Speech and Audio Coding Theory
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Introduction

 Three main speech features
1 Spectral envelope: from short-term correlation - LSFs

1 Pitch (period and gains): from long-term correlation
[ Especially for pitch period
Used in pitch predictor, to reduce the search space for LTP parameters (gains)
Used in the generation of excitation signal for a voiced region

) Voiced-unvoiced (V-UV) classification

dVoiced: high energy, periodicity

If incorrectly classified as unvoiced, the synthesized speech will sound rough
and less intelligible.

[ Unvoiced: like random noise with no periodicity

If incorrectly classified as voiced, the synthesized speech will sound
annoyingly metallic or robotic.

dTransition region between voiced and unvoiced, or inherently mixed (i.e.,
/d])
A soft decision voicing: frequency-band-dependent V-UV classification
The soft decision is usually carried out in the frequency domain.



Pitch estimation

[ Why accurate and reliable pitch period estimation is difficult?
) No perfect train of periodic pulses, even in voiced regions
dslowly evolves from cycle to cycle
) Onset and offset regions of voiced speech are not stationary.

1 In some parts, the speech may contain a mixture of voiced
and unvoiced signals.

1 Interaction with 15t formant as in the child or female speech
) Background ambient noise

[ Pitch determination algorithms (PDA) based on
J Time domain properties

) Frequency domain properties
1 Both the time and frequency domain properties



Time domain methods for PD

 Idea: using similarity of the waveform in time domain
 AMDF (Average Magnitude Difference Function) PDA

TR . N-1
 Definition: A(r):%Z\S(n)—S(rHTX
n=0

O Anti—correlation measure (dissimilarity measure)

1 Merits

O Simple computation

d Not useful with DSPs optimized for multiplications and additions,
but still useful with ASICs having no arithmetic component.

d Smaller dynamic range due to no multiplications
Bounded to zero

d Narrower valleys for stationary signals



Time domain methods for PD

 AMDF (Average Magnitude Difference Function) PDA
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Time domain methods for PD

. Auto-correlation PDA
J Definition
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) Normalized criterion reflecting the non—stationary effect of
pitch
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Time domain methods for PD

1 Auto-correlation PDA

O If the signal is stationary (that is, £s%(n) = £s2(n + 7)), the
similarity function becomes E(z)=R(0)-R(z)

N-1

QHere, R(z)=Y_s(n)s(n+7)

n=0

 Therefore, minimizing Z(z) corresponds approximately to
maximizing R(z).

1 Merits

L Easy to implement in real—-time with DSPs due to its regular form
of multiplications

J Phase insensitive



Time domain methods for PD

1 Auto-correlation PDA (Normalized version)
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Time domain methods for PD

1 Auto-correlation PDA

) Generalized similarity measure
1

)= 1 {Ss)-stn- o) |

dFrom experiments, &=2 is best.

d Since it corresponds to the auto—correlation method, it means
that auto—correlation method is superior to AMDF method.



- Drawback of the direct auto-corre
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Time domain methods for PD
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(a) Original speech
« Window taken on an onset region

(b) Direct autocorrelation function
« Difficult to set an appropriate TH

(c) Normalized autocorrelation
function

» Always a consistent pattern
> Decreasing peaks
» Bounded to zero

« Relatively easy to set the TH




Time domain methods for PD

1 Normalized autoN-_lcorreIation method
d From E(r):iZ[S(n)—,&:(n+r)]2 and JE(1)/68 = 0,

) Substituting this to the normalized criterion, we obtain

E(r)=3 s(n)- [?Z%:Sf”)s(n + 7)}

J Removing the negative correlation > s(n)s(n+z)

effects, the criterion becomes R(r)= “:ON
to maximize Zsz(nﬂ)




Frequency domain methods for PD

] Basic idea
J Using the harmonic structure in frequency domain
) Main drawback: high computational complexity

 Harmonic peak detection method

) Using comb filter in the frequency domain as in the following.
A That 1s, to maximize the following autocorrelation output.

w, L 27 27
Ac(a)o)ZQ— Zs(kwo)w(ka)o) —— S o, e
m k=1 max min

dHere, ay: fundamental freq., @, (2zf)/2, W(ka,): comb peaks

1 Actually, the first harmonic component is likely to disappear
due to front—end filtering, therefore it is desirable to
determine the period by utilizing the entire harmonics.



