Speech and Audio Coding Theory
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Covariance method (CM)

[ Assumption: To consider only the fixed analysis frame, 0 <
m< N-1

1 That 1s, there i1s a constraint on analysis frame, but not on
signal 1tself.

1 Solution
0 MSE =Efe?(n)]= > eX(m)

O 6,6 )= s, (m=i)s,(m— ), 1<i<p, 0<j<p

J Now, let m—r=m’ then m—j=m™*i-j.
J And, m=0 - m=-/ and m=N-1 > m=N-1-I.

N—i-1

- Therefore, ¢ i, j)= >’s,(m)s,(m+i—j), 1<i<p, 0<j<p



Covariance method (CM)

[ Solution (cont.)
- So, > a4, j)=¢,310) 1<i<p
j=1

| ¢n (1’1) ¢n (1’ 2) ' ¢n (11 p) ] al I ¢n (110) ]
¢n (2!1) ¢n (2’2) . ¢n (2! p) aZ ¢n (2’0)

1 Also, 1n matrix form,

4,(pD) 4,(p,2) . #.(PsP) |2y | |£.(P.O)

1 The above matrix 1s also symmetric, but no longer Toeplitz.
) So, we cannot use the Durbin’s algorithm. =2 Cholesky
decomposition method.

Q¢ =VDV' where V is a lower triangular matrix with 1’°s as
diagonal elements and 0 1s a diagonal matrix.

d Refer to L.R. Rabiner and R.W. Schafer, Digital processing of
speech signals, pp. 407-410.



Lattice method (LM)

 Another implementation of the autocorrelation-based
solution

J Formulation

 The 7-th order inverse filter: AY(z) =1- Za(')z I (from
Durbin’s algorithm)

1 Then, the prediction error of 7—th order predictor:

e, (m) = e (m) = s(m) - Y. as(m - j)

QIts z-transform: EY(z) = AV (2)S(2)



Lattice method (LM)

[ Formulation (cont.)

0 Substituting o’ =af™ -k’ 1<j<i-1 to the inverse

filter eq., we obtain

0 A(')(Z) zl_z[aj(l—l) ol 1)]Z i _ (I)

Ilj
j=1

0 Rearranging the eq. and using o =k

| i1 | i1 | _
A AY@Z)=1-> a2z 4k, D> ol Pz k2™
j=1 j=1

O AD @)= A" (2) - k{ IZa(' Vz- ‘}

i=



Lattice method (LM)

d Formulation (cont.)
 Therefore, E®(z)= AT (2)S(2) —k{zi _

-1 - )
ai(l_jl) z™ }S(z)
=1

j
O The first term: the forward prediction error for (/=1)th order

predictor.

dThe second term except k. : the backward prediction error for (/-
Dth order predictor.

s(m-0 s(tm-i+1) s(tm-i+2) s(m-1) s(m)
O——=0 O O0—0
Back.wgrd Forward
prediction

prediction



Lattice method (LM)

[ Formulation (cont.)
) Modifying the eq.,

EOV@2)=A""(2)S(2) -k z" {z 0 Za("”z U l)}S(z)

d Here since

i—1
Za(l 1)Z j-1) _a|(I11)ZO +0[(| 1)Z 4. +a(| 1)Z Za?—l)zj_(l_l)

) Thus, the forward prediction error in terms of the lower—
order inverse filter is

EV@2)=A""(2)S(z) -k zl{z“” > a7 }S(z)
=1



Lattice method (LM)

[ Formulation (cont.)
) Let the backward prediction error of /—th order predictor be

BY(2)=z"AY(z7)S(2)

) Then, since

i_l - -
AW (z) = AUV (z) -k {z‘ - a7 }
=1

j=

= AU (z) - k{z" - a}"l)z“'}
j=1

i-1
= A" (2)—kz" {1— D al 7! }
=1

= A" () -k z A" (z)



Lattice method (LM)

d Formulation (cont.)
. Thus, we can get

BV (2) =27 |A(z )~k 2' AT (2)|5(2)
=z A" (z21S(2) -k A"V (2)S(2)
=727 VA (2715 (2) -k, AT (2)S(2)

