Neural Networks: Tensorflow Dr. Amjad Hawash

How to use TensorBoard

- TensorBoard is a visualization tool, devoted to analyzing Data Flow Graph and also to better understand the machine learning models.
- It can view different types of statistics about the parameters and details of any part of a computer graph graphically.
- A deep neural network can have up to 36,000 nodes.
- For this reason, TensorBoard collapses nodes in high-level blocks, highlighting the groups with identical structures.
- Doing so allows a better analysis of the graph, focusing only on the core sections of the computation graph.

How to use TensorBoard

- Also, the visualization process is interactive; user can pan, zoom, and expand the nodes to display the details.
- The following figure shows a neural network model with TensorBoard:

How to use TensorBoard

A TensorBoard visualization example

How to use TensorBoard

- TensorFlow lets you insert so-called summary operations into the graph.
- These summary operations monitor changing values (during the execution of a computation) written in a log file.
- Then TensorBoard is configured to watch this log file with summary information and display how this information changes over time.

How to use TensorBoard

- Example:
- import tensorflow as tf
- a = tf.constant(10,name="a")
- b = tf.constant(90,name="b")
- y = tf.Variable(a+b*2, name="y")
- model = tf.initialize_all_variables()
- with tf.Session() as session:
- merged = tf.merge_all_summaries()
- writer = tf.train.SummaryWriter\}
("/tmp/tensorflowlogs",session.graph)
- session.run(model)
- print(session.run(y))

How to use TensorBoard

- merged = tf.merge_all_summaries()
- This instruction must merge all the summaries collected in the default graph.
- Then we create SummaryWriter. It will write all the summaries (in this case the execution graph) obtained from the code's execution into the /tmp/tensorflowlogs directory:
- writer = tf.train.SummaryWriter
("/tmp/tensorflowlogs",session.graph)

How to use TensorBoard

- Finally, we run the model and so build the Data Flow Graph:
- session.run(model)
- print(session.run(y))
- The use of TensorBoard is very simple. Let's open a terminal and enter the following:
- tensorboard -logdir=/tmp/tensorflowlogs
- A message such as the following should appear:
- startig tensorboard on port 6006

How to use TensorBoard

- Then, by opening a web browser, we should display the Data Flow Graph with auxiliary nodes:

How to use TensorBoard

- Now we will be able to explore the Data Flow Graph:

Explore the Data Flow Graph display with TensorBoard

How to use TensorBoard

- TensorBoard uses special icons for constants and summary nodes.
- To summarize, we report in the next figure the table of node symbols displayed:

The tensor data structure

- Tensors are the basic data structures in TensorFlow.
- They represent the connecting edges in a Data Flow Graph.
- A tensor simply identifies a multidimensional array or list.
- It can be identified by three parameters, rank, shape, and type:
- Rank: identifies the number of dimensions of the tensor. For example, a rank 2 tensor is a matrix and a rank 1 tensor is a vector.
- shape: The shape of a tensor is the number of rows and columns it has.
- type: It is the data type assigned to the tensor's elements.

The tensor data structure

- To build a tensor, we can:
- Build an n-dimensional array; for example, by using the NumPy library
- Convert the n-dimensional array into a TensorFlow tensor

The tensor data structure

Visualization of multidimensional tensors

One-dimensional tensors

- To build a one-dimensional tensor, we use the Numpy array(s) command, where s is a Python list:
- import numpy as np
- tensor_1d = np.array([1.3, 1, 4.0, 23.99])
- print tensor_1d \rightarrow [1.3 1. 4. 23.99]
- Indexing:
- print tensor_1d[0] $\rightarrow 1.3$
- print tensor_1d[2] $\rightarrow 4.0$

One-dimensional tensors

- Finally, you can view the basic attributes of the tensor, the rank of the tensor:
- tensor_1d.ndim $\rightarrow 1$
- The tuple of the tensor's dimension is as follows:
- tensor_1d.shape \rightarrow (4L,)
- The data type in the tensor:
- tensor_1d.dtype \rightarrow dtype('float64')

One-dimensional tensors

- Now, let's see how to convert a NumPy array into a TensorFlow tensor:
- import tensorflow as tf
- The TensorFlow function tf_convert_to_tensor converts Python objects of various types to tensor objects.
- It accepts tensor objects, Numpy arrays, Python lists, and Python scalars:
- tf_tensor=tf.convert_to_tensor(tensor_1d,dtype=tf.float64)
- Running the Session, we can visualize the tensor and its elements as follows:
- with tf.Session() as sess:
- print sess.run(tf_tensor)
- print sess.run(tf_tensor[0])
- print sess.run(tf_tensor[2])