Frequency domain methods for PD

[ Harmonic peak detection method using comb filter
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Frequency domain methods for PD

A Spectrum similarity method

) Comparing the reconstructed spectrum with the original
speech spectrum

' That 1s, to minimize the following error function.

E(a) = le(s<m>—é<m,wo))2

SA(m’a)o) =

Ao Zm)
A(wow(iﬂ—”m—woj

Atw( 2t

iS(m)W(IZ\;Zm—Ia)Oj

A (@) = m:albl
Z (IZ\;Izm — Ia)oj

m=a|
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Frequency domain methods for PD

 Spectrum similarity method
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Time- and frequency-domain methods for PD

[ Pitch estimation using spectral autocorrelation
] Redefine the normalized autocorrelation function as follows.

N-7-1
;S(n)s(n”) Called normalized temporal
RO = —— autocorrelation (TA)
JZsz(n) D s*(n+1)
n=0 n=0

1 Similarly, define the normalized spectral autocorrelation (SA)
function in the frequency domain.

S(m)= A(me!”™ for 0<m<M -1 0. =|M/z+05]
A, (m): zero—crossing spectrum
(M /2w,

> AMAM+o)

M /2 |-, M /2 -,
\/ ZAf(m) ZAf(m+wT)
m=0 m=0

T and T\ : lower and upper limits

Ry (7) = for T <7 <T"



Time- and frequency-domain methods for PD

[ Example of pitch estimation using spectral autocorrelation
1 7, = 34-sample (as in female speech)
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Time- and frequency-domain methods for PD

[ Example of pitch estimation using spectral autocorrelation
1 7, = 59-sample (as in male speech)
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Time- and frequency-domain methods for PD

 Analyzing the characteristics of the TA-based and SA-based
PDAs, respectively,
1 TA-based PDA: likely to detect an unwanted pitch period multiple
1 SA-based PDA: likely to be pitch-halving

d Compensating for the problems by combining two methods,
R (r)=0aR, (r)+(1-a)Rs(r) 0<a<1
-Ico =arg maX{RST (T)}

T

1 Called the spectro-temporal autocorrelation (STA) PDA



Time- and
frequency-
domain methods
for PD

[ Comparison of TA,
SA, and STA (a=0.5)
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Time- and frequency-domain methods for PD

1 Analysis of the effect of the STA weighting factor a in terms
of the pitch error rate
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Pre- and post-processing techniques

1 Objectives

J To improve the pitch period estimation performance

[ Spectrum flattening
) Removing the formants before pitch estimation process

) Linear method: using LPC inverse filter

d Drawback: The fundamental frequency and the first formant of
high-pitch speech (like children or female) may be overlapped.
- This may destroy the entire periodicity information in the
residual signals.

1 Solution: obtaining the intermediate signal between the original
and the LPC residual (even though high computations)

5,(2)=—2®) 5(2) for 0<y <1
Az/y)
S/(2): formant-suppressed signal, A(2): inverse filter, y ! formant
weighting factor




Pre- and post-processing technigues

[ Spectrum flattening
1 Influence of the spectrum-flattening filter
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Pre- and post-processing techniques

[ Spectrum flattening

1 Analysis of the effect of y in terms of the pitch error rate

dHere, SS-SA is a PDA using spectral synthesis — spectral
autocorrelation method.
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Pre- and post-processing techniques

 Spectrum flattening

) Non-linear method: using center clipping functions
L Several clipper functions for spectrum flattening

€L

y

A

/

y=cle(x)

L X

y=clp(x)

y=sgn(x)

A Key problem: How to choose optimum clipping threshold (CL)



Pre- and post-processing techniques

 Pitch tracking

) Principle: To utilize continuity characteristics of pitch in
restricting the search space for pitch detection

dFor voiced speech, the variation of pitch period is small.
J Passive way: Smoothing the pitch periods after main
determination
dDrawback: Smoothing out an original abrupt change
J Active way: Applying a path penalty to main pitch
determination process
A Forward tracking & backward tracking

A For example, once a pitch period of the current frame was
estimated, the search for the pitch period of the next frame may
be restricted to a range of a constant weighting of the current
period.



Pre- and post-processing technigues

[ Correction of multiple-pitch errors

) Pitch determination process in time—domain PDA (e.g. auto-
correlation method) probably results in those errors.

