Speech and Audio Coding Theory

Contents of lecture

Pitch estimation

- Time domain methods
- Frequency domain methods
- □ Time- and frequency-domain methods
- Pre- and post-processing techniques
- Voiced-unvoiced classification
 - Hard-decision voicing
 - Soft-decision voicing

Introduction

Three main speech features

- \Box Spectral envelope: from short-term correlation \rightarrow LSFs
- □ Pitch (period and gains): from long-term correlation
 - Especially for pitch period
 - □ Used in pitch predictor, to reduce the search space for LTP parameters (gains)
 - Used in the generation of excitation signal for a voiced region
- □ Voiced-unvoiced (V-UV) classification
 - □ Voiced: high energy, periodicity
 - If incorrectly classified as unvoiced, the synthesized speech will sound rough and less intelligible.
 - Unvoiced: like random noise with no periodicity
 - □ If incorrectly classified as voiced, the synthesized speech will sound annoyingly metallic or robotic.
 - Transition region between voiced and unvoiced, or inherently mixed (i.e., |d|)
 - □ A soft decision voicing: frequency-band-dependent V-UV classification
 - □ The soft decision is usually carried out in the frequency domain.

Pitch estimation

□ Why accurate and reliable pitch period estimation is difficult?

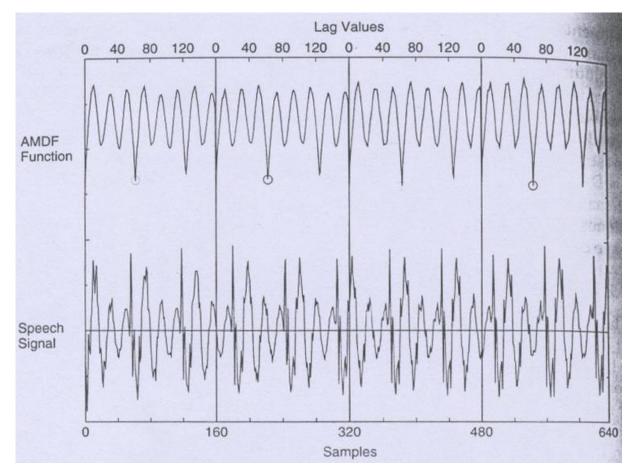
- No perfect train of periodic pulses, even in voiced regions
 slowly evolves from cycle to cycle
- □ Onset and offset regions of voiced speech are not stationary.
- □ In some parts, the speech may contain a mixture of voiced and unvoiced signals.
- \Box Interaction with 1st formant as in the child or female speech
- Background ambient noise
- Pitch determination algorithms (PDA) based on
 - □ Time domain properties
 - □ Frequency domain properties
 - □ Both the time and frequency domain properties

Idea: using similarity of the waveform in time domain
 AMDF (Average Magnitude Difference Function) PDA

Definition: $A(\tau) = \frac{1}{N} \sum_{n=0}^{N-1} |s(n) - s(n+\tau)|$

Anti-correlation measure (dissimilarity measure)

Merits


□ Simple computation

- Not useful with DSPs optimized for multiplications and additions, but still useful with ASICs having no arithmetic component.
- Smaller dynamic range due to no multiplications

Bounded to zero

□Narrower valleys for stationary signals

□ AMDF (Average Magnitude Difference Function) PDA

Auto-correlation PDA

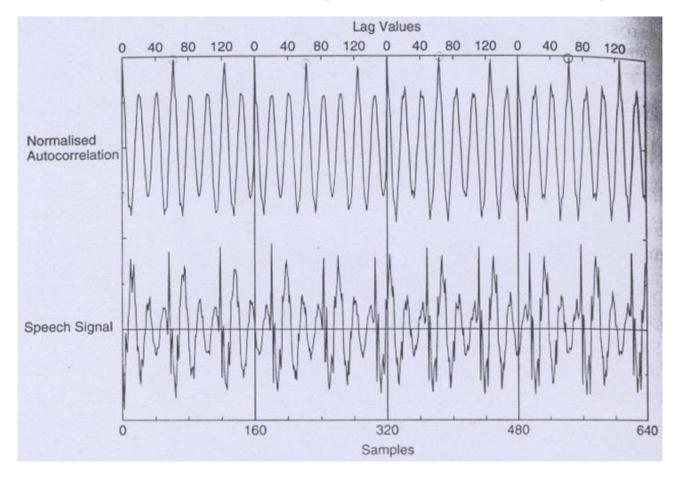
Definition

$$\Box E(\tau) = \frac{1}{N} \sum_{n=0}^{N-1} [s(n) - s(n+\tau)]^2$$

Normalized criterion reflecting the non-stationary effect of pitch

$$\Box E(\tau) = \frac{1}{N} \sum_{n=0}^{N-1} [s(n) - \beta s(n+\tau)]^2$$

 $\square \beta$: scaling factor (pitch gain)

