Speech and Audio Coding Theory
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General speech characteristics

A Analysis of the speech signal not on the phoneme level
(linguistic unit level), but on the general speech
characteristics (physical waveform level)

) Voiced signal: high energy, quasi—periodicity (due to pitch)

) Unvoiced signal: relatively low energy, like random noise with
no periodicity

) Mixture of voiced and unvoiced signals: transition region
(voiced—-to—unvoiced or unvoiced-to-voiced region) or
inherently mixed characteristics

J Example of voiced and unvoiced speech signals (Next slide)



General speech characteristics
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Short-time spectral analysis

 Frequency domain analysis of speech signal

) Short—time Fourier transform
d'Time—dependent Fourier transform

S, (e'”) = iw(k —n)s(n)e 1"

N=—o0

O wlk — n): Real window sequence to isolate the portion of the
input signal

 Ideal window frequency response
) Very narrow main lobe: to increase frequency resolution
) No side lobe: for no frequency leakage
) In practice, no ideal window



Window functions

[ Rectangular window

1 : 0<n<N-1
w(n) = :
0 : otherwise

] Bartlett window

(2 . N -1
o , 0<n<==

w(n)=<2-22 ; B <n<N-1
\O . otherwise

d Hamming window
0.54-0.46c0s(27y5) ; 0<n<N-1
w(n) =

: otherwise



Window functions

d Hanning window
{O.S—O.Scos(hﬁ ; 0<n<N-1

w(n) = :
- otherwise

1 Blackman window
w(n) = 0.42-0.5cos(27 ;) +0.08cos(27 %) ; 0<n<N-1
- - otherwise

J Kaiser window
1, (B1- (2 -1)?)
W= 15(8)

0 : otherwise

"

- 0<n<N-1

o0

IBZk/Z
k1)?
~ (k)

4 [y is zero-order Bessel function given by |,(f) =
k



Window functions

 Time domain shapes for the windows
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Window functions
[ Frequency domain shapes for the windows
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Window functions
[ Voiced signal for rectangular and Hamming (220 samples)

T P - T T < N — Y Y ) o oo

(a) : ®) (a), (b): using rectangular
L— L - -
s ) (), (d): using Hamming
; é J
* g
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i
. 1
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e Rectangular window:

3 |3 shaper, but noise-like due to
g | J % high leakage
=
§ ] e So, rectangular window is
not used generally for STFT.
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Window functions
[ Unvoiced signal for rectangular and Hamming (220 samples)

(a) (b) (a), (b): using rectangular
) 5 (c), (d): using Hamming
s 1 1 ! . i s PRV JENY VORI AU SHS W S
00 550 1100 1650 2200 00 1.0 20 30 40
Time {(samples) Frequency (kHz)
e R
(c) (d)

e Hamming is still smoother
than rectangular.
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Amptitude

Amplitude
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Window functions
 Voiced signal for rectangular and Hamming (40 samples)
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(a), (b): using rectangular

(c), (d): using Hamming

e Different spectrum
according to window position

e Good temporal resolution
with a short window

e Good frequency resolution
with a longer window

e Trade-off between short
and long windows -
Therefore, it is reasonable to
set a window size to 120-240
samples (i.e. 15-30msec
duration).



Linear predictive modeling
of speech signals

[ Linear predictive coding (LPC) analysis
) Very accurate representation of speech with a small set of
parameters
) Short—term correlations between speech samples
d  To capture the formant information
J  Long-term correlations between speech samples (Pitch

prediction)
O To capture the fundamental frequency (pitch period)
information

[ Difference between “term” and “time” in the literature
J “term”: sample interval to obtain the correlation
J “time”: analysis frame size to obtain the correlation



Source-filter model of speech production

 Block diagram of the simplified source-filter production

model
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Source-filter model of speech production

[ Speech production modeling by time-varying digital filter

1 Glottal flow + vocal tract + lip radiation

1-Yb 2}
D HE = { ; - j
X(Z) 1—ZN:aiz“

i=1

. Pole—-zero modeling

[ Approximation to all-pole model if NVis large enough
G G  S(2)
1_2":6‘]2_] TAG@) X(2)

p
J Then, the difference equation becomes s(n)=Gx(n)+ > a;s(n- j)
j=1




Source-filter model of speech production

A Error or residual signal

1 If speech production model is really same as the above all-
pole model, then we can decompose the given s(n2) to the
excitation signal x(n21) and the filter coefficients a;.