1 Consequently, we can obtain the backward prediction error,

b (M) =b"P(m-1)-ke'™(m)



Lattice method (LM)

[ Formulation (cont.)
. _ i1 _ SR
J Also since {Z(nn _Zl“agnl)zj(nl)}s(z) _ 1){1_211051( 1)21}3(2)

j= j

— Z—(i—l) A(i—l) (Z—l)s(z)
- B (2)
) From the previous eq., we can get

EV(2) = A" (2)S(2) -k, z‘{z‘(i‘” - iia}“l)z =0 }S(z)
= A'D(2)S(2) -k, z'B " (2)

O Therefore, we obtain e (m)=e"?(m) kb (m-1)
Q Here, é9(m) = b9(m) = s(m).



Lattice method (LM)

4 Final solution for &; without using «;

) Geometric mean of two solutions for minimum mean squared
forward prediction error (MMSFE) and minimum mean
squared backward prediction error (MMSBE)

N-1

> e (mb P (m-1)

k — m=0

Jz[e“ ()] x > [ (m-)°

d Refer to J. Makhoul, “Stable and efficient lattice methods for
linear prediction,” IEEE Trans. on ASSP, pp. 423-428, Oct. 1977.

d k. normalized cross correlation function between €“"P(m) and
pD(m) > PARtial CORrelation (PARCOR) coefficients




Lattice method (LM)

[ Another solution for £

) Burg implementation is based on the minimization of the sum
of the mean squared forward and backward prediction errors,

RO = S el M) + (0 ()]

N-1 _
QThen, 2> e (mb"P(m-1)
k- m=0

S+ S -

4 All the solutions guarantee a stable filter since | k| < 1.



Practical implementation of LPC analysis

] Consideration factors

J Performance, efficiency, stability
LM guarantees stability that is important in real implementation.

A If a careful choice of windowing and fine precision arithmetic 1s
performed, then both AM and CM are also stable.

 Filter order (p), frame size (N)

dIn 8 kHz sampling, 4 kHz bandwidth = Usually 4 formants = At
least, p=8 2 p= 10 for accuracy

Exception: In CCITT 16 kbps low—delay coder standard, p = 50
A Frame size: 16-32msec to cover several pitch periods.

d Results of the LPC analysis are different according to
partitioning points of the analysis frame = No solution.



LPC prediction gain vs. LPC order

Prediction Gain (dB)
[ =1

| 1 l ] i 1 | | I 1 1 1
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LPC envelops vs. LPC order

Magnitude (dB)

0.0 1.0 2.0 3.0 4.0



Practical implementation of LPC analysis

1 Other consideration factors

) Pre—emphasis: high—pass filtering for flattening the spectral
envelop

- Window overlapping: to overcome block—edge effects (10-
20% of frame size)

) Interpolation of LPC coefficients: in order to smooth out
transitional effects



Interpretation of LPC analysis

[ Residual signal

O 1If a; = a;, then the residual signal, e(n) = Gx(n) = u(n) >
excitation signal (which is assumed to be impulse train or the
white noise)

) e(n) is obtained by the inverse filter H1(2),
p _
H*(2)=1-> a;z”’
j=1

[ Therefore, e(n) is expected to have pitch information.



Ampiituce

Typical waveform of original
and LPC residual signal
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Typical spectra of original
and LPC residual signal

(a) Original speech
spectral envelope

(b) Original speech
spectrum

(c) LPC residual
spectrum
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Some observations

d A 2) has only poles, so cannot model the spectral valleys
accurately.
) One of drawbacks of LPC modeling

J Question

1 If we hear of the residual signal, can we understand the
contents in original speech? - Maybe ...



Pitch prediction

A Periodicity in speech signals

1 After removing the spectral envelope by LPC filtering, a
periodic component (long-term correlations) still exists,
especially during voiced regions.

