Speech and Audio Coding Theory

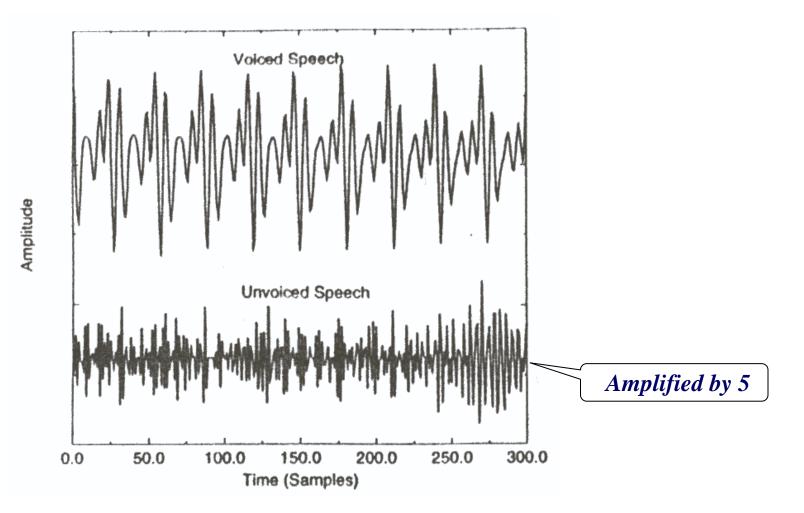
Contents of lecture

- General speech characteristics
- □ Frequency domain analysis: Short-time spectral analysis
- □ Time domain analysis: Linear predictive modeling
 - Source-filter model of speech production
 - Solutions to LPC analysis
 - □ Auto-correlation method (AM)

General speech characteristics

- Analysis of the speech signal not on the phoneme level (linguistic unit level), but on the general speech characteristics (physical waveform level)
 - □ Voiced signal: high energy, quasi-periodicity (due to pitch)
 - Unvoiced signal: relatively low energy, like random noise with no periodicity
 - Mixture of voiced and unvoiced signals: transition region (voiced-to-unvoiced or unvoiced-to-voiced region) or inherently mixed characteristics
 - Example of voiced and unvoiced speech signals (Next slide)

General speech characteristics



Short-time spectral analysis

Frequency domain analysis of speech signal

□ Short-time Fourier transform

□ Time-dependent Fourier transform

$$S_k(e^{j\omega}) = \sum_{n=-\infty}^{\infty} w(k-n)s(n)e^{-j\omega n}$$

□ w(k - n): Real window sequence to isolate the portion of the input signal

Ideal window frequency response

- □ Very narrow main lobe: to increase frequency resolution
- □ No side lobe: for no frequency leakage
- □ In practice, no ideal window

Rectangular window

$$w(n) = \begin{cases} 1 & ; & 0 \le n \le N - 1 \\ 0 & ; & \text{otherwise} \end{cases}$$

Bartlett window

$$w(n) = \begin{cases} \frac{2n}{N-1} & ; & 0 \le n \le \frac{N-1}{2} \\ 2 - \frac{2n}{N-1} & ; & \frac{N-1}{2} \le n \le N-1 \\ 0 & ; & \text{otherwise} \end{cases}$$

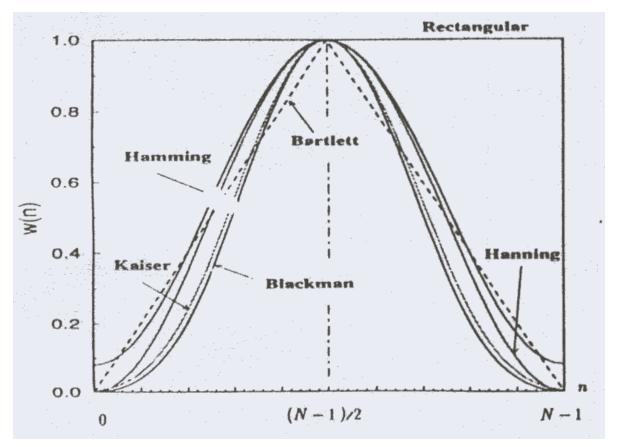
Hamming window

$$w(n) = \begin{cases} 0.54 - 0.46\cos(2\pi \frac{n}{N-1}) & ; & 0 \le n \le N-1 \\ 0 & ; & \text{otherwise} \end{cases}$$