) However, since the all-pole model 1s not exact, we may
approximate the above difference equation to

e(n) = 5() — Y ez, 5(n - )

d e(n): error (or residual) signal
M| a; the estimates of a;



Source-filter model of speech production

J Determine «; by minimizing the MSE

2
p
J MSE = E{e*(n)}= E{{s(n) > a;s(n- j)} }
=1
dE{ } is ensemble average, not time average.

1 Using E:O, 1<i<p,

oa,

0 E{s(n)s(n—i)}= E{Zp:ajs(n — j)s(n— i)} _ iaj E{s(n— j)s(n—i)}



Source-filter model of speech production

d Deteprmine a;(cont.)
> a4,0,j)=¢,G00), fori=1...p

Q 4,0, J) =E{s(n—1)s(n— J)}

QTherefore, given @,(1, J) and ¢,(1,0) | we can obtain a;.

) Assumption
J Signal is stationary.

 Not true over a long duration, but realistic for short segments
since speech signal can be considered as quasi—stationary signal.

dSo, the ensemble average function can be approximated as the
time average function.



Solutions to LPC analysis

1 Expectation operation is replaced by time average operation.
2 9,0, ]) =E{s(n—1)s(n—))}
=Y s, (m=i)s,(m—j), fori=1...,p, j=0,...,p

[ Auto-correlation method (AM)
 Assumption: s, (m) = 0 outside 0 < m < N-1.

1 That is, there is a constraint on the signal itself, but not on
the analysis frame.

) Therefore, we should consider the prediction error in O < m <
N-1+ p.



Auto-correlation method (AM)

1 Solution of AM

J Since O < m—-71< N-1 and O € m—7< N-1, the range of the

summation becomes 0 < m< N+p-1 as in the above.
N+p-1

250 4,60 = Y sy (m-i)s,(m-j), 1<i<p 0<j<p
m=0

) To rearrange the eq., let m—-i=m’.
A Then, m=m’+7 and m—j=m’+1-J.

A When m=0, m’=-1i, anl\(lzl Wlh_en m=N+p-1, m’= N+p-1-I.
+p-1-i

ATherefore, g (i, j)= 3.5, (M)s, (' +i- J).
m’'=—i
dAnd, since O<m < N-1and O < m’+7/-7< N-1 (or, —(i—) £ m’ <

N-1-(7/=))), we can obtai(n Cg <m < N-1-(7).
N—1—(i—j

QO Using this, ¢, (i, )= D s, (m)s (m'+i-j).

m'=0



Auto-correlation method (AM)

4 Solution of AM (cont.)
d Consequently, ¢, (i, j)= D s,(m)s,(m+i—j), 1<i<p, 0<j<p

N-1-]
J Now, we define R (j)= D> s,(m)s,(m+ j)

m=0

J Then, the short-time autocorrelation function, ¢,
g.(, =R, (-=)=R,(i—]]), fori=1...,p j=0,...,p
dThis result can be easily derived if examining £ (1) and & (-1).

p

 Therefore, » a,4,(i, j)=¢,(i,0) is represented by

=

Sa R (i-i) =R, 1<i<p



Auto-correlation method (AM)

A Solution of AM (cont.)

) In normal matrix form,

| Rn (O) Rn (1) . I:\)n ( P _1) ] o | Rn (1) ]
Rn (1) Rn (0) . I:en ( P— 2) , . I:an (2)
_Rn(p_l) Rn(p_z) . Rn(o) __ap_ _Rn(p)_

) The above matrix eq. can be solved by normal matrix
inversion formula, but this method requires a lot of
computations and generally accumulates numerical errors due
to finite precision computation.

) However, if we utilize the property that the matrix is
symmetric and has Toeplitz characteristics, we can efficiently
solve the matrix eq. = Durbin’s algorithm



Auto-correlation method (AM)

A Durbin’s algorithm
O Initialization: E” =R_(0)
dForl<i<p,

i-1
ki {Rn - R, (i~ j) [/ES
j=1

a =k

! =i -k V) 1<j<i-1

EY =@-k*)E!™

O Finally, a;=a{” 1<j<p



Auto-correlation method (AM)

[ The order of coefficient computation in the Durbin’s
recursion

@) o 52) o §3) a 4(14) (04 kj
0[1(2) 0553) 05354) (Y X ) (04 E)F—))l
o @
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Summary of lecture

[ General speech characteristics

 Frequency domain analysis of speech signal
] Short-time spectral analysis
1 Effects of different window functions

[ Time domain analysis of speech signal
1 Linear predictive modeling of speech signals
1 Source-filter model of speech production

1 One of solutions to LPC analysis

 Auto-correlation method (AM)
Durbin’s solution