[ Long-term prediction (LTP) filter, also called pitch prediction
filter

1 To remove the periodic structure of the residual = to
spectrally flatten the residual signal

- Or, to change the signal to a white signal so as not to need to
be transmitted. =2 Lower bit rate



Pitch predictor formulation

J Pre-considerations

1 The operational order of LTP and STP i1s not too critical if the
combination is carefully optimized. (Or, both STP = LTP and
[LTP > STP are possible.)

d LTP

d General eq.: P(z)= 1

I .
1— ij 7 ~(+T)
j=—1

d 7" pitch period
b, pitch gain coefficients



Pitch predictor formulation

A Typical pitch-LPC formulation model

x(n) pit'l:h l'(ﬂ) l_.PC S(n)
———»{ Synthesis = Synthesis }—n
Filter Filter

 Time domain difference equation of the combined model
= 5(n)=6x(n)+ lebjr(n—T —j)+ Zp:ajs(n— j)

O A n) is the past excitation (LPC residual) signal.
- Goal: to determine the estimates (,Bj-, T, a]-) of (bj, T, aj) SO as to
minimize the prediction error.

[
1 Here, the prediction error: e(n)=s(n)- > g;r(n—7-j) Za s(n— j)
i—1

J



Pitch predictor formulation

J MSE strategy
J Not straightforward due to the delay factor r

1 Two sub—optimal approaches

J One-shot optimization
First STP, then L'TP
If > N (analysis frame size in LTP), it results in near optimal.

M lterative sequential approach

[teration of one—shot optimization, that is, STP - LTP - STP =2
LTP > ...

dIterative sequential approach gives a better prediction gain and
better perceptual performance, but the one—shot method 1s
usually preferred due to termination criterion and complicate
calculation of iterative sequential approach.



Pitch predictor formulation

 MSE solution for one-shot optimization
) Prediction error signal of residual signal:

e(n)=r(n)— > #,r(n—z— j)

j=—1

) MSE of the error signal:

j=—1

MSE = E{e*(n)}= E{{r(”) iﬁjr(ﬂ_r_ j)ﬂ

J Expectation = finite time average:

MSE = Zm:e,f(m) = Zm:{rn(m)— > Bt (m-7- J')T

j=—1I



Pitch predictor formulation

 MSE solution for one-shot optimization (cont.)
J Minimization of MSE w.r.t. the long—term prediction

coefficients
2 2 o3 fum- St -0 -



Pitch predictor formulation

[ MSE solution for one-shot optimization (cont.)
] Matrix equation to be solved
V(=1,-1) - VLA, T [R(z-1,0)]

V(1,-1) v(|:,|)_ B | |R(z+1,0)]

A/ : can be solved by Cholesky’s decomposition when the pitch
lag 7 is already given.

) Determination of ¢
d Basic method: Exhaustive search for all the possible ¢

J More sophisticate methods: Pitch detection algorithms
d Generally, window size (N+7__. = 200) > pitch value (r

max min

< 7...(160)) > analysis frame size (V)

max

(16) < ¢



Example of pitch predictor

d In the case of 1-tap LTP,

1
2 RO
. ﬂ:R(r,o)::_:r(m)r(m_T) o
V (0,0) N—1r2 (m - T) min max

N-1
m=0 r’(m-r)
0

m=

d Testing zbetween 7, . (16 samples) and 7, (160 samples) to
minimize £, then f minimizing £ can be found.



Time domain plot of pitch residuals

M Li
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. No longer the sharp pulse—-like characteristics in pitch residual
signal



Summary of lecture

[ Solutions to LPC analysis
1 Covariance method (CM)

1 Lattice method (LM)
O Two solutions guaranteeing the filter stability

d Practical implementation of LPC analysis

1 How to set filter order (p), frame size (N)

1 Pre-emphasis and window overlapping
d Interpretation of LPC analysis

1 Property of residual signal

1 Inaccurate capturing of spectral valley of speech signal
[ Pitch prediction

1 Prediction of pitch predictor (LTP) gain
1 MSE solution for one-shot optimization