A First, a maximum peak 1s picked.

' Then, sub—multiple positions are checked by examining whether

the ratio R _r
Rz, /1) >TH
R(To)

dThat is, if any, select a minimum integer 7 (= 2) satisfying the
above condition, and then determine 7,/1 as the final pitch
period.

A There 1s no optimum solution. 2 The threshold is determined by
tuning.



Pre- and post-processing techniques

[ Correction of half-pitch errors

) Pitch determination process in frequency—domain PDA (e.g.
spectral auto—correlation method) probably results in those
errors.

1 Even in the time—domain PDA, if the previous ratio test is
passed wrongly, pitch halving will take place.

) Therefore, for the vocoder sensitive to pitch period, another
solution not using pitch detector i1s required.



Voiced-unvoiced classification

[ Classifying the frame as either voiced or unvoiced
[ Hard-decision voicing (binary voicing decision)

1 Periodic similarity (high for voiced)

) Peakiness of speech (high)

] Zero crossing rate (low)

1 Spectrum tilt (high)

1 Pre-emphasized energy ratio (low)

) Low-band to full-band energy ratio (high)

1 Frame energy (high)

 Soft-decision voicing (mixed decision of voicing)
) MBE mixed voicing
1 Split-band mixed voicing



Hard-decision voicing

1 Periodic similarity
1 Measuring the regularity of waveform in terms of pitch period
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Hard-decision voicing

[ Peakiness of speech
1 Measuring the peakiness of the LPC
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Hard-decision voicing

 Zero crossing rate

] Measuring the number of times the signal crosses the zero line

A possible TH: 60
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Hard-decision voicing

 Spectrum tilt
] Voiced speech has higher energy in low frequencies.

] Measuring the SIRE RN e U SIS S B
first-order normalized _ ~
autocorrelation =2 5

- _J -4‘:

is(i)s(i—l) : i i
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Hard-decision voicing

[ Pre-emphasized energy ratio
1 The first-order correlation of voiced samples is much higher than

that of unvoiced. e e R S e [ P
0 Measuring the ratio | H“M'—“L
of the pre-emphasized|*
energy to the original £

Ss-si-y b

Pr

A possible TH: 0.9




Hard-decision voicing

 Low-band to full-band energy ratio
1 Measuring the energy ratio of the first 1 kHz to the full-band

energy SRR s
N ) i
Zslpf(l) [T

LF = _
>s°(i) .

A possible TH: 0.4




Hard-decision voicing

J Frame energy

] Voiced speech usually has a higher energy not in the absolute value
but in a relative amount.

dThat is, a comparison of current frame energy with the tracked
maximum and minimum energies, given as follow, would useful.

E...(n) can go up fast and come down slowly.
E ()= {aEmax (n-1)+(1-a)E, ifE,>E,_(n-1)
e e (N=1)+(1—y)E, otherwise
where E, : current frame energy, and typicallya = 0.5, y =0.98

E...(n) can come down fast and go up slowly.

£ (n)= En(N-D+L-)E, if Ey <E(n-1)
Y IBEmin(n_l)+(1_ﬂ)E0 otherwise

where typically =0.55, 5 =0.98
Tracked average energy: E, (n)=0.75E, (n—1)+0.25E,



J Frame energy

Hard-decision voicing

T

E. . (n) track

|

E, (n) track
E..(n) track

Dotted: frame energy

Speech waveform

Decision logic:

If {(£y> Em— THI) OF
(£&>E£,)} Voiced,

Else if (£y<Epint TH2)
Unvoiced,

Else Not-sure.




Hard-decision voicing

[ Decision-making
1 Combined decision using the voicing indicators
A The simplest way: majority vote
 Better rule: weighted combination
] Two-step normalization
dTo compensate for differences of each parameter from the optimum
decision threshold
(Ps—Thy, J/(Ps,, ~Th,,) if Ps>Th
Ps'=
(Ps—Th, )/(Th,.—Ps,..) if Ps<Th

mi

) if Zc<Th,
(Th —Zc)/(Zc ~Th,) if Zc>Th,

where Th ,Th ., Th,.,---are fixed voicing thresholds



Hard-decision voicing

A Decision-making
] Two-step normalization (cont.)
dTo compensate for different degrees of reliability, the overall voicing
indicator V' is
V =w,Ps"+w,Pk’'+w,Zc"+w,St"+ wW,LF"+w,Pr’ +w, Fe'
The weights are chosen according to the reliability of each indicator.
] Decision
dWhen distinctively positive > voiced
dWhen distinctively negative - unvoiced
A If close to zero - unsure case - further checking

1 Works very well with clean speech without background noises



Hard-decision voicing

d Problems

- When speech is mixed with background noise, the thresholds may not be
valid anymore.

