Speech and Audio Coding Theory

Contents of lecture
\square Alternative representations of LPC parameters
\square PARCOR, LAR, Inverse Sine Function, LSF
\square LPC-to-LSF transformation
\square Basic formulation
\square Various methods for getting the LSF parameters
\square LSF-to-LPC transformation
\square Summary of LSF properties

LPC parameter quantization for efficient transmission

\square Objectives
\square To encode the LPC parameters with as few bits as possible without introducing additional spectral distortion, while maintaining the subjective transparency (quality)
\square From results of conventional coding research (before 1990's)
\square Above 9.6 kbps: good quality but high coding capacity with 40-50 bits LPC scalar quantisation.
\square Below 4.8 kbps: low coding capacity but reasonable quality with $10-$ bits LPC codebook VQ.
Another LPC parameter quantisation scheme was required for 4.8-9.6 kbps coding.
\square Line spectrum pairs (LSP) or line spectral frequency (LSF) quantisation having a number of advantages.

Alternative representation of LPC parameters

\square LPC synthesis filter: $H(z)=\frac{1}{1-\sum_{i=1}^{p} \alpha_{i} z^{-i}}$
\square Stable if all the roots (poles) of $H(z)$ are within the unit circle (or minimum phase)
\square If α_{i} is directly quantized, it is hard to check for stability. IIf we want to check the stability, we must get the poles and evaluate whether the roots are inside unit circle.
-But, it requires much computation, so it is desirable to avoid this procedure.
\square Alternative: PARCOR coefficient k_{i}

A/ternative representation of LPC parameters

\square PARCOR coefficient from Durbin's algorithm
\square LPC-to-PARCOR transformation for the use in encoder

$$
\begin{aligned}
& a_{j}^{p}=\alpha_{j} \quad 1 \leq j \leq p \\
& k_{p}=a_{p}^{p}=\alpha_{p}
\end{aligned}
$$

For $i=p, p-1, \ldots, 1$

$$
\begin{aligned}
& a_{j}^{i-1}=\left(a_{j}^{i}+a_{i}^{i} a_{i-j}^{i}\right) /\left(1-k_{i}^{2}\right), \quad 1 \leq j \leq i-1 \\
& k_{i-1}=a_{i-1}^{i-1}
\end{aligned}
$$

\square PARCOR-to-LPC transformation for the use in decoder

$$
\begin{aligned}
\text { For } i & =1,2, \ldots, p \\
a_{i}^{i} & =k_{i} \\
a_{j}^{i} & =a_{j}^{i-1}-k_{i} a_{i-j}^{i-1}, \quad 1 \leq j \leq i-1 \\
\alpha_{j} & =a_{j}^{p}, \quad 1 \leq j \leq p
\end{aligned}
$$

A/ternative representation of LPC parameters

\square Property of PARCOR coefficient

\square If $\left|k_{i}\right| \leq 1.0$, the LPC filter is stable.
\square Distribution of PARCOR parameters (k_{1} to k_{6})

A/ternative representation of LPC parameters

\square Property of PARCOR coefficient (cont.)
\square Distribution of PARCOR parameters (k_{7} to k_{10})

\square Non-flat spectral sensitivity: Values of k_{1} and k_{2} near 1 require more quantization accuracy.

A/ternative representation of LPC parameters

\square Non-linear transformation of PARCOR coefficient
\square Log area ratio (LAR) (motivated from lossless tube model)

- PARCOR-to-LAR

$$
\begin{aligned}
& g_{i}=\log \left(\frac{1-k_{i}}{1+k_{i}}\right), \quad 1 \leq i \leq p \\
& k_{i}=\left(\frac{1-10^{g_{i}}}{1+10^{g_{i}}}\right), \quad 1 \leq i \leq p
\end{aligned}
$$

A/ternative representation of LPC parameters

\square Non-linear transformation of PARCOR coefficient (cont.)
\square Inverse sine (IS) function