Two-dimensional tensors

- To create a two-dimensional tensor or matrix, we again use array(s), but s will be a sequence of array:
- import numpy as np
- tensor_2d=np.array([(1,2,3,4),(4,5,6,7),(8,9,10,11), (12,13,14,15)])
- print tensor_2d
- The output:
- [[$1 \begin{array}{lll}1 & 2 & 3\end{array}$ 4]
- [456 7]
- [8910 11]
- [12 1314 15]]
- Print tensor_2d[3][3]
- 15
- Print tensor_2d[0:2,0:2]
- array([[1, 2],
- [4, 5]])

Tensor handling

- we can apply a little more complex operations to these data structures.
- Import the libraries:
- import TensorFlow as tf
- import numpy as np
- build two integer arrays. These represents two 3×3 matrices:
- matrix1 = np.array([(2,2,2),(2,2,2),(2,2,2)],dtype='int32')
- matrix2 = np.array([(1,1,1),(1,1,1),(1,1,1)],dtype='int32')
- Visualize them:
- print "matrix1="
- print matrix1
- print "matrix2 ="
- print matrix2

Tensor handling

- To use these matrices in our TensorFlow environment, they must be transformed into a tensor data structure:
- matrix1 = tf.constant(matrix1)
- matrix2 = tf.constant(matrix2)
- We used the TensorFlow constant operator to perform the transformation.
- The matrices are ready to be manipulated with TensorFlow operators.
- In this case, we calculate a matrix multiplication and a matrix sum:
- matrix_product = tf.matmul(matrix1, matrix2)
- matrix_sum = tf.add(matrix1,matrix2)

Tensor handling

- The following matrix will be used to compute a matrix determinant:
- matrix_3 = np.array $([(2,7,2),(1,4,2)$,
- $(9,0,2)], d t y p e=' f l o a t 32 ')$
- print "matrix3 ="
- print matrix_3
- matrix_det = tf.matrix_determinant(matrix_3)
- It's time to create our graph and run the session, with the tensors and operators created:
- with tf.Session() as sess:
- result1 = sess.run(matrix_product)
- result2 $=$ sess.run(matrix_sum)
- result3 = sess.run(matrix_det)

Tensor handling

- The results will be printed out by running the following command:
- print "matrix1*matrix2 ="
- print result1
- print "matrix1 + matrix2 ="
- print result2
- print "matrix3 determinant result ="
- print result3

Tensor handling

- TensorFlow provides numerous math operations on tensors.

| tf.pow | Returns the power |
| :--- | :--- | :--- |
| tf.exp | Returns the exponential |
| tf.log | Returns the logarithm |
| tf.maximum | Returns the maximum |
| tf.minimum | Returns the minimum |
| tf.cos | Returns the cosine |
| tf. sin | |

Three-dimensional tensors

- The following commands build a threedimensional tensor:
- import numpy as np
- tensor_3d = np.array([[[1,2],[3,4]],[[5,6],[7,8]]])
- The three-dimensional tensor created is a $2 \times 2 \times 2$ matrix:
- To retrieve an element from a threedimensional tensor, we use an expression of the following form:
- tensor_3d[plane,row,col]

Handling tensors with TensorFlow

- A color digital image that is a MxNx3 size matrix (a three order tensor) (R,G,B).
- import matplotlib.image as mp_image
- filename = "packt.jpeg"
- input_image $=$ mp_image.imread(filename)
- //rank and the shape
- print 'input dim $=\{ \}$ '.format(input_image.ndim)
- print 'input shape $=\{ \}$ '.format(input_image.shape)
- import matplotlib.pyplot as plt
- plt.imshow(input_image)
- plt.show()

Handling tensors with Tensorflow

- Slice is a bidimensional segment of the starting image, where each pixel has the RGB components, so we need a placeholder to store all the values of the slice:
- import TensorFlow as tf my_image = tf.placeholder("uint8", [None,None,3])
- Then we use the TensorFlow operator slice to create a subimage:
- slice = tf.slice(my_image,[10,0,0],[16,-1,-1])
- The last step is to build a TensorFlow working session:
- with tf.Session() as session:
- result = session.run(slice,feed_dict=\{my_image: input_image\})
- print(result.shape)
- plt.imshow(result)
- plt.show()

Handling tensors with Tensorflow

- Geometric transformation of the input image, using the transpose operator:
- import tensorflow as tf
- Associate the input image to a variable we call x :
- x = tf.Variable(input_image,name='x')
- Initialize our model:
- model = tf.initialize_all_variables()
- build up the session with that we run our code:
- with tf.Session() as session:
- $x=$ tf.transpose $(x$, perm $=[1,0,2])$
- session.run(model)
- result=session.run(x)
- plt.imshow(result)
- plt.show()