1 When there is a transition from V to UV or vice versa even in clean speech,

BT 1 ‘ RS I RE e i i

Ps plot
St plot
Pr plot

Clean speech
waveform

Noisy speech with
10 dB SNR vehicle
noise

Dotted: the
corresponding plots
for noisy speech




Soft-decision voicing

1 Alternative approach is to use a soft-decision voicing.

1 A frequency-domain voicing-decision process using the harmonic
and random structures of voiced and unvoiced sounds, respectively

. Two methods

) Multi-band excitation (MBE) mixed voicing
1 Split-band mixed voicing



MBE mixed voicing

[ Voicing decision

J Define the normalized distance 2, between the original and
the estimated speech spectra in each frequency band 4.

3| S(m)-S(m, ) [

D, ="
2.1

m:ak

@, the refined fundamental frequency after a post-processing
da,, b, the first and last harmonic freq. bin indices in the £/ band
3 .S(m): the original speech spectrum

| §(m,w0)i the reconstructed speech spectrum

A Bandwidth of each band: a multiple (e.g. 3) of @,
Thus, number of bands is dependent on the pitch period of the frame.



MBE mixed voicing

[ Voicing decision
1 The reconstructed speech spectrum is given by
n L
S(M, ) =Y AW, (M), [a ]<m<[h|
1=1

Qda,=U-05a,, b= U+0.5a,
d L : the number of harmonics within the 4 kHz bandW1dth
Q Mm): the frequency response of a R

suitable window that will be

centered at the /7 harmonic of ),

0.0 |-

dAfwy): the /7 harmonic amplitude

(b ]

ZS(m)vv.w (m) .
A (@) ="

Z|vv.a,0 (m) [

m=| a, |

Magnitude (dB)

-20.0

60.0 ——— . —_—
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MBE mixed voicing

 Voicing decision
) Compare with the adaptive threshold from listening tests

A(@y) = (@ + Pan)L.O—s(k—D@y M (Ey, E,. E

av! min’Emax)

Qa=0.35 g=0.557, ¢=0.4775 are the factors that give good
subjective quality.

QM () is the adaptation factor that controls the decision threshold
for V/UV decisions with gz = 0.0075,

0.5, E, <200
M(E,, E.,  Erins Evax) =3 (Eq + Erun )(2Eo + By ) , E, =200and E;, < uE,,,
(EO + /UEmax)(EO + Emax)
1.0, otherwise

dSo, if D, < A @,), then the band is regarded as voiced, elsewhere
as unvoiced.



MBE mixed voicing

[ Voicing decision

. Typical example of the error and threshold functions for one

frame
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From the threshold function,
since @, in male speech is
relatively low, a lower band
of male speech will be likely
to be declared voiced, and a
higher band of female speech
will be likely to be declared

unvoiced.




Split-band mixed voicing

[ One drawback of MBE mixed voicing
] More than one bit (12 bits in the previous) will be needed.

1 Observation from experiments

1 If a spectrum contains an unvoiced band between two voiced
bands, the unvoiced signal in the middle is usually small.

) Thus if it is declared as voiced, subjectively it would not make
much difference in speech quality.

[ So, simply split the full band into low frequency band for
voiced and high frequency band for unvoiced. = Split-band
mixed voicing

] Based on a more reliable measure such as voicing likelihood

) Simply transmit the quantized voicing cut-off frequency.
[ Only 4 bits for the previous case



Summary of lecture

 Pitch estimation
1 Detection of pitch period

) Time domain methods
0 AMDF, ACF, N-ACF

] Frequency domain methods
[ Harmonic peak detection method, Spectrum similarity method

1 Time- and frequency-domain methods
 Spectro-temporal autocorrelation (STA) PDA

1 Pre- and post-processing techniques

[ Spectrum flattening, Pitch tracking, Correction of multiple- or half-pitch
errors

1 Voiced-unvoiced classification
1 Hard-decision voicing
1 Soft-decision voicing



