Neural Networks: Tensorflow Dr. Amjad Hawash

- TensorBoard is a visualization tool, devoted to analyzing Data Flow Graph and also to better understand the machine learning models.
- It can view different types of statistics about the parameters and details of any part of a computer graph graphically.
- A deep neural network can have up to 36,000 nodes.
- For this reason, TensorBoard collapses nodes in high-level blocks, highlighting the groups with identical structures.
- Doing so allows a better analysis of the graph, focusing only on the core sections of the computation graph.

- Also, the visualization process is interactive; user can pan, zoom, and expand the nodes to display the details.
- The following figure shows a neural network model with TensorBoard:

A TensorBoard visualization example

- TensorFlow lets you insert so-called summary operations into the graph.
- These summary operations monitor changing values (during the execution of a computation) written in a log file.
- Then TensorBoard is configured to watch this log file with summary information and display how this information changes over time.

• Example:

- import tensorflow as tf
- a = tf.constant(10,name="a")
- b = tf.constant(90,name="b")
- y = tf.Variable(a+b*2, name="y")
- model = tf.initialize_all_variables()
- with tf.Session() as session:
 - merged = tf.merge_all_summaries()
 - writer = tf.train.SummaryWriter\
 ("/tmp/tensorflowlogs",session.graph)
 - session.run(model)
 - print(session.run(y))

- merged = tf.merge_all_summaries()
- This instruction must merge all the summaries collected in the default graph.
- Then we create SummaryWriter. It will write all the summaries (in this case the execution graph) obtained from the code's execution into the /tmp/tensorflowlogs directory:
 - writer = tf.train.SummaryWriter\

("/tmp/tensorflowlogs",session.graph)

- Finally, we run the model and so build the Data Flow Graph:
 - session.run(model)
 - print(session.run(y))
- The use of TensorBoard is very simple. Let's open a terminal and enter the following:
 - tensorboard -logdir=/tmp/tensorflowlogs
- A message such as the following should appear:
 - startig tensorboard on port 6006

 Then, by opening a web browser, we should display the Data Flow Graph with auxiliary nodes:

• Now we will be able to explore the Data Flow Graph:

Explore the Data Flow Graph display with TensorBoard

- TensorBoard uses special icons for constants and summary nodes.
- To summarize, we report in the next figure the table of node symbols displayed:

Symbol	Meaning
	High-level node representing a name scope. Double-click to expand a high-level node.
0	Sequence of numbered nodes that are not connected to each other.
9	Sequence of numbered nodes that are connected to each other.
0	An individual operation node.
0	A constant.
ıl.	A summary node.
\rightarrow	Edge showing the data flow between operations.
>	Edge showing the control dependency between operations.
\leftrightarrow	A reference edge showing that the outgoing operation node can mutate the incoming tensor.

Node symbols in TensorBoard

The tensor data structure

- Tensors are the basic data structures in TensorFlow.
- They represent the connecting edges in a Data Flow Graph.
- A tensor simply identifies a multidimensional array or list.
- It can be identified by three parameters, rank, shape, and type:
 - Rank: identifies the number of dimensions of the tensor. For example, a rank 2 tensor is a matrix and a rank 1 tensor is a vector.
 - shape: The shape of a tensor is the number of rows and columns it has.
 - type: It is the data type assigned to the tensor's elements.

The tensor data structure

- To build a tensor, we can:
 - Build an n-dimensional array; for example, by using the NumPy library
 - Convert the n-dimensional array into a TensorFlow tensor

The tensor data structure

Visualization of multidimensional tensors

One-dimensional tensors

- To build a one-dimensional tensor, we use the Numpy array(s) command, where s is a Python list:
 - import numpy as np
 - tensor_1d = np.array([1.3, 1, 4.0, 23.99])
 - print tensor_1d → [1.3 1.4.23.99]
- Indexing:
 - print tensor_1d[0] →1.3
 - print tensor_ $1d[2] \rightarrow 4.0$

One-dimensional tensors

- Finally, you can view the basic attributes of the tensor, the rank of the tensor:
 - tensor_1d.ndim \rightarrow 1
- The tuple of the tensor's dimension is as follows:
 - tensor_1d.shape \rightarrow (4L,)
- The data type in the tensor:
 - tensor_1d.dtype \rightarrow dtype('float64')

One-dimensional tensors

- Now, let's see how to convert a NumPy array into a TensorFlow tensor:
 - import tensorflow as tf
- The TensorFlow function tf_convert_to_tensor converts Python objects of various types to tensor objects.
- It accepts tensor objects, Numpy arrays, Python lists, and Python scalars:
 - tf_tensor=tf.convert_to_tensor(tensor_1d,dtype=tf.float64)
- Running the Session , we can visualize the tensor and its elements as follows:
 - with tf.Session() as sess:
 - print sess.run(tf_tensor)
 - print sess.run(tf_tensor[0])
 - print sess.run(tf_tensor[2])