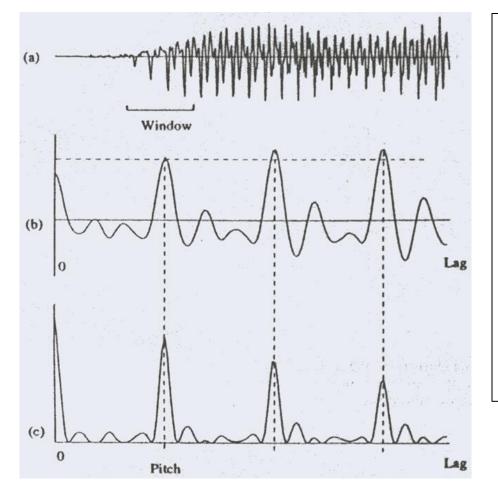

Auto-correlation PDA

□ If the signal is stationary (that is, $\Sigma s^2(n) = \Sigma s^2(n + \tau)$), the similarity function becomes $E(\tau) = R(0) - R(\tau)$

$$\square \text{Here, } R(\tau) = \sum_{n=0}^{N-1} s(n) s(n+\tau)$$

- □ Therefore, minimizing $E(\tau)$ corresponds approximately to maximizing $R(\tau)$.
- Merits
 - Easy to implement in real-time with DSPs due to its regular form of multiplications
 - □ Phase insensitive

Auto-correlation PDA (Normalized version)


- Auto-correlation PDA
 - Generalized similarity measure

$$\Box E(\tau) = \frac{1}{N} \left\{ \sum_{n=0}^{N-1} \left| s(n) - s(n+\tau) \right|^k \right\}^{\frac{1}{k}}$$

 \Box From experiments, k=2 is best.

□ Since it corresponds to the auto-correlation method, it means that auto-correlation method is superior to AMDF method.

Drawback of the direct auto-correlation method

(a) Original speech

• Window taken on an onset region

(b) Direct autocorrelation function

- Difficult to set an appropriate TH
- (c) Normalized autocorrelation function
 - Always a consistent pattern
 - Decreasing peaks
 - ➢ Bounded to zero
 - Relatively easy to set the TH

□ Normalized auto-correlation method □ From $E(\tau) = \frac{1}{N} \sum_{n=0}^{N-1} [s(n) - \beta s(n+\tau)]^2$ and $\frac{\partial E(\tau)}{\partial \beta} = 0$, we get $\beta = \frac{\sum_{n=0}^{N-1} s(n) s(n+\tau)}{\sum_{n=0}^{N-1} s^2(n+\tau)}$

□ Substituting this to the normalized criterion, we obtain

$$E(\tau) = \sum_{n=0}^{N-1} s^{2}(n) - \frac{\left[\sum_{n=0}^{N-1} s(n)s(n+\tau)\right]^{2}}{\sum_{n=0}^{N-1} s^{2}(n+\tau)}$$

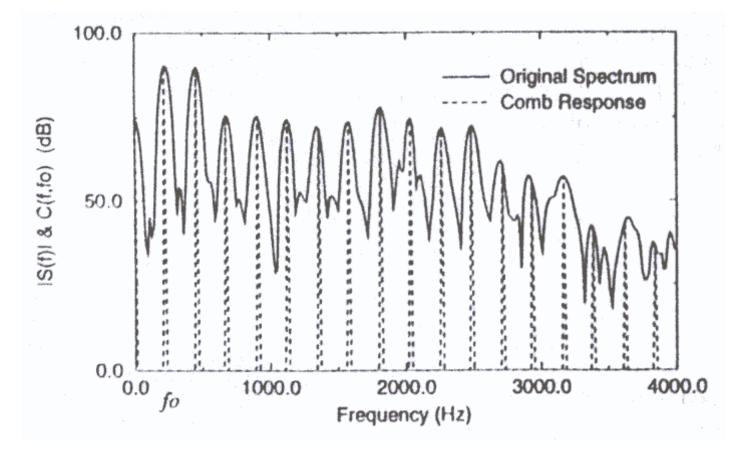
Removing the negative correlation effects, the criterion becomes to maximize

$$R(\tau) = \frac{\sum_{n=0}^{N-1} s(n) s(n+\tau)}{\sqrt{\sum_{n=0}^{N-1} s^2(n+\tau)}}$$

Basic idea

Using the harmonic structure in frequency domain
 Main drawback: high computational complexity

Harmonic peak detection method


Using comb filter in the frequency domain as in the following.That is, to maximize the following autocorrelation output.

$$A_{c}(\omega_{0}) = \frac{\omega_{0}}{\Omega_{m}} \sum_{k=1}^{\Omega_{m}/\omega_{0}} S(k\omega_{0})W(k\omega_{0}) \quad \frac{2\pi}{\tau_{\max}} \le \omega_{0} \le \frac{2\pi}{\tau_{\min}}$$

□ Here, ω_0 : fundamental freq., Ω_m : $(2\pi f_s)/2$, $W(k\omega_0)$: comb peaks

Actually, the first harmonic component is likely to disappear due to front-end filtering, therefore it is desirable to determine the period by utilizing the entire harmonics.

