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How to use TensorBoard

● TensorBoard is a visualization tool, devoted to analyzing 
Data Flow Graph and also to better understand the 
machine learning models.

● It can view different types of statistics about the 
parameters and details of any part of a computer graph 
graphically. 

● A deep neural network can have up to 36,000 nodes. 
● For this reason, TensorBoard collapses nodes in high-level 

blocks, highlighting the groups with identical structures. 
● Doing so allows a better analysis of the graph, focusing 

only on the core sections of the computation graph.



  

How to use TensorBoard

● Also, the visualization process is 
interactive; user can pan, zoom, and 
expand the nodes to display the details.

● The following figure shows a neural 
network model with TensorBoard:
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How to use TensorBoard

● TensorFlow lets you insert so-called 
summary operations into the graph. 

● These summary operations monitor 
changing values (during the execution of a 
computation) written in a log file. 

● Then TensorBoard is configured to watch 
this log file with summary information and 
display how this information changes over 
time.



  

How to use TensorBoard

● Example:
– import tensorflow as tf
– a = tf.constant(10,name="a")
– b = tf.constant(90,name="b")
– y = tf.Variable(a+b*2, name="y")
– model = tf.initialize_all_variables()
– with tf.Session() as session:

● merged = tf.merge_all_summaries()
● writer = tf.train.SummaryWriter\

("/tmp/tensorflowlogs",session.graph)
● session.run(model)
● print(session.run(y))



  

How to use TensorBoard

– merged = tf.merge_all_summaries()
● This instruction must merge all the 

summaries collected in the default graph.
● Then we create SummaryWriter. It will write 

all the summaries (in this case the 
execution graph) obtained from the code's 
execution into the /tmp/tensorflowlogs 
directory:
– writer = tf.train.SummaryWriter\

("/tmp/tensorflowlogs",session.graph)



  

How to use TensorBoard

● Finally, we run the model and so build the Data 
Flow Graph:
– session.run(model)
– print(session.run(y))

● The use of TensorBoard is very simple. Let's 
open a terminal and enter the following:
– tensorboard –logdir=/tmp/tensorflowlogs

● A message such as the following should appear:
– startig tensorboard on port 6006



  

How to use TensorBoard

● Then, by opening a web browser, we 
should display the Data Flow Graph with 
auxiliary nodes:



  

How to use TensorBoard

● Now we will be able to explore the Data 
Flow Graph:



  

How to use TensorBoard

● TensorBoard uses
 special icons for 
constants and 
summary nodes. 

● To summarize, 
we report in the 
next figure the 
table of node 
symbols 
displayed:



  

The tensor data structure

● Tensors are the basic data structures in TensorFlow. 
● They represent the connecting edges in a Data Flow 

Graph. 
● A tensor simply identifies a multidimensional array or list.
● It can be identified by three parameters, rank, shape, and 

type:
– Rank: identifies the number of dimensions of the tensor. For 

example, a rank 2 tensor is a matrix and a rank 1 tensor is a 
vector.

– shape: The shape of a tensor is the number of rows and 
columns it has.

– type: It is the data type assigned to the tensor's elements.



  

The tensor data structure

● To build a tensor, we can:
– Build an n-dimensional array; for example, by 

using the NumPy library
– Convert the n-dimensional array into a 

TensorFlow tensor



  

The tensor data structure



  

One-dimensional tensors

● To build a one-dimensional tensor, we use 
the Numpy array(s) command, where s is a 
Python list:
– import numpy as np
– tensor_1d = np.array([1.3, 1, 4.0, 23.99])
– print tensor_1d → [ 1.3 1. 4. 23.99]

● Indexing:
– print tensor_1d[0] →1.3
– print tensor_1d[2] → 4.0



  

One-dimensional tensors

● Finally, you can view the basic attributes of 
the tensor, the rank of the tensor:
– tensor_1d.ndim → 1

● The tuple of the tensor's dimension is as 
follows:
– tensor_1d.shape → (4L,)

● The data type in the tensor:
– tensor_1d.dtype → dtype('float64')



  

One-dimensional tensors

● Now, let's see how to convert a NumPy array into a TensorFlow 
tensor:
– import tensorflow as tf

● The TensorFlow function tf_convert_to_tensor converts Python 
objects of various types to tensor objects. 