- PARCOR-to-IS

$$
s_{i}=\sin ^{-1}\left(k_{i}\right), \quad 1 \leq i \leq p
$$

- IS-to-PARCOR

$$
k_{i}=\sin \left(s_{i}\right), \quad 1 \leq i \leq p
$$

Alternative representation of LPC parameters

\square Drawbacks of the above parameters (even though flatter spectral sensitivity)
\square In minimizing spectral distortion, too many bits (about 4 bits/coefficient) are required for coding the LPC parameters. \square So, in coding below 8 kbps , the remained bits are not enough for coding the pitch period, etc.
\square The frame-to-frame correlation of LPC parameters is not highlighted, so we cannot further reduce bit-rate by rejecting the redundancies in frequency domain.
\square Another good candidate: LSF proposed by Itakura
\square Encode speech spectral information in the frequency domain
\square Easy to incorporate well-known spectral features
\square Possible to interpolate the parameters in the level of frame-to-frame

Definition of LSF

\square Derivation of LSF
\square All-pole synthesis filter: $H(z)=1 / A_{p}(z)$
\square Here,

$$
A_{p}(z)=1+\sum_{k=1}^{p} \alpha_{k} z^{-k}
$$

\square From the PARCOR relations, we know that

$$
\begin{aligned}
& e^{(i)}(m)=e^{(i-1)}(m)-k_{i} b^{(i-1)}(m-1) \\
& b^{(i)}(m)=b^{(i-1)}(m-1)-k_{i} e^{(i-1)}(m)
\end{aligned}
$$

\square Therefore, substituting p to i in the equations and transforming into z-domain, we can get the followings,

$$
\begin{aligned}
& A_{p}(z)=Z\left[e^{(p)}(m)\right] / S(z)=A_{p-1}(z)-k_{p} V_{p-1}(z) z^{-1} \\
& V_{p}(z)=Z\left[b^{(p)}(m)\right] / S(z)=V_{p-1}(z) z^{-1}-k_{p} A_{p-1}(z)
\end{aligned}
$$

Definition of LSF

\square Derivation of LSF (cont.)

\square Here, let $B_{p}(z)=z^{-1} V_{p}(z)$
\square Then, $V_{p}(z)=z B_{p}(z)$
\square Using this relation, we obtain that

- $A_{p-1}(z)=A_{p}(z)+k_{p} B_{p-1}(z)$
$\square B_{p}(z)=z^{-1} B_{p-1}(z)-k_{p} z^{-1} A_{p-1}(z)=z^{-1}\left[B_{p-1}(z)-k_{p} A_{p-1}(z)\right]$
\square Here, $A_{0}(z)=1$ and $B_{0}(z)=Z^{-1} A_{0}\left(Z^{-1}\right)=Z^{-1}$ since

$$
\begin{aligned}
& A_{p}(z)=1+\sum_{k=1}^{p} \alpha_{k} z^{-k} \\
& B_{p}(z)=z^{-1} V_{p}(z)=z^{-1} z^{-p} A_{p}\left(z^{-1}\right)=z^{-(p+1)} A_{p}\left(z^{-1}\right)
\end{aligned}
$$

Definition of LSF

\square PARCOR structure of LPC synthesis

Definition of LSF

\square From the figure,
\square Transfer function from X to $\mathrm{Y}: A_{0}(z) / A_{p}(z)=1 / A_{p}(z)=H_{p}(z)$
\square Transfer function from Y to $\mathrm{Z}: B_{p}(z) / A_{0}(z)=B_{p}(z) / 1=B_{p}(z)$
\square Transfer function from X to $\mathrm{Z}=H_{p}(z) * B_{p}(z)=B_{p}(z) / A_{p}(z)=$ $R_{p}(z)$: Ratio filter
\square In the viewpoint of an acoustic lossless tube model, ロPARCOR coefficients = Reflection coefficients
\square Consider a pair of artificial boundary conditions
\square Completely open at glottis: $k_{p+1}=1$
\square Completely closed at glottis: $k_{p+1}=-1$
$\square=>$ perfectly lossless tube model
$\square \Rightarrow$ Each resonance value becomes infinite. => The spectrum of distributed energy is concentrated on several line spectra.