□ Harmonic peak detection method using comb filter

Spectrum similarity method

Comparing the reconstructed spectrum with the original speech spectrum

□ That is, to minimize the following error function.

$$E(\omega_{0}) = \sum_{m=0}^{M-1} \left(S(m) - \hat{S}(m, \omega_{0}) \right)^{2} \qquad A_{l}(\omega_{0}) = \frac{\sum_{m=a_{l}}^{b_{l}} S(m) W\left(\frac{2\pi}{M}m - l\omega_{0}\right)}{\sum_{m=a_{l}}^{b_{l}} \left| W\left(\frac{2\pi}{M}m - l\omega_{0}\right) \right|^{2}} \qquad A_{l}(\omega_{0}) = \frac{\left| \frac{M}{2\pi} \left(l - \frac{1}{2} \right) \omega_{0} \right|}{\sum_{m=a_{l}}^{b_{l}} \left| \frac{M}{2\pi} \left(l - \frac{1}{2} \right) \omega_{0} \right|} \qquad B_{l} = \left| \frac{M}{2\pi} \left(l + \frac{1}{2} \right) \omega_{0} \right| = a_{l+1} - 1$$

Spectrum similarity method

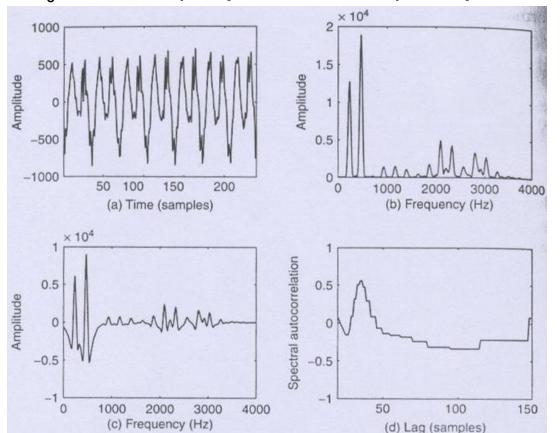
Pitch estimation using spectral autocorrelation

Redefine the normalized autocorrelation function as follows.

$$R_{T}(\tau) = \frac{\sum_{n=0}^{N-\tau-1} s(n)s(n+\tau)}{\sqrt{\sum_{n=0}^{N-\tau-1} s^{2}(n)\sum_{n=0}^{N-\tau-1} s^{2}(n+\tau)}}$$

Called normalized temporal autocorrelation (TA)

Similarly, define the normalized spectral autocorrelation (SA) function in the frequency domain.

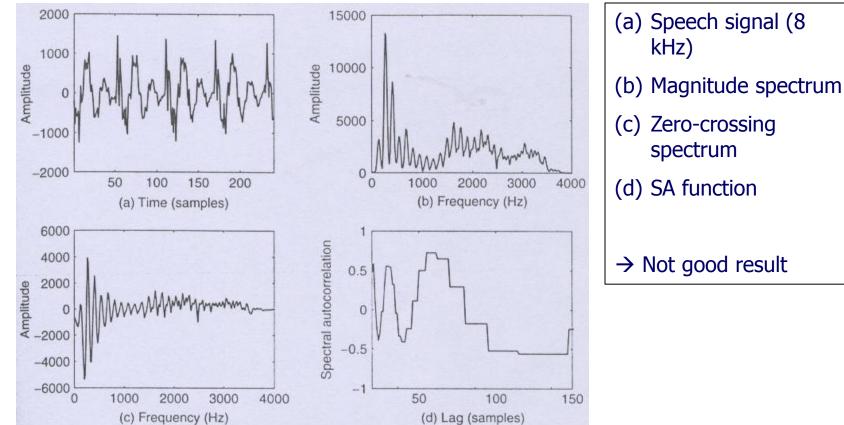

$$S(m) = A(m)e^{j\theta(m)} \text{ for } 0 \le m \le M - 1$$

$$A_{z}(m): \text{ zero-crossing spectrum}$$

$$R_{s}(\tau) = \frac{\sum_{m=0}^{\lfloor M/2 \rfloor - \omega_{\tau}} A_{z}(m)A_{z}(m + \omega_{\tau})}{\sqrt{\sum_{m=0}^{\lfloor M/2 \rfloor - \omega_{\tau}} A_{z}^{2}(m) \sum_{m=0}^{\lfloor M/2 \rfloor - \omega_{\tau}} A_{z}^{2}(m + \omega_{\tau})}} \text{ for } T_{0}^{(l)} \le \tau \le T_{0}^{(u)}$$

Example of pitch estimation using spectral autocorrelation

 \Box T_0 = 34-sample (as in female speech)

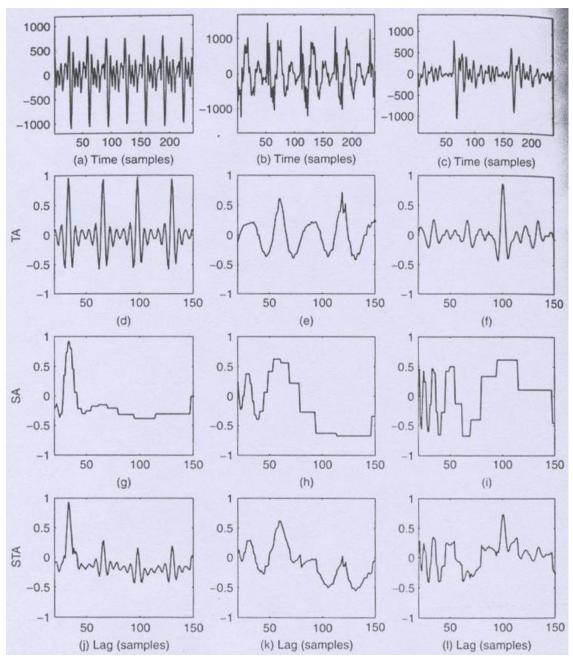


(a) Speech signal (8 kHz)(b) Magnitude spectrum(c) Zero-crossing spectrum(d) SA function

