

Neural Networks: Tensorflow
Dr. Amjad Hawash

How to use TensorBoard

● TensorBoard is a visualization tool, devoted to analyzing
Data Flow Graph and also to better understand the
machine learning models.

● It can view different types of statistics about the
parameters and details of any part of a computer graph
graphically.

● A deep neural network can have up to 36,000 nodes.
● For this reason, TensorBoard collapses nodes in high-level

blocks, highlighting the groups with identical structures.
● Doing so allows a better analysis of the graph, focusing

only on the core sections of the computation graph.

How to use TensorBoard

● Also, the visualization process is
interactive; user can pan, zoom, and
expand the nodes to display the details.

● The following figure shows a neural
network model with TensorBoard:

How to use TensorBoard

How to use TensorBoard

● TensorFlow lets you insert so-called
summary operations into the graph.

● These summary operations monitor
changing values (during the execution of a
computation) written in a log file.

● Then TensorBoard is configured to watch
this log file with summary information and
display how this information changes over
time.

How to use TensorBoard

● Example:
– import tensorflow as tf
– a = tf.constant(10,name="a")
– b = tf.constant(90,name="b")
– y = tf.Variable(a+b*2, name="y")
– model = tf.initialize_all_variables()
– with tf.Session() as session:

● merged = tf.merge_all_summaries()
● writer = tf.train.SummaryWriter\

("/tmp/tensorflowlogs",session.graph)
● session.run(model)
● print(session.run(y))

How to use TensorBoard

– merged = tf.merge_all_summaries()
● This instruction must merge all the

summaries collected in the default graph.
● Then we create SummaryWriter. It will write

all the summaries (in this case the
execution graph) obtained from the code's
execution into the /tmp/tensorflowlogs
directory:
– writer = tf.train.SummaryWriter\

("/tmp/tensorflowlogs",session.graph)

How to use TensorBoard

● Finally, we run the model and so build the Data
Flow Graph:
– session.run(model)
– print(session.run(y))

● The use of TensorBoard is very simple. Let's
open a terminal and enter the following:
– tensorboard –logdir=/tmp/tensorflowlogs

● A message such as the following should appear:
– startig tensorboard on port 6006

How to use TensorBoard

● Then, by opening a web browser, we
should display the Data Flow Graph with
auxiliary nodes:

How to use TensorBoard

● Now we will be able to explore the Data
Flow Graph:

How to use TensorBoard

● TensorBoard uses
 special icons for
constants and
summary nodes.

● To summarize,
we report in the
next figure the
table of node
symbols
displayed:

The tensor data structure

● Tensors are the basic data structures in TensorFlow.
● They represent the connecting edges in a Data Flow

Graph.
● A tensor simply identifies a multidimensional array or list.
● It can be identified by three parameters, rank, shape, and

type:
– Rank: identifies the number of dimensions of the tensor. For

example, a rank 2 tensor is a matrix and a rank 1 tensor is a
vector.

– shape: The shape of a tensor is the number of rows and
columns it has.

– type: It is the data type assigned to the tensor's elements.

The tensor data structure

● To build a tensor, we can:
– Build an n-dimensional array; for example, by

using the NumPy library
– Convert the n-dimensional array into a

TensorFlow tensor

The tensor data structure

One-dimensional tensors

● To build a one-dimensional tensor, we use
the Numpy array(s) command, where s is a
Python list:
– import numpy as np
– tensor_1d = np.array([1.3, 1, 4.0, 23.99])
– print tensor_1d → [1.3 1. 4. 23.99]

● Indexing:
– print tensor_1d[0] →1.3
– print tensor_1d[2] → 4.0

One-dimensional tensors

● Finally, you can view the basic attributes of
the tensor, the rank of the tensor:
– tensor_1d.ndim → 1

● The tuple of the tensor's dimension is as
follows:
– tensor_1d.shape → (4L,)

● The data type in the tensor:
– tensor_1d.dtype → dtype('float64')

One-dimensional tensors

● Now, let's see how to convert a NumPy array into a TensorFlow
tensor:
– import tensorflow as tf

● The TensorFlow function tf_convert_to_tensor converts Python
objects of various types to tensor objects.

