari-
able and a general statement of the property follows. In fact, the exponential distribution is the
only continuous distribution with this property.

Lack of Memory Property

For an exponential random variable X,

PX<ti+6|X>1)=PX<t) (4-16)
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4-8 Exponential Distribution

fix)
u
A
B
C D
to £ L+ X

Figure 4-24 Lack of memory property of an Exponential
distribution.
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