Calculation of the LSFs

\square If the PARCOR filter is stable and the order is even, then $A_{p}(z)$ may be decomposed into two transfer functions each with even symmetry and odd symmetry properties.
\square That is, the transfer functions for $H(z)$ become $1 / P_{p+1}(z)$ or $1 / Q_{p+1}(z)$ such that

$$
\begin{aligned}
& \text { For } k_{p+1}=1, \quad P_{p+1}(z)=A_{p}(z)-B_{p}(z)(\text { Difference filter }) \\
& \text { For } k_{p+1}=-1, \quad Q_{p+1}(z)=A_{p}(z)+B_{p}(z)(\text { Sum filter })
\end{aligned}
$$

\square Therefore,

$$
\Rightarrow A_{p}(z)=\frac{1}{2}\left[P_{p+1}(z)+Q_{p+1}(z)\right]
$$

\square And, since

$$
B_{p}(z)=z^{-(p+1)} A_{p}\left(z^{-1}\right)
$$

Calculation of the LSFs

\square (cont.)

- $\quad P_{p+1}(z)=A_{p}(z)-z^{-(p+1)} A_{p}\left(z^{-1}\right)$

$$
\begin{aligned}
& =1+\left(\alpha_{1}-\alpha_{p}\right) z^{-1}+\ldots+\left(\alpha_{p}-\alpha_{1}\right) z^{-p}-z^{-(p+1)} \\
& =z^{-(p+1)} \prod_{i=1}^{p+1}\left(z+a_{i}\right)
\end{aligned}
$$

- $\quad Q_{p+1}(z)=A_{p}(z)+z^{-(p+1)} A_{p}\left(z^{-1}\right)$

$$
\begin{aligned}
& =1+\left(\alpha_{1}+\alpha_{p}\right) z^{-1}+\ldots+\left(\alpha_{p}+\alpha_{1}\right) z^{-p}+z^{-(p+1)} \\
& =z^{-(p+1)} \prod_{i=1}^{p+1}\left(z+b_{i}\right)
\end{aligned}
$$

Calculation of the LSFs

\square (cont.)
\square Since $k_{p+1}= \pm 1$, the order of $P_{p+1}(z)$ and $Q_{p+1}(z)$ can be reduced as follows.

$$
\begin{aligned}
\square P^{\prime}(z) & =\frac{P_{p+1}(z)}{(1-z)}\left(-z^{p+1}\right) \\
& =A_{0} z^{p}+A_{1} z^{(p-1)}+\ldots+A_{p} \\
Q^{\prime}(z) & =\frac{Q_{p+1}(z)}{(1+z)} \cdot z^{p+1} \\
& =B_{0} z^{p}+B_{1} z^{(p-1)}+\ldots+B_{p}
\end{aligned}
$$

\square Here, $A_{0}=1 \quad B_{0}=1$

$$
A_{k}=\left(\alpha_{k}-\alpha_{p+1-k}\right)+A_{k-1}
$$

$$
B_{k}=\left(\alpha_{k}+\alpha_{p+1-k}\right)-B_{k-1} \text { for } k=1, \ldots, p
$$

$$
A_{p}=1 \quad B_{p}=1
$$

Characteristics of LSFs

\square Physical meaning and property of LSFs
\square LSFs: Angular positions of the roots of $P^{\prime}(z)$ and $Q^{\prime}(z)$ with 0 $\leq \omega_{i} \leq \pi$.
\square The roots are on the unit circle.
\square The roots have complex conjugate pairs.
\square The roots alternate with each other on the unit circle, that is, $0 \leq \omega_{q, 0}<\omega_{p, 0}<\omega_{q, 1}<\omega_{p, 1}<\ldots<\omega_{p, p / 2-1} \leq \pi$

