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LEARNING OBJECTIVES

After careful study of this chapter you should be able to do the following:
1. Determine probabilities from probability mass functions and the reverse

2. Determine probabilities from cumulative distribution functions and cumulative distribution func-
tions from probability mass functions, and the reverse

3. Calculate means and variances for discrete random variables

4. Understand the assumptions for each of the discrete probability distributions presented

5. Select an appropriate discrete probability distribution to calculate probabilities in specific
applications

6. Calculate probabilities, determine means and variances for each of the discrete probability
distributions presented
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3-1 Discrete Random Variables

Many physical systems can be modeled by the same or similar random experiments and ran-

dom variables. The distribution of the random variables involved in each of these common
systems can be analyzed, and the results of that analysis can be used in different applications

and examples. In this chapter, we present the analysis of several random experiments and
discrete random variables that frequently arise in applications. We often omit a discussion of

the underlying sample space of the random experiment and directly describe the distribution
of a particular random variable.
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3-1 Discrete Random Variables

Example 3-1

A voice communication system for a business contains 48 external lines. At a particular time, the system
is observed, and some of the lines are being used. Let the random variable X' denote the number of lines
in use. Then, X can assume any of the integer values 0 through 48. When the system is observed, if 10
lines are in use, x = 10,
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3-2 Probability Distributions and
Probability Mass Functions
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Figure 3-1 Probability distribution for bits in error.
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3-2 Probability Distributions and
Probability Mass Functions
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Figure 3-2 Loadings at discrete points on a long, thin
beam.
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3-2 Probability Distributions and
Probability Mass Functions

Definition

For a discrete random variable X with possible values x|, x5, ..., x,, a probability

mass function 1s a function such that

Dr. Saed TARAPIAH Discrete Random Variables and
Probability Distributions




Example 3-5

Let the random variable X denote the number of semiconductor wafers that need to be ana-
lvzed in order to detect a large particle of contamination. Assume that the probability that a
wafer contains a large particle is 0.01 and that the wafers are independent. Determine the
probability distribution of X,

Let p denote a wafer in which a large particle is present. and let @ denote a wafer in which
it is absent. The sample space of the experiment is infinite, and it can be represented as all pos-
sible sequences that start with a string of @’s and end with p. That s,

s = {p. ap. aap, aaap, aaaap. aaaaap, and so forth}

Consider a few special cases. We have P(X = 1) = P(p) = 0.01. Also, using the inde-
pendence assumption

P(X = 2) = Plap) = 0.99(0.01) = 0.0099
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Example 3-5 (continued)

A general formula is

P(X=x)=Plaa...ap) =099"(0.01), forx=1,273, ...

N 7
W

(x = 1)a’s

Describing the probabilities associated with X in terms of this formula is the simplest method
of describing the distribution of X in this example. Clearly f{x) = 0. The fact that the sum of
the probabilities is 1 is left as an exercise. This is an example of a geometric random variable,
and details are provided later in this chapter.
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3-3 Cumulative Distribution Functions

Definition

The cumulative distribution function of a discrete random variable X, denoted as

Flx), 1s

Flx) = PX=x) = 3, f(x)

For a discrete random variable X, F(x) satisfies the following properties.
() Fx)=PX=x)= 2, .. f(x)
(2) 0=Fx)=1
(3) Ifx=y, then Flx)= F(y) (3-2)
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Example 3-8

Suppose that a day’s production of 850 manufactured parts contains 50 parts that do not con-
form to customer requirements. Two parts are selected at random, without replacement. from
the batch. Let the random variable X equal the number of nonconforming parts in the sample.
What is the cumulative distribution function of X?

The question can be answered by first finding the probability mass function of X.

800 799
P(X = 0) = — - — = (.886
850 849
800 50
P(/\f.: ): o — O — — ll]
850 849
50 49
P(X = 2) = =— - — = 0.003
850 849

Therefore.

The cumulative distribution function for this example is graphed in Fig. 3-4. Note that
F(x) is defined for all x from —o < x < % and not only for 0, 1. and 2.
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Example 3-8
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Figure 3-4 Cumulative distribution function for
Example 3-8.
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3-4 Mean and Variance of a Discrete
Random Variable

Definition

The mean or expected value of the discrete random variable X, denoted as p or

E(X),1s

p=EX)= X xflx) (3-3)

»
-

N - r 2 .
The variance of X, denoted as o~ or V{X), is

ol = VX) = EX — pf = X (x — wiflx) = 2) — !

. . o T : 9
The standard deviation of Xiso = \Vo“.
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3-4 Mean and Variance of a Discrete
Random Variable
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Figure 3-5 A probability distribution can be viewed as a loading
with the mean equal to the balance point. Parts (a) and (b)
illustrate equal means, but Part (a) illustrates a larger variance.
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3-4 Mean and Variance of a Discrete
Random Variable
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Figure 3-6 The probability distribution illustrated in Parts (a)
and (b) differ even though they have equal means and equal
variances.
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Example 3-11

The number of messages sent per hour over a computer network has the following distribution:

¥ = number of messages | 10 | 1 | 12 | 13 ‘ 14 | 15
|

f(x) I 0.08 | 0.15 | 0.30 | 0.20 0.20 | 0.07

Determine the mean and standard deviation of the number of messages sent per hour.
E(X) = 10(0.08) + 11(0.15) + --- + 15(0.07) = 12.5
V(X) = 10%(0.08) + 117(0.15) + - + 15%(0.07) — 12.5° = 1.85
o= VI (\’)— \V1.85 = 1.36
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3-4 Mean and Variance of a Discrete
Random Variable

Expected Value of a Function of a Discrete
Random Variable

If X 1s a discrete random variable with probability mass function f{(x),

E[h(X)] = Y h(x)f(x) (3-4)
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3-5 Discrete Uniform Distribution

Definition

A random variable X has a discrete uniform distribution 1f each of the n values in
its range, say, Xy, X, ... , X,, has equal probability. Then,

flx) = 1/n (3-5)
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3-5 Discrete Uniform Distribution

Example 3-13

The first digit of a part’s serial number is equally likely to be any one of the digits 0 through 9.
[f one part is selected from a large batch and X'is the first digit of the serial number, X has a dis-
crete uniform distribution with probability 0.1 for each value in R = {0, 1, 2, ..., 9}. That s,

f(x) = 0.1

for each value in R. The probability mass function of X'is shown in Fig. 3-7.
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3-5 Discrete Uniform Distribution

2 4 5 6

Figure 3-7 Probability mass function for a discrete uniform
random variable.
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3-5 Discrete Uniform Distribution

Mean and Variance

Suppose X 1s a discrete uniform random variable on the consecutive integers
a,a+ l,a+ 2,...,b,fora = b. The mean of X i1s

b+ a
2

p = EX) =

The vanance of X is

o (b—-a+ 1Y -1 o
o = T (3-6)
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