● It accepts tensor objects, Numpy arrays, Python lists, and Python 
scalars:
– tf_tensor=tf.convert_to_tensor(tensor_1d,dtype=tf.float64)

● Running the Session , we can visualize the tensor and its 
elements as follows:
– with tf.Session() as sess:

● print sess.run(tf_tensor)
● print sess.run(tf_tensor[0])
● print sess.run(tf_tensor[2])



  

Two-dimensional tensors

● To create a two-dimensional tensor or matrix, we again use array(s), 
but s will be a sequence of array:
– import numpy as np
– tensor_2d=np.array([(1,2,3,4),(4,5,6,7),(8,9,10,11), (12,13,14,15)])
– print tensor_2d

● The output:
● [[ 1 2 3 4]
● [ 4 5 6 7]
● [ 8 9 10 11]
● [12 13 14 15]]

– Print tensor_2d[3][3]
● 15

– Print tensor_2d[0:2,0:2]
● array([[1, 2],
● [4, 5]])



  

Tensor handling

● we can apply a little more complex operations to these data 
structures.
– Import the libraries:

● import TensorFlow as tf
● import numpy as np

– build two integer arrays. These represents two 3×3 matrices:
● matrix1 = np.array([(2,2,2),(2,2,2),(2,2,2)],dtype='int32')
● matrix2 = np.array([(1,1,1),(1,1,1),(1,1,1)],dtype='int32')

– Visualize them:
● print "matrix1="
● print matrix1
●

● print "matrix2 ="
● print matrix2



  

Tensor handling

– To use these matrices in our TensorFlow environment, 
they must be transformed into a tensor data structure:

● matrix1 = tf.constant(matrix1)
● matrix2 = tf.constant(matrix2)

– We used the TensorFlow constant operator to perform 
the transformation.

– The matrices are ready to be manipulated with 
TensorFlow operators. 

– In this case, we calculate a matrix multiplication and a 
matrix sum:

● matrix_product = tf.matmul(matrix1, matrix2)
● matrix_sum = tf.add(matrix1,matrix2)



  

Tensor handling

– The following matrix will be used to compute a matrix 
determinant: 

● matrix_3 = np.array([(2,7,2),(1,4,2),
● (9,0,2)],dtype='float32')
● print "matrix3 ="
● print matrix_3
● matrix_det = tf.matrix_determinant(matrix_3)

– It's time to create our graph and run the session, with 
the tensors and operators created:

● with tf.Session() as sess:
– result1 = sess.run(matrix_product)
– result2 = sess.run(matrix_sum)
– result3 = sess.run(matrix_det)



  

Tensor handling

– The results will be printed out by running the 
following command:

● print "matrix1*matrix2 ="
● print result1
● print "matrix1 + matrix2 ="
● print result2
● print "matrix3 determinant result ="
● print result3



  

Tensor handling

● TensorFlow provides numerous math operations on tensors. 



  

Three-dimensional tensors

● The following commands build a three-
dimensional tensor:
– import numpy as np
– tensor_3d = np.array([[[1,2],[3,4]],[[5,6],[7,8]]])

● The three-dimensional tensor created is a 
2x2x2 matrix:

● To retrieve an element from a three-
dimensional tensor, we use an expression of 
the following form:
– tensor_3d[plane,row,col]



  

Handling tensors with TensorFlow

● A color digital image that is a MxNx3 size matrix (a 
three order tensor) (R,G,B).
– import matplotlib.image as mp_image
– filename = "packt.jpeg"
– input_image = mp_image.imread(filename)
– //rank and the shape
– print 'input dim = {}'.format(input_image.ndim)
– print 'input shape = {}'.format(input_image.shape)
– import matplotlib.pyplot as plt
– plt.imshow(input_image)
– plt.show()



  

Handling tensors with TensorFlow

● Slice is a bidimensional segment of the starting image, where 
each pixel has the RGB components, so we need a placeholder 
to store all the values of the slice:
– import TensorFlow as tf my_image = tf.placeholder("uint8",

[None,None,3])
● Then we use the TensorFlow operator slice to create a sub-

image:
– slice = tf.slice(my_image,[10,0,0],[16,-1,-1])

● The last step is to build a TensorFlow working session:
– with tf.Session() as session:

● result = session.run(slice,feed_dict={my_image: input_image})
● print(result.shape)

– plt.imshow(result)
– plt.show()



  

Handling tensors with TensorFlow

● Geometric transformation of the input image, using the transpose 
operator:
– import tensorflow as tf

● Associate the input image to a variable we call x :
– x = tf.Variable(input_image,name='x')

● Initialize our model:
– model = tf.initialize_all_variables()

● build up the session with that we run our code:
– with tf.Session() as session:

● x = tf.transpose(x, perm=[1,0,2])
● session.run(model)
● result=session.run(x)

– plt.imshow(result)
– plt.show()
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