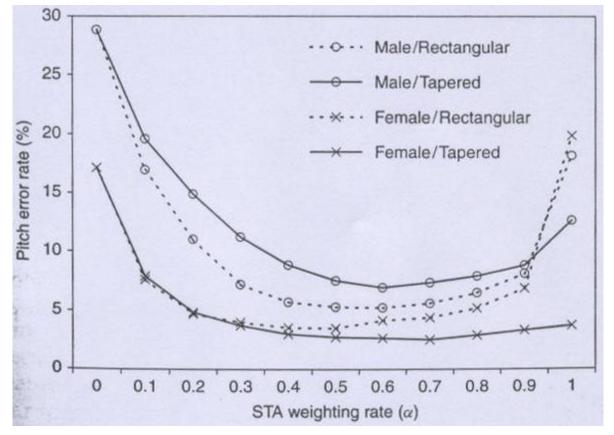
 \rightarrow Good result

Example of pitch estimation using spectral autocorrelation

 \Box T_0 = 59-sample (as in male speech)


- Analyzing the characteristics of the TA-based and SA-based PDAs, respectively,
 - □ TA-based PDA: likely to detect an unwanted pitch period multiple
 - □ SA-based PDA: likely to be pitch-halving

Compensating for the problems by combining two methods,


$$R_{ST}(\tau) = \alpha R_T(\tau) + (1 - \alpha) R_S(\tau) \quad 0 \le \alpha \le 1$$
$$\hat{T}_0 = \arg \max_{\tau} \{ R_{ST}(\tau) \}$$

□ Called the spectro-temporal autocorrelation (STA) PDA

 Comparison of TA, SA, and STA (α=0.5)
 Left: 32-sample T₀
 Middle: 59-sample T₀
 Right: 100-sample T₀

□ Analysis of the effect of the STA weighting factor α in terms of the pitch error rate

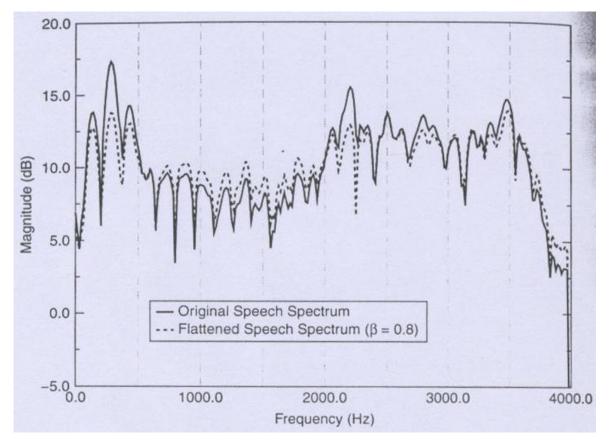
Objectives

□ To improve the pitch period estimation performance

Spectrum flattening

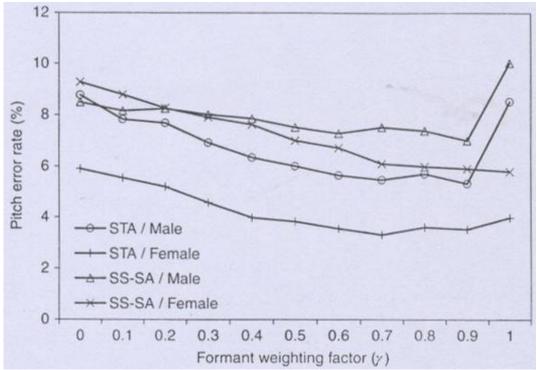
Removing the formants before pitch estimation process

□ Linear method: using LPC inverse filter

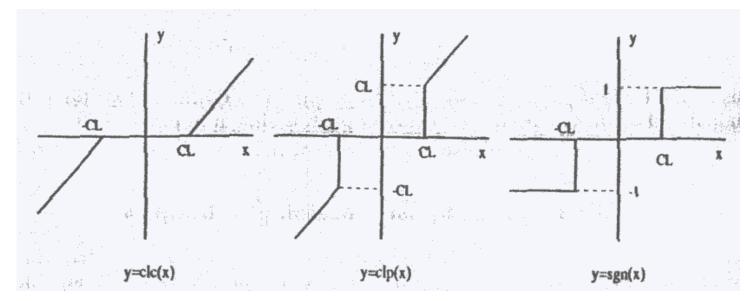

- Drawback: The fundamental frequency and the first formant of high-pitch speech (like children or female) may be overlapped.
 This may destroy the entire periodicity information in the residual signals.
- □ Solution: obtaining the intermediate signal between the original and the LPC residual (even though high computations)

$$S_f(z) = \frac{A(z)}{A(z/\gamma)} S(z) \text{ for } 0 \le \gamma \le 1$$

□ $S_f(z)$: formant-suppressed signal, A(z): inverse filter, γ : formant weighting factor


Spectrum flattening

□ Influence of the spectrum-flattening filter


Spectrum flattening

Analysis of the effect of y in terms of the pitch error rate
 Here, SS-SA is a PDA using spectral synthesis – spectral autocorrelation method.