● It accepts tensor objects, Numpy arrays, Python lists, and Python
scalars:
– tf_tensor=tf.convert_to_tensor(tensor_1d,dtype=tf.float64)

● Running the Session , we can visualize the tensor and its
elements as follows:
– with tf.Session() as sess:

● print sess.run(tf_tensor)
● print sess.run(tf_tensor[0])
● print sess.run(tf_tensor[2])

Two-dimensional tensors

● To create a two-dimensional tensor or matrix, we again use array(s),
but s will be a sequence of array:
– import numpy as np
– tensor_2d=np.array([(1,2,3,4),(4,5,6,7),(8,9,10,11), (12,13,14,15)])
– print tensor_2d

● The output:
● [[1 2 3 4]
● [4 5 6 7]
● [8 9 10 11]
● [12 13 14 15]]

– Print tensor_2d[3][3]
● 15

– Print tensor_2d[0:2,0:2]
● array([[1, 2],
● [4, 5]])

Tensor handling

● we can apply a little more complex operations to these data
structures.
– Import the libraries:

● import TensorFlow as tf
● import numpy as np

– build two integer arrays. These represents two 3×3 matrices:
● matrix1 = np.array([(2,2,2),(2,2,2),(2,2,2)],dtype='int32')
● matrix2 = np.array([(1,1,1),(1,1,1),(1,1,1)],dtype='int32')

– Visualize them:
● print "matrix1="
● print matrix1
●

● print "matrix2 ="
● print matrix2

Tensor handling

– To use these matrices in our TensorFlow environment,
they must be transformed into a tensor data structure:

● matrix1 = tf.constant(matrix1)
● matrix2 = tf.constant(matrix2)

– We used the TensorFlow constant operator to perform
the transformation.

– The matrices are ready to be manipulated with
TensorFlow operators.

– In this case, we calculate a matrix multiplication and a
matrix sum:

● matrix_product = tf.matmul(matrix1, matrix2)
● matrix_sum = tf.add(matrix1,matrix2)

Tensor handling

– The following matrix will be used to compute a matrix
determinant:

● matrix_3 = np.array([(2,7,2),(1,4,2),
● (9,0,2)],dtype='float32')
● print "matrix3 ="
● print matrix_3
● matrix_det = tf.matrix_determinant(matrix_3)

– It's time to create our graph and run the session, with
the tensors and operators created:

● with tf.Session() as sess:
– result1 = sess.run(matrix_product)
– result2 = sess.run(matrix_sum)
– result3 = sess.run(matrix_det)

Tensor handling

– The results will be printed out by running the
following command:

● print "matrix1*matrix2 ="
● print result1
● print "matrix1 + matrix2 ="
● print result2
● print "matrix3 determinant result ="
● print result3

Tensor handling

● TensorFlow provides numerous math operations on tensors.

Three-dimensional tensors

● The following commands build a three-
dimensional tensor:
– import numpy as np
– tensor_3d = np.array([[[1,2],[3,4]],[[5,6],[7,8]]])

● The three-dimensional tensor created is a
2x2x2 matrix:

● To retrieve an element from a three-
dimensional tensor, we use an expression of
the following form:
– tensor_3d[plane,row,col]

Handling tensors with TensorFlow

● A color digital image that is a MxNx3 size matrix (a
three order tensor) (R,G,B).
– import matplotlib.image as mp_image
– filename = "packt.jpeg"
– input_image = mp_image.imread(filename)
– //rank and the shape
– print 'input dim = {}'.format(input_image.ndim)
– print 'input shape = {}'.format(input_image.shape)
– import matplotlib.pyplot as plt
– plt.imshow(input_image)
– plt.show()

Handling tensors with TensorFlow

● Slice is a bidimensional segment of the starting image, where
each pixel has the RGB components, so we need a placeholder
to store all the values of the slice:
– import TensorFlow as tf my_image = tf.placeholder("uint8",

[None,None,3])
● Then we use the TensorFlow operator slice to create a sub-

image:
– slice = tf.slice(my_image,[10,0,0],[16,-1,-1])

● The last step is to build a TensorFlow working session:
– with tf.Session() as session:

● result = session.run(slice,feed_dict={my_image: input_image})
● print(result.shape)

– plt.imshow(result)
– plt.show()

Handling tensors with TensorFlow

● Geometric transformation of the input image, using the transpose
operator:
– import tensorflow as tf

● Associate the input image to a variable we call x :
– x = tf.Variable(input_image,name='x')

● Initialize our model:
– model = tf.initialize_all_variables()

● build up the session with that we run our code:
– with tf.Session() as session:

● x = tf.transpose(x, perm=[1,0,2])
● session.run(model)
● result=session.run(x)

– plt.imshow(result)
– plt.show()

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