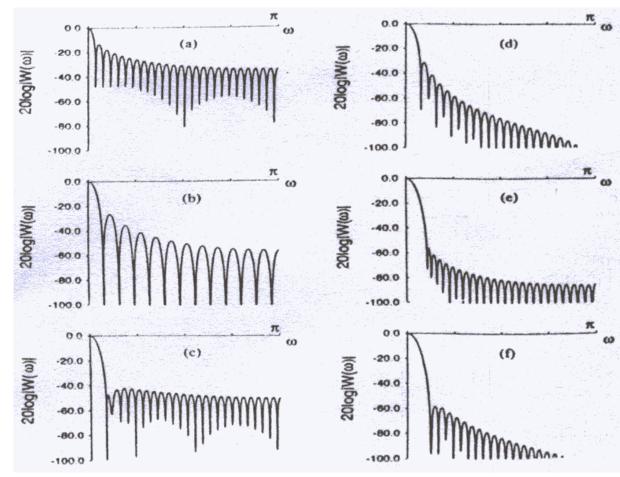
Hanning window $w(n) = \begin{cases} 0.5 - 0.5\cos(2\pi \frac{n}{N-1}) & ; & 0 \le n \le N-1 \\ 0 & ; & \text{otherwise} \end{cases}$

- Blackman window $w(n) = \begin{cases} 0.42 - 0.5\cos(2\pi \frac{n}{N-1}) + 0.08\cos(2\pi \frac{n}{N-1}) & ; & 0 \le n \le N-1 \\ 0 & ; & \text{otherwise} \end{cases}$
- Kaiser window $w(n) = \begin{cases} \frac{I_0(\beta \sqrt{1 - (\frac{2n}{N-1} - 1)^2})}{I_0(\beta)} & ; & 0 \le n \le N - 1\\ 0 & ; & \text{otherwise} \end{cases}$ $\Box I_0 \text{ is zero-order Bessel function given by } I_0(\beta) = \sum_{k=0}^{\infty} \frac{\beta^{2k}/2}{(k!)^2}$

□ Time domain shapes for the windows

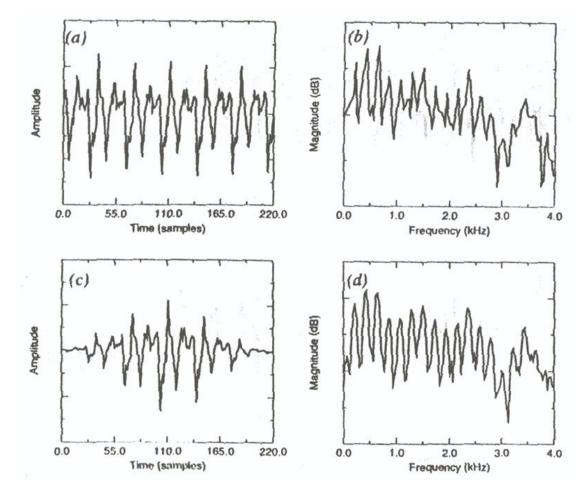


Frequency domain shapes for the windows



- (a) Rectangular
 (b) Bartlett
 (c) Hamming
 (d) Hanning
 (e) Kaiser (β=7.8)
 (f) Blackman
- Rectangular window: highest resolution, largest leakage
- Blackman window: lowest resolution, smallest leakage

□ Voiced signal for rectangular and Hamming (220 samples)