LPC-to-LSF transformation

\square Complex root method
\square The following equations can be solved directly by complex arithmetic.

$$
\begin{aligned}
& P^{\prime}(z)=A_{0} z^{p}+A_{1} z^{(p-1)}+\ldots+A_{p}=0 \\
& Q^{\prime}(z)=B_{0} z^{p}+B_{1} z^{(p-1)}+\ldots+B_{p}=0
\end{aligned}
$$

\square However, it requires non-deterministic time consumption due to the iteration procedure inherent in the method.
\square It is undesirable for real-time implementation.

LPC-to-LSF transformation

\square Real root method
\square To use the property that the coefficients of $P^{\prime}(z)$ and $Q^{\prime}(z)$ are symmetrical.

$$
\begin{aligned}
P^{\prime}(z) & =A_{0} z^{p}+A_{1} z^{p-1}+\ldots+A_{1} z^{1}+A_{0} \\
& =z^{p / 2}\left[A_{0}\left(z^{p / 2}+z^{-p / 2}\right)+A_{1}\left(z^{(p / 2-1)}+z^{-(p / 2-1)}\right)+\ldots+A_{p / 2}\right] \\
Q^{\prime}(z) & =B_{0} z^{p}+B_{1} z^{p-1}+\ldots+B_{1} z^{1}+B_{0} \\
& =z^{p / 2}\left[B_{0}\left(z^{p / 2}+z^{-p / 2}\right)+B_{1}\left(z^{(p / 2-1)}+z^{-(p / 2-1)}\right)+\ldots+B_{p / 2}\right]
\end{aligned}
$$

\square Since the roots are on the unit circle,
Let $z=e^{j \omega} \quad$ then $z^{1}+z^{-1}=2 \cos (\omega)$

LPC-to-LSF transformation

\square Real root method (cont.)

$$
\begin{aligned}
& P^{\prime}(z)=2 e^{j p \omega / 2}\left[A_{0} \cos \left(\frac{p}{2} \omega\right)+A_{1} \cos \left(\frac{p-2}{2} \omega\right)+\ldots+\frac{1}{2} A_{p / 2}\right] \\
& Q^{\prime}(z)=2 e^{j p \omega / 2}\left[B_{0} \cos \left(\frac{p}{2} \omega\right)+B_{1} \cos \left(\frac{p-2}{2} \omega\right)+\ldots+\frac{1}{2} B_{p / 2}\right]
\end{aligned}
$$

\square When $p=10$, substituting $x=\cos (\omega)$, then we obtain the followings.

$$
\begin{aligned}
P_{10}^{\prime}(x)= & 16 A_{0} x^{5}+8 A_{1} x^{4}+\left(4 A_{2}-20 A_{0}\right) x^{3}+\left(2 A_{3}-8 A_{1}\right) x^{2} \\
& +\left(5 A_{0}-3 A_{2}+A_{4}\right) x+\left(A_{1}-A_{3}+0.5 A_{5}\right) \\
Q_{10}^{\prime}(x) & =16 B_{0} x^{5}+8 B_{1} x^{4}+\left(4 B_{2}-20 B_{0}\right) x^{3}+\left(2 B_{3}-8 B_{1}\right) x^{2} \\
& +\left(5 B_{0}-3 B_{2}+B_{4}\right) x+\left(B_{1}-B_{3}+0.5 B_{5}\right)
\end{aligned}
$$

LPC-to-LSF transformation

\square Real root method (cont.)
\square Therefore, obtaining the roots x_{i} satisfying $P^{\prime}{ }_{10}(x)=0$ and $Q_{10}^{\prime}(x)=0$, we can get

$$
L S F(i)=\frac{\cos ^{-1}\left(x_{i}\right)}{2 \pi T}, \quad \text { for } 1 \leq i \leq p
$$

\square This method still requires indeterministic computation time, but faster root search is possible by noting that the change from one LSF vector to the next is not too drastic in most cases.
\square So, the number of iterations required per root is considerably reduced, e.g. typically from 10 to 5 , which is relatively smaller than the complex root method.