Spectrum flattening

Non-linear method: using center clipping functions
 Several clipper functions for spectrum flattening

□Key problem: How to choose optimum clipping threshold (CL)

Pitch tracking

- Principle: To utilize continuity characteristics of pitch in restricting the search space for pitch detection
 - □ For voiced speech, the variation of pitch period is small.
- Passive way: Smoothing the pitch periods after main determination
 - Drawback: Smoothing out an original abrupt change
- Active way: Applying a path penalty to main pitch determination process
 - □ Forward tracking & backward tracking
 - For example, once a pitch period of the current frame was estimated, the search for the pitch period of the next frame may be restricted to a range of a constant weighting of the current period.

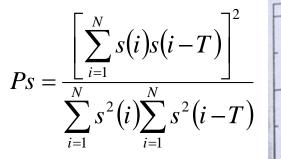
Correction of multiple-pitch errors

- Pitch determination process in time-domain PDA (e.g. autocorrelation method) probably results in those errors.
 - □ First, a maximum peak is picked.
 - Then, sub-multiple positions are checked by examining whether the ratio $R(\tau_0/i)$ ____

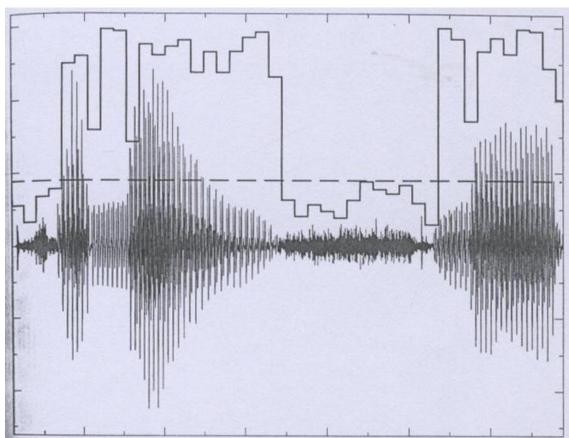
$$\frac{R(\tau_0 / \tau)}{R(\tau_0)} > TH$$

- □ That is, if any, select a minimum integer i (≥ 2) satisfying the above condition, and then determine τ_0/i as the final pitch period.
- □ There is no optimum solution. → The threshold is determined by tuning.

Correction of half-pitch errors

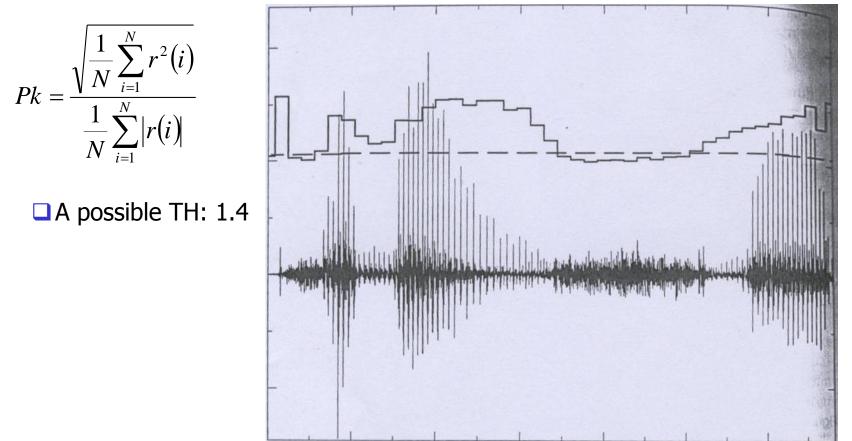

- Pitch determination process in frequency-domain PDA (e.g. spectral auto-correlation method) probably results in those errors.
- Even in the time-domain PDA, if the previous ratio test is passed wrongly, pitch halving will take place.
- □ Therefore, for the vocoder sensitive to pitch period, another solution not using pitch detector is required.

Voiced-unvoiced classification


- Classifying the frame as either voiced or unvoiced
- Hard-decision voicing (binary voicing decision)
 - Periodic similarity (high for voiced)
 - Peakiness of speech (high)
 - Zero crossing rate (low)
 - □ Spectrum tilt (high)
 - Pre-emphasized energy ratio (low)
 - □ Low-band to full-band energy ratio (high)
 - □ Frame energy (high)
- □ Soft-decision voicing (mixed decision of voicing)
 - □ MBE mixed voicing
 - Split-band mixed voicing