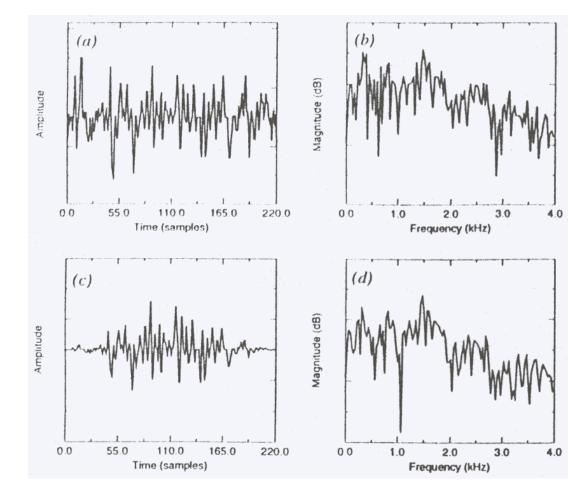
(a), (b): using rectangular(c), (d): using Hamming

• Similarity: pitch harmonics, formant structure, gross spectral shape

• Rectangular window: shaper, but noise-like due to high leakage

• So, rectangular window is not used generally for STFT.

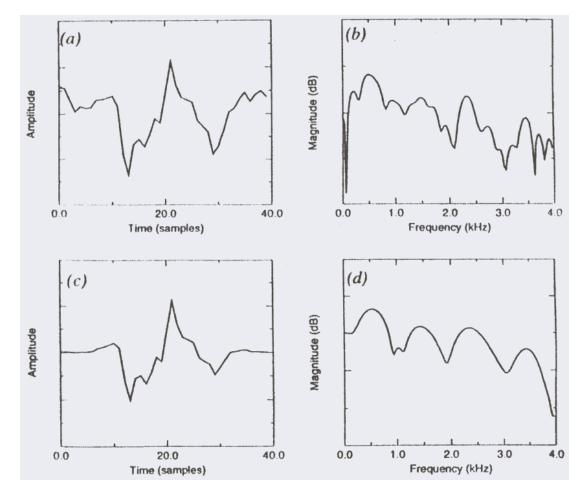
Unvoiced signal for rectangular and Hamming (220 samples)



(a), (b): using rectangular(c), (d): using Hamming

• Hamming is still smoother than rectangular.

Voiced signal for rectangular and Hamming (40 samples)



(a), (b): using rectangular(c), (d): using Hamming

• Different spectrum according to window position

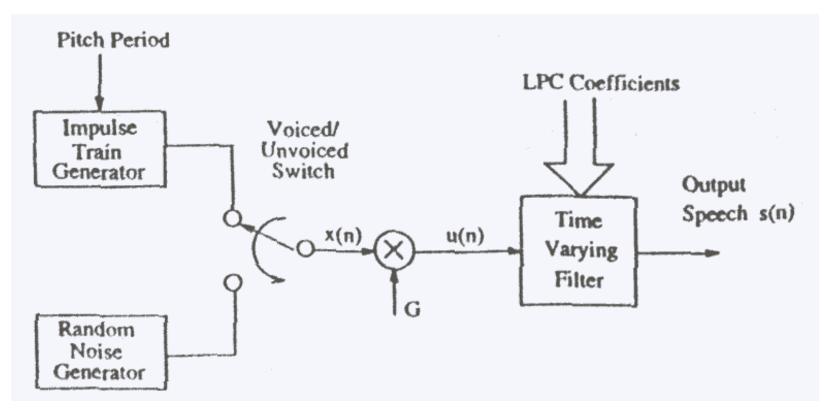
- Good temporal resolution with a short window
- Good frequency resolution with a longer window
- Trade-off between short and long windows →
 Therefore, it is reasonable to set a window size to 120-240 samples (i.e. 15-30msec duration).