LPC-to-LSF transformation

Distribution of LSF parameters (LSF(1) to LSF(6))

LPC-to-LSF transformation

\square Distribution of LSF parameters (LSF(7) to LSF(10))

Typical LSF trajectories for voiced and unvoiced speech

LPC-to-LSF transformation

\square Ratio filter method
\square Ratio filter is $R_{p}(z)=\frac{B_{p}(z)}{A_{p}(z)}=\frac{z^{-(p+1)} A_{p}\left(z^{-1}\right)}{A_{p}(z)}$
\square Here, $A_{p}(z)=1-\sum_{i=1}^{p} \beta_{i} z^{-i}$
\square The phase response of the ratio filter is given by

$$
\phi\left(k f_{s}\right)=-(p+1)\left(2 \pi T k f_{s}\right)-2 \tan ^{-1}\left\{\frac{\sum_{i=1}^{p} \beta_{i} \sin \left(2 \pi i T k f_{s}\right)}{1-\sum_{i=1}^{p} \beta_{i} \cos \left(2 \pi i T k f_{s}\right)}\right\}
$$

$\square T$ is the sampling period.
$\square f_{s}$ is the frequency step.
$\square k=1,2, \ldots, K_{\max }$

LPC-to-LSF transformation

\square Ratio filter method (cont.)
\square Here, when $\phi\left(k f_{s}\right)=0$ or $\pi, A_{p}(z)$ can be equal to $\pm B_{p}(z)$, that is, $P^{\prime}(z)$ and $Q^{\prime}(z)$ can be zero.
\square Therefore, the LSFs can be obtained by $\phi\left(k f_{s}\right)=0$ or π for $k=$ $1,2, \ldots, K_{\max }$.
\square Typical phase response of ratio filter

LPC-to-LSF transformation

\square DFT method
\square Since the LSFs are the poles of the equations,

$$
\frac{1}{P^{\prime}(z)}=\frac{1}{\sum_{k=0}^{p} A_{k} z^{p-k}} \quad \frac{1}{Q^{\prime}(z)}=\frac{1}{\sum_{k=0}^{p} B_{k} z^{p-k}}
$$

\square Thus, we can regard the denominators as the z-transforms of the sequences A_{k} and B_{k}, with zero padding before $k=0$ and after $k=p$.
\square Therefore if we perform a DFT on the sequences A_{k} and B_{k}, then the LSFs can be solved as the zero-valued frequencies of the power spectrum.

LPC-to-LSF transformation

- DFT method (cont.)

\square Zero-valued frequencies obtained from the DFT method

Using the ordering information of LSFs, the search space can be greatly reduced.

LSF-to-LPC transformation

\square Direct expansion method
\square At first, obtain the LPC coefficients from LSFs, and then use the LPC synthesis filter for reconstructing the speech.

- $P_{p+1}(z)=-z^{-(p+1)}\left[P^{\prime}(z)(1-z)\right]$

$$
\begin{aligned}
& =-z^{-(p+1)}\left[(1-z)\left(z-r_{0}\right)\left(z-r_{0}^{*}\right) \ldots\left(z-r_{(p-2) / 2}\right)\left(z-r_{(p-2) / 2}^{*}\right)\right] \\
& =-z^{-(p+1)}\left[(1-z)\left(z^{2}-2 u_{0} z+t_{0}\right) \ldots\left(z^{2}-2 u_{(p-2) / 2} z+t_{(p-2) / 2}\right)\right] \\
& =S_{0}+S_{1} z^{-1}+\ldots+S_{p} z^{-p}+S_{p+1} z^{-(p+1)}
\end{aligned}
$$