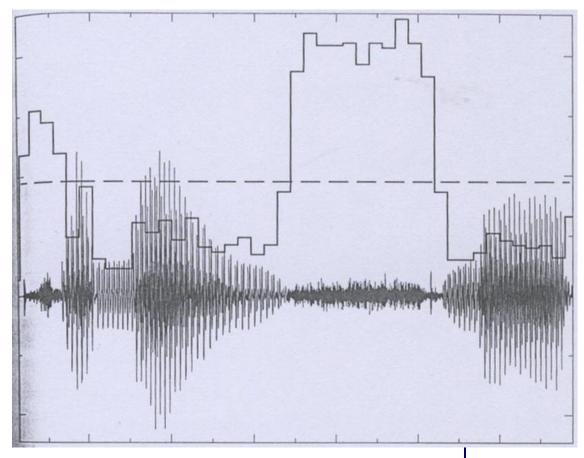
Periodic similarity

Measuring the regularity of waveform in terms of pitch period



□ *T* : pitch period□ A possible TH: 0.5

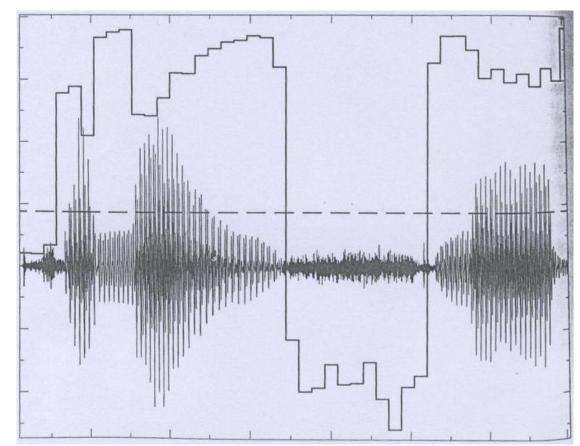
Peakiness of speech


□ Measuring the peakiness of the LPC residual

Zero crossing rate

Measuring the number of times the signal crosses the zero line

A possible TH: 60

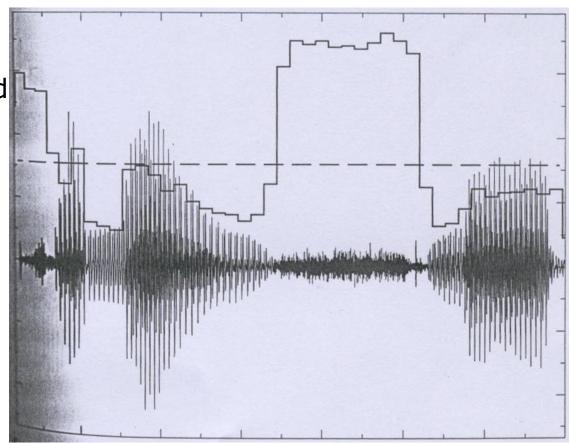

Spectrum tilt

□ Voiced speech has higher energy in low frequencies.

Measuring the first-order normalized autocorrelation

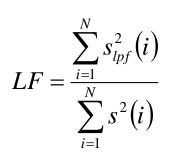
$$St = \frac{\sum_{i=1}^{N} s(i)s(i-1)}{\sum_{i=1}^{N} s^{2}(i)}$$

□ A possible TH: 0.25

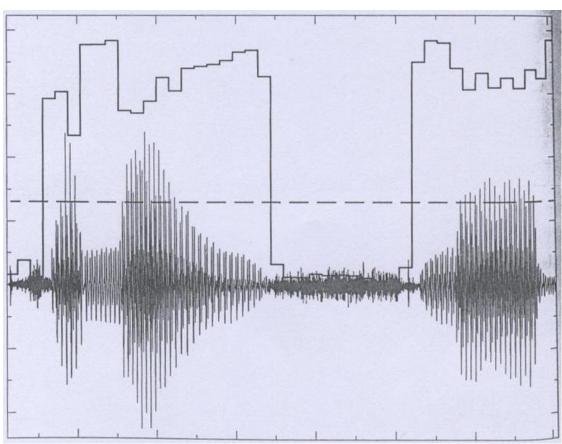


Pre-emphasized energy ratio

- □ The first-order correlation of voiced samples is much higher than that of unvoiced.
- Measuring the ratio of the pre-emphasized energy to the original


$$Pr = \frac{\sum_{i=1}^{N} |s(i) - s(i-1)|}{\sum_{i=1}^{N} |s(i)|}$$

A possible TH: 0.9



Low-band to full-band energy ratio

Measuring the energy ratio of the first 1 kHz to the full-band energy

A possible TH: 0.4

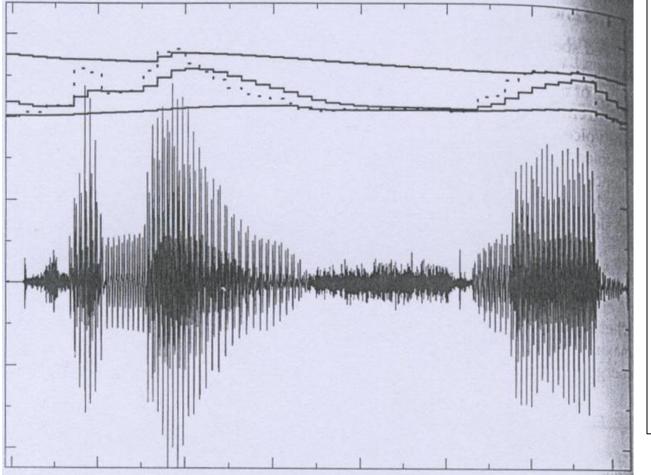
Frame energy

- Voiced speech usually has a higher energy not in the absolute value but in a relative amount.
 - □ That is, a comparison of current frame energy with the tracked maximum and minimum energies, given as follow, would useful.