Two-dimensional tensors

- To create a two-dimensional tensor or matrix, we again use array(s), but s will be a sequence of array:
 - import numpy as np
 - tensor_2d=np.array([(1,2,3,4),(4,5,6,7),(8,9,10,11), (12,13,14,15)])
 - print tensor_2d
- The output:
 - [[1234]
 - [4567]
 - [891011]
 - [12 13 14 15]]
 - Print tensor_2d[3][3]
 - 15
 - Print tensor_2d[0:2,0:2]
 - array([[1, 2],
 - [4, 5]])

- we can apply a little more complex operations to these data structures.
 - Import the libraries:
 - import TensorFlow as tf
 - import numpy as np
 - build two integer arrays. These represents two 3×3 matrices:
 - matrix1 = np.array([(2,2,2),(2,2,2),(2,2,2)],dtype='int32')
 - matrix2 = np.array([(1,1,1),(1,1,1),(1,1,1)],dtype='int32')
 - Visualize them:
 - print "matrix1="
 - print matrix1
 - •
 - print "matrix2 ="
 - print matrix2

- To use these matrices in our TensorFlow environment, they must be transformed into a tensor data structure:
 - matrix1 = tf.constant(matrix1)
 - matrix2 = tf.constant(matrix2)
- We used the TensorFlow constant operator to perform the transformation.
- The matrices are ready to be manipulated with TensorFlow operators.
- In this case, we calculate a matrix multiplication and a matrix sum:
 - matrix_product = tf.matmul(matrix1, matrix2)
 - matrix_sum = tf.add(matrix1,matrix2)

- The following matrix will be used to compute a matrix determinant:
 - matrix_3 = np.array([(2,7,2),(1,4,2),
 - (9,0,2)],dtype='float32')
 - print "matrix3 ="
 - print matrix_3
 - matrix_det = tf.matrix_determinant(matrix_3)
- It's time to create our graph and run the session, with the tensors and operators created:
 - with tf.Session() as sess:
 - result1 = sess.run(matrix_product)
 - result2 = sess.run(matrix_sum)
 - result3 = sess.run(matrix_det)

- The results will be printed out by running the following command:
 - print "matrix1*matrix2 ="
 - print result1
 - print "matrix1 + matrix2 ="
 - print result2
 - print "matrix3 determinant result ="
 - print result3

• TensorFlow provides numerous math operations on tensors.

		2			
TensorFlow open	rator Description	tf.neg	Returns the negative value	tf.pow	Returns the power
tf.add	Returns the sum	tf.sign	Returns the sign	tf.exp	Returns the exponential
tf sub	<u>!</u>	L tf.inv	Returns the inverse	tf.log	Returns the logarithm
	Returns subtraction			tf.maximum	Returns the maximum
tf.mul	Returns the multiplication	tf.square	Returns the square	tf.minimum	Returns the minimum
tf.div	Returns the division	tf.round	Returns the nearest integer	tf.cos	Returns the cosine
tf.mod	Returns the module	tf.sqrt	Returns the square root	tf.sin	Returns the sine
tf.abs	Returns the absolute value			μ	D

Three-dimensional tensors

- The following commands build a threedimensional tensor:
 - import numpy as np
 - tensor_3d = np.array([[[1,2],[3,4]],[[5,6],[7,8]]])
- The three-dimensional tensor created is a 2x2x2 matrix:
- To retrieve an element from a threedimensional tensor, we use an expression of the following form:
 - tensor_3d[plane,row,col]

Handling tensors with TensorFlow

- A color digital image that is a MxNx3 size matrix (a three order tensor) (R,G,B).
 - import matplotlib.image as mp_image
 - filename = "packt.jpeg"
 - input_image = mp_image.imread(filename)
 - //rank and the shape
 - print 'input dim = { }'.format(input_image.ndim)
 - print 'input shape = { }'.format(input_image.shape)
 - import matplotlib.pyplot as plt
 - plt.imshow(input_image)
 - plt.show()

Handling tensors with TensorFlow

- Slice is a bidimensional segment of the starting image, where each pixel has the RGB components, so we need a placeholder to store all the values of the slice:
 - import TensorFlow as tf my_image = tf.placeholder("uint8", [None,None,3])
- Then we use the TensorFlow operator slice to create a subimage:
 - slice = tf.slice(my_image,[10,0,0],[16,-1,-1])
- The last step is to build a TensorFlow working session:
 - with tf.Session() as session:
 - result = session.run(slice,feed_dict={my_image: input_image})
 - print(result.shape)
 - plt.imshow(result)
 - plt.show()

Handling tensors with TensorFlow

- Geometric transformation of the input image, using the transpose operator:
 - import tensorflow as tf
- Associate the input image to a variable we call x :
 - x = tf.Variable(input_image,name='x')
- Initialize our model:
 - model = tf.initialize_all_variables()
- build up the session with that we run our code:
 - with tf.Session() as session:
 - x = tf.transpose(x, perm=[1,0,2])
 - session.run(model)
 - result=session.run(x)
 - plt.imshow(result)
 - plt.show()