Linear predictive modeling of speech signals

□ Linear predictive coding (LPC) analysis

- Very accurate representation of speech with a small set of parameters
- Short-term correlations between speech samples
 - **D** To capture the formant information
- Long-term correlations between speech samples (Pitch prediction)
 - To capture the fundamental frequency (pitch period) information
- Difference between "term" and "time" in the literature
 - "term": sample interval to obtain the correlation
 - "time": analysis frame size to obtain the correlation

Block diagram of the simplified source-filter production model



□ Speech production modeling by time-varying digital filter

□ Glottal flow + vocal tract + lip radiation

$$\square H(z) = \frac{S(z)}{X(z)} = \frac{G\left(1 - \sum_{j=1}^{M} b_j z^{-j}\right)}{1 - \sum_{i=1}^{N} a_i z^{-i}} \quad : \text{Pole-zero modeling}$$

Approximation to all-pole model if N is large enough

$$\square H(z) = \frac{G}{1 - \sum_{j=1}^{p} a_j z^{-j}} = \frac{G}{A(z)} = \frac{S(z)}{X(z)}$$

□ Then, the difference equation becomes $s(n) = Gx(n) + \sum_{j=1}^{P} a_j s(n-j)$

Error or residual signal

- □ If speech production model is really same as the above allpole model, then we can decompose the given s(n) to the excitation signal x(n) and the filter coefficients a_i .
- □ However, since the all-pole model is not exact, we may approximate the above difference equation to

$$e(n) = s(n) - \sum_{j=1}^{p} \alpha_j s(n-j)$$

e(*n*): error (or residual) signal
 α_i: the estimates of *a_i*

Determine α_i by minimizing the MSE

$$\square MSE = E\{e^2(n)\} = E\left\{\left[s(n) - \sum_{j=1}^p \alpha_j s(n-j)\right]^2\right\}$$

 $\Box E\{\}$ is ensemble average, not time average.

Using
$$\frac{\partial E}{\partial \alpha_i} = 0$$
, $1 \le i \le p$,
 $E\left\{\left[s(n) - \sum_{j=1}^p \alpha_j s(n-j)\right]s(n-i)\right\} = 0$, for $i = 1, ..., p$
 $E\left\{s(n)s(n-i)\right\} = E\left\{\sum_{j=1}^p \alpha_j s(n-j)s(n-i)\right\} = \sum_{j=1}^p \alpha_j E\left\{s(n-j)s(n-i)\right\}$

Determine α_j (cont.) $\sum_{j=1}^{p} \alpha_j \phi_n(i, j) = \phi_n(i, 0), \text{ for } i = 1, \dots, p$ $\varphi_n(i, j) = E\{s(n-i)s(n-j)\}$ $\text{ Therefore, given } \phi_n(i, j) \text{ and } \phi_n(i, 0) \text{ , we can obtain } \alpha_j.$

□ Assumption

□ Signal is stationary.

- □ Not true over a long duration, but realistic for short segments since speech signal can be considered as quasi-stationary signal.
- □ So, the ensemble average function can be approximated as the time average function.

Solutions to LPC analysis

■ Expectation operation is replaced by time average operation. ■ $\phi_n(i, j) = E\{s(n-i)s(n-j)\}$ = $\sum_m s_n(m-i)s_n(m-j)$, for i = 1,..., p, j = 0,..., p

Auto-correlation method (AM)

- □ Assumption: $s_n(m) = 0$ outside $0 \le m \le N-1$.
- □ That is, there is a constraint on the signal itself, but not on the analysis frame.
- □ Therefore, we should consider the prediction error in $0 \le m \le N-1+p$.

Solution of AM

Since 0 ≤ m-i ≤ N-1 and 0 ≤ m-j ≤ N-1, the range of the summation becomes 0 ≤ m ≤ N+p-1 as in the above.
 So N+p-1

$$SO, \ \phi_n(i,j) = \sum_{m=0}^{\infty} s_n(m-i)s_n(m-j), \ 1 \le i \le p, \ 0 \le j \le p$$

□ To rearrange the eq., let m-i=m'.

Then, m=m'+i and m-j=m'+i-j.
When m=0, m'=-i, and when m=N+p-1, m'=N+p-1-i.
Therefore, $\phi_n(i,j) = \sum_{m'=-i}^{N+p-1-i} s_n(m')s_n(m'+i-j)$.

And, since $0 \le m' \le N-1$ and $0 \le m'+i-j \le N-1$ (or, $-(i-j) \le m' \le N-1-(i-j)$), we can obtain $0 \le m' \le N-1-(i-j)$. Using this, $\phi_n(i, j) = \sum_{m'=0}^{N-1-(i-j)} s_n(m')s_n(m'+i-j)$.