 \Box $E_{\max}(n)$ can go up fast and come down slowly.

$$E_{\max}(n) = \begin{cases} \alpha E_{\max}(n-1) + (1-\alpha)E_0 & \text{if } E_0 > E_{\max}(n-1) \\ \gamma E_{\max}(n-1) + (1-\gamma)E_0 & \text{otherwise} \end{cases}$$

where E_0 : current frame energy, and typically $\alpha = 0.5$, $\gamma = 0.98$


 \Box $E_{\min}(n)$ can come down fast and go up slowly.

$$E_{\min}(n) = \begin{cases} \zeta E_{\min}(n-1) + (1-\zeta)E_0 & \text{if } E_0 < E_{\min}(n-1) \\ \beta E_{\min}(n-1) + (1-\beta)E_0 & \text{otherwise} \end{cases}$$

where typically $\zeta = 0.55$, $\beta = 0.98$

□ Tracked average energy: $E_{av}(n) = 0.75E_{av}(n-1) + 0.25E_0$

□ Frame energy

 $E_{\max}(n)$ track $E_{av}(n)$ track $E_{\min}(n)$ track Dotted: frame energy Speech waveform Decision logic: If $\{(E_0 > E_{max} - TH1) \text{ or }$ $(E_0 > E_{av})$ } Voiced, Else if $(E_0 < E_{\min} + TH2)$ Unvoiced, Else Not-sure.

Decision-making

Combined decision using the voicing indicators

□ The simplest way: majority vote

□ Better rule: weighted combination

Two-step normalization

:

To compensate for differences of each parameter from the optimum decision threshold

$$Ps' = \begin{cases} (Ps - Th_{ps})/(Ps_{max} - Th_{ps}) & \text{if } Ps > Th_{ps} \\ (Ps - Th_{ps})/(Th_{ps} - Ps_{min}) & \text{if } Ps < Th_{ps} \end{cases}$$
$$Zc' = \begin{cases} (Th_{zc} - Zc)/(Th_{zc} - Zc_{min}) & \text{if } Zc < Th_{zc} \\ (Th_{zc} - Zc)/(Zc_{max} - Th_{zc}) & \text{if } Zc > Th_{zc} \end{cases}$$

where $Th_{ps}, Th_{pk}, Th_{zc}, \cdots$ are fixed voicing thresholds

Decision-making

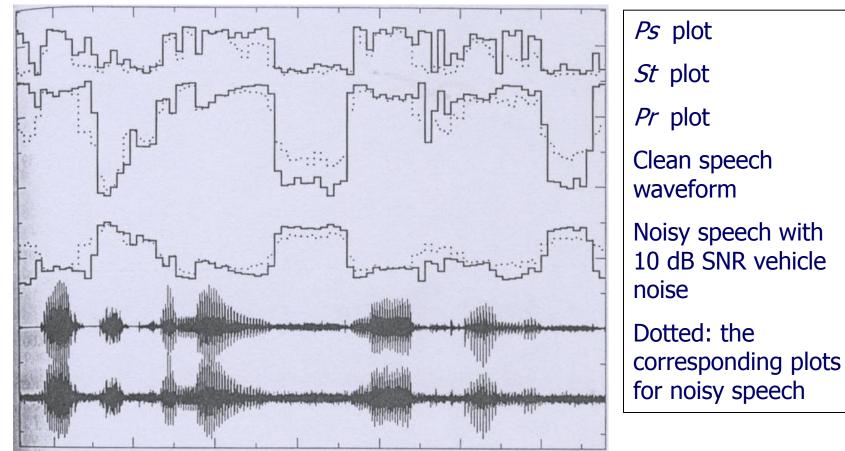
- □ Two-step normalization (cont.)
 - □ To compensate for different degrees of reliability, the overall voicing indicator *V* is

 $V = w_1 P s' + w_2 P k' + w_3 Z c' + w_4 S t' + w_5 L F' + w_6 P r' + w_7 F e'$

□ The weights are chosen according to the reliability of each indicator.

Decision

 \Box When distinctively positive \rightarrow voiced


 \Box When distinctively negative \rightarrow unvoiced

 \Box If close to zero \rightarrow unsure case \rightarrow further checking

□ Works very well with clean speech without background noises

Problems

- When speech is mixed with background noise, the thresholds may not be valid anymore.
- □ When there is a transition from V to UV or vice versa even in clean speech,

Soft-decision voicing

□ Alternative approach is to use a soft-decision voicing.

□ A frequency-domain voicing-decision process using the harmonic and random structures of voiced and unvoiced sounds, respectively

Two methods

- Multi-band excitation (MBE) mixed voicing
- □ Split-band mixed voicing

Voicing decision

□ Define the normalized distance D_k between the original and the estimated speech spectra in each frequency band k.