\square Similarly, $Q_{p+1}(z)=T_{0}+T_{1} z^{-1}+\ldots+T_{p} z^{-p}+T_{p+1} z^{-(p+1)}$
\square Here,

$$
\begin{array}{rlrlrl}
& & r_{i}=u_{i}+j v_{i} & \text { and } & r_{i}^{*} & =u_{i}-j v_{i} \\
\Rightarrow & r_{i}+r_{i}^{*}=2 u_{i} & \text { and } & r_{i} \times r_{i}^{*}=u_{i}^{2}+v_{i}^{2}=t_{i}
\end{array}
$$

LSF-to-LPC transformation

\square Direct expansion method (cont.)
\square Therefore, using the terms of the above equations, we can obtain the followings.

- $S_{0}=1 \quad T_{0}=1$
- $\alpha_{i}=\frac{1}{2}\left(T_{i}+S_{i}\right) \quad \alpha_{p+1-i}=\frac{1}{2}\left(T_{i}-S_{i}\right) \quad$ for $i=1, \ldots, p / 2$
- $S_{p+1}=-1 \quad T_{p+1}=1$
\square Consequently, the computation process is
$\square \mathrm{LSFs} \rightarrow r_{i} \rightarrow u_{i} \& t_{i} \rightarrow S_{i} \& T_{i} \rightarrow \alpha_{i}$

LSF-to-LPC transformation

\square LPC inverse filter method
\square To directly implement the inverse filter using the LSF parameters$H(z)=1 / A_{p}(z)=1 /\left[1+A_{p}(z)-1\right]$
$\square A_{p}(z)-1=1 / 2\left[\left(P_{p+1}(z)-1\right)+\left(Q_{p+1}(z)-1\right)\right]$

$$
=1 / 2\left\{(1-z)\left(-z^{-(p+1)}\right) \prod_{i=1}^{p / 2}\left(1-2 \cos \omega_{i} z+z^{2}\right)-1+(1+z) z^{-(p+1)} \prod_{i=1}^{p / 2}\left(1-2 \cos \theta_{i} z+z^{2}\right)-1\right\}
$$

\square Here, let $u_{i}=-2 \cos \omega_{i}, \quad v_{i}=-2 \cos \theta_{i}$
\square Then, $A_{p}(z)-1=z^{-1} / 2\left\{\left(u_{1}+z^{-1}\right)-\prod_{j=1}^{p / 2}\left(1+u_{j} z^{-1}+z^{-2}\right)+\sum_{i=1}^{p / 2-1}\left(u_{i+1}+z^{-1}\right) \prod_{j=1}^{i}\left(1+u_{j} z^{-1}+z^{-2}\right)\right\}$

$$
+z^{-1} / 2\left\{\left(v_{1}+z^{-1}\right)+\prod_{j=1}^{p / 2}\left(1+v_{j} z^{-1}+z^{-2}\right)+\sum_{i=1}^{p / 2-1}\left(v_{i+1}+z^{-1}\right) \prod_{j=1}^{i}\left(1+v_{j} z^{-1}+z^{-2}\right)\right\}
$$

LSF-to-LPC transformation

\square LPC synthesis filter method (cont.)
\square So, using the final expression, we can implement the LSF parameter-based inverse filter as follows.

\square Here, $\mathrm{c}_{2 i}=u_{i}=-2 \cos \omega_{i}$, and $\mathrm{c}_{2 i+1}=v_{i}=-2 \cos \theta_{i}$.
\square Finally, the LPC coefficients are simply the impulse response of the inverse filter.