- □ Solution of AM (cont.) □ Consequently, $\phi_n(i, j) = \sum_{m=0}^{N-1-(i-j)} s_n(m)s_n(m+i-j), \quad 1 \le i \le p, \quad 0 \le j \le p$ □ Now, we define $R_n(j) = \sum_{m=0}^{N-1-j} s_n(m)s_n(m+j)$
 - □ Then, the short-time autocorrelation function, \$\phi_n\$
 \$\phi_n(i,j) = R_n(i-j) = R_n(|i-j|)\$, for \$i = 1,..., p\$ \$j = 0,..., p\$
 □ This result can be easily derived if examining \$R_n(1)\$ and \$R_n(-1)\$.

■ Therefore,
$$\sum_{j=1}^{p} \alpha_{j} \phi_{n}(i, j) = \phi_{n}(i, 0)$$
 is represented by
 $\sum_{j=1}^{p} \alpha_{j} R_{n}(|i-j|) = R_{n}(i), \quad 1 \le i \le p$

□ Solution of AM (cont.)

□ In normal matrix form,

$\int R_n(0)$	$R_{n}(1)$	•	$R_n(p-1)$	$\lceil \alpha_1 \rceil$		$\begin{bmatrix} R_n(1) \end{bmatrix}$
$R_n(1)$	$R_n(0)$	•	$R_n(p-2)$	α_2		$R_n(2)$
•	• • •	:	•		_	
$R_n(p-1)$	$R_n(p-2)$	•	$R_n(p-1)$ $R_n(p-2)$ \vdots $R_n(0)$	$\left\lfloor \alpha_{p} \right\rfloor$		$[R_n(p)]$

- The above matrix eq. can be solved by normal matrix inversion formula, but this method requires a lot of computations and generally accumulates numerical errors due to finite precision computation.
- □ However, if we utilize the property that the matrix is symmetric and has Toeplitz characteristics, we can efficiently solve the matrix eq. → Durbin's algorithm

Durbin's algorithm

□ Initialization: $E_n^{(0)} = R_n(0)$ □ For $1 \le i \le p$,

$$k_{i} = \left[R_{n}(i) - \sum_{j=1}^{i-1} \alpha_{j}^{(i-1)} R_{n}(i-j) \right] / E_{n}^{(i-1)}$$

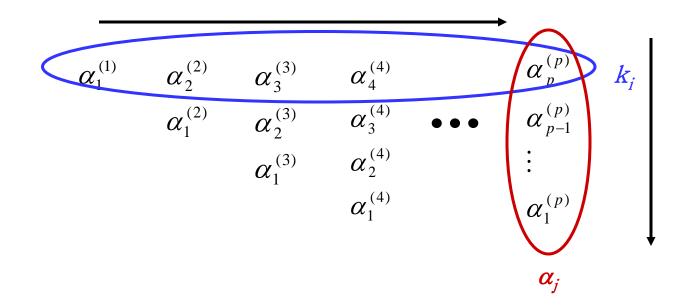
$$\alpha_{i}^{(i)} = k_{i}$$

$$\alpha_{j}^{(i)} = \alpha_{j}^{(i-1)} - k_{i} \alpha_{i-j}^{(i-1)} \quad 1 \le j \le i-1$$

$$E_{n}^{(i)} = (1 - k_{i}^{2}) E_{n}^{(i-1)}$$

 \Box Finally, $\alpha_j = \alpha_j^{(p)}$ $1 \le j \le p$

The order of coefficient computation in the Durbin's recursion



Summary of lecture

- General speech characteristics
- Frequency domain analysis of speech signal
 - □ Short-time spectral analysis
 - □ Effects of different window functions
- Time domain analysis of speech signal
 - □ Linear predictive modeling of speech signals
 - □ Source-filter model of speech production
 - One of solutions to LPC analysis
 - □ Auto-correlation method (AM)
 - Durbin's solution