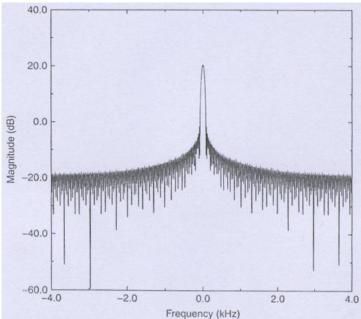
$$D_{k} = \frac{\sum_{m=a_{k}}^{b_{k}} |S(m) - \hat{S}(m, \omega_{0})|^{2}}{\sum_{m=a_{k}}^{b_{k}} |S(m)|^{2}}$$

 $\square \omega_0$: the refined fundamental frequency after a post-processing

 $\Box a_k, b_k$: the first and last harmonic freq. bin indices in the k^{th} band $\Box S(m)$: the original speech spectrum

 $\square \hat{S}(m, \omega_0)$: the reconstructed speech spectrum

□ Bandwidth of each band: a multiple (e.g. 3) of ω_0


□ Thus, number of bands is dependent on the pitch period of the frame.

Voicing decision

■ The reconstructed speech spectrum is given by $\hat{S}(m, \omega_0) = \sum_{l=1}^{L} A_l(\omega_0) W_{l\omega_0}(m), \quad \lceil a_l \rceil \le m < \lceil b_l \rceil$ $\square a_l = (l - 0.5) \omega_0, \quad b_l = (l + 0.5) \omega_0$ $\square L : \text{ the number of harmonics within the 4 kHz bandwidth}$

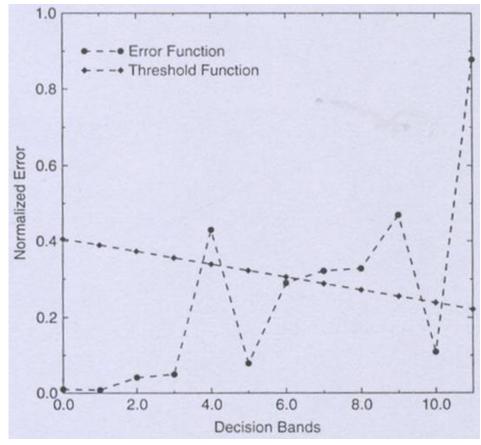
W(*m*): the frequency response of a suitable window that will be centered at the *I*th harmonic of *w*₀
 *A*_{*l*}(*w*₀): the *I*th harmonic amplitude

$$A_{l}(\omega_{0}) = \frac{\sum_{m=\lceil a_{l}\rceil}^{\lceil b_{l}\rceil} S(m) W_{l\omega_{0}}(m)}{\sum_{m=\lceil a_{l}\rceil}^{\lceil b_{l}\rceil} |W_{l\omega_{0}}(m)|^{2}}$$

Voicing decision

Compare with the adaptive threshold from listening tests

 $\Delta_k(\omega_0) = (\alpha + \beta \omega_0)[1.0 - \varepsilon(k-1)\omega_0]M(E_0, E_{\text{av}}, E_{\text{min}}, E_{\text{max}})$


- $\Box \alpha = 0.35$, $\beta = 0.557$, $\varepsilon = 0.4775$ are the factors that give good subjective quality.
- $\square M()$ is the adaptation factor that controls the decision threshold for V/UV decisions with $\mu = 0.0075$,

$$M(E_0, E_{\text{av}}, E_{\text{min}}, E_{\text{max}}) = \begin{cases} 0.5, & E_{\text{av}} < 200\\ (E_0 + E_{\text{min}})(2E_0 + E_{\text{max}})\\ (E_0 + \mu E_{\text{max}})(E_0 + E_{\text{max}}), & E_{\text{av}} \ge 200 \text{ and } E_{\text{min}} < \mu E_{\text{max}}\\ 1.0, & \text{otherwise} \end{cases}$$

■ So, if $D_k < \Delta_k(\omega_0)$, then the band is regarded as voiced, elsewhere as unvoiced.

Voicing decision

Typical example of the error and threshold functions for one frame

From the threshold function, since ω_0 in male speech is relatively low, a lower band of male speech will be likely to be declared voiced, and a higher band of female speech will be likely to be declared unvoiced.

Split-band mixed voicing

- One drawback of MBE mixed voicing
 - □ More than one bit (12 bits in the previous) will be needed.
- Observation from experiments
 - □ If a spectrum contains an unvoiced band between two voiced bands, the unvoiced signal in the middle is usually small.
 - □ Thus if it is declared as voiced, subjectively it would not make much difference in speech quality.
- □ So, simply split the full band into low frequency band for voiced and high frequency band for unvoiced. → Split-band mixed voicing
 - □ Based on a more reliable measure such as voicing likelihood
 - □ Simply transmit the quantized voicing cut-off frequency.
 - Only 4 bits for the previous case

Summary of lecture

Pitch estimation

- Detection of pitch period
- Time domain methods
 AMDF, ACF, N-ACF
- Frequency domain methods
 Harmonic peak detection method, Spectrum similarity method
- □ Time- and frequency-domain methods
 - □ Spectro-temporal autocorrelation (STA) PDA
- Pre- and post-processing techniques
 - Spectrum flattening, Pitch tracking, Correction of multiple- or half-pitch errors
- Voiced-unvoiced classification
 - Hard-decision voicing
 - Soft-decision voicing