Summary of LSF properties

- Experimental conditions for estimating the following coefficients: 8 kHz , 10 ms update, 20 ms Hamming, $p=10,6000$ frames
\square Intra-frame correlation coefficients: $\Omega_{i j}=\omega_{n, i} * \omega_{n, j}$

i	j									
	1	2	3	4	5	6	7	8	9	10
1	1.00	0.65	0.30	0.35	0.41	0.49	0.39	0.40	0.36	0.20
2	0.65	1.00	0.28	0.11	0.07	0.13	0.07	0.05	0.06	0.07
3	0.30	0.28	1.00	0.72	0.50	0.53	0.46	0.54	0.39	0.28
4	0.35	0.11	0.72	1.00	0.72	0.62	0.46	0.42	0.45	0.21
5	0.41	0.07	0.50	0.72	1.00	0.79	0.52	0.47	0.34	0.26
6	0.49	0.13	0.53	0.62	0.79	1.00	0.71	0.61	0.49	0.28
7	0.39	0.07	0.46	0.46	0.52	0.71	1.00	0.73	0.58	0.41
8	0.40	0.05	0.54	0.42	0.47	0.61	0.73	1.00	0.58	0.46
9	0.36	0.06	0.39	0.45	0.34	0.49	0.58	0.58	1.00	0.41
10	0.20	0.07	0.28	0.21	0.26	0.28	0.41	0.46	0.41	1.00

Summary of LSF properties

\square Inter-frame correlation coefficients: $\psi_{i k}=\omega_{n, i} * \omega_{n-k, i}$

	k										
	1	1	2	3	4	5	6	7	8	9	
1	0.93	0.84	0.76	0.68	0.61	0.55	0.50	0.45	0.41	0.36	
2	0.89	0.75	0.63	0.54	0.46	0.38	0.32	0.27	0.22	0.18	
3	0.92	0.80	0.70	0.60	0.51	0.43	0.36	0.30	0.24	0.20	
4	0.92	0.82	0.73	0.64	0.56	0.49	0.43	0.37	0.32	0.27	
5	0.95	0.88	0.81	0.74	0.67	0.61	0.54	0.48	0.43	0.37	
6	0.94	0.85	0.77	0.69	0.62	0.56	0.49	0.44	0.38	0.33	
7	0.93	0.83	0.75	0.66	0.58	0.50	0.43	0.37	0.31	0.26	
8	0.91	0.81	0.72	0.64	0.56	0.49	0.43	0.37	0.32	0.28	
9	0.87	0.73	0.64	0.55	0.48	0.42	0.37	0.33	0.29	0.25	
10	0.82	0.66	0.57	0.50	0.44	0.38	0.34	0.30	0.27	0.24	

Summary of LSF properties

\square Ordering information of LSF parameters \rightarrow Speed-up of LPC-to-LSF transformation
\square Comparison of PARCOR with LSF

Parameter	Advantages	Disadvantages	Ratio of information*
PARCOR	\square Direct extraction by LM $\square k_{i}$ independent of p \square Stable for $\left\|k_{i}\right\|<1$	Linear interpolation \rightarrow large spectrum distortion \square Spectrum sensitivity is not uniform \square Indirect correspondence to spectrum envelope	100
LSF	\square Small spectrum distortion by quantization $\&$ interpolation \square Direct correspondence to spectrum envelope \square Stable for $\omega_{1}<\omega_{2}<\ldots<\omega_{p}$	Litle more complicated dependent on p	60

[^0]
Summary oflecture

- Alternative representations of LPC parameters
\square PARCOR, LAR, Inverse Sine Function, LSF
- Their properties
- LPC-to-LSF transformation
\square Definition, physical meaning, and property of LSF
\square Two methods for getting the LSF parameters
\square Complex root method and real root method
\square General distribution of LSF parameters
\square Other methods to get the LSF parameters
\square Ratio filter method and DFT method
- LSF-to-LPC transformation
\square Direct expansion method and LPC synthesis filter method
- Summary of LSF properties
\square Comparison of PARCOR with LSF

[^0]: * Ratio of bps necessary to get equal voice quality